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Abstract. Since their inception in the 30’s by von Neumann, operator
algebras have been used to shed light in many mathematical theories.
Classification results for self-adjoint and non-self-adjoint operator alge-
bras manifest this approach, but a clear connection between the two has
been sought since their emergence in the late 60’s.

We connect these seemingly separate types of results by uncover-
ing a hierarchy of classification for non-self-adjoint operator algebras
and C∗-algebras with additional C∗-algebraic structure. Our approach
naturally applies to algebras arising from C∗-correspondences to resolve
self-adjoint and non-self-adjoint isomorphism problems in the literature.
We apply our strategy to completely elucidate this newly found hierar-
chy for operator algebras arising from directed graphs.

1. Introduction

Originating in Elliott’s work in the 70s, the endeavor to classify simple
C∗-algebras via K-theory provided increasingly sophisticated classification
and structural results, which have led to fruitful applications in dynamical
systems and group theory. One such application is the classification of mul-
tivariable Cantor minimal systems [26] by Giordano, Matui, Putnam and
Skau. In a recent breakthrough due to Tikuisis, White and Winter [51],
Elliott’s classification program is now nearly completed, and Rosenberg’s
conjecture on quasi-diagonality of C∗-algebras of discrete, amenable groups
has been verified.
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In broad terms, C∗-rigidity is the concept that objects can be recovered
(up to some equivalence), from associated C∗-algebraic data. This was es-
tablished for C∗-algebras arising from various structures such as dynamical
systems [27, 35, 48], groupoids [10, 47], number fields [37, 38] and more.

On the other hand, non-self-adjoint operator algebras are subalgebras of
C∗-algebras and provide invariants for irreversible objects such as multivari-
able one-sided dynamical systems [14], analytic varieties [16] and Markov
chains [18]. The study of such operator algebras is motivated from sin-
gle operator theory and complex analysis, partly in hope of resolving the
unyielding Invariant Subspace Problem.

Non-self-adjoint classification started with a paper of Arveson [1] on clas-
sification of operator algebras associated to measure preserving automor-
phisms. It was later realized that classification problems for many algebras
can be put in the unified context of tensor algebras of C∗-correspondences
[42], and in many concrete cases such problems were resolved [13, 14, 17, 30].

Operator algebras arising from graphs form one of the most important
classes for classification of self-adjoint and non-self-adjoint operator algebras.
In forthcoming work with Ruiz and Sims, the second named author has
observed that graph C∗-algebras of amplified finite graphs (so that all edges
have infinite multiplicity), as in [23], together with their diagonal and gauge
action can recover the amplified graph. On top of this, by using classification
of KMS states on Toeplitz graph algebras of finite graphs, it was recently
shown in [8, Theorem 3 (1)] that the vertex diagonal and gauge action
completely recovers the graph.

Alternatively, recovering graphs from their non-self-adjoint graph tensor
algebras is possible for arbitrary graphs by work of Solel [50] or for weaker
notions of isomorphisms by work of Katsoulis and Kribs [30]. From such con-
crete cases we see that invariants produced by classification of C∗-algebras
with additional structure are drawing close to those produced by classifi-
cation of non-self-adjoint operator algebras. Thus, a natural question is to
ask for an exact connection between these seemingly separate rigidity type
results. In this paper we show that it is more than just a coincidence that
directed graphs can be recovered from both their irreversible algebra and
their reversible algebra together with additional structure.

A central study that connects C∗-algebras with non-self-adjoint operator
algebras is Arveson’s non-commutative boundary theory, which he developed
and applied in several papers [2, 3, 4]. Classical boundaries of function
algebras were the subject of intense research in the 50’s and 60’s, and are
related to convexity and approximation theory via Choquet theory [11]. The
non-commutative generalization of the Shilov boundary is called the C∗-
envelope, and was first shown to exist through Hamana’s injective envelope
[28]. The C∗-envelope is defined to be the smallest C∗-algebra containing
the given operator algebra in a reasonable sense and provides a fruitful
connection between C∗-algebras and non-self-adjoint operator algebras (see
[20, 29]). In this paper we apply ideas from Arveson’s non-commutative
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boundary theory to uncover a precise hierarchy between classification of
irreversible algebras and classification of reversible algebras with additional
structure.

For what follows we will assume familiarity with the theory of Hilbert
C∗-modules as presented in [36, 39].

Definition 1.1. A C∗-correspondence over a C∗-algebra A is a right Hilbert
A-module E together with a *-representation φE : A → L(E), where L(E)
denotes the C∗-algebra of adjointable operators on E.

A C∗-correspondence E over A comes equipped with the operator space
structure it inherits as a subspace of the linking C∗-algebra

DE =

[
A E∗

E K(E)

]
⊆ L(A⊕ E),

for a more detailed discussion on linking algebras see [7]. When the context
is clear, we write aξ to mean φE(a)ξ for a ∈ A and ξ ∈ E. To define our
algebras universally, we will need the following notions of representations
of C∗-correspondences from [41]. We note immediately that what we call a
rigged representation here is often referred to as an isometric representation
in the literature. The reason for choosing this term is that a representation
of E can be isometric (or completely isometric) as a map on E with its given
operator space structure without being rigged.

Definition 1.2. Let E be a C∗-correspondence over A, and B some C∗-
algebra. A (completely contractive) representation of E is a pair (π, t) such
that π : A → B is a *-homomorphism and t : E → B is a completely
contractive linear map such that

(1) π(a)t(ξ)π(b) = t(a · ξ · b) for a, b ∈ A and ξ ∈ E.

We say that (π, t) is a rigged representation if additionally

(2) t(ξ)∗t(η) = π(〈ξ, η〉)
We say that (π, t) is injective if π is an injective *-homomorphism. We de-
note by C∗(π, t) and Alg(π, t) the C∗-algebra and the norm-closed operator
algebra, respectively, generated by the images of π and t inside B.

The Toeplitz algebra T (E) is then the universal C∗-algebra generated by
rigged representations of E, and the tensor algebra T+(E) is the universal
operator algebra generated by all representations of E. For each n ∈ N,
denote by t(n) : E⊗n → B the map uniquely determined on simple tensors
by t(n)(ξ1⊗ . . .⊗ξn) = t(ξ1)◦ . . .◦t(ξn) (See Subsection 2.2 for more details).
Suppose now that (π, t) is a rigged representation such that T (E) ∼= C∗(π, t).
In this case we say that (π, t) is universal. It then follows from the definition
of rigged representation that

T (E) = span{t(n)(ξ)t(m)(η)∗ : ξ ∈ E⊗n, η ∈ E⊗m,m, n ≥ 0}.
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Moreover, universality of T (E) implies that it comes equipped with a point-
norm continuous circle action γ : T→ Aut(T (E)) given by

γz(π(a)) = π(a), and γz(t(ξ)) = z · t(ξ), for z ∈ T, ξ ∈ E, a ∈ A.

Definition 1.3. Let E be a C∗-correspondence over A. Denote by γ the
circle action on T (E). For each n ∈ Z, the n-spectral subspace for γ is
defined by

T (E)n = {T ∈ T (E) : γz(T ) = zn · T for z ∈ T}.

The circle action γ provides T (E) with Fourier coefficients Φn given by

Φn(T ) =

∫
T
γz(T )z−ndz,

where dz denotes normalized Haar measure on T. Using these Fourier

coefficients, for each T ∈ T (E) the Cesàro sums
∑n

k=−n
(
1 − |k|n )Φn(T )

converge in norm to T . In particular, we see that T = 0 if and only
if Φn(T ) = 0 for all n ∈ Z. Notice further that Φn is an idempotent,
and for a universal rigged representation (π, t) the image of Φn contains

span{t(k)(ξ)t(l)(η)∗ : ξ ∈ E⊗k, η ∈ E⊗l, k − l = n}. Hence, by Cesàro ap-
proximation we get that

T (E)n = span{t(k)(ξ)t(l)(η)∗ : ξ ∈ E⊗k, η ∈ E⊗l, k − l = n}.
It then follows that {T (E)n}n∈Z is a topological grading for T (E) in the
sense of Exel [24, Definition 19.2], where Φ0 is the conditional expectation
which indicates that the grading is topological.

Since the tensor algebra T+(E) is naturally a subalgebra of T (E) (see
Subsection 2.2), it is invariant under the circle action γ as a subalgebra of
T (E), and there are spectral subspaces defined for T+(E) as well. For each
n ∈ N, the n-spectral subspace for T+(E) is given by

T+(E)n = {T ∈ T+(E) : γz(T ) = zn · T for z ∈ T}.
We say that {T+(E)n}n≥0 is the grading for T+(E), and by [17, Proposition
4.2] we have concretely, when (π, t) is universal, that

T+(E)n = {t(n)(ξ) : ξ ∈ E⊗n}.
Toeplitz-Pimsner algebras have a canonical quotient, also known as the

Cuntz-Pimsner algebra originally defined by Pimsner in [44] and refined by
Katsura in [33]. These algebras generalize many constructions of operator
algebras in the literature.

Definition 1.4. For a C∗-correspondence E over A, we define Katsura’s
ideal JE in A by

JE := {a ∈ A : φE(a) ∈ K(E) and ab = 0 for all b ∈ kerφE}.

For a rigged representation, (π, t) of a C∗-correspondence E over A, it is
a standard fact that there is a well-defined *-homomorphism ψt : K(E)→ B
given by ψt(θξ,η) = t(ξ)t(η)∗ for ξ, η ∈ E.
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Definition 1.5. A rigged representation (π, t) is said to be covariant if
π(a) = ψt(φE(a)), for all a ∈ JE .

