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INTRODUCTION

p—

The topic of identification of dynamic systems, has been at the core of modern control , following the
fundamental works of Kalman. A good state of the art for linear dynamic systems can be found in the
references [2], [6], see also [1] and [3]. Realization Theory has been one of the major outcomes in this
domain, with the possibility of identifying a dynamic system from an input-output relationship. The recent
development of machine learning concepts has rejuvanated interest for identification. In this paper, we
review briefly the results of realization theory, and develop some methods inspired by Machine Learning
concepts. We have been inspired by papers [8], [10] and [11].

The interaction between system-control theory and signal processing on the one hand and machine

learning and more generally data science on the other hand has been steadily increasing in recent years.
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Given that all these disciplines may be viewed as part of the activity of solving inverse problems, this
interaction is both inevitable and inexorable. The papers [8, 10, 11] provide compelling instances of this
interaction The paper [8] argues this interplay persuasively. Similarly, [11] discusses the naturality and
intervention of stochastic control and Hamilton-Jacobi theory in the Entropy-Stochastic Gradient Descent
in the study of deep neural networks, amongst many more such examples in deep learning. [10] provides
a unified approach for kernels on dynamical systems used in machine learning inspired by the behavioural

framework in system theory.

2 REALIZATION THEORY

2.1 BASIC PROBLEM

The basic problem is to go from an input-output relationship to a dynamical system with state observation

and partial observation of the state

Tt+1 = A.%'t + th (21)

yr = Cy

The function v is the input and the function %; is the out-put. We have v, € R™ t = 1,--- and
y € RP,t = 1,---. The map v — y is the input-output relationship. If this map can be written as
(2.1) then we say that the input-output relationship has an internal state realization, denoted by (A4, B, C).
The function x; € R™,t = 1,--- is the state of the system. The number n is called the model order.
The identification consists in finding three matrices A, B, C' such that (2.1) holds , given the input-output

relationship. We can write the observation y; as

t
yry1 = CA'21 + > Gy_gvs41, t >0 (2.2)
s=0
where
G, =CA"'B, t>1,Gy=0 (2.3)

are the Markov parameters. We set G = (G, G1,- - - ), called the impulse response of the system.



2.2 MINIMUM REALIZATION THEORY

The problem solved in classical dynamic systems theory consists in finding matrices A, B, C which satisfy
(2.3) for a large number of t. This research topic has raised a huge amount of work. It supposes to know
the impulse response G of the dynamic system. Beautiful results have been obtained to characterize impulse
responses for which there exists an internal state realization, and the issue of uniqueness. The basic tool is

the block Hankel matrix

Gi Gy Gz - G,
G2 Gg G4 e Gr’+1
Hr(G)=| G Gy Gs - Gpyo (2.4)
L Gr Gr-i-l Gr+2 Gr+r/71 |

There exists an internal state realization if the Block Hankel matrix can be written as follows

Hy(G) = Or(C, A)Cri (A, B), V1’ (2.5)
with
o ]
CA
OT(C’ A) = (2.6)
(- CAT‘_l -
Cv(A,B)=| B AB ... A"7'B (2.7)

The matrix O, (C, A) is the observability matrix and the matrix C,»(A, B) is the controllability matrix.The
pair A, C is said observable if the observability matrix has full rank. The pair A, B is controllable if the
controllability matrix has full rank. If an internal state realization exists , then it is minimal if the model
order is minimal . Kalman proved the important result [5]: A realization (A, B, (') is minimal if and only
if the pair (A, B) is controllable and the pair (A, C) is observable. A minimal realization is unique up to a
change of basis of the state space. Silverman [9] proved the following characterization: An impulse response

G has a realization if and only if there exist positive integers 7,7’ and p such that

rankH,, (G) = rank Hy11,4;(G) = p (2.8)



for j =1,2,--- . The integer p is the minimal order of the system.

In the sequel , we will consider the dynamic system

Ti41 = Al’t, t> 1 (29)
r1T =
with observation

with x; € R",y; € RP. To simplify we have taken an input v; = 0, so there is no way we can learn about
a potential matrix B.Because there is no input, the only way to stir the system is to have a non zero initial
state z. To simplify further , we assume that x and the matrix C' are known. The number n is the model

order, which is fixed. So the only unknown is the matrix A.

