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Abstract

Aliasing refers to the phenomenon that high frequency signals degenerate into com-
pletely different ones after sampling. It arises as a problem in the context of deep learning
as downsampling layers are widely adopted in deep architectures to reduce parameters
and computation. The standard solution is to apply a low-pass filter (e.g., Gaussian blur)
before downsampling [37]. However, it can be suboptimal to apply the same filter across
the entire content, as the frequency of feature maps can vary across both spatial locations
and feature channels. To tackle this, we propose an adaptive content-aware low-pass
filtering layer, which predicts separate filter weights for each spatial location and chan-
nel group of the input feature maps. We investigate the effectiveness and generalization
of the proposed method across multiple tasks including ImageNet classification, COCO
instance segmentation, and Cityscapes semantic segmentation. Qualitative and quanti-
tative results demonstrate that our approach effectively adapts to the different feature
frequencies to avoid aliasing while preserving useful information for recognition. Code
is available at https://maureenzou.github.io/ddac/.

1 Introduction

Deep neural networks have led to impressive breakthroughs in visual recognition, speech
recognition, and natural language processing. On certain benchmarks such as ImageNet and
SQuAD, they can even achieve “human-level” performance [11, 24, 26, 31]. However, com-
mon mistakes that these networks make are often quite unhuman like. For example, a tiny
shift in the input image can lead to drastic changes in the output prediction of convolutional
neural networks (ConvNets) [1, 28, 31]. This phenomenon was demonstrated to be partially
due to aliasing when downsampling in ConvNets [37].

Aliasing refers to the phenomenon that high frequency information in a signal is distorted
during subsampling [9]. The Nyquist theorem states that the sampling rate must be at least
twice the highest frequency of the signal in order to prevent aliasing. Without proper anti-
aliasing techniques, a subsampled signal can look completely different compared to its input.
Below is a toy example demonstrating this problem on 1D signals:
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Figure 1: Effect of adaptive filtering for anti-aliasing. (a) Input image. (b) Result of direct
downsampling. (c) Result of downsampling after applying a single Gaussian filter tuned
to match the frequency of the noise. (d) Result of downsampling after applying spatially-
adaptive Gaussian filters (stronger blurring for background noise and weaker for edges).
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Here k is the kernel size (1 x 2). Because of aliasing, a one position shift in the origi-
nal signal leads to a completely different sampled signal (bottom) compared to the original
sampled one (top). As downsampling layers in ConvNets are critical for reducing parame-
ters and inducing invariance in the learned representations, the aliasing issue accompanying
these layers will likely result in a performance drop as well as undesired shift variance in the
output if not handled carefully.

To tackle this, [37] proposed to insert a Gaussian blur layer before each downsampling
module in ConvNets. Though simple and effective to a certain degree, we argue that the
design choice of applying a universal Gaussian filter is not optimal — as signal frequencies
in a natural image (or feature map) generally vary throughout spatial locations and channels,
different blurring filters are needed in order to satisfy the Nyquist theorem to avoid aliasing.
For example, the image in Fig. 1 (a) contains high frequency impulse noise in the background
and relatively lower frequency edges in the foreground. Directly applying a downsampling
operation produces discontinuous edges and distorted impulse noise shown in (b) due to
aliasing. By applying a Gaussian filter before downsampling, we can avoid aliasing as shown
in (c). However, as the high frequency impulse noise needs to be blurred more compared to
the lower frequency edges, when using a single Gaussian filter tuned for the impulse noise,
the edges are over-blurred leading to significant information loss. To solve this issue, what
we need is to apply different Gaussian filters to the foreground and background separately,
so that we can avoid aliasing while preserving useful information, as in (d).