The Cuntz-Pimsner algebra O(E) is defined as the universal C∗-algebra
generated by covariant representations of E. Thus, O(E) is the quotient of
T (E) by the ideal of relations JE generated by {ψT (φE(a)) − a : a ∈ JE}.
The following notions of isomorphisms between tensor and Toeplitz algebras
are essential to our paper.

Definition 1.6. Let E,F be C∗-correspondences overA and B, respectively.

(1) A base-preserving isomorphism between T (E) and T (F ) is an iso-
morphism:

ϕ : T (E)→ T (F ) s.t. ϕ(A) = B.
(2) A base-preserving isomorphism between T+(E) and T+(F ) is an iso-

morphism:

ϕ : T+(E)→ T+(F ) s.t. ϕ(A) = B.
(3) A graded isomorphism between T (E) and T (F ) is an isomorphism:

ϕ : T (E)→ T (F ) s.t. ϕ(T (E)n) = T (F )n for all n ∈ Z.
(4) A graded isomorphism between T+(E) and T+(F ) is an isomorphism:

ϕ : T+(E)→ T+(F ) s.t. ϕ(T+(E)n) = T+(F )n for all n ∈ N.

By [45, Theorem 3] we see that there is a bijective correspondence be-
tween topologically Z-graded C∗-algebras, with graded *-homomorphisms
and C∗-algebras equipped with a circle action, together with equivariant
*-homomorphisms. In particular, an isomorphism ϕ : T (E) → T (F ) is
graded, if and only if it is equivariant in the sense that ϕ ◦ γEz = γFz ◦ ϕ, for
all z ∈ T.

Definition 1.7. Let E and F be C∗-correspondences over A and B respec-
tively. We say that T (E) and T (F ) are short-exact sequence isomorphic
(s.e.s. isomorphic) if there is a *-isomorphism ϕ : T (E) → T (F ) such that
ϕ restricts to a *-isomorphism from JE onto JF . In this case we call ϕ an
s.e.s. isomorphism.

Clearly the existence of an s.e.s. isomorphism is equivalent to having an
isomorphism of the short exact sequences,

(1.1)

0 JE T (E) O(E) 0

0 JF T (F ) O(F ) 0,

ϕ0 ϕ ϕ

where ϕ0 is the restriction of ϕ to JE , and ϕ is the induced map on the
Cuntz-Pimsner algebras. Given C∗-correspondences E and F over C∗ alge-
bras A and B, consider the following notions of isomorphisms
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(1) E and F are unitarily isomorphic C∗-correspondences.
(2) T+(E) and T+(F ) are graded completely isometrically isomorphic.
(3) T+(E) and T+(F ) are completely isometrically isomorphic.
(4) T (E) and T (F ) are base-preserving graded isomorphic.
(5) T (E) and T (F ) are base-preserving s.e.s. isomorphic.

The first achievement in our paper is Corollary 3.5 which establishes the
following hierarchy:

(3)

"*
(1) +3 (2)

4<

"*

(5)

(4)

4<

This allows us to investigate completely isometric isomorphism problems for
tensor algebras via structure-preserving isomorphisms on Toeplitz-Pimsner
algebras.

In Section 4 we study the graded and base-preserving picture, and when
our C∗-correspondences are over compact operator subalgebras we show in
Corollary 4.7 that (4) implies (1).

K-theory techniques from [33] are employed in Section 5 to determine
how isomorphism of short exact sequences as in diagram (1.1) promotes to
isomorphisms of associated K-groups. More specifically, in Theorem 5.2 we
show that stable base-preserving s.e.s. isomorphisms induce isomorphisms
of associated six-term exact sequences in K-theory that only involve the
coefficient algebras, Katsura ideals and the Cuntz-Pimsner algebras. In
Proposition 5.3, when E and F are C∗-correspondences over compact oper-
ator subalgebras, we are able to compute a natural connecting map between
K0 of Katsura ideals that is useful for later computations.

We apply our techniques in the context of graph tensor and Toeplitz-
Cuntz-Krieger algebras in Section 6. We first use Corollary 4.7 to get a quick
extension of [8, Theorem 3 (1)] to arbitrary graphs. More specifically, for any
two graphs G and G′, and their associated C∗-correspondences E = X(G)
and F = X(G′) we show that items (1), (2) and (4) are all equivalent to G
and G′ being isomorphic. Thus, Corollary 4.7 can be viewed as a further
generalization of [8, Theorem 3 (1)] to C∗-correspondences over compact
operator subalgebras.

For operator algebras associated to row-finite directed graphs we com-
pletely resolve the hierarchy of isomorphism problems. We show that ev-
ery base-preserving isomorphism of Toeplitz-Cuntz-Krieger algebras of row-
finite graphs is automatically an s.e.s. isomorphism, even after stabilization.
Hence, item (5) and its stable analogue in our hierarchy have simpler de-
scriptions. Our main result for graph algebras of row-finite graphs is Theo-
rem 6.4 where we show for row-finite graphs G and G′ that not only all of
items (1)− (5), but also that stable isomorphisms versions of items (3) and
(5) are all equivalent to G and G′ being isomorphic directed graphs. The
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stable completely isometric isomorphism problem for tensor algebras was
impervious to standard methods from classification of non-self-adjoint oper-
ator algebras because these often relied on finite dimensional representation
techniques. It is clear that all (completely contractive) representations of
stabilized tensor graph algebras are on infinite dimensions so that finite-
dimensional representation techniques normally cannot be applied.

Together with Corollary 3.5, the above clearly shows that the classifica-
tion of non-self-adjoint algebras goes hand in hand with classification of C∗-
algebras with additional structure, and that previously intractable problems
from non-self-adjoint classification can now be resolved by using classifica-
tion techniques from C∗-algebra theory.

Finally, in Example 6.5 we show the limitations of our techniques in resolv-
ing general tensor algebra classification problems. More precisely, there exist
two non-isomorphic amplified graphs G and G′ (amplified in the sense that
all edges have infinite multiplicity) such that their Toeplitz-Cuntz-Krieger
algebras are base-preserving s.e.s. isomorphic. Together with [30, Theo-
rem 2.11], this shows that items (5) and (3) in our hierarchy above are
generally not equivalent without some regularity assumption on the C∗-
correspondences.

This paper contains six sections, including this introduction section. In
Section 2 we give some necessary material on dilation extreme representa-
tions, as well as Toeplitz-Pimsner, Cuntz-Pimsner and tensor algebras. In
Section 3 we establish the main hierarchy of isomorphism problems. In Sec-
tion 4 we focus on graded isomorphisms and deduce rigidity results when the
C∗-correspondences are over subalgebras of compact operators. In Section
5 we make essential connections between K-theory isomorphisms and sta-
ble base-preserving s.e.s. isomorphisms. Finally in Section 6 we apply our
techniques to resolve graded isomorphism problems for tensor and Toeplitz-
Cuntz-Krieger algebras, and conclude with the resolution of the hierarchy
for operator algebras associated to row-finite graphs.

2. Preliminaries

2.1. Dilation extremity and C∗-envelope. We explain how to define the
notions of dilation extremity (normally called maximality in the literature)
and the unique extension property for representations of not-necessarily-
unital operator algebras, in a way that yields the same theory as in the
unital case. We refer the reader to [19, Subsection 2.2] for more details. For
an operator algebra A, by a representation of A we shall henceforth mean a
completely contractive homomorphism ρ : A → B(H). When ρ : A → B(H)
is a representation, a dilation π : A → B(K) is a representation such that
H ⊆ K and ρ(a) = PHπ(a)|H.

If A is an operator algebra and ι : A → B is a completely isometric
homomorphism such that B = C∗(A), we say that the pair (ι,B) is a C∗-
cover. The C∗-envelope is defined as the smallest C∗-cover (κ,C∗e (A)) among
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all C∗-covers in the sense that for any C∗-cover (ι,B) we have a natural
quotient map qe : B → C∗e (A) such that κ = qe ◦ ι. The C∗-envelope
for unital operator algebras was first proven to exist by Hamana [28], and
a dilation theoretic proof was later given by Dritchel and McCullough [22].
When discussing the C∗-envelope and other C∗-covers we will often suppress
the maps ι and κ and think of them as inclusions.

If A ⊆ B(H) is a non-unital operator algebra generating a C∗-algebra B
then by Meyer’s theorem [40, Section 3] every representation ϕ : A → B(K)
extends to a unital representation ϕ1 on the unitization A1 = A ⊕ CIH of
A by setting ϕ1(a+ λIH) = ϕ(a) + λIK. This shows that there is a unique
operator algebra structure on the unitization of A, and yields the following
Arveson extension theorem for not-necessarily unital operator algebras.

Corollary 2.1. Let A ⊆ B(H) be an operator algebra generating a C∗-
algebra B, and let ϕ : A → B(K) be a representation of A. Then there is a
completely positive contractive map ϕ̃ : B → B(K) such that ϕ̃|A = ϕ.

We then define the unique extension property and dilation extremity
(maximality) for not-necessarily-unital operator algebras, in a way that ex-
tends the same definitions for unital operator algebras and requiring that
the maps are also unital.

Definition 2.2. Let A ⊆ B(H) be an operator algebra generating a C∗-
algebra B. Let ρ : A → B(K) be a representation.

(1) We say that ρ has the unique extension property (UEP) if every
completely positive contractive map π : B → B(K) extending ρ is a
*-representation.

(2) We say that ρ is dilation extreme (or maximal) if whenever π is a
representation dilating ρ, then π = ρ⊕ψ for some representation ψ.

