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Abstract

A dynamic treatment regime (DTR) consists of a
sequence of decision rules, one per stage of inter-
vention, that dictates how to determine the treat-
ment assignment to patients based on evolving
treatments and covariates’ history. These regimes
are particularly effective for managing chronic
disorders and is arguably one of the critical in-
gredients underlying more personalized decision-
making systems. All reinforcement learning algo-
rithms for finding the optimal DTR in online set-
tings will suffer Q(1/|Dxus|T’) regret on some
environments, where 7" is the number of exper-
iments and D x g is the domains of the treat-
ments X and covariates S. This implies that
T = Q(|Dxus|) trials will be required to gen-
erate an optimal DTR. In many applications, the
domains of X and S could be enormous, which
means that the time required to ensure appropri-
ate learning may be unattainable. We show that,
if the causal diagram of the underlying environ-
ment is provided, one could achieve regret that
is exponentially smaller than D x ;5. In particu-
lar, we develop two online algorithms that satisfy
such regret bounds by exploiting the causal struc-
ture underlying the DTR; one is the based on the
principle of optimism in the face of uncertainty
(OFU-DTR), and the other uses the posterior sam-
pling learning (PS—-DTR). Finally, we introduce
efficient methods to accelerate these online learn-
ing procedures by leveraging the abundant, yet
biased observational (non-experimental) data.
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1. Introduction

In medical practice, a patient typically has to be treated at
multiple stages; a physician sequentially assigns each treat-
ment, repeatedly tailored to the patient’s time-varying, dy-
namic state (e.g., infection’s level, different diagnostic tests).
Dynamic treatment regimes (DTRs, Murphy 2003) provide
an attractive framework of personalized treatments in longi-
tudinal settings. Operationally, a DTR consists of decision
rules that dictate what treatment to provide at each stage,
given the patient’s evolving conditions and treatments’ his-
tory. These decision rules are alternatively known as adap-
tive treatment strategies (Lavori & Dawson, 2000; 2008;
Murphy, 2005a; Thall et al., 2000; 2002) or treatment poli-
cies (Lunceford et al., 2002; Wahed & Tsiatis, 2004; 2006).

Learning the optimal dynamic treatment regime concerns
with finding a sequence of decision rules o x over a finite
set of treatments X that maximizes a primary outcome
Y. The main challenge is that since the underlying system
dynamics are often unknown, it’s not immediate how to
infer the consequences of executing the policy do(ox), i.e.,
the causal effect E, . [Y]. Most of the current work in the
causal inference literature focus on the off-policy (offline)
learning setting, where one tries to identify the causal effect
from the combination of static data and qualitative assump-
tions about the data-generating mechanisms. Several criteria
and algorithms have been developed (Pearl, 2000; Spirtes
et al., 2001; Bareinboim & Pearl, 2016). For instance, a
criterion called the sequential backdoor (Pearl & Robins,
1995) allows one to determine whether causal effects can be
obtained by adjustment. This condition is also referred to
as sequential ignorability (Rubin, 1978; Murphy, 2003). To
ensure it, one could randomly assign values of treatments at
each stage of the intervention and observe the subsequent
outcomes; a popular strategy of this kind is known as the
sequential multiple assignment randomized trail (SMART,
Murphy 2005a). Whenever the backdoor condition can
be ascertained, a number of efficient off-policy estimation
procedures exist, including popular methods based on the
propensity score (Rosenbaum & Rubin, 1983), inverse prob-
ability of treatment weighting (Murphy et al., 2001; Robins
et al., 2008), and Q-learning (Murphy, 2005b).

More recently, (Zhang & Bareinboim, 2019) introduced
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the first online reinforcement learning (RL, Sutton & Barto
1998) algorithm for finding the optimal DTR. Compared
with the off-policy learning, an online learning algorithm
learns through sequential, adaptive experimentation. It re-
peatedly adjusts the current decision rules based on the past
outcomes; the updated decision rules are deployed to gen-
erate new observations. The goal is to identify the optimal
treatment regime with low regret, i.e., the least amount of
experimentation. Settings that allow some amount of on-
line experimentation are increasingly popular, including,
for instance, mobile and internet applications where contin-
uous monitoring and just-in-time intervention are largely
available (Chakraborty & Moodie, 2013)). For DTRs with
treatments X and covariates’ history S, the strongest results
of this kind establish O(y/]Dxus|T)" for a particular algo-
rithm introduced in (Zhang & Bareinboim, 2019), which is
close to the lower bound Q(+/|Dxus|T'). However, when
the cardinality of Dx g is huge, even this level of regret
(to guarantee appropriate learning) is somewhat unattain-
able in some critical settings, which suggests the need for
investigating alternative and reasonable assumptions.