With the above observation, we propose a content-aware anti-aliasing module, which
adaptively predicts low-pass filter weights for different spatial locations. Furthermore, as
different feature channels can also have different frequencies (e.g., certain channels capture
edges, others capture color blobs), we also predict different filters for different channels.
In this way, our proposed module adaptively blurs the input content to avoid aliasing while
preserving useful information for downstream tasks. To summarize, our contributions are:

e We propose a novel adaptive and architecture-independent low-pass filtering layer in Con-
vNets for anti-aliasing.

e We propose novel evaluation metrics, which measure shift consistency for semantic and
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instance segmentation tasks; i.e., a method’s robustness to aliasing effects caused by shifts
in the input.

e We conduct experiments on image classification (ImageNet), semantic segmentation (PAS-
CAL VOC and Cityscapes), instance segmentation (MS-COCQO), and domain generaliza-
tion (ImageNet to ImageNet VID). The results show that our method outperforms com-
petitive baselines with a good margin on both accuracy and shift consistency.

e We demonstrate intuitive qualitative results, which show the interpretability of our module
when applied to different spatial locations and channel groups.

2 Related Work

Network robustness In deep learning, the robustness problem related to adversarial at-
tacks [18, 30], input translation [2, 22, 36], and natural perturbations [28] has been widely
studied. The crux of these studies is how small variations in the input image can lead to large
variations in the predictions. In order to obtain a stable and robust network, [17, 19, 35]
introduce novel losses or network architectures to defend against adversarial attacks. Apart
from adversarial defense, [2, 22] propose new algorithms to learn more shift-invariant rep-
resentations. Finally, [37] provides a new perspective on obtaining shift-invariant features
in the context of anti-aliasing. Unlike [37], which applies a single hand-coded low-pass fil-
ter regardless of content, we adaptively learn the low-pass filter in a content-aware way and
demonstrate it leads to improvement in both recognition accuracy and network robustness.

Image filtering Low-pass filters like box [27] and Gaussian [9] are classic content agnostic
smoothing filters; i.e., their filter weights are fixed regardless of spatial location and image
content. Bilateral [25] and guided [10] filters are content aware as they can simultaneously
preserve edge information while removing noise. Recent works integrate such classic filters
into deep networks [14, 35, 37]. However, directly integrating these modules into a neural
network requires careful tuning of hyperparameters subject to the input image (e.g., o5 and
o, 1n bilateral filter or r and € in guided filter). [16, 29] introduced the dynamic filtering
layer, whose weights are predicted by convolution layers conditioned on pre-computed fea-
ture maps. We differ from them in two key aspects: 1) our filter weights vary across both
spatial and channel groups, and 2) we insert our low-pass filtering layer before every down-
sampling layer for anti-aliasing, whereas the dynamic filtering layer is directly linked to the
prediction (last) layer in order to incorporate motion information for video recognition tasks.
Finally, [33] introduces an adaptive convolution layer for upsampling, whereas we focus on
downsampling with an adaptive low-pass filtering layer.

Pixel classification tasks such as semantic segmentation [5, 21] and instance segmentation
[3, 13] require precise modeling of object boundaries, so that pixels from the same object
instance can be correctly grouped together. Thus, while blurring can help reduce aliasing, it
can also be harmful to these tasks (e.g., when the edges are blurred too much or not blurred
enough hence resulting in aliasing). We investigate the effect of anti-aliasing in these pixel-
level tasks, whereas our closest work, [37], focused mainly on image classification.

3 Approach

To enable anti-aliasing for ConvNets, we apply the proposed content-aware anti-aliasing
module before each downsampling operation in the network. Inside the module, we first
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Figure 2: Method overview. (Left) For each spatial location and feature channel group in
the input X, we predict a k x k filter w. (Right) We apply the learned filters on X to obtain

content aware anti-aliased features. See text for more details.

generate low-pass filters for different spatial locations and channel groups (Fig. 2 left), and
then apply the predicted filters back onto the input features for anti-aliasing (Fig. 2 right).

Spatial adaptive anti-aliasing. As frequency components can vary across different spa-
tial locations in an image, we propose to learn different low-pass filters in a content-aware
manner across spatial locations. Specifically, given an input feature X that needs to be down-
sampled, we generate a low-pass filter w; j (e.g., a 3 x 3 conv filter) for each spatial location
(i, ) on x. With the predicted low-pass filter w; ;, we can then apply it to input X:

_ 4
Yi,j = Z Wﬁ:}- . Xi+p,j+qa (2)
P,qed

where Y; ; denotes output features at location (i, j) and Q points to the set of locations sur-
rounding (7, j) on which we apply the predicted smooth filter. In this way, the network can
learn to blur higher frequency content more than lower frequency content, to reduce unde-
sirable aliasing effects while preserving important content as much as possible.