Using the definitions above, it was shown in [19, Proposition 2.4] that
dilation extremity and the UEP are equivalent, and that a representation
is dilation extreme if and only if its unitization is dilation extreme [19,
Proposition 2.5]. The C∗-envelope C∗e (A) of a non-unital algebraA coincides
with the C∗-algebra generated by A inside C∗e (A1), and the theorem of
Dritschel and McCullough (see [22]) holds in the possibly-non-unital context.
That is, every representation of an operator algebra dilates to a dilation
extreme representation. Hence, even in the non-unital setting we have that
C∗e (A) is the C∗-algebra generated by the image of any dilation extreme
completely isometric representation. Hence, whether A is unital or not, the
C∗-envelope C∗e (A) of A coincides with the universal C∗-algebra generated
by dilation extreme representations of A.

One of the most important properties of dilation extreme representations
of operator algebras is their invariance under completely isometric isomor-
phisms. More precisely, if θ : A → B is a completely isometric isomorphism,
then a representation ρ : B → B(H) is dilation extreme for B if and only if
ρ◦θ is dilation extreme for A. We will require the following weak versions of
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dilation extremity which were originally defined in the work of Muhly and
Solel [41] in the language of Hilbert modules.

Definition 2.3. Let A be an operator algebra, and ρ : A → B(H) a repre-
sentation. We say that a dilation π : A → B(K) of ρ is

(1) an e-dilation if H is invariant for π(A).
(2) a c-dilation if H is co-invariant for π(A).

Definition 2.4. Let A be an operator algebra, and ρ : A → B(H) a repre-
sentation. We say that ρ is

(1) e-dilation extreme if whenever π : A → B(K) is e-dilation of ρ, then
in fact π = ρ⊕ ψ for some representation ψ.

(2) c-dilation extreme if whenever π : A → B(K) is c-dilation of ρ, then
in fact π = ρ⊕ ψ for some representation ψ.

The above notions were called “extension extreme” and “coextension ex-
treme” by Davidson and Katsoulis in [15]. By a theorem of Sarason [43,
Exercise 7.6], it follows that ρ is dilation extreme if and only if it is both
e-dilation extreme and c-dilation extreme. In fact, it follows from the work
of Dritchel and McCullough that every representation of an operator algebra
admits either an e-dilation that is e-dilation extreme or a c-dilation that is
c-dilation extreme. The following is the analogue of Arveson’s “invariance
of UEP” for c-dilation and e-dilation extremal representations.

Theorem 2.5. Let A and B be operator algebras, let θ : A → B an isomor-
phism, and let ρ : B → B(H) be a representation. Then

(1) ρ is e-dilation extreme if and only if ρ ◦ θ is e-dilation extreme.
(2) ρ is c-dilation extreme if and only if ρ ◦ θ is c-dilation extreme.

Proof. An inverse of a completely isometric isomorphism between operator
algebras is again a completely isometric isomorphism. Hence, it is enough
to prove one direction in each claim. We will show the forward direction
for (2), and the proof for the forward direction of (1) is similar. Assume
ρ is c-dilation extreme and let π : A → B(K) be a c-dilation of ρ ◦ θ.
Then ρ(b) = PHπ(θ−1(b))|H for all b ∈ B. So, π ◦ θ−1 : B → B(K) is a c-
dilation of ρ as H is coinvariant for π ◦ θ−1(B) = π(A). By our assumption,
π ◦ θ−1 = ρ ⊕ ψ for some representation ψ. Thus π = (ρ ◦ θ) ⊕ (ψ ◦ θ), as
required. �

Throughout the paper, we shall denote byA⊗B the spatial tensor product
of the operator algebras A and B as defined in [6, Subsection 2.2.2]. When
A and B are both C*-algebras, ⊗ coincides with the minimal tensor product
of C*-algebras.

Lemma 2.6. Let A be an operator algebra generating a C∗-algebra C and B
a C∗-algebra. Assume τ : A → B(H) is a representation, and κ : B → B(K)
a *-representation. Then τ is dilation extreme if and only if τ⊗κ is dilation
extreme.
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Proof. We may assume, perhaps after unitization, that A and B are both
unital, and that τ and κ are unital. It will suffice to show that τ has the
unique extension property if and only if τ ⊗ κ does.

So assume τ has the UEP. Let π : C ⊗ B → B(H ⊗ K) be a unital
completely positive extension of τ ⊗ κ. Then π|C⊗I is (up to multiplicity) a
unital completely positive extension of τ , so that π is multiplicative on C.
Since π|B is (up to multiplicity) just κ, we see that π is also multiplicative
on B. Thus, by [43, Theorem 3.18] we have that π is multiplicative, and
τ ⊗ κ has the unique extension property.

Conversely, if τ ⊗ κ has the UEP, let π : C → B(H) be a unital com-
pletely positive extension of τ . Then clearly π ⊗ κ is a unital completely
positive extension of τ ⊗ κ, so that π ⊗ κ is multiplicative. In particular, π
is multiplicative, so that τ has the UEP. �

Corollary 2.7. Let A be an operator algebra and B a C∗-algebra. Then
C∗e (A⊗ B) ∼= C∗e (A)⊗ B.

Proof. Let τ : A → B(H) be a dilation extreme completely isometric repre-
sentation, and κ : B → B(K) an injective ∗-representation. By injectivity of
minimal tensor product, we see that τ ⊗ κ is completely isometric and by
Lemma 2.6 we get that τ⊗κ is dilation extreme. Thus, since the C∗-algebra
generated by the image of τ ⊗κ is C∗e (A)⊗B, and as any C∗-algebra gener-
ated by the image of a dilation extreme completely isometric representation
is the C∗-envelope, we get that C∗e (A⊗ B) ∼= C∗e (A)⊗ B. �

2.2. Toeplitz and Tensor algebras of C∗-correspondences. For the
basic theory of Hilbert C*-modules and C*-correspondences we recommend
[36, 39]. For C*-correspondences E and F over a C*-algebra A, we can form
the interior tensor product E⊗AF of E and F as follows. Let E⊗algF denote
the quotient of the algebraic tensor product, by the subspace generated by
elements of the form:

xa⊗ y − x⊗ φF (a)y, for x ∈ E, y ∈ F, a ∈ A.

Define an A-valued inner product, left and right A-actions by:

〈x1 ⊗ y1, x2 ⊗ y2〉 = 〈y1, φF (〈x1, x2〉)y2〉, for x1, x2 ∈ E, y1, y2 ∈ F

(x⊗ y)a = x⊗ (ya), for x ∈ E, y ∈ F,

φE⊗F (a)(x⊗ y) = (φE(a)x)⊗ y, for x ∈ E, y ∈ F, a ∈ A.
E ⊗A F is the completion of E ⊗alg F with respect to the A-valued semi-
inner product defined above. One checks that E⊗AF is a C*-correspondence
over A. We will often abuse notation and write E⊗F for E⊗A F when the
context is clear.

Hypothesis 2.8. We assume throughout the paper that every C*-corres-
pondence E over A is non-degenerate in the sense that φE(A)E = E.
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Let E be a C*-correspondence over A. Set E⊗0 = A and E⊗n = E ⊗
E ⊗ · · · ⊗ E, for the n-fold tensor product when n > 0. Notice that we
have natural isomorphisms E⊗n ⊗ E⊗m ∼= E⊗(n+m) for n > 0 and m ≥ 0.
Note also that E⊗0⊗AE⊗n ∼= E⊗n for n ≥ 0 by non-degeneracy. There is a
special injective representation for T (E) called the Fock space representation
of E. We denote F(E) the C*-correspondence over A defined by F(E) =
⊕∞n=0E

⊗n. Since φF(E) acts on the 0-th summand by left multiplication, it
is clear that φF(E) is injective, so we will often identify A as a subalgebra of
L(F(E)) via φF(E). We define Fock space representation (ι, T ) as follows.
We let ι := φF(E), and for each ξ ∈ E we set Tξ ∈ L(F(E)) by

Tξ(a) = ξa and Tξ(ξ1 ⊗ . . .⊗ ξn) = ξ ⊗ ξ1 ⊗ . . .⊗ ξn
for a ∈ A, ξ, ξ1, . . . ξn ∈ E. For each n ∈ N, denote by T (n) : E⊗n →
L(F(E)) the map uniquely determined on simple tensors by T

(n)
ξ1⊗...⊗ξn =

Tξ1 ◦ . . . ◦ Tξn . When we have ξ ∈ E⊗n we will occasionally abuse notations

and write Tξ to mean T
(n)
ξ and the degree will be clear from context.

By [41, Theorem 2.12] the representation (ι, T ) is universal in the sense
that T (E) ∼= C∗(ι, T ). Similarly, by [41, Theorem 3.10] the tensor algebra
of E coincides with Alg(ι, T ), the norm-closed operator algebra generated
by Fock creation operators. Hence we identify T+(E) as the norm-closed
operator subalgebra of T (E) generated by the image of ι and T .

We may also use Fock space representation to obtain another description
of the ideal of relations JE generated by {ψT (φE(a)) − ι(a) : a ∈ JE}
which yields the Cuntz-Pimsner algebra O(E) of E. Let σ : L(F(E)) →
L(F(E))/K(F(E)JE) be the canonical quotient map. By [33, Proposition
6.5] we get that O(E) ∼= C∗(σ ◦ ι, σ ◦ T ). Thus, O(E) ∼= T (E)/K(F(E)JE)
so that JE is identified with K(F(E)JE) and we can describe JE as

span{TξaT ∗η : ξ ∈ E⊗n, η ∈ E⊗m, a ∈ JE , n,m ∈ N}.
Definition 2.9. Let E and F be C*-correspondences over A and B, re-
spectively. We say that E and F are unitarily isomorphic if there exist a
surjective, isometric map U : E → F and a *-isomorphism ρ : A → B, s.t.
U(a · ξ · b) = ρ(a) · U(ξ) · ρ(b) for all a, b ∈ A, ξ ∈ E.