3 OBSERVATION OF THE STATE

We assume here that C' = I, identity, so the state of the system x; is observable, but the n x n matrix A is

unknown and must be identified.

3.1 LEAST SQUARE APPROACH

If we stack

Xr=| : | eL(RYRT™Y, Zp = : e L(R“; RTY)

we can write

Xr = ZpA*

and A* can be recovered by

A* = (Z3Zp) 25 X p



provided Z3.Zr € L(R"; R") is invertible. So

T-1 T-1
A= Z xt+1x:(z zpy) ! (3.1)
t=1 t=1
3.2 MACHINE LEARNING APPROACH

The basic idea is to complete the least square function with a penalty term. We thus define the function

1 T-1
J(A4) = Str(44%) + g S i1 — Azl (3.2)
t=1

in which the vectors z; are known. The solution that we get by this approach is different from (3.1).

However, it coincides when v = +o0.

Proposition 1. The solution of problem (3.2) is given by formula

T-1 I T-1
AT = Z Ty (— + Z zpxy) ! (3.3)
t=1 R
Proof. The function J,(A) is convex quadratic. The result is obtained easily from computing the gradient

of J,(A).H O

3.3 OTHER FORMULATIONS

We introduce the vector pyy1,t =1,--- ,T — 1 by the formula

1
Ti+1 — A'\/xt = _;pt—‘,—l (34)
then a simple calculation shows that
T—1
AV == paxf (3.5)
t=1

So A, appears as a linear combination of the vectors x;. So also, combining (3.4) and (3.5) we obtain

T—1
Pi+1
* + Z Tt-LsPs+1 = —Tg41 (36)
v s=1
which defines uniquely the coefficients po, - - - , pr entering in formula (3.5).



3.4 DUAL PROBLEM

The system (3.6) can be interpreted as a necessary and sufficient condition of optimality for a different

problem, called the dual problem. The decision is a control ¢i,---,gr_1 where ¢; € R™. We define the
payoff
1 T T—1 T-1
=5 Z @+ Zl Tt.Tsqs-Gt + Z T41-Gt (3.7)
t=1 t S =

and the optimal ¢ = (q1,--- ,qr—1) is the control (pa,--- ,pr) solution of the system (3.6).

3.5 GRADIENT DESCENT ALGORITHM

Consider the payoff J(A) = J,(A), we drop the index ~ for simplicity. We can compute the gradient D.J(A)

which is a matrix

T-1

DJ(A) = A(I+7 > zmpx) Z Ty (3.8)
t=1

The optimal value of A, noted A7 satisfies DJ(A7) = 0. A gradient descent algorithm is defined by the

sequence

AL = A" — pDJ(A™) (3.9)

where p is a positive number to be chosen conveniently. We use

%J(A" — pODJ(A™) = —ptrDJ(A" — pdDJ(A™))(DJ(A™))*

So

J(A™Y) — J(A™) = —ptrDJ(A™)(DJ(A™)* — p /O Lir (DJ(A™ — pADJ(A™)) — DJ(A™)) (D.J(A™))*d6

(3.10)
T-1
— _pteDJ(A™)(DJ(A™))* + p / Ot (DJ(A™)I + " wppe) (DI (A))*)do =
t=1
P P =
=(—p+ E)trDJ(A")(DJ(A"))* + 5t (DJ(A") ; Ty * (DJ(A"))*) = (3.11)



T-1
< p(-1+ S +7 Y m)rDI(A) (DI (A™))*
t=1
We obtain the

Proposition 2. Asume that

2
< —
1+ 72?:11 |¢]2

then A™ — A7 given by formula (3.3) which satisfies DJ(AY) = 0.

(3.12)

2<p

Proof. From the assumption (3.12) , we have —1 + g(l + 325  24]?) < 0, hence the sequence J(A™)

is decreasing, thus converging since it is bounded below. From ( 3.2) it is clear that the sequence A" is
bounded. We first note that J(A"™!) — J(A™) — 0. Moreover, we can extract from A™ a subsequence, still

denoted A™ which converges to some A. From (3.11) we can immediately write

(1= £)eDI(A)(DI(A)" = Eytr (DJ(A) > s <DJ<A>>*>

From the condition on p the left hand side is negative and the right hand side positive. Necessarily DJ(A) =
0, hence A = A7. Since the limit will be the same for any converging subsequence, the full sequence converges,

which completes the proof. B O

3.6 RECURSIVITY

We emphasize here the dependence of AY with respect to T. So we shall write AT = A7 and we want to

calculate AT+, We first introduce

7 Tl
Bl =(=+ > wa})™! (3.13)
LA
then clearly
(BT‘H)_1 = (BT)_1 + xrap (3.14)
and we can see that
AT = AT 4 (2 — ATop)as BT (3.15)

In this way, we can compute AT recursively.