In many applications, one often has access to some causal
knowledge about the underlying environment, represented
in the form of directed acyclic causal diagrams (Pearl,
2000). When the causal diagram is sparse, e.g., some vari-
ables in S are affected by a small subset of treatments X,
the dimensionality of the learning problem could be reduced
exponentially. There are RL algorithms exploiting the struc-
tural information in Markov decision processes (MDPs),
where a finite state is statistically sufficient to summarize
the treatments and covariates’ history (Kearns & Koller,
1999; Osband & Van Roy, 2014). Unfortunately, the under-
lying environment of DTRs is often non-Markovian, and
involves non-trivial causal relationships. For instance, in a
treatment regime where patients receive multiple courses
of chemotherapy, the initial treatment could affect the final
remission via some unknown mechanisms, which are not
summarizable by a prespecified state (Wang et al., 2012).

In this paper, we study the online learning of optimal dy-
namic treatment regimes provided with the causal diagram
of the underlying, unknown environment. More specifically,
our contributions are as follows. (1) We propose an efficient
procedure (Alg. 1) reducing the dimensionality of candidate
policy space by exploiting the functional and independence
restrictions encoded in the causal diagram. (2) We deve-
lope two novel online reinforcement learning algorithms
(Algs. 2 and 3) for identifying the optimal DTR, leverag-
ing the causal diagram, and that consistently dominate the
state-of-art methods in terms of the performance. (3) We
introduce systematic methods to accelerate the proposed
algorithms by extrapolating knowledge from the abundant,

'f = O(g) if and only if Ik such that f = O(glog"(g)).

yet biased observational (non-experimental) data (Thms. 6
and 7). Our results are validated on multi-stage treatments
regimes for lung cancer and dyspnoea. Given the space con-
straints, all proofs are provided in (Zhang & Bareinboim,
2020, Appendices A-C).

1.1. Preliminaries

In this section, we introduce the basic notations and defi-
nitions used throughout the paper. We use capital letters
to denote variables (X) and small letters for their values
(x). Let D x represent the domain of X and |D x| its dimen-
sion. We consistently use the abbreviation P(z) to represent
the probabilities P(X = x). X () stands for a sequence
{X1,...,X;} (0if i < 1). Finally, I z_.y is an indicator
function that returns 1 if Z = z holds true; otherwise 0.

The basic semantical framework of our analysis rest on struc-
tural causal models (SCMs) (Pearl, 2000, Ch. 7). A SCM
M isatuple (U,V,F, P(u)) where V is a set of endoge-
nous (often observed) variables and U is a set of exogenous
(unobserved) variables. F is a set of structural functions
where fiy € F decides values of an endogenous variable
V' € V taking as argument a combination of other variables.
Thatis, V + fv(Pav, Uv), Pay C V., Uy CU. Values
of U are drawn from a distribution P(u), which induces
an observational distribution P(v) over V. An intervention
on a subset X C V, denoted by do(x), is an operation
where values of X are set to constants @, regardless of
how they were ordinarily determined through the functions
{fx :VX € X}. Fora SCM M, let M, be a submodel of
M induced by do(x). The interventional distribution Py(s)
is the distribution over S C V in submodel M.

Each SCM M is associated with a directed acyclic graph
(DAG) G (e.g., see Fig. 1a), called the causal diagram, where
nodes correspond to endogenous variables V', solid arrows
represent arguments of each function fy. A bi-directed
arrow between nodes V; and V; indicates an unobserved
confounder (UC) affecting both V; and V}, i.e., Uy, NUy;, #+
(). We will use the graph-theoretic family abbreviations, e.g.
An(X)g, De(X)g, Pa(X)g stand for the set of ancestors,
descendants and parents of X in G (including X'). We omit
the subscript G when it is obvious. A path from a node X to
anode Y in G is a sequence of edges which does not include
a particular node more than once. Two sets of nodes X, Y
are said to be d-separated by a third set Z in a DAG G,
denoted by (X L Y'|Z)g, if every edge path from nodes
in one set to nodes in another are “blocked”. The criterion
of blockage follows (Pearl, 2000, Def. 1.2.3).