See [17, Subsection 2.1] for more on isomorphisms of C*-correspondences.
For a C*-correspondence over A, we denote by P0 ∈ L(F(E)) the orthogonal
projection onto E⊗0 = A, and we let Ψ : T (E) → A be the compression
given by Ψ(x) = P0xP0, for all x ∈ T (E). Notice that for a ∈ A, if Ψ(a) = 0
then a = 0. The following folklore result is a strengthening of [9, Lemma
4.6.24] which we obtain by using C*-envelope techniques.

Proposition 2.10. Let E be a C*-correspondence over A and let B be any
C*-algebra. Then (ι⊗ idB, T ⊗ idB) is a rigged representation which induces
an isomorphism ρ : T (E ⊗ B) → T (E) ⊗ B. The isomorphism ρ maps
T+(E ⊗B) onto T+(E)⊗B and induces an isomorphism between O(E ⊗B)
and O(E)⊗ B. In particular, ρ maps JE⊗B to JE ⊗ B.
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Proof. It is standard to verify that (ι⊗idB, T⊗idB) is a rigged representation
of the C*-correspondence E ⊗ B over A⊗ B. By universality of T (E ⊗ B),
we have a surjection ρ : T (E ⊗ B) → T (E) ⊗ B given by ρ(Tξ⊗b) = Tξ ⊗ b
for ξ ∈ E and b ∈ B. Since T (E)⊗B admits the gauge action z 7→ γz ⊗ idB,
we know from theorem [32, Theorem 6.2] that ρ is an isomorphism if and
only if

I ′(ι⊗idB,T⊗idB) := { x ∈ A⊗ B | (ι⊗ idB)(x) ∈ B1 }
is trivial, where

B1 = span{ (T ⊗ idB)(x)(T ⊗ idB)(y)∗ | x, y ∈ E ⊗ B }.

So we show that I ′(ι⊗idB,T⊗idB) is trivial. Indeed, let x ∈ (A⊗ B) ∩ B1. We

clearly have that (Ψ ⊗ idB)(x) = 0 as x ∈ B1, while (Ψ ⊗ idB)(x) = x as
x ∈ A⊗ B. Thus, x = 0 and ρ is an isomorphism.

By injectivity of the minimal tensor product of operator algebras, it fol-
lows that the natural isomorphism T (E) ⊗ B ∼= T (E ⊗ B) restricts to an
isomorphism of operator algebras T+(E)⊗B ∼= T+(E⊗B). Thus, by Corol-
lary 2.7 and [30] we have the following chain of isomorphisms

O(E ⊗ B) ∼= C∗e (T+(E ⊗ B)) ∼= C∗e (T+(E)⊗ B)

∼= C∗e (T+(E))⊗ B ∼= O(E)⊗ B.
This yields an isomorphism ρ̃ : O(E ⊗ B) → O(E) ⊗ B which sends Sξ⊗b
to Sξ ⊗ b for every ξ ∈ E and b ∈ B where (ι, S) is a rigged covariant
representation such that O(E) ∼= C∗(ι, S). Let qE ⊗ idB : T (E) ⊗ B →
O(E)⊗B and qE⊗B : T (E ⊗B)→ O(E ⊗B) denote the canonical quotient
maps. Since this occurs on generators, we see that (qE⊗ idB)◦ρ = ρ̃◦ qE⊗B.
Hence, it follows that JE⊗B is identified with JE ⊗ B via ρ. �

Corollary 2.11. Let E be a C*-correspondence over A, and let B be an
exact C*-algebra. Then the natural isomorphism ρ : T (E ⊗B)→ T (E)⊗B
of Proposition 2.10 maps JE⊗B to JE ⊗ B.

Proof. First note that since φE⊗B = φE⊗ idB under the identification K(E⊗
B) ∼= K(E)⊗ B, we see that ker(φE⊗B) = ker(φE)⊗ B.

Next, if a ∈ JE , then φE(a) ∈ K(E) and ac = 0 for all c ∈ kerφE . Thus,
for any b ∈ B we have that φE⊗B(a⊗ b) = φ(a)⊗ b ∈ K(E)⊗B ∼= K(E⊗B).
Furthermore, by exactness of B we get that ker(φE ⊗ idB) = ker(φE) ⊗ B.
Thus, by verifying this on simple tensors we get for any c ∈ ker(φE ⊗ idB)
that (a⊗ b)c = 0. Hence, we see that JE ⊗ B ⊆ JE⊗B.

Conversely, again by exactness of B, we get the following short exact
sequence

0 JE ⊗ B T (E)⊗B O(E)⊗ B 0 .

Thus, JE ⊗ B is the ideal generated by

{ (ψTE ⊗ idB)((φE ⊗ idB)(c))− (ιE ⊗ idB)(c) | c ∈ JE ⊗ B }.
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From Proposition 2.10, as JE ⊗B is corresponds bijectively to JE⊗B via ρ,
we get that JE⊗B is the ideal generated by

{ ψTE⊗B(φE⊗B(c))− (ιE⊗B)(c) | c ∈ JE ⊗ B }.
Hence, we see that the surjection from the relative Cuntz-Pimsner algebra
O(E ⊗ B, JE ⊗ B) (See [34, Section 11]) onto O(E ⊗ B) is injective. From
[34, Corollary 11.8] we deduce that JE ⊗ B = JE⊗B.

�

3. Hierarchy of isomorphism problems

In this section we establish the aforementioned hierarchy between different
notions of isomorphisms of Toeplitz and tensor algebras.

Theorem 3.1. Let E and F be C∗-correspondences over A and B re-
spectively. Suppose that ϕ : T (E) → T (F ) is a base-preserving graded
*-isomorphism. Then ϕ is a base-preserving s.e.s. isomorphism.

Proof. Suppose ϕ : T (E) → T (F ) is a base-preserving graded *-isomor-
phism. Let qE : T (E) → O(E) and qF : T (F ) → O(F ) be the canonical
quotient maps. Since ϕ is graded, it follows by the discussion after Definition
1.6 that ϕ is equivariant.

The map ψ := qE◦ϕ−1 : T (F )→ O(E) then restricts to an injective rigged
representation (ψ ◦ ιB, ψ ◦TF ) which admits a gauge action, where (ιB, T

F )
denotes the Fock representation. Notice that C∗(ψ ◦ ιB, ψ ◦ TF ) = O(E).
By [34, Proposition 7.14] there is an induced surjective *-homomorphism
ρ : O(E) → O(F ) such that ρ ◦ ψ = qF , namely ρ ◦ qE = qF ◦ ϕ. This
implies that ϕ(K(F(E)JE)) ⊆ K(F(F )JF ). The symmetric argument with
ϕ instead of ϕ−1 then shows the reversed inclusion. �

Let F be a C∗-correspondence over a C∗-algebra B and assume that ρ :
A → B is a *-isomorphism. Then F can be realized naturally, as a C∗-
correspondence Fρ over A, via ρ. The new operations are given by 〈ξ, η〉ρ :=

ρ−1(〈ξ, η〉A), for ξ, η ∈ E; a · ξ = ρ(a) · ξ; and ξ · a := ξ · ρ(a), for all ξ ∈
F and a ∈ A. The identity map U : F → Fρ is then a unitary isomorphism.

This leads to the following simple reduction for base-preserving isomor-
phisms. Suppose F is a C∗-correspondence over A and ρ : A → B is a
*-isomorphism. Then we have that

(1) T+(F ) and T+(Fρ) are base-preserving graded isomorphic.
(2) T (F ) and T (Fρ) are base-preserving graded isomorphic.
(3) T (F ) and T (Fρ) are base-preserving s.e.s. isomorphic.

Hence, when E and F are C∗-correspondences over A and B respectively,
and φ is a base-preserving isomorphism from an algebra of E to an algebra of
F , after composing with one of the isomorphisms above, we may assume that
φ is the identity on the base algebra. For more details, we refer the reader
to the discussion after [17, Definition 2.1]. We next recall some definitions
and results from Muhly and Solel [41]. The following is [41, Definition 3.1].
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Definition 3.2. Let (π, t) be a completely contractive representation of a
C∗-correspondence E over a C∗-algebra A on a Hilbert space H. A rigged
dilation of (π, t) is a rigged representation (σ, s) of E on a Hilbert space
K ⊇ H, s.t.

(1) σ dilates π, i.e. π(a) = PHσ(a)|H, for all a ∈ A;
(2) s dilates t, i.e. t(ξ) = PHs(ξ)|H, for all ξ ∈ E; and
(3) H is co-invariant under each s(ξ), ξ ∈ E.

Since σ is a ∗-homomorphism that dilates π, it is easy to see that σ must
be of the form π⊕ψ for some ∗-representation ψ. In [41, Theorem 3.3] Muhly
and Solel provided a generalization of Nagy–Foias dilation to representations
of C∗-correspondences. This theorem shows that every completely contrac-
tive representation of E admits a rigged dilation. As a consequence, we have
a one-to-one correspondence between completely contractive representations
of E and representations of T+(E) as shown in [41, Theorem 3.10]. More
precisely, to every completely contractive representation (π, t) of a corre-
spondence E over a C∗-algebra A, there is a unique completely contractive
representation ρ of T+(E), satisfying:

(1) ρ(Tξ) = t(ξ), for ξ ∈ E; and
(2) ρ(a) = π(a), for a ∈ A.