3.7 ASYMPTOTIC ANALYSIS

We can check easily that the matrix A7 converges as v — +o0o towards the solution of the least square

problem (3.1). In fact we can write the asymptotic exapansion

T-1 T-1
AT = Z leﬂ:;‘(Z zex) L (T+ (3.16)
t=1 t=1

M-l—

1

1)y Tt .
Z.%'tl't )

<.
Il

This result requires the invertibility of the matrix Zt 1 xexy. If this is not true, we can state a weaker result

. Since the observation x; is not arbitrary, we may assume that there exists a matrix A such that

Tppp = Axy, t=1,---T —1 (3.17)
We can state the

Proposition 3. Assume the existence of matrices A such that (3.17) holds. Then the matriz AY converges

as ¥ — +oo towards the matriz A of minimum norm.

Proof. From (3.2) we can write

1 -
—tr(A”’ (AM)") + = Z |z — Az 2 < 5‘5 r(A(A)") (3.18)
from which it follows immediately that
T-1
A7 is bounded , Z lzip1 — AVag? = 0, asy — +o0
t=1

So , it is clear that any converging subsequence will tend towards one matrix A satisfying (3.17). Thanks to
(3.18) in which the right hand side refers to any matrix A satisfying (3.17), it is clear that the limit point
is unique and is the matrix A satisfying (3.17) of minimum norm. This completes the proof of the result.

| O

4 PARTIALLY OBSERVABLE SYSTEM

4.1 THE MODEL

We extend the identification problem above to the case of partially observable systems. So we have



Ti41 = ACEt (41)

r1T =

and

yr = Cay (4.2)

with C' € L(R™ RY). In the model (4.1), (4.2) we suppose that we know the matrix C' and the initial
condition z. We want to find the unknown matrix A. This problem generalizes the problem considered in

the previous sections, which is recovered when C = I.

4.2 A NATURAL APPROACH

Let us assume that the rows of C' are linearly independent, which implies

CC”is invertible (4.3)

then the vector C*(C'C*) ™1y, is solution of (4.2) and is the solution with minimum norm. So we can naturally
consider that the state z;,¢ > 2 is in fact reasonably estimated by C*(CC*)~1ly; and we are back in the

situation of fully observable systems . So we can estimate A by the formula

JOEPSY e
Ay =Y B () (; + Y E(@)*) (4.4)
with
i’l =x, i’t = C*(CC*)ilyt,t = 2, - T (45)
and we can proceed with similar considerations as above

4.3 MACHINE LEARNING APPROACH

A machine learning approach in the spirit of section 3.2 would be to look for A and vectors x;,t = 2,---T

to minimize the functional



1 T-1 T
J(A2() = 5tr(447) + % S [ — Azif® + g Sy — Cy? (4.6)
t=1 t=2

with 1 = «. In this payoff x;,t = 2,---T are decision variables, unlike in the above sections. We note
the introduction of the parameter p. The case p = 400 corresponds to the situation of section 4.2. This
problem leads surprisingly to considerable difficulties. The reason is because the functional J(A, z(.)) is not

convex in the pair of arguments A, z(.). It is convenient to make a change of arguments. We replace z(.) by

v(.), v1,--- ,vp—1 and define the state x; by the relations
$t+1—A$t:Ut,t:1,"',T—1 (47)
r1T =

So we define

1 . T-1 T
J(A0() = 5tr(A47) + % S juf? + g S |y — Cae? (4.8)
t=1 =

with 2; defined by (4.7). Since the values of y; are not arbitrary, we shall assume that there exists A such

that , setting

Tpy1 = Az, t=1,--- , T —1 (4.9)
fl =X
Yy =Cxy
so we have the inequality
inf J(A,v() < ~tr(AA%) (4.10)
in v(. —tr .
Aw() ’ -2

However, this bound is nor really known, since A is not known. A more practical bound will be

T
inf J(A,v( g; (4.11)

A7U(

This bound depends on the parameter pu,and will not be useful when we let y — +o0.