In a causal diagram G, variables V' could be partitioned
into disjoint groups, called confounded components (c-
component), by assigning two variables to the same group
if and only if they are connected by a path composed solely
of bi-directed arrows (Tian & Pearl, 2002). The latent pro-
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jection Proj(g, S) is an algorithm that induces a causal
diagram from G over a subset S C V while preserving
topological relationships among .S (Tian, 2002, Def. 5). For
example, in Fig. la, Proj(G, { Xz, Y'}) returns a subgraph
Xy —Y; X1, 51, X5 belong to the same c-component due
to the bi-directed path X; <> 51 < Xo.

2. Optimal Dynamic Treatment Regimes

We start the section by formalizing DTRSs in the semantics
of SCMs. We consider the sequential decision-making prob-
lem in a SCM M* = (U,V,F, P(u)), where an agent
(e.g., a physician) determines the values of a set of treat-
ments X C V with the goal of maximizing a primary
outcome Y € V. Domains of V are discrete and finite.

A dynamic treatment regime (hereafter, policy) ox is a
sequence of decision rules {ox : VX € X }. Eachox isa
mapping from the values of the treatments and covariates’
history Hx C V to the domain of probability distributions
over X, denoted by ox (z|hx); we write Hyx+ = Hx U
X. An intervention do(o x ) following a policy ox is an
operation that determines values of each X € X following
the decision rule oy, regardless of its original function
Jx. Let M7, be the manipulated SCM of M* induced by
do(ox). We define the interventional distribution P, (v)
as the distribution over V' in the manipulated model M x

v) = ZP(u

) [ Pwlpay.uy) ] ox(zlhx).
Vgx Xex

The collection of all possible o x defines a policy space 11,

which we denote by {Dp, — Dx : VX € X}. We are in

search of an optimal policy % maximizing the expected

outcome E, [Y],ie., 0% = argmax,, . Eox [Y].

Let G denote the causal diagram associated with M* and
let Gx be a subgraph of G by removing incoming arrows
to X. We denote by G, , a manipulated diagram obtained
from G and II by adding arrows from nodes in Hy to X
in the subgraph G- For example, Fig. 1b shows a manip-
ulated graph G, where treatments are highlighted in red
and input arrows in blue. We assume that G, does not
include cycles. A DTR agent decides treatments following
a topological ordering < in G, . It does not forget pre-
vious treatments or information it once had, i.e., for any
X; <X, H X+ C Hx,. Such a property, called perfect
recall (Koller & Friedman, 2009, Def. 23.5), ensures the
following independence relationships among decision rules.
Definition 1 (Solubility). A policy space II is soluble w.r.t.
G and Y if there exists a topological ordering < on G,
(called the soluble ordering) such that whenever X; < X,
(YNDe(X;) L ox, |HXJ+ )G, » Where o x, is a new parent
node added to Xj.

For instance, the policy space II described in Fig. 1b is

@

& x

(b) gdxl Xo (C) go’xl Xo

Figure 1: (a) A causal diagram G; (b) a manipulated diagram
Gox with a policy space IT = {Dy — Dx,, Dy, x,} —
Dx,}; (c) adiagram G5 with areduction I ={Dg—
Dx,, Dx, = Dx,}; (c) a manipulated diagram G, with
the minimal reduction Iy = {Dy — Dx, }.

soluble relative to X; < Sy < X9 < Y since (Y 1L
ox, |[{X1, 52, Xg})ggxl)x2 . When II is soluble and M* is
known, there exist efficient dynamic programming planners
(Lauritzen & Nilsson, 2001) that solve for the optimal policy
0% Throughout this paper, we assume the parameters of
M* are unknown. Only the causal diagram G, the policy
space II, and the primary outcome Y are provided to the
learner, which we summarize as a signature [G,TI, Y.