The map (π, t) 7→ ρ is then bijective onto the all representations of T+(E).
Thus, for a representation ρ : T+(E)→ B(H) let (π, t) be the associated

completely contractive representation of E given by π = ρ ◦ ι and t = ρ ◦ T .
Then (π, t) has a rigged dilation (σ, s). Thus, (σ, s) induces a representation
ρ̃ : T+(E) → B(K) such that ρ̃(a) = σ(a) for a ∈ A, and ρ̃(Tξ) = s(ξ) for
ξ ∈ E. It follows by Definition 3.2 and the succeeding discussion that H
is co-invariant for ρ̃. That is, ρ̃ is a c-dilation of ρ. The following can be
obtained by combining [41, Proposition 4.2] and [41, Corollary 4.7] using the
language of orthoprojective modules. For the sake of posterity we provide a
direct proof.

Proposition 3.3. Let E be a C∗-correspondence over a C∗-algebra A, and
let ρ : T+(E) → B(H) be a representation. Then ρ is c-dilation extreme if
and only if (ρ ◦ ι, ρ ◦ T ) is a rigged representation of E.

Proof. (⇒) : Let ρ̃ : T+(E) → B(K) be the completely contractive repre-
sentation described in the above paragraph. As ρ̃ is a c-dilation of ρ and ρ
is c-dilation extreme, ρ̃ = ρ ⊕ ψ for some representation ψ. Moreover, we
know that ρ̃ is induced by a rigged representation, (σ, s) = (ρ̃ ◦ ι, ρ̃ ◦ T ) of
E. Thus, (ρ ◦ ι, ρ ◦ T ) is also a rigged representation of E.

(⇐) : Assume (ρ ◦ ι, ρ ◦ T ) is a rigged representation of E. We want
to show that ρ is c-dilation extreme, so let ρ̃ : T+(E) → B(K) be a c-
dilation of ρ. By the above discussion, there exists a c-dilation of ρ̃, denoted

ρ̂ : T+(E)→ B(K̂), s.t. (ρ̂◦ ι, ρ̂◦T ) is a rigged representation of E. Viewing

H ⊆ K ⊆ K̂, one can check that ρ̂ is also a c-dilation of ρ. So without loss
of generality we assume that (σ, s) = (ρ̃ ◦ ι, ρ̃ ◦ T ) is rigged.
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We claim that ρ̃ = ρ⊕ ψ, for some representation ψ. Indeed, view ρ̃ as a
2 × 2 block matrix acting on H ⊕H⊥. For ξ ∈ E, as H is co-invariant for
ρ̃(T+(E)) and ρ is a rigged representation, we may write

ρ̃(Tξ) =

[
ρ(Tξ) 0
Xξ Yξ

]
So that,

ρ̃(Tξ)
∗ρ̃(Tξ) =

[
ρ(〈ξ, ξ〉) +X∗ξXξ ∗

∗ ∗

]
.

On the other hand, using that (ρ̃ ◦ ι, ρ̃ ◦ T ) is a rigged representation of E
we get that,

ρ̃(Tξ)
∗ρ̃(Tξ) = ρ̃(〈ξ, ξ〉) =

[
ρ(〈ξ, ξ〉) 0
∗ ∗

]
.

Combining both equations, we get X∗ξXξ = 0, and so Xξ = 0. Therefore,
for all ξ ∈ E, one has

ρ̃(Tξ) =

[
ρ(Tξ) 0

0 Yξ

]
.

Moreover, since ρ̃ ◦ ι is a *-homomorphism that dilates the *-representation
ρ ◦ ι, we know that ρ ◦ ι is a direct summand of ρ̃ ◦ ι. Hence, as H is
reducing for ρ̃(a) and ρ̃(Tξ) for every a ∈ A and ξ ∈ E, and as the image
of T+(E) under ρ̃ is generated by such elements, we see that ρ̃ has H as a
reducing subspace. Therefore, ρ̃ must be of the form ρ̃ = ρ ⊕ ψ, for some
representation ψ. This shows that ρ is c-dilation extreme. �

Theorem 3.4. Let E and F be C∗-correspondences over C∗-algebras A
and B, respectively. Let φ : T+(E) → T+(F ) be a completely isometric
isomorphism. Then φ extends to a base-preserving s.e.s. isomorphism ϕ of
T (E) and T (F ). Furthermore, if φ is graded, then ϕ is also graded.

Proof. If ϕ extends a graded isomorphism φ : T+(E) → T+(F ) to a *-
isomorphism between T (E) and T (F ), it is easy to see on *-monomials that
ϕ is also graded.

Now assume φ : T+(E) → T+(F ) is a completely isometric isomor-
phism. We use Meyer’s theorem [40] to extend, if necessary, to a unital
complete isometry φ1 : T+(E)1 → T+(F )1. Then [43, Proposition 2.12]

shows that φ1 extends to a unital complete isometry φ̃ between (T+(E)1)∗+
T+(E)1 and (T+(F )1)∗ + T+(F )1. We then notice that ∆(T+(E)) := { T ∈
T+(E) | T ∗ ∈ T+(E) } must equal the base algebra A, and similarly we

have that ∆(T+(F )) = B. Since φ̃ preserves involution and sends T+(E)
to T+(F ), it must map ∆(T+(E)) to ∆(T+(F )). In other words, φ must
be base-preserving. It is then clear that any extension of φ will be base-
preserving as well.

Next, we show that φ extends to a s.e.s. isomorphism. We let {ρEi }i∈I be
all c-dilation extreme representations for T+(E) up to unitary equivalence
and for sufficiently large Hilbert space. Then, we set ρFi := ρEi ◦φ−1 so that
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by Theorem 2.5 we have that {ρFi }i∈I are all c-dilation extreme represen-
tations of T+(F ) up to unitary equivalence. By Proposition 3.3, we have
that C∗(⊕i∈IρEi ) and C∗(⊕i∈IρFi ) are universal with respect to rigged rep-
resentations of E and F , respectively. Hence, that there are *-isomorphisms
πE : C∗(⊕i∈IρEi ) → T (E) and πF : C∗(⊕i∈IρFi ) → T (F ). Thus, since
by construction C∗(⊕i∈IρEi ) = C∗(⊕i∈IρFi ), a straightforward verification

shows that ϕ := πF ◦ π−1
E is a *-isomorphism between T (E) and T (F )

which extends φ.
Next, let {ρEi }i∈J be those c-dilation extreme representations of T+(E)

which are dilation extreme. By invariance of dilation extreme representa-
tions we get that {ρFi }i∈J are all dilation extreme representations of T+(F )
up to unitary equivalence. By (the possibly non-unital version of) Dritchel
and McCullough [22] we have C∗(⊕i∈JρEi ) = C∗e (T+(E)) and C∗(⊕i∈JρFi ) =
C∗e (T+(F )). Furthermore, by [31] we know that C∗e (T+(E)) ∼= O(E) and
C∗e (T+(F )) ∼= O(F ). Hence, there *-isomorphisms τE : C∗e (T+(E))→ O(E)
and τF : C∗e (T+(F )) → O(F ). As before, ϕ̃ := τF ◦ τ−1

E is a *-isomorphism
between O(E) and O(F ) which extends φ.

Furthermore, by construction we have that the natural quotient maps
qE : C∗(⊕i∈IρEi ) → C∗e (T+(E)) and qF : C∗(⊕i∈IρFi ) → C∗e (T+(F )) are
equal, so we get that the identified quotient maps qE : T (E) → O(E) and
qF : T (F ) → O(F ) satisfy qF ◦ ϕ = ϕ̃ ◦ qE . Hence, we see that ϕ is a
base-preserving s.e.s. isomorphism. �

To conclude, we have obtained the following hierarchy of isomorphism
problems for C∗-correspondences, tensor algebras and Toeplitz algebras.

Corollary 3.5. Let E and F be C∗-correspondences over C∗-algebras A
and B, respectively. Consider the following:

(1) E and F are unitarily isomorphic C∗-correspondences.
(2) T+(E) and T+(F ) are graded completely isometrically isomorphic.
(3) T+(E) and T+(F ) are completely isometrically isomorphic.
(4) T (E) and T (F ) are base-preserving graded isomorphic.
(5) T (E) and T (F ) are base-preserving s.e.s. isomorphic.

Then (1) implies (2), (2) implies (3) and (4), and each of (3) and (4) sepa-
rately imply (5).

Proof. Clearly (1) implies (2) and (2) =⇒ (3). By Theorem 3.4 we see
that (2) =⇒ (4) and (3) =⇒ (5). Finally, an application of Theorem 3.1
shows that (4) =⇒ (5). �

Remark 3.6. In case φ : T+(E) → T+(F ) is a graded (not necessarily
completely) isometric isomorphism, since φ|A : A → B is an isometric iso-
morphism it is automatically a *-isomorphism by invoking [25, Corollary
4.2]. Hence, the proof of [17, Theorem 4.3 item (2)] can be carried out to
show that the C∗-correspondences E and F are unitarily isomorphic. Thus,
items (1) and (2) in the above theorem are both equivalent to the existence
of a graded isometric isomorphism between T+(E) and T+(F ).



CLASSIFICATION OF PIMSNER ALGEBRAS 17

4. Graded isomorphisms

In this section, we investigate graded base-preserving isomorphisms of
Toeplitz algebras under additional assumptions on the C∗-correspondence.