10



To simplify notation , we shall write Z = (A, v(.)) . The space of vectors Z is called Z and define the

norm in Z by

T-1
1Z]* = tr(AA") + > ol
t=1

(4.12)

We shall compute the gradient DJ(Z) . For that , we introduce the sequences of vectors p;,t = 1,--- T

defined by

pr = A"pry1 —pC*(yy — Cay), t=1,--- T — 1

pr = —pC*(yr — Cr)
We have the

Lemma 4. The gradient of the function J(A,v(.)) is given by the formulas

A+ ey
DJ(Z) =

Yo + pry1, t=1,---T —1

with x; given by (4.7) and p; given by (4.13).

Proof. A simple calculation yields

d

T-1 T
@J(Z +02)|g=0 = tr A(A)" + 1~ Z V.0 — ,uZ(yt — Czy).CTy
t=1 t=2

with

jt+1:Ajt+A$t+’yUt+pt+l,t:1’...T_1

1 =0
Using (4.13) we get easily
d ~ T-1 .
@J(Z +02)|g=0 = tr (A+ Z pri1x; ) (A) +
t=1

11

(4.13)

(4.14)

(4.15)



T-1

+ > (v + Pt
=1

and the result follows. B O

4.4 NECESSARY CONDITIONS OF OPTIMALITY

A minimum point ( or a local minimum point) 2 = (A, 0t = 1,---T — 1) will satisfy the equations

DJ(Z) =0 . Therefore

A+ pryi(@)r =0 (4.16)

Y0t + Pry1 =0

Fo — Az + 2L 0, =1, T~ 1, 81 = (4.17)
v

Pr = (A)*pro1 — pC*(ys — Ciy)yt = 1,---T — 1, pp = —uC*(yp — Cir)
We claim

Proposition 5. We assume (4.9). The set of miminimum of the function J(Z) is not empty and thus the

set of triple A, 2, P, satisfying (4.16), (4.17) is not empty.

Proof. In view of (4.9) , (4.10) holds. Therefore minimizing sequences remain bounded . Since J(Z) is
continuous , the result follows. O
4.5 GRADIENT DESCENT ALGORITHM

We first show that the function J(Z) has a second derivative D2J(Z) € L(Z;Z). Indeed from (4.14) we

can easily obtain

A+ S per + S v (30
D*J(Z)Z = (4.18)
7@t+ﬁt+lat:15”'aT_1

where Z = (A,9(.)) and

Foo1 = Afy+ Axy + 0y, 31 =0,t=1,--- ,T—1 (4.19)

12



Pt = APyt + pep1 (A)* + pC* Cipt =1, T — 1

pr = pC*Cir
We also state
Lemma 6. We have the formula
o s T—1 T—1
< D*J(2)Z,Z >=tr (A(A)*) +2 Z Pro1 Ay +y Z bARES ,uz |Cz¢ |2 (4.20)
t—1 t—1 =2
Proof. From (4.18) we get
o s T—1 B T—1 .
< DQJ(Z)Z, Z >=tr (A(A)* + ﬁtﬂx;‘(A)* + Z Pt+1(ft)*(A)*> +
t=1 t=1

T-1 -1
Y D (0P 4+ Y et
=1 =1

Using the system (4.19), we can compute the term ZtT:_ll Pi+1-0¢ and after some rearrangements we derive

formula (4.20) where p;41 is absent. W O

In the sequel we shall use the properties

| <D*J(2)Z,Z > | < ¢(|1ZI)I|Z]? (4.21)

IDJ(Z)]] < 9(1Z1]) (4.22)

where ¢(r),)(r) are continuous and monotone increasing functions. These properties are consequences of
formulas (4.20) and (4.14) and technical calculations, which we do not detail. Since we are interested in

minimizing J(Z), we can from (4.8) and (4.11) consider the ball

T
W
ZI| <M= ,|——— 2 4.23
121l < ¢m@w;mw (423)

The gradient descent algorithm is defined by

ZM =z — pDJ(Z™) (4.24)

!

JZY < EX Il = 12" < M
t=2

13



We can state the

Theorem 7. We choose

2
P(M +1p(M))’

then the sequence J(Z™) is decreasing , ||Z"|| < M and DJ(Z") — 0, as n — +o0. So the limit points of

p < min( 1) (4.25)

the sequence Z" are solutions of DJ(Z) = 0.