2.1. Reducing the Policy Space

In this section, we simplify the complexity of the learning
problem by determining and exploiting irrelevant treatments
and information for the candidate policies. We begin by
defining the equivalence relationships among policy spaces.
Definition 2. Given [G,II,Y], a policy space II is
equivalent to TI, if for any SCM M conforming to G,

max&x eIl EJW&X [Y} = MaXsx Il EJVfox [Y]

In words, two policy spaces are equivalent if they induce the
same optimal performance. It is thus sufficient to optimize
over a policy space that is in the same equivalence class of
II. We will introduce graphical conditions that identify such
an equivalence class. Among equivalent policy spaces, we
consistently prefer ones with smaller cardinality |IT|.

Definition 3. Given [G,II, Y], treatments X C X are
irrelevant it X = X \ (X N An(Y))g, , -
Intuitively, treatments X are irrelevant if they has no causal
(functional) effect on the primary outcome Y. Therefore,
the agent could choose not to intervene on X without com-
promising its optimal performance. Let IT \ X denote a
partial policy space obtained from II by removing treat-
ments X, i.e., {D, — Dy : VX ¢ X}. The following
proposition confirms the intuition of irrelevant treatments.

Lemma 1. Given [G, T, Y], TI \ X is equivalent to 11 if
treatments X are irrelevant.

‘We will also utilize the notion of irrelevant evidences intro-
duced in (Lauritzen & Nilsson, 2001, Def. 8).
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Definition 4. Given [G,II, Y], evidences S C Hy for
X e X, d~enoted bX S — X, are irrelevant if (Y N
De(X) 1L S|Hx+ \ S)g, . -
Def. 4 states that evidences S — X have no value of in-
formation on the outcome Y if the remaining evidences
are known. Let IT\ {S +~ X} denote a policy space ob-
tained from II by removing S from input space of o x, i.e,
{Dp\s = DxUIIN{X}). Our next result corroborates
the definition of irrelevant evidence.

Lemma 2. Given [G,T1, Y], TI'\ {S — X} is equivalent
to I1 if evidences S — X are irrelevant.

Lems. 1 and 2 allow us to search through the equivalence
class of II with reduced cardinality.

Definition 5. Given [, II, Y], a policy space II is a reduc-
tion of I if it is obtainable from II by successively removing
irrelevant evidences or treatments.

Lemma 3. Given [G,I1,Y], a reduction T1 of the policy
space 11 is soluble if T1 is soluble.

Lem. 3 shows that II satisfies some basic causal constraints
of IT, i.e., the solubility is preserved under reduction. In gen-
eral, computational and sample complexities of the learning
problem depend on cardinalities of candidate policies. Nat-
urally, we want to solve for the optimal policy in a function
space that is reduced as much as possible.

Definition 6. Given [G,TI,Y], a reduction ITy,y of II is
minimal if it has no irrelevant evidence and treatment.

One simple algorithm for obtaining a minimal reduction
II,,n 1s to remove irrelevant treatments and evidences itera-
tively from II until no more reduction could be found. An
obvious question is whether the ordering of removal affects
the final output, i.e., there exist multiple minimal reductions.
Fortunately, the following theorem implies the opposite.

Theorem 1. Given [G,11,Y], there exists a unique minimal
reduction Iy of the policy space T1.

We describe in Alg. 1 the Reduce algorithm that efficiently
finds the minimal reduction. More specifically, let < be a
soluble ordering in G, . Reduce examines the treatments
in X following a reverse ordering regarding <. For each
treatment X;, it iteratively reduce the policy space by re-
moving irrelevant evidences. Finally, it obtains the minimal
reduction by removing all irrelevant treatments.

Theorem 2. Given [G,11,Y], Reduce returns the minimal
reduction Iy, of a soluble policy space I1.

As an example, we apply Reduce on the policy space II
described in Fig. 1b. Since (Y 1 S$1|X1,X2)g, .
1:42

evidence S1 — X3 is irrelevant. Removing .S leads to a re-
duction IT = TT\{.S7 — X5} described in Fig. 1c. Similarly,

Algorithm 1 Reduce

1: Input: Signature [G,II, Y.
2: Let < be a soluble ordering in G, ,, and let treatments
in X be ordered by X1 < --- < X,.
foralli=n,...,1do

for all irrelevant evidence S — X in IT do

LetIT =TI\ {S — X;}.

end for
end for
Return IT = IT\ X where X are irrelevant treatments.