Following the notations of [33], we recall the construction of core subal-
gebras of Fock representation and their properties.

Definition 4.1. We define the core C*-subalgebras Bn ⊆ T (E) by

B0 := φF(E)(A), and Bn := span{T (n)
ξ T (n)∗

η : ξ, η ∈ E⊗n}.
We define B[n,m] = Bn + · · · + Bm for m ≥ n. And then set B[n,∞) =⋃
m≥nB[n,m]. We note that B[n,∞) is a decreasing sequence of ideals. By

[33, Section 5] we see that that Bn is identified with K(E⊗n) by the *-
isomorphism

K(E⊗n)→ Bn, θξ,η 7→ T
(n)
ξ T (n)∗

η .

Proposition 4.2. We have a short-exact sequence:

0→ B[n+1,∞) → B[n,∞) → Bn → 0

which splits naturally.

Proof. We first show that B[n+1,∞) ∩ Bn = {0}. Let T ∈ B[n+1,∞) ∩ Bn.

Observe that Bn ⊆ L(E⊗n). However, T (E⊗n) = 0, since T ∈ B[n+1,∞).
Hence by third isomorphism theorem we get,

B[n,∞)

B[n+1,∞)
=
Bn +B[n+1,∞)

B[n+1,∞)

∼=
Bn

Bn ∩B[n+1,∞)

∼= Bn.

Finally, the natural inclusion Bn ↪→ B[n,∞) gives the splitting map for the
short exact sequence. �

Proposition 4.3. Let E be a C∗-correspondence over A. Then for each
n ∈ N we have B[n,∞) = T (E)nT (E)∗n. That is,

B[n,∞) = span{TS∗ : T, S ∈ T (E)n}.

Proof. (⊆) : Let ξ1 ∈ E⊗k1 , ξ2 ∈ E⊗k2 , η1 ∈ E⊗l1 , η2 ∈ E⊗l2 be such that
k1 − l1 = n = k2 − l2. Then up to approximation by tolerance ε, we have

T
(k1)
ξ1

T (l1)∗
η1

T (l2)
η2

T
(k2)∗
ξ2

∼ε

{
T

(k1)
ξ1

T
(l2−l1)
ζ T

(k2)∗
ξ2

if l2 ≥ l1
T

(k1)
ξ1

T
(l1−l2)∗
ζ′ T

(k2)∗
ξ2

if l2 < l1

for some ζ ∈ E⊗(l2−l1) and ζ ′ ∈ E⊗(l1−l2). Thus, T
(k1)
ξ1

T
(l1)∗
η1 T

(l2)
η2 T

(k2)∗
ξ2

∈
Bk1 +Bk2 ⊆ B[n,∞), as required.

(⊇) : It is enough to show that T
(n+m)
ξ T

(n+m)∗
η ∈ T (E)nT (E)∗n, for ξ, η ∈

E⊗(n+m) and m ≥ 0. From the grading we get

T
(n+m)
ξ T (n+m)∗

η ∈ T (E)nT (E)mT (E)∗mT (E)∗n ⊆

⊆ T (E)nT (E)0T (E)∗n ⊆ T (E)nT (E)∗n ,

so we are done. �
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Corollary 4.4. Let E, F be C∗-correspondences over A and B, respectively.
Let ϕ : T (E)→ T (F ) be a graded *-isomorphism. Then ϕ(BE

[n,∞)) = BF
[n,∞).

For what follows, we denote by Ψn : B[n,∞) → Bn the quotient map by
B[n+1,∞) as in Proposition 4.2.

Corollary 4.5. Let E, F be C∗-correspondences over A and B, respectively.
Let ϕ : T (E)→ T (F ) be a graded *-isomorphism. Then ϕn := Ψn ◦ ϕ|Bn is
a *-isomorphism.

Proof. By Corollary 4.4 we have that ϕ restricts to an isomorphism between
BE

[n,∞) and BF
[n,∞) for all n ∈ N. By Proposition 4.2 we get that ϕn is the

induced isomorphism between the quotient algebras BE
n and BF

n . �

When E is a general Hilbert C*-module, by [36, Page 10] we know that
operators in K(E) may fail to be compact operators as bounded operators
the Banach space E. Thus, we make a distinction and say that a C*-algebra
A is a compact operator subalgebra if A is a subalgebra of K(H) on some
Hilbert space H.

Proposition 4.6. Let E, F be C∗-correspondences over A and B, re-
spectively, such that A (or B) is a subalgebra of compact operators. Let
ϕ : T (E) → T (F ) be a base-preserving graded *-isomorphism. Then, there
exists a unitary isomorphism U : E → F implemented by the *-isomorphism
ρ := ϕ|A : A → B.

Proof. As A ∼= B via ϕ|A, without loss of generality we may assume that
A = B and that ϕ|A = idA. By Corollary 4.5 we have a *-isomorphism
ϕ1 : BE

1 → BF
1 induced from ϕ via ϕ1 := Ψ1 ◦ ϕ|BE

1
. After we identify BE

1

and BF
1 with K(E) and K(F ) respectively, and sinceA and B are subalgebras

of compact operators, we may appeal to [5, Corollary 1] to see that the
*-isomorphism ϕ1 : K(E) → K(F ) is of the form AdU for some unitary
operator U : E → F such that U(ξ · a) = U(ξ) · a for ξ ∈ E, a ∈ A.

It is left to show that U(a · ξ) = a · U(ξ) for ξ ∈ E, a ∈ A. Let Ψ1 :
B[1,∞) → B1 be the quotient map as in Proposition 4.2. We first show that
Ψ1(a ·T ) = a ·Ψ1(T ) for all a ∈ A and T ∈ B[1,∞). Indeed, write T = S+W ,
with S ∈ B1 and W ∈ B[2,∞). Clearly, a · S ∈ B1 and a ·W ∈ B[2,∞). Thus,
Ψ1(aT ) = Ψ1(aS + aW ) = aS = aΨ1(T ). Next, let ξ, η ∈ E and a ∈ A be
given. Then we have

ϕ1(T
(1)
a·ξ T

(1)∗
η ) = T

(1)
U(a·ξ)T

(1)∗
U(η)

On the other hand,

ϕ1(T
(1)
a·ξ T

(1)∗
η ) = Ψ1(ϕ(a · T (1)

ξ T (1)∗
η )) = Ψ1(a · ϕ(T

(1)
ξ T (1)∗

η )) =

a · ϕ1(T
(1)
ξ T (1)∗

η ) = a · T (1)
U(ξ)T

(1)∗
U(η).
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In particular, it follows that T
(1)
U(a·ξ)〈x, y〉 = T

(1)
a·U(ξ)〈x, y〉, for all x, y ∈ F .

By page 5 in [36], we have that F 〈F, F 〉 is dense in F so that by an ε
2 -

argument we get that U(a · ξ) = a · U(ξ), as required. �

Corollary 4.7. Let E and F be C∗-correspondences over A and B, respec-
tively. Suppose that A (or B) is a subalgebra of compact operators. Then
the following are equivalent

(1) The C∗-correspondences E and F are unitarily isomorphic.
(2) T+(E) and T+(F ) are graded completely isometrically isomorphic.
(3) T (E) and T (F ) are base-preserving graded *-isomorphic.

Proof. It is easy to show see that (1) implies (2) (see for instance the proof
of [17, Theorem 4.3 item (1)] which works verbatim even when A and B
are non-commutative), and by Corollary 3.5 we have that (2) implies (3).
Hence, we need only show that (3) implies (1). When A is a C∗-subalgebra
of compact operators this follows from Proposition 4.6. �

5. K-theory

In this section we show how stabilized base-preserving s.e.s. isomorphisms
induce isomorphisms of six-term short exact sequences of K-groups which
only involves the coefficient algebras, Katsura ideals and Cuntz-Pimsner
algebras. For the basics of K-theory we refer to [49]. In this section we will
rely on K-theory computations in the context of Cuntz-Pimsner algebras
from [33, Section 8]. Recall that for a C∗-correspondence E we denote by
JE the ideal of relations in T (E) which coincides with K(F(E)JE).

Let E be a C∗-correspondence over A. Denote by φ0 : JE → K(E⊗0JE) ⊆
K(F(E)JE) the left action of the C∗-correspondence E⊗0. By [33, Propo-
sition 8.1] we see that (φ0)∗ : K∗(JE) → K∗(JE) is an isomorphism. Now
let

0 JE T (E) O(E) 0
j

be the short exact sequence with embedding j : JE → T (E). We denote
by i : JE → A the natural embedding. Now let ιA : A → DE and ιK(E) :
K(E)→ DE be the (1, 1) and (2, 2) embedding into the linking algebra, which
induce isomorphisms in K-theory. We define [E] : K∗(JE)→ K∗(A) via the
composition of (φE)∗ : K∗(JE)→ K∗(K(E)) and E∗ : K∗(K(E))→ K∗(A),
where φE is the left action on E and E∗ = (ιA)−1

∗ (ιK(E))∗. Then by the
discussion preceding [33, Theorem 8.6] we obtain the following commutative
diagram

K∗(JE) K∗(T (E))

K∗(JE) K∗(A)

j∗

(φ0)∗

i∗−[E]

(φF(E))∗
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Hence, when F is another C∗-correspondence over B such that ψ : T (E)→
T (F ) is a base-preserving s.e.s. isomorphism, we denote by ψ0 the restric-
tion of ψ to JE , by ρ its restriction to A, and by ψ : O(E) → O(F ) the
induced *-isomorphism on the quotients. Denote τ∗ : K∗(JE) → K∗(JF )
the isomorphism given by (φF0 )−1

∗ (ψ0)∗(φ
E
0 )∗. We hence obtain the following

commutative diagram.