Proof. We use the formulas

J(Zh — J(z™) = —p/o1 < DJ(Z™ - pdDJ(Z™)),DJ(Z") > df =

— _pIDIZY)|P + p / / 6 < D2J(Z" — pbADJ(Z™)DJ(Z™), DJ(Z") > dAd8  (4.26)

So

1 1
T(Z7) = J(Z™Y) = p||DI(Z™)|? = 2 / / 6 < D2J(Z" — ppADJ(Z™)DJ(Z™), DJ(Z") > dAd6
0 0

SupposeJ (Z") < 52?22 lye|? = [|Z"]| < M, then , from (4.22) we have ||DJ(Z")|| < ¥(M) and

127 = pOADI(Z™)| < M + p(M) < M + (M)

Therefore, from (4.21) we get

| < D*J(Z" = pOADJ(Z™))DJ(Z"), DJ(Z") > | < @(M + (M))||DJ(Z")|[?
So

2

J(Z") = (2™ = (p— %s&(M +(M))IIDJ(Z")|? (4.27)

Choosing p as in (4.25) the number (p—%2g0(M—|—1,Z)(M))) > 0. Therefore J(Z"*1) < J(Z") < g S yl? =
||Z"+L|| < M. We can iterate, and conclude that the sequence J(Z") is monotone decreasing. It follows that
J(Z") < g ST, lyi|?,¥n and || Z7|| < M,¥n. Looking at the inequality (4.27) we get , from the convergence
of the sequence J(Z"), that J(Z") — J(Z"*') — 0 hence ||DJ(Z")|| — 0. From the continuity of the

gradient, the statement of the Theorem follows. l O

14



We can detail the steepest gradient. Namely

71
AT = AT = p(A" + Y p () (4.28)
t=1

Pt = o — (i +p)s t =1, T — 1

with

CU?_i_len,I?—{—’U?,t:l,---,T—l (429)
=
p; = (A")Ply — nC*(ye — Cap), t =1, T — 1 (4.30)

pr = —pC* (yr — Car)

Remark 8. The algorithm (4.28),(4.29),(4.30) is the straightforward application of the gradient descent

method to the function J(Z). One of the difficulties is to estimate the bound (4.25).

5 SPECIFIC DESCENT METHOD

5.1 METHOD

We exploit here some specific aspects of our optimization problem. Turning to (4.16), (4.17) , we write also

T T-1 T-1
AZ+ D #(@0)%) = Y ey (d0) (5.1)
R t=1
Gror— Ad 4 PHL 0 b =1, T 1, 8 =2 (5.2)
y

pr = (A)*pro1r — pC*(y; — City)yt = 1,---T — 1, pp = —uC*(yp — Cir)

Considering A given in the system (5.2) we obtain a unique pair &, py, since (5.2) is the Euler condition of

a standard linear quadratic control problem. We can formulate it as a problem of calculus of variations

15



min Kx(fl, Xyt ,X7) (5.3)

T2, T
with
R 5 T2 R 0z
K, (A xg, - o) = B Z lzip1 — Axy)® + 5 Z lys — Cay|?, 21 = 2 (5.4)
t=1 =2

On the other hand, when #; is given , with #; = z, then A defined by (5.1) minimizes the function

mjn L(A, &g, -+ ,%7) (5.5)

with

T-1
1
L(A &y, ,dr) = Str AA™ + % S 1 — AR, B =a (5.6)
t=1

So A appears as the solution of a fixed point problem. We exploit this fact in designing the algorithm. We

define a sequence A" as follows . For A" given, we define z}',t = 2,--- ,T by minimizing K,(A",,x2,--- ,z7)
in z9,- -+ ,xp. We then define A" by minimizing a modification of L(A,z%,--- ,2%), namely
o+ 1 T—1

Lp(A,xS;"' ’x%):

* n * fy n n
tr AA* — ptr A"A + B tzzl |z}, — Az} ? (5.7)

The parameter p is positive. Finally the sequence A™ is defined by

Vo3
:C?JFI—A":U?—F]%:O,tzl,---T—l,x’f:x (5.8)

pi = (A")'piyy — pC™(ye — Cayl), pp = —uC*(yr — Cap)

T-1 ) T-1
S aP@h)) = A"+ ) af (a) (5.9)
=1 7 =1

1
An—l—l(%j_i_

5.2 CONVERGENCE

We have the following convergence result

Theorem 9. Assume p > 0, then the sequence J(A™,x"(.)) ( see (4.6)) is monotone decreasing. The
sequence A", x"(.),p"(.) is bounded , A"t — A" — 0 and limits of converging subesquences of A™, z"(.),p"(.)

are solutions of (5.1), (5.2).