Channel-grouped adaptive anti-aliasing. Different channels of a feature map can capture
different aspects of the input that vary in frequency (e.g., edges, color blobs). Therefore,
in addition to predicting different filters for each spatial location, it can also be desirable
to predict different filters for each feature channel. However, naively predicting a low-pass
filter for each spatial location and channel can be computationally very expensive. Motivated
by the observation that some channels will capture similar information [34], we group the
channels into k groups and predict a single low-pass filter w; ; , for each group g. Then, we
apply w; j ¢ to the input X:

v =Y whil - Xf 3)

i,j,8 +p,j+q’
PqeQ

where g is the group index to which channel ¢ belongs. In this way, channels within a group
are learned to be similar, as shown in Fig. 4.
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Figure 3: Variance of the learned filter weights across spatial locations. Low variance
corresponds to more blur, while high variance corresponds to less blur. Our model correctly
learns to blur high frequency content (e.g., edges) more to prevent aliasing, and blur low
frequency content less to preserve useful information.
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Figure 4: Visualization of predicted feature maps within and across groups. The features
within each group are more similar to each other than to those in other groups. Each group
captures a different aspect of the image (e.g., edges, color blobs).

Learning to predict filters. To dynamically generate low-pass filters for each spatial lo-
cation and feature channel group, we apply a convolutional block (conv + batchnorm) to
the input feature X € R"™ "™V to output w € R"*¢ szXhXW, where g denotes the number
of channel groups and each of the k? channels corresponds to an element in one of k x k
locations in the filters. For grouping, we group every c/g consecutive channels, where c is
the total number of channels. Finally, to ensure that the generated filters are low-pass, we
constrain their weights to be positive and sum to one by passing it through a softmax layer.

Analyzing the predicted filters. In this section, we analyze the behavior of our learned
filters. First, we analyze how the filters spatially adapt to different image content. For this,
we compute the variance of the learned filter weights across different spatial locations. A
k x k average filter with 1/k? intensity in each element will have zero variance whereas an
identity filter with one in the center and zeros everywhere else will have high variance. From
Fig. 3, one can clearly see that when the image content has high frequency information (e.g.,
elephant background trees, bird contours), the learned filters’ variance tends to be smaller;
1.e., more blur is needed to prevent aliasing. Conversely, the filters’ variance is larger when
the content is relatively smoother (e.g., background in bird images); i.e., less blur is needed
to prevent aliasing. In this way, the learned filters can reduce aliasing during sampling while
preserving useful image content as much as possible.

We next analyze how the filters adapt to different content across different feature groups.
Fig. 4 shows this effect; e.g., group 1 captures relatively low frequency information with
smooth areas, while group 2 captures higher frequency information with sharp intensity
transitions. In this way, the learned filters can adapt to different frequencies across feature
channels, while saving computational costs by learning the same filter per group.
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accuracy consistency generalization
methods Filter | Abs Delta | Abs Delta | Abs  Delta
ResNet-101 [12] - 77.7 - 90.6 - 67.6 -
3x3 | 784 +0.7 | 91.6 +1.0 | 68.8 +1.2
LPE{37] 5x5 | 7777 +0.0 | 91.8 +1.2 | 67.0 -0.6
3x3 [ 790 +13 | 91.8 +1.2 | 699 +2.3
Ours

5x5 | 786  +09 | 922 +1.6 | 60.1 +1.5

Table 1: Image classification accuracy, consistency on ImageNet [7], and domain general-
ization results ImageNet — ImageNet VID [7]. We compare to strong ResNet-101 [12] and
LPF (low-pass filter) [37] baselines. Our method shows consistent improvement in accuracy,
consistency, and generalization.

4 Experiments

We first introduce our experimental settings and propose consistency metrics for image clas-
sification, instance segmentation, and semantic segmentation. We compare to strong base-
lines including ResNet [12], Deeplab v3+ [5], Mask R-CNN on large scale datasets including
ImageNet, ImageNet VID [7], MS COCO [20], PASCAL VOC [8] and Cityscapes [6]. We
also conduct ablation studies on our design choices including number of groups, parame-
ter counts, as well as filter types. Finally, we present qualitative results demonstrating the
interpretability of our anti-aliasing module.