K∗(JF ) K∗(T (F ))

K∗(JE) K∗(T (E))

K∗(JE) K∗(A)

K∗(JF ) K∗(B)

(jF )∗

(jE)∗
(ψ0)∗

ψ∗

(φE0 )∗

i∗−[E]

τ∗

(φF(E))∗

ρ∗

(φF0 )∗

i∗−[F ]

(φF(F ))∗

We denote by πE the composition of the embedding φF(E) : A → T (E) with
the quotient map of T (E) to O(E). Let e denotes the natural inclusion of
any C∗-algebra inside its stabilization, by tensoring with a fixed rank-one
projection. It is standard that the induced map e∗ between associated K-
groups is an isomorphism.

Lemma 5.1. Let E be a C∗-correspondence over A. Then

e−1
∗ ◦ (iE∗ − [E]) ◦ e∗ = iE⊗K∗ − [E ⊗K],

Proof. It is readily verified that e ◦ iE = iE⊗K ◦ e, and that e ◦ φE = (φE ⊗
idK) ◦ e = φE⊗K ◦ e. Thus, from the definitions of [E] and [E ⊗ K], it will
suffice to show that E∗ = e−1

∗ ◦ (E ⊗ K)∗ ◦ e∗. Similarly to before we have
that e ◦ ιA = ιA⊗K ◦ e and e ◦ ιK(E) = ιK(E)⊗K ◦ e. Thus, we get that

E∗ = (ιA)−1
∗ ◦ (ιK(E))∗ =

e−1
∗ ◦ (ιA⊗K)−1

∗ ◦ (ιK(E⊗K))∗ ◦ e∗ = e−1
∗ ◦ (E ⊗K)∗ ◦ e∗,

and the proof is complete. �

Theorem 5.2. Let E and F be C∗-correspondences over A and B, re-
spectively. Assume ψ : T (E ⊗ K) → T (F ⊗ K) is a base-preserving s.e.s.
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isomorphism. Then we have the following commutative diagram:

K1(O(F )) K0(JF )

K1(O(E)) K0(JE)

K1(B) K1(A) K0(A) K0(B)

K1(JE) K0(O(E))

K1(JF ) K0(O(F ))

i0−[F ]0

ψ1

i0−[E]0

τ0

(πF )1

(πE)1

ρ1

(πE)0

ρ0

(πF )0

i1−[E]1

τ1

ψ0

i1−[F ]1

Proof. By Proposition 2.10 at the level of K-theory we that

K∗(T (E)) = K∗(T (E ⊗K)), K∗(O(E)) = K∗(O(E ⊗K))

and K∗(JE) = K∗(JE⊗K).

Furthermore, by Corollary 2.11 and exactness of K we have that K∗(JE) =
K∗(JE⊗K). These identifications via e∗ are obtained so that

(φF(E))∗ = (φF(E⊗K))∗, (jE)∗ = (jE⊗K)∗

and (φE0 )∗ = (φE⊗K0 )∗, (πE)∗ = (πE⊗K)∗.

Moreover, by Lemma 5.1 we also have iE∗ − [E] = iE⊗K∗ − [E ⊗ K]. Clearly
the same also hold for F instead of E.

Thus, from the discussion preceding Lemma 5.1 combined with [33, The-
orem 8.6] applied to the C∗-correspondences E ⊗ K and F ⊗ K, we obtain
the desired diagram. �

When E and F are C∗-correspondences over subalgebras of compact op-
erators A and B, we are able to compute τ∗. In this case both JE and JF are
subalgebras of compacts, and must hence be direct sums of algebras of com-
pact operators. From additivity of K1 we get that K1(JE) = K1(JF ) = {0}
and hence τ1 = 0. Thus, we need only compute τ0.

For a C∗-algebra C we use the standard picture ofK0 from [49, Proposition
4.2.2] to express K0(C) as differences of equivalence classes [q]0 − [s(q)]0 for
q ∈ P∞(C1) where C1 is the unitization of C (even if it is unital), and
s : C1 → C1 is the scalar map (see [49, Subsection 4.2]). Recall also that if
ϕ : A → B is a *-homomorphism, we denote its unitization by ϕ1.

Proposition 5.3. Let E and F be C∗-correspondences over A and B, re-
spectively, and assume that A (or B) are subalgebras of compact operators. If
ψ : T (E)→ T (F ) is a base-preserving s.e.s. isomorphism, then ψ(JE) = JF
and τ0 = (ψ|JE )0.
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Proof. Without loss of generality, we assume thatA = B and ρ = ψ|A = idA.
Since ψ0 : JE → JF is a *-isomorphism, by [5, Corollary 1] there is an A-
unitary U : F(E)JE → F(F )JF such that ψ0 = AdU . In particular,

JE = 〈F(E)JE ,F(E)JE〉 = 〈F(F )JF ,F(F )JF 〉 = JF

so that the first part is proven.
Next we show that τ0 = (idJE )0 = idK0(JE). Let PF0 : F(F )JE → JE be

the projection onto F⊗0JE = JE = E⊗0JE ⊆ F(F )JE . As τ0 = (φF0 )−1
0 ◦

(ψ0)0 ◦ (φE0 )0, it will suffice to show that (AdU )0 ◦ (φE0 )0 = (φF0 )0. Here we
will abuse notation and simply write PF0 and U to mean the n-direct sums

(PF0 )(n) and U (n) for n ∈ N.
Suppose q ∈ P∞((JE)1) is of size n× n. Then

((AdU )0 ◦ (φE0 )0)
(
[q]0 − [s(q)]0

)
= (AdU )0

(
[PF0 qP

F
0 ]0 − [s(q)PF0 ]0

)
=

[UPF0 qP
F
0 U

∗]0 − [U(s(q)PF0 )U∗]0

Now, since UPF0 qP
F
0 U

∗ = UPF0 qP
F
0 P

F
0 qU

∗ and UPF0 qP
F
0 is in the unitiza-

tion K(F(F )JE)1, we see that

[UPF0 qP
F
0 U

∗]0 = [PF0 qP
F
0 U

∗UPF0 qP
F
0 ]0 = [PF0 qP

F
0 ]0 = ((φF0 )1)0([q]0),

and since s(q) is a projection which commutes with (PF0 )(n) and U (n) we have
that Us(q)PF0 U

∗ = Us(q)PF0 P
F
0 s(q)U

∗ and s(q)UPF0 is in the unitization
K(F(F )JE)1. Hence we also get that

[U(s(q)PF0 )U∗]0 = [Us(q)PF0 P
F
0 s(q)U

∗]0 = [s(q)PF0 ]0 = ((φF0 )1)0([s(q)]0)

Hence, it follows from the standard picture of K0 that (AdU )0 ◦ (φE0 )0 =
(φF0 )0, and we are done. �

6. Hierarchy for graph algebras

We briefly recall the construction of the self-adjoint algebras associated
to a directed graph. For more details, we refer the reader to [46] and [21].
Let G = (V,E, r, s) be a directed graph with range and source maps r, s :
E → V . We denote by AG the adjacency matrix for G given by

AG(v, w) = |{ e ∈ E | r(e) = v, s(e) = w }|.
and by E• the collection of all finite paths λ in G. We also denote by V reg

those vertices v ∈ V such that 0 < |r−1(v)| <∞ and V fin the vertices v ∈ V
such that |r−1(v)| <∞. We say that G is a row-finite graph if V = V fin.

A family S = (Sv, Se)v∈V,e∈E of operators on Hilbert spaceH is a Toeplitz-
Cuntz-Krieger (TCK) family if

(1) {Sv}v∈V is a set of pairwise orthogonal projections;
(2) S∗eSe = Ss(e) for every e ∈ E;

(3)
∑

e∈F SeS
∗
e ≤ Sv for every finite subset F ⊆ r−1(v).

We say that S is a Cuntz-Krieger (CK) family if additionally

(4)
∑

e∈r−1(v) SeS
∗
e = Sv for every v ∈ V reg.
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We denote by T (G) and O(G) the universal C∗-algebras generated by
TCK and CK families, respectively. When G is finite with no sinks or
sources, O(G) is the celebrated Cuntz-Krieger algebra of G which is inti-
mately related to the subshift of finite type determined by G (See [12]).

A natural way to realize T (G) is by using the left regular TCK family. Let
HG := `2(E•) be the Hilbert space with orthonormal basis { ξλ | λ ∈ E• }.
For each v ∈ V and e ∈ E we define

Lv(ξµ) =

{
ξµ if r(µ) = v

0 if r(µ) 6= v
and Le(ξµ) =

{
ξeµ if r(µ) = s(e)

0 if r(µ) 6= s(e).

Then L = (Lv, Le) is a TCK family and we call it the left regular TCK
family. By universality of T (G) we have a surjective ∗-isomorphism πL :
T (G)→ C∗(L) which turns out to be injective. Hence T (G) ∼= C∗(L), and
we will henceforth identify these algebras without further mention.

For v ∈ V denote by HG,v the Hilbert space with orthonormal basis
{ ξλ | s(λ) = v }. Note that HG,v is reducing for L = (Lv, Le), so we
denote by πv : T (G)→ B(HG,v) the restriction to this subspace. It is easily
verified that for any v ∈ V we have that Lv −

∑
e∈r−1(v) LeL

∗
e is the rank

one projection onto Cξv. Hence, the ideal generated by Lv−
∑

e∈r−1(v) LeL
∗
e

for v ∈ V fin is ⊕v∈V finK(HG,v), and we denote it by IG.