16



Proof. We first compute K, (A"l 2% ... %) — Kw(A”“,,x;"H,--- ,x%ﬂ) > 0, since x?“,--- ,x%“

minimizes K,(A", z9,--- ,z7). Since it is a quadratic function, we get easily
- T—1
Kﬂ?(An+17 ’ .%'g, e 7$%) - Kx(An+17 7$§+17 T ’x%-i-l) = 5 Z ‘x?—kl - x?j_ll - An+1(1.? - .%'?—'—1)’24- (5'10)
t=1
0
S 106y - P
=2
Similarly
n o ,.n n n+l ,.n n p +1 n+1 n n+1 n\* i = n+1 ny,.n|2
LP(A 7x27"'7wT)_LP(A 7x27"'7xT):Ttr(A _A)(A _A) +§Z‘(A _A)xt‘
t=1
(5.11)
The relation (5.11) yields
1 ~ T-1 1 ~ T-1
itr A"M(A™) + 5 Z |zt — Ang|? = gtr ATFLATTLy 5 Z EAE ArtLgn2 4 (5.12)

t=1 t=1

1
+(p + §)tr(An+1 o An)(An—l—l . An)*

and (5.10) yields

T-1 T T-1 T
g
2 lati = AP DSy = Caf? = 33 el - AT DYy - Cap TP (5.13)
t=1 t=2 t=1 t=2

T-1 T

Y 1 1 12 , M 1412

+2 3l — ot = A ap 2t P + £ [Cay — )
t=1 t=2

Adding (5.12) and (5.13) we obtain

T-1 T T—1
1 1
StrATAN) 237 ey = AT 4 ) [y — O = Str AT AT 4 ST ! — AT P
t=1 t=2 t=1

(5.14)

17



T-1
1
e = Cof P (o (A — AN (AT = AN 4 T3 ey — ) — A - o)
t=1

+
=
[~

-+
[|
N

+5 2|0 —apt P

1
It follows that the sequence gtr AM(A™)* 4+ %232_11 |z — Amzp | + g ST, |lys — CaP|? is decreasing and
thus convergente. From (5.14) we get that A1 — A" — (0.Clearly the sequences A" and x} are bounded.
From the second relation (5.8), the sequence p} is also bounded. If we extract a converging subsequence,

the limit is a soltion of the system (5.1), (5.2). This concludes the proof O

5.3 DUALITY

In (4.17) we replace A by its value coming from (4.16). We obtain

T-1 ~
Bepi 4 Y Por1deds + 1% —0,t=1,--T—1,4 == (5.15)
s—1
T—1
Pr=—> &sPss1.Prr1 — pC*(ys — Cdy),t = 1,--- T = 1, pp = —puC*(yr — Ciy)
s=1
The unknowns are the pair &, ps,t = 1,---T. The first one is linear in p(.) and the second one is linear in

Z(.). We can interpret the first equation as the Euler equation for the the optimization of the functional

1 T-1 111 T—1
K(q()) = o0 > lal + 3 > Erdeqeqr+ > Tey1.q (5.16)
) ) =1
and pyi1,t = 1,--- ;T — 1 attains the minimal value of K(q). Unfortunately, this observation is not very

useful, since we do not know the vectors ;. One can think, of course, of using the linear system , described
by the second equation (5.15) to obtain the vectors Z; , but this system is not immediately well posed. So ,
it is not clear how to design an iteration for the pair of equations (5.15). Another possibility to introduce
duality is to consider the dual problem of Kx(fl, x9, -+ ,xr). It consists in considering p; as a state and
as an adjoint state. We can consider indeed the following control problem.