4.1 Image Classification

Experimental settings We evaluate on ILSVRC2012 [7], which contains 1.2M training
and 50K validation images for 1000 object classes. We use input image size of 224 x 224,
SGD solver with initial learning rate 0.1, momentum 0.9, and weight decay le-4. Full train-
ing schedule is 90 epochs with 5 epoch linear scaling warm up. Learning rate is reduced by
10x every 30 epochs. We train on 4 GPUs, with batch size 128 and batch accumulation of
2. For fair comparison, we use the same set of hyperparameters and training schedule for
both ResNet-101, LPF [37] baselines as well as our method. The number of groups is set to
8 according to our ablation study. We extend the code base introduced in [37].

Consistency metric We use the consistency metric defined in [37], which measures how
often the model outputs the same top-1 class given two different shifts on the same test
image: Consistency = Ex p, w, hy.wy H{F (Xn, w,;) = F(Xhyw, )}, where E and I denote expec-
tation and indicator function (outputs 1/0 with true/false inputs). X is the input image, i1, w
(height/width) and h;,,w, parameterize the shifts and F(-) denotes the predicted top-1 class.

Results and analysis As shown in Table 1, our adaptive anti-aliasing module outperforms
the baseline ResNet-101 without anti-aliasing with a 1.3 point boost (79.0 vs 77.7) in top-1
accuracy on ImageNet classification. More importantly, when comparing to LPF [37], which
uses a fixed blurring kernel for anti-aliasing, our method scores 0.6 points higher (79.0 vs
78.4) on top-1 accuracy. Furthermore, our method not only achieves better classification ac-
curacy, it also outputs more consistent results (+0.2/+0.4 consistency score improvements for
3x3 and 5x35 filter sizes) compared to LPF. These results reveal that our method preserves
more discriminative information for recognition when blurring feature maps.
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Figure 5: Our new consistency metrics. (b,c,d): mean Average Instance Segmentation Con-
sistency (mAISC). (e,f,g): mean Average Semantic Segmentation Consistency (mASSC).

4.2 Domain Generalization

Experimental settings ImageNet VID is a video object detection dataset, which has 30
classes that overlap with 284 classes in ImageNet (some classes in ImageNet VID are the
super class of ImageNet). It contains 3862/1315 training/validation videos. We randomly
select three frames from each validation video, and evaluate Top-1 accuracy on them to
measure the generalization capability of our model which is pretrained on ImageNet (i.e. it
has never seen any frame in ImageNet VID). As a video frame may contain multiple objects
in different classes, we count a prediction as correct as long as it belongs to one of the
ground-truth classes.

Results and analysis Table 1 reveals that our method generalizes better to a different do-
main compared to the ResNet-101 baseline (+2.3% points increase in top-1 accuracy for
3 x 3 filter) and LPF model (+1.1%) which adopts a fixed blur kernel. We hypothesize that
the better generalization capability comes from the fact that we learn a representation that
is less sensitive to downsampling (i.e., more robust to shifts). This is particularly useful for
video frames, as they can be thought of as having natural shift perturbations of the same
content across frames [28].

4.3 Instance Segmentation

Experimental settings In this section, we present results on MS-COCO for instance seg-
mentation [20]. MS-COCO contains 330k images, 1.5M object instances and 80 categories.
We use Mask R-CNN [13] as our base architecture. We adopt the hyperparameter settings
from the implementation of [23]. When measuring consistency, we first resize images to
800 x 800 and then take a crop of 736 x 736 as input.