AN

we could remove X; — X since (Y 1L X1|X2)G5X17X2.
Treatment X is now irrelevant since there exists no path
from X to Y. Removing X gives the minimal reduction
IIyn described in Fig. 1d. Suppose policies in II are de-
terministic. The cardinality of IT is |Dx, [|Dx, x,,5.1 5
while |ITy;y| could be much smaller, equating to |Dx,|.

3. Online Learning Algorithms

The goal of this section is to design online RL algorithms
that find the optimal DTR o% in an unknown SCM M*
based solely on the information summarized in [G, IT, Y].

An online learning algorithm learns the underlying system
dynamics of M* through repeated episodes of interactions
t = 1,...,7. Ateach episode ¢, the agent picks a pol-
icy oy, assigns treatments do(X") following o'y, and re-
ceives subsequent outcome Y*. The cumulative regret up to
episode T is defined as R(T, M*) = S|, (Eoy [Y]=YT),
i.e, the loss due to the fact that the algorithm does not always
follow the optimal policy 0. A desirable asymptotic prop-
erty is to have limp_, o R(T,M*)/T = 0, meaning that
the agent eventually converges and finds the optimal policy
0% - We also consider the Bayesian settings where the actual
SCM M* is sampled from a distribution ¢* over a set of
candidate SCMs in M. The Bayesian regret up to episode 7'
is defined as R(T, ¢*) = E[R(T, M*)|M* ~ ¢*]. We will
assess and compare the performance of online algorithms in
terms of the cumulative and Bayesian regret.

With a slight abuse of notation, we denote by Il =
{Du, — Dx : VX € X}, the minimal reduction ob-
tained from Reduce(G,I1,Y). Let S = (UxexHx) \ X.
For any policy o x € Iy, Eyy [Y] could be written as

Eox [Y] =Y Ea[Y[s]Pu(s) ] mx(xlhx). (D

XeX

Among quantities in the above equation, only transitional
probabilities Py (s) and immediate outcome E,[Y |s] are
unknown. It thus suffices to learn P, (s) and E,[Y]s] to
identify the optimal policy. In the remainder of this paper,
we will focus on the projection Gy from G over variables
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(b) gffxl,x2 (©) g[5'1752]

Figure 2: (a) A causal diagram G; (b) the manipulated
diagram G, with Il = {Ds; = Dxy5Disy x1,8) —
Dx,}; (c) the subgraph Gig, .

{S,X,Y}, ie., Gun = Proj(G,{S,X,Y}). We will
consistently use II and G, respectively, to represent the
minimal reduction T,y and the projection Gy;y. For conve-
nience of analysis, we will assume that outcome F[Y|s]
are provided. However, our methods extend trivially to
settings where F5[Y|s] are unknown.

3.1. Optimism in the Face of Uncertainty

We now introduce a new online algorithms, OFU-DTR, for
learning the optimal dynamic treatment regime in an un-
known SCM. OFU-DTR follows the celebrated principle
of optimism in the face of uncertainty (OFU). Like many
other OFU algorithms (Auer et al., 2002; Jaksch et al., 2010;
Osband & Van Roy, 2014), OFU-DTR works in phases com-
prised of optimistic planning, policy execution and model
updating. One innovation in our work is to leverage the
causal relationships in the underlying environment that en-
ables us to obtain tighter regret bounds.

The details of the OFU-DTR algorithm are described in
Alg. 2. During initialization, it simplifies the policy space IT
and causal diagram G using Reduce and Proj. OFU-DTR
interacts with the environment through policies in II in re-
peated episodes of ¢ = 1,...,T. At each episode t, it
maintains a confidence set P; over possible parameters of
P, (s) from samples collected prior to episode t. We will
discuss the confidence set construction later in this section.
Given a confidence set P;, OFU-DTR computes a policy
oy by performing optimistic planning. More specifically,
let V. (Px(s)) denote the function for E,, [Y] given by
Eq. (1). OFU-DTR finds the optimal policy o for the
most optimistic instance P.(s) from P; that induces the
maximal outcome Vo1 (PL(s)). Since II is soluble, one
could solve for o by extending the standard single pol-
icy update planner (Lauritzen & Nilsson, 2001), which we
describe in (Zhang & Bareinboim, 2020, Appendix D). Fi-
nally, OFU-DTR executes o5 throughout episode ¢ and new
samples X, S* are collected.