The evolution of the system is described by the following backward dynamics: The control is a sequence

29, -z of vectors in Rd,and we state

qr = —pC*yr + C 2y (5.17)
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qt = (A)*QtJrl - ,uC'*yt +C, t=T-1,---2
¢ = (A)*q2 — pC*ys + pC*Cw

and we minimize the functional

1 & 1 &
K(z() = —qua+ = lal*+ > |zl (5.18)
2= 2p =

then the solution is z; = puC2Z; and the optimal state is p;. We can then design the following algoritm .
Assuming A™ known, we obtain x}',t = 2,--- ,T by minimizing K, (A", ,x9, -+ ,x7) in x9,--- ,xp. We then

obtain p}’ by minimizing the functional (A", z(.)) defined by the following relations

gr = —pC*yr + Czr (5.19)

@ =A") "¢ —pCy +C2, t=T—1,---2
q = (A")"qa — pC*ys + pC*Cx

and

1 & 1 &
K(A",2() = —qra+ — > |al* + = >_ |zl (5.20)
i 21 =

Then , we can define A"*! by the formula

T—1
At = — Z P?ﬂ(w?)* (5.21)
t=1

This algorithm is different from (5.9) (with p = 0). In fact, it corresponds to

AT = —y(afyy — A"} (2] (5.22)

We do not claim convergence of this algorithm

5.4 RECURSIVITY

We consider now the dependence in T'. We use the notation
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I T-1

T—1
~ + ) w(@)) = Y wes(a)” (5.23)
=1

t=1

A(

g — Arg + P 0 =1, T -1, 2 =2 (5.24)
vy

pe = (A)pes1 — pC* (g — Cxy), t = 1,--- T — 1, pr = —pC*(yr — Car)
The dependence in T' can be emphasaized with the notation AT, z!,p!. To obtain resursive formulas, it
is essential to rely on classical results of control theory, which decouple the forward-backward system of
equations (5.23),(5.24). In fact, a linear relation holds

Ty =Tt — NPt (5.25)

By well known calculations we have the formulas

I I
Y = AT A* + o A, CHCSC* + ;)‘10&/1* (5.26)
X1 =0
* * I —1
Tt+1 = A’I“t + AEtC (CEtC’ + ;) (yt - CT‘t) (527)
T =

and then the sequence p; is defined by

Pt = (I + ,uC’*CEt)*l (A*pt+1 - MC*(yt — C?"t)) (528)
pr = —,u(I + ,uC’*CET)*lC*(yT — CTT)

In the calculations, we have used the fact that ¥; is symmetric and we have the relation

I
(I+puC*Cx) ™t =1-C*Cx,C* + ;)‘102,5 (5.29)

The important point is that ¥;, r; do not depend on T'. Reinstating the notation 7', we have the formulas
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= (I+pC*C) " ((AT)' Py = pC* (g = Cry)) st =1, T =1

pp = —p(I + pC*CS)LC* (yr — Cry)

-y Pl (re — Sep )
t=1
We write
AT,T+1 — AT+1 _ AT

T.T+1 T T
2 —PtH—Pt,t:l,“‘T

then , we get the formulas

T T+1
ATTH = —ppfird + prfa (o) S+

T T, (T T T
- Z b ‘i + Z Pria )" %+ Z P (p RNy Z piin )
t=1

T * * * *
P! ([ 4 pC*O%y)” ((AT,T—H) pT+ (AT) z’+11“+1 (ATT+1) pz“+71’+1) t=1.T—1

prt = (I pCrCur) T AT+ ATy

We obtain recursivity , but at the price of complex equations.

5.5 ASYMPTOTIC ANALYSIS

We take p = v and emphasize the dependence in v as follows:

1 . T-1 T
Ty (A2() = Ftr(AA") + % S |21 — Azyf? + % S Jye — Ca?
t=1 t=2

and the Euler necessary conditions of optimality
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(5.30)

(5.31)

(5.32)

(5.33)

(5.34)

(5.35)



T-1
A== plaa]) =0 (5.36)
t=1

Y
:cZH—A”wZN%:o,t=1,---T—1,x’{=x (5.37)

We want to study the behavior of these quantities as v — +o0o. We assume the existence of a matrix A such

that

Yy =Cxy (5.38)

Ty = ATy, Ty =2
We first state the

Proposition 10. Assume (5.38). Let A7, x7(.) be a minimum of J, (A, x(.)), then as v — +00,A" converges

towards the element A satisfying (5.38) of minimum norm.