Consistency metric (mAISC) We propose a new mean Average Instance Segmentation
Consistency (mAISC) metric to measure the shift invariance property of instance segmenta-
tion methods. As shown in Fig. 5, given an input image (a), we randomly select two crops
(b) and (c), and apply an instance segmentation method on them separately. M (b) and M(c)
denote the predicted instances in the overlapping region of image (b) and (c). To measure
consistency, for any given instance my in M(b) we find its highest overlapping counterpart
mc in M(c). If the IOU between my, and m, is larger than a threshold (0.9 in our experiments),
we regard my, as a positive (consistent) sample in M (b). (A sample m, from M (c) can only
be considered a counterpart of any instance in M(b) once.) We compute the final mAISC
score as the mean percentage of positive samples in M(b) over all input image pairs.
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Mask Box
method mAP  Delta mAISC Delta | mAP Delta mAISC  Delta
Mask R-CNN [13] 36.1 - 62.9 - 40.1 - 65.1
LPF [37] 36.8 +0.7 66.0 +4.1 40.9 +0.8 68.8 +3.7
Ours 37.2 +1.1 67.0 +5.1 41.4 +1.3 69.8 +4.7

Table 2: Instance segmentation results on MS COCO. We compare to Mask R-CNN [13]
and LPF [37]. Our approach consistently improves over the baselines for both mask and box
accuracy and consistency.

PASCAL VOC Cityscapes
method mIOU  Delta mASSC Delta | mIOU  Delta mASSC Delta
Deeplab v3+ [5] 78.5 - 95.5+0.11 - 78.5 - 96.0+0.10
LPF [37] 79.4 +09 959+40.07 +04 78.9 +04 96.1£0.05 +0.1
Ours 80.3 +1.8 96.0+0.13 +0.5 79.5 +1.0 96.3+0.07 +0.3

Table 3: Semantic segmentation on PASCAL VOC 2012 [8] and Cityscapes [6]. We compare
to Deeplab v3+ [5] and LPF [37]. Our approach leads to improved accuracy and consistency.

Results and analysis We evaluate mAP and mAISC for both mask and box predictions.
As shown in Table 2, while simply applying a fixed Gaussian low-pass filter improves mAP
by +0.7/+0.8 points for mask/box, our adaptive content-aware anti-aliasing module is more
effective (further +0.4/+0.5 point improvement over LPF for mask/box). This demonstrates
that it is important to have different low-pass filters for different spatial locations and channel
groups. More interestingly, by introducing our adaptive low-pass filters, mAISC increases
by a large margin (+5.1/+4.7 for mask/box over the baseline, and +1.0/+1.0 over LPF). This
result demonstrates that 1) an anti-aliasing module significantly improves shift consistency
via feature blurring, and 2) edges (higher frequency) are better preserved using our method
(compared to LPF) during downsampling which are critical for pixel classification tasks.

4.4 Semantic Segmentation

Experimental settings We next evaluate on PASCAL VOC2012 [8] and Cityscapes [6]
semantic segmentation with Deeplab v3+ [5] as the base model. We extend implementa-
tions from [15] and [32]. For Cityscapes, we use syncBN with a batch size of 8. As for
PASCAL VOC, we use a batch size of 16 on two GPUs without syncBN. We report better
performance compared to the original implementation for DeepLab v3+ on PASCAL VOC.
For Cityscapes, our ResNet-101 backbone outperforms the Inception backbone used in [4].

Consistency metric (mASSC) We propose a new mean Average Semantic Segmentation
Consistency (mASSC) metric to measure shift consistency for semantic segmentation meth-
ods. Similar to mAISC, we take two random crops (e,f) from the input image (a) in Fig. 5.
We then compute the Semantic Segmentation Consistency between the overlapping regions
X and Y of the two crops: Consistency(X,Y) := Eicjo n)Ejejo.w) [[S(X):j = S(Y)i j], where
S(X);;j and S(Y); ; denote the predicted class label of pixel (i, j) in X and Y, and h,w is the
height and width of the overlapping region. We average this score for all pairs of crops in an
image, and average those scores over all test images to compute the final mASSC.

Results and analysis As shown in Table 3, our method improves mIOU by 1.8 and 1.0
points on PASCAL VOC and Cityscapes compared to the strong baseline of DeepLab v3+.
Furthermore, our method also consistently improves the mASSC score (+0.5 and +0.3 for
VOC and Cityscapes) despite the high numbers achieved by the baseline method (95.5/96.0).
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Figure 6: Effect of number of groups on top-1 accuracy and consistency.

methods top-1 Acc  consistency e . .