Confidence Set Consider a soluble ordering < on G, .
Let S be ordered by S; < --- < S,,. For any () let
Gis)) be a subgraph of G which includes S*) and edges

Algorithm 2 OFU-DTR
1: Input: Signature [G, T, Y], § € (0,1).
2: Initialization: Let II = Reduce(G,II,Y) and let
G = Proj(g; {SX7Y})

3: for all episodes t = 1,2,... do

4:  Define counts n'(z) for any event Z = z prior to
episode ¢ as n'(z) = S/} Lizizzy.

5. Forany S, € S, compute estimates

n'(Zy, 81)
max {nt(iﬁlw Sk \ {sk}) 1}'

6:  Let P, denote a set of distributions P,(s) such that
its factor Pz, (sg|Sk \ {sk}) in Eq. (2) satisfies

| Pz, (186 \ {51 }) — P, (186 \ {se )|, < fs.(£.0),

where fg, (t,0) is a function defined as

PL, (sklse\ {sr}) =

fo (1.5) = , | P8 108D s\ 14/9)
ot Irlax{nt(a_:k,.§k\{sk}),1} '

7:  Find the optimistic policy o such that

te =argmax max V,, (Pl(s 3
ohe = amgmax s Vo (P(s) )

8:  Perform do(o ) and observe X*, S*.
9: end for

among its elements. It follows from (Tian, 2002, Lem. 11)
that Py (s) factorize over c-components in G.

Corollary 1. Given [G,I1,Y], for any Sy, € S, let Sy,
denote a c-component in g[s(k)] that contains Sy, and let
X = Pa(Si)g \ Sk. Pe(s) could be written as:

Po(s) = ] Pas(sulsr\ {se})- @)

SLeS

Consider the causal diagram G of Fig. 2a as an example. By
definition, the policy space II described in Fig. 2b is mini-
mal. Thus, S = {5, 52}, X = {X1, X2}. We observes in
Fig. 2c that {S>} is the c-component in subgraph Gis, s,
that contains S; c-component {S1} contains Sy in Gy, -
Corol. 1 implies Py, 4, (s1,52) = P(s1)Py, (s2), which
gives Py, 5,(s2|51) = Py, (s2) and Py, 4, (s1) = P(s1).

Ateach episode ¢, OFU-DTR computes the empirical estima-
tor P%k (sk|8k\{sr}) for each factor in Eq. (2). Specifically,
for samples H; = { X, S’ ;;i collected prior to episode t,
P:;:k (sk|8k\{sk}) is the relative frequency of event S}, = s,
at the state S! \ {S!} = s; \ {sr}, X! = @). The con-
fidence set P; is defined as a series of convex intervals
centered around estimates P%k (sk|Sk \ {sk}) (Step 6). The
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adaptive sampling process of OFU-DTR ensures the identi-
fiability of interventional probabilities Pz, (sg|Sk \ {sk})-

Lemma 4. Given [G,I1, Y], forany Sy, € S and any ox €
IL Py (s|Tk, 5k \ {sk}) = Pa, (sk|Sk \ {sk})-

We are now ready to analyze asymptotic properties of
OFU-DTR, which will lead to a better understanding of
their theoretical guarantees.
Theorem 3. Given [G,IL, Y], fixa é € (0, 1). With proba-
bility (w.p.) at least 1 — 0, it holds for any T > 1, the regret
of OFU-DTR is bounded by

R(T, M*) < A(T, 8) +2|S|/Tlog 2ISTT/0), ()
where A(T, 0) is a function defined as

A(T,8) = > 17,/|Dg,ux, [T1og(IS|T/5).
SreS

OFU-DTR improves over the state-of-art online algorithms
for DTRs. Consider again the policy space II in Fig. 2b.
Oblivious of the causal diagram G, the algorithm developed
in (Zhang & Bareinboim, 2019) leads to a near-optimal

regret O(y/[D(s,.50.x:3/7) 2 3. Thm. 3 implies that
OFU-DTR achieves a regret bound O(/[Dys, x,}T), re-
moving the factor of \/[Dyg,}]. In general, if |Dg, %, | <
|Dsux]| for some Si, OFU-DTR outperforms state-of-art
methods by exploiting the causal knowledge of G.