Proposition 6.1. Let G = (V,E) be a row-finite directed graph. Then IG
is a minimum essential ideal in T (G).

Proof. We first show that IG is essential. Let I be an ideal of T (G) such
that I ∩ IG = {0}. Then we have a natural quotient map q : T (G) →
T (G)/I. However, since I does not intersect IG = ⊕v∈VK(HG,v), we see
that q(Tv −

∑
v∈V TeT

∗
e ) 6= 0 for any v ∈ V . Hence by [19, Theorem 3.2

& Corollary 3.3] we see that q ∼=
⊕

v∈V π
(αv)
v ⊕ πb = πL ⊕ πb with αv ≥ 1

where πb is a representation associated to a CK family. Thus, we get that q
is injective, and we must then have that I = {0}.

Next we show that IG is a minimum essential ideal. If I is another
essential ideal for T (G), then I ∩ K(HG,v) 6= {0} for all v ∈ V . Hence, we
must actually have that K(HG,v) ⊆ I. Thus, IG ⊆ I and IG is minimum
essential. �

Let G = (V,E) be an arbitrary directed graph. From [46, Chapter 8]
we know that T (G) and O(G) arise as the Toeplitz-Pimsner and Cuntz-
Pimsner algebras of a C∗-correspondence over c0(V ). Indeed, define a right
pre-Hilbert c0(V )-module structure on finitely supported functions cf (E) by

(x · a)(e) = x(e)a(s(e)), for all x ∈ cf (E), a ∈ c0(V ), e ∈ E , and

〈x, y〉(v) =
∑

e∈s−1(v)

x(e)y(e), for all x, y ∈ cf (E), v ∈ V.
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We denote by X(G) the completion of cf (E) with respect to the induced
norm ‖x‖2 = ‖〈x, x〉‖ defined for x ∈ cf (E). Then X(G) becomes a C∗-
correspondence over c0(V ) by defining the left action φX(G) to be

φ(a)(x)(e) = a(r(e))x(e), for all x ∈ cf (E), e ∈ E,

which uniquely extends to a left action on the completion X(G). The C∗-
correspondence X(G) is called the graph correspondence associated to G.
In [46, Chapter 8] it is shown that rigged representations of X(G) are in
bijective correspondence with Toeplitz-Cuntz-Krieger families of G and that
rigged covariant representations of X(G) are in bijective correspondence
with Cuntz-Krieger families of G. Thus, we see that T (G) ∼= T (X(G))
and that O(G) ∼= O(X(G)), and we treat these realizations interchangeably
without mention from now on. The following then generalizes [8, Theorem
3 (1)] to arbitrary graphs.

Theorem 6.2. Let G = (V,E) and G′ = (V ′, E′) be directed graphs. The
following are equivalent

(1) G and G′ are isomorphic directed graphs.
(2) X(G) and X(G′) are unitarily isomorphic C∗-correspondences.
(3) T+(G) and T+(G′) are graded completely isometrically isomorphic.
(4) T (G) and T (G′) are base-preserving graded *-isomorphic.

Proof. Observe that in the case of a graph correspondence X(G), the base
algebra A = c0(V ) is a C∗-subalgebra of diagonal compact operators in
B(`2(V )). Therefore, we can apply Corollary 4.7 to conclude that items (2)−
(4) are equivalent. Clearly (1) =⇒ (2) and the converse is proven as follows.
If U : X(G) → X(G′) is a unitary isomorphism of C∗-correspondences,
implemented by a bijection ρ : c0(V ) → c0(V ′), then the map ρ̂ : V → V ′

between the spectra is given by ρ̂(v) = v′ where v′ ∈ V ′ is the unique
vertex such that ρ(pv) = pv′ . Given v, w ∈ V , note that the subspace
{ x ∈ X(G) | x = pvxpw } has dimension exactly AG(v, w), and is mapped
under U to the subspace {y ∈ X(G′) | y = pv′ypw′ } which is of dimension
AG′(v

′, w′). Hence, we see that AG(v, w) = AG′(v
′, w′) so that G and G′ are

isomorphic graphs via ρ̂. �

From [46, Chapter 8] we know that JX(G) = c0(V reg) and that JG :=
K(F(X(G))JX(G)) = JX(G) is the ideal generated by Tv −

∑
e∈r−1(v) TeT

∗
e

with v ∈ V reg. Hence we see that JG = ⊕v∈V regK(HG,v) under the identifi-
cation with T (G) as the C∗-algebra generated by L = (Lv, Le).

Proposition 6.3. Let G be a row-finite graph. Then JG is the maximum
ideal J of T (G) contained in IG such that Lv /∈ J for any v ∈ V .

Proof. We already know that Lv /∈ JG for all v ∈ V . Next, if J is an ideal
contained in IG such that Lv /∈ J for all v ∈ V , as J ⊆ IG = ⊕v∈VK(HG,v)
we must have that J = ⊕v∈V ′K(HG,v) for some subset V ′ ⊆ V . However
when v ∈ V is a source we have that K(HG,v) is the ideal generated by Lv.
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Since Lv /∈ J we must have that K(HG,v) ∩J = {0} so that V ′ ⊆ V reg and
hence J ⊆ JG. �

In what follows, we refer to [21] for additional details. It is clear K0(A) ∼=⊕
v∈V Z and K0(JX(G)) ∼=

⊕
v∈V reg Z. Let AG =

[
BG CG
∗ ∗

]
denote the 2×2

block decomposition of AG according to V reg and V sing := V \V reg. By [21,
Theorem 3.1], the map i0 − [X(G)] : K0(JX(G))→ K0(A) is identified with

the matrix

[
Bt
G − I
CtG

]
. Note that when G is row-finite, we get that AG =[

BG CG
0 0

]
, so that G is completely determined by the map i0 − [X(G)].

We next prove a substantial strengthening of Theorem 6.2 in the row-finite
case. This showcases the strength of applying the hierarchy established in
Corollary 3.5 to resolve stable isomorphism problems for non-self-adjoint
algebras via techniques from K-theory.

Theorem 6.4. Let G = (V,E) and G′ = (V ′, E′) be row-finite directed
graphs. The following are equivalent.

(1) G and G′ are isomorphic directed graphs.
(2) T+(G) and T+(G′) are completely isometrically isomorphic.
(3) T+(G)⊗K and T+(G′)⊗K are completely isometrically isomorphic.
(4) T (G) and T (G′) are base-preserving *-isomorphic.
(5) T (G)⊗K and T (G′)⊗K are base-preserving *-isomorphic.

Proof. It is clear that (1) implies any one of (2) − (5), that (2) implies (3)
and that (4) implies (5). By Corollary 3.5 we also have that (2) implies (4)
and that (3) implies (5) with the addition of Proposition 2.10. Hence, it will
suffice to show that (5) implies (1).

Suppose ϕ : T (G)⊗K → T (G′)⊗K is a base-preserving *-isomorphism.
By Proposition 2.10 we may identify ϕ with an isomorphism of the Toeplitz
algebras T (X(G)⊗K) and T (X(G′)⊗K). Hence, without loss of generality
we may assume that V = V ′, that c0(V ) ⊗ K = c0(V ′) ⊗ K as subalgebras
of T (X(G)⊗K) and T (X(G′)⊗K) and that ϕ|c0(V )⊗K = idc0(V )⊗K.

By Propositions 6.1 and 6.3 we see that JG (and JG′) is a maximum ideal
J contained in a minimum essential ideal such that Lv /∈ J for all v ∈ V .
Since ϕ|c0(V )⊗K = idc0(V )⊗K and tensoring with K preserves the lattice of
ideals, we see that ϕ must map JG ⊗K to JG′ ⊗K. Thus, it follows that ϕ
is a s.e.s. base preserving *-isomorphism.

By Theorem 5.2 and the discussion preceding our theorem we have that

i
X(G)
0 − [X(G)] equals i

X(G′)
0 − [X(G′)]. Since these two maps determine AG

and AG′ respectively, it follows that G and G′ must be isomorphic directed
graphs. �

The next example shows that the implications (5) =⇒ (3) and (4) =⇒
(2) in Theorem 6.4 can fail for graphs that are not row-finite.
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Example 6.5. Consider the two graphs G and G′ given by adjacency ma-
trices [

0 ∞
∞ 0

]
and

[
∞ ∞
∞ 0

]
respectively. We visualize these graphs as

•
v $, •

w
dl and •

!) v′ $, •
w′

dl

where double edges have infinite multiplicity. We remark that these graphs
differ by the so-called “move (T)” as described in [23]. Since all vertices are
singular, their associated graph C∗-algebras coincide with their associated
Toeplitz-Cuntz-Krieger algebras, and are isomorphic due to [23, Lemma 3.6].
Tracing through the ∗-isomorphisms that are concretely given in [23, Lemma
3.1 and Lemma 3.6], we see that they send Sv to Sv′ and Sw to Sw′ , so that
T (G) and T (G′) are base-preserving ∗-isomorphic.

This shows the necessity of requiring the graphs be row-finite in Theorem
6.4. Furthermore, note that the isomorphism is trivially s.e.s. since O(G) =
T (G) and O(G′) = T (G′). Since these are Toeplitz-Pimsner and Cuntz-
Pimsner algebras, this example also shows that condition (4) and (5) in
Corollary 3.5 are not equivalent. Lastly, by [30, Theorem 2.11] we see that
conditions (5) and (3) in Corollary 3.5 are also not equivalent.
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