Proof. The proof is similar to that of Proposition 3. Necessarily

5’01“(147(147) )+ 5 o lal — AVl + 5 >y — Cal]? < str(A(A)Y)

t=1 t=2

N |

Therefore the sequence A” is bounded. Hence also the sequence z;},t = 2,--- T'—1 is bounded. If we consider

a convergingnorm. subsequence, the limit satisfies necessarily (5.38) and has minimum. U

We next consider the triple A7, x},p/, t = 1,---T solution of (5.36), (5.37). We look for an asympotic

expansion of the form

—+00 2
o =T+ (5.39)
j=1
400 j . f> Al
Pl=l YT A =AY
— f)/] — fy]
7=1 7j=1

After easy but tedious calculations, we obtain the sequence of systems ,j > 1

ol — Ax] — Az, = > ARl pll=0,t=1,--T -1 (5.40)
k=1
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j—1
i—1 Tiw j—1 k —1-k .
i =(4) pg+1 + Z(A pt+1 +C*Cxf
k=1

x]l =0, p]f_l = C*Cx]f

where the sum Zi: disappears for j = 1. We add the relations

Z 0, (@ (5.41)

T—1 T-1j-1 .
o . 3
== Z pg+1($t)* - Z ZPtH(xt
t=1 t=1 k=0

-1

In the system (5.40) the unknowns are the pair x{, p{ ,t =1,---T. The matrices A',--- A7 are known, as

well as the vectors x{"“,p{j"“, for k = 1,---j — 1. The first equation (5.41) is an equation for A! and
the second equation (5.41) is an equation for A7+, These systems of equations are linear in the unknowns,
although very complicated. If they have a solution then the expansion (5.39) is solution of (5.36), (5.37).

We shall focus on the first one, which is generic for the following ones. Namely, we have to solve the system

aly — Axf — Az +p, =0,t=1,---T—1 (5.42)

P = (A)'piyy + C*Cay
1 =0,---,p% =C*Cz%

and

i P (@ (5.43)

As said earlier, in the system (5.42), the unknowns are x; and pY,and A® is a parameter. We define A! by

solving the equation (5.43). We first decouple the system of forward backward equations (5.42). We write

xf =71l — Dp? (5.44)

and standard calculations lead to

g1 = A (B = BCHCRC + DTICRY) (A)* +1 (5.45)
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$1=0
ri = A (1= B0 CRCT + D7) vl + Aviy (5.46)
r% =0

then using (5.44) in the second equation (5.42) leads to the following backward recursion for pY

P = ( I — C*O%C* + 1)*10&) (A)*ply + C*(CZC* + I) 1Oy (5.47)
0 _ * —1 1
pr = CHCx,C* + 1) Crk

To simplify notation we define

Ty = A (1= 3C"(CnC" + 1)7'C) (5.48)
Ay =CHCE O+ 1) O

then we get the system
repr = Derp + Arg (5.49)
py = (To) plq + Merf

1 0 1
ri =0, ppr = Apryp

If we use the notation

O(t,s)=I---Tg,s=1,---1 (5.50)
O(t,t+1)=1
then we obtain
t
T = Z D(t,s+ 1)A1s (5.51)
s=1
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T-1
Py = D O (s, t+ DAsirgyy (5.52)

s=t

and we can write the equation for A;

T—-17T-1
A=->" ( > (s, t+ 1A 1P(s, 0+ 1)) ATy (x4)* (5.53)

s=max(o,t)

We can apply this formula in the scalar case, with the notation A = a, A; = a;,C = c and T = 3. We get

—~\2 1 2 — a(l 2

—(a) +( +C).NeXtF1:EL,F2:—a s 3 = a( +C)7
1+¢2 1+ ¢? (14 ¢?)2+ 2(a)

2 2 2
c (14 ¢) )
=TT As = Y=k Then equation (5.53) becomes

21:05 22:1, 23:

5 We next have

A =2 Ay

a=—(Ay + A3(T2 + a)?)ara? (5.54)

which gives the value of a.

6 CONCLUSION

The concepts and methods of machine learning are most meaningful when the system is already described
by a state representation and the state has a physical meaning. Otherwise, if the system is decribed by an
input-output linear map, it is probably better to look for the minimum realization, which can be obtained
by the Ho algorithm [4]. For purely deterministic systems as decsribed here, the best is probably to try to
obtain enough observation to be in the case (4.3), and apply methods of full observation. But , in general,
there is a noise which affects the observation and we cannot reduce the problem to the full observation case.
In this situation, the methods described above are perfectly applicable. It is clear that the penalty terms

play a considerable role, and must be tuned adequately.
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