3.2. Posterior Sampling

We now introduce an alternative algorithm, PS—-DTR, based
on the heuristics of posterior sampling (Thompson, 1933;
Strens, 2000; Osband et al., 2013). We will focus on the
Bayesian settings where the actual M* is drawn from a set
of candidate SCMs M following a distribution ¢*. The
details of PS—-DTR are described in Alg. 3. In addition to
[G,11,Y], PS-DTR assumes the access to a prior ¢ over
the interventional probabilities Py(s), i.e.,

$(0) = Z Iipy, (s)=0y 9" (M). )

MeM

In practice, for the discrete domains, ¢ could be the product
of a series of uninformative Dirichlet priors. Similar to
OFU-DTR, PS-DTR first simplifies the policy space IT and
causal diagram G and proceeds in repeated episodes. At
each episode ¢, PS—DTR updates the posterior ¢(-|F;) from
collected samples 3, = {X? S'}!_]. It then draws an
sampled estimate of P/ (s) from the updated posteriors.

*Dx,} is omitted since we assume E[Y'|s] is provided.

3To the best of our knowledge, the family of algorithms pro-
posed in (Zhang & Bareinboim, 2019) are the first adaptive strate-
gies that work regardless of the causal graph, which extends results
for bandits found in the literature (Zhang & Bareinboim, 2017).

Algorithm 3 PS-DTR

1: Input: Signature [G,II, Y], prior ¢.

2: Initialization: Let II = Reduce(G,II,Y) and let
G = Proj(g; {SX7Y})

3: for all episodes t = 1,2,... do

4:  Sample PL(s) ~ ¢(-|F;).

5:  Compute the optimal policy o such that

o'y = argmax V,, (PL(s)). @)
ox €Il

6:  Perform do(c) and observe X*, S*.
7: end for

In Step 5, PS-DTR computes an optimal policy oy that
maximizes the expected outcome V. (PL(s)) induced by
the sampled P.(s). Finally, ol is executed throughout
episode ¢ and new samples X, S? are collected.

Theorem 4. Given [G,11,Y] and a prior ¢, if ¢ satisfies
Eq. (5), it holds for any T > 1, the regret of PS-DTR is
bounded by

R(T,¢") < A(T,1/T) +1, (6)
where function A(T, 0) follows the definition in Thm. 3.

Compared with Thm. 3, the regret bound in Thm. 4 implies
that PS—-DTR achieves the similar asymptotic performance
as OFU-DTR. In OFU-DTR, one has to find an optimal pol-
icy o'y for the most optimistic instance in a family of SCMs,
whose distribution P,(s) are imprecise, bounded in a con-
vex polytope P; (Eq. (3)). On the other hand, the policy
ol in PS-DTR is a solution for SCMs with fixed probabil-
ities P.(s). Since II is soluble, such policy o could be
obtained using the standard dynamic program solvers (Nils-
son & Lauritzen, 2000; Koller & Milch, 2003). Preliminary
analysis reveals that solving for the optimal policy with with
imprecise probabilities performs at least the double of the
number of arithmetic operations required with fixed-point
values (Cabaias et al., 2017). This suggests that PS-DTR
is more computationally efficient compared to OFU-DTR.

4. Learning From Observational Data

Algorithms introduced so far learn the optimal policy
through repeated experiments from scratch. In many ap-
plications, however, conducting experiments in the actual
environment could be extremely costly and undesirable due
to unintended consequences. A natural solution is to ex-
trapolate knowledge from the observational data, so that the
future online learning process could be accelerated.

Given the causal diagram G, one could apply standard causal
identification algorithms (Tian, 2002; Tian & Pearl, 2002;
Shpitser & Pearl, 2006; Huang & Valtorta, 20006) to esti-
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mate the causal effect (e.g., Pz, (sx|Sk \ {sr})) from the
observational distribution P(v). However, challenges of
non-identifiability could arise and the target effects may be
not uniquely computable from the data.

Inferring about treatment effects in non-identifiable settings
has been a target of growing interest in the domains of
causal inference (Balke & Pearl, 1995; Chickering & Pearl,
1996; Richardson et al., 2014; Zhang & Bareinboim, 2017