ResNet 6635 701 Table 4: Filter ablations. Gaussian blur
Gaussian 66.7 79.8 is better than no blur (ResNet). Learn-
Image Adaptive 66.7 78.7 ing the blur filter globally (Image Ada.),
Spatial Adaptive | 67.7 80.3 spatially (Spatial Ada.), and over chan-
Ours 68.0 80.9

nels (Ours) progressively does better.

Finally, to measure the variance of our mASSC results, we report the standard deviation over
three runs with different random seeds.

4.5 Ablation Studies

Experimental settings For efficiency, we perform all ablation studies using ResNet-18
with input image size 112 x 112 and batch size 200 on ImageNet. All other hyperparameters
are identical to those used in Sec. 4.1.

Number of channel groups. We vary the number of channel groups and study its influ-
ence on image classification accuracy. As shown in Fig. 6, the trend is clear — increasing the
number of groups generally leads to improved top-1 accuracy. This demonstrates the effec-
tiveness of predicting different filters across channels. However, there exists a diminishing
return in this trend — the performance saturates when the group number goes beyond 8. We
hypothesize this is caused by overfitting.

Number of parameters. We further compare the effects of directly increasing the number
of parameters in the base network vs adding more groups in our content-aware low-pass fil-
ters. To increase the number of parameters for the base network, we increase the base channel
size in ResNet-18. We find that directly increasing the number of parameters barely improves
top-1 accuracy — when the number of parameters increases from 12.17M to 12.90M, top-1
accuracy increases only by 0.1%. Also, with similar (or less) number of parameters, our
method yields a higher performance gain compared to naively increasing network capacity
(68.0% vs 67.7% top-1 accuracy for 12.60M vs 12.90M parameters). This shows that our
adaptive anti-aliasing method does not gain performance by simply scaling up its capacity.

Type of filter. In Table 4, we ablate our pixel adaptive filtering layers with various baseline
components. Applying the same low-pass filter (Gaussian, Image Adaptive) across the en-
tire image performs better than the vanilla ResNet-18 without any anti-aliasing. Here, Image
Adaptive refers to the baseline which predicts a single low-pass filter for the entire image.
By adaptively learning a spatially variant low-pass filter, performance improves further (Spa-
tial Adaptive). Overall, our method achieves the best performance which demonstrates the
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Deeplab v3+

Figure 7: Qualitative results for semantic segmentation on Cityscapes.

B OB B B B H OB H H

- EASEREERRE

Figure 8: Visualization of learned filter weights at each spatial location.

benefits of predicting filters that are both spatially varying and channel adaptive.

Overhead. Finally, with our spatial/channel adaptive filtering added, the number of pa-
rameters increases by 2.9-7.8% for ResNet models (e.g., 4% for R-101, 4.5M to 4.63M). As
for runtime, on a RTX2070 GPU, our method (R-101 backbone) takes 6.4 ms to forward a
224x224 image whereas a standard ResNet-101 takes 4.3 ms.

4.6 Qualitative Results

Semantic Segmentation. We show qualitative results for semantic segmentation in Fig. 7
to demonstrate that our module better preserves edge information. For example, in the first
row, within the yellow box region, our method clearly distinguishes the road edge compared
to Deeplab v3+ and LPF. Similar behavior (better segmented road contours) is also observed
in the second row. This holds for other objects as well — the light pole has better delineation
compared to both baselines in the third row.

Low-pass filter weights. To further understand our adaptive filtering module, we visualize
the low-pass filter weights for each spatial location. As shown in Fig. 8, our model tends to
“grow” edges so that it’s easier for them to be preserved. For example, the learned filter
tends to integrate more information from left to right (see center-left and bottom-left weights
in Fig. 8) on the vertical tree branch and thus grow it to be thicker. This way, it’s easier for
tree branch contours to be preserved after downsampling.

5 Conclusion

In this paper, we proposed an adaptive content-aware low-pass filtering layer, which predicts
separate filter weights for each spatial location and channel group of the input. We quan-
titatively demonstrated the effectiveness of the proposed method across multiple tasks and
qualitatively showed that our approach effectively adapts to the different feature frequencies
to avoid aliasing while preserving useful information for recognition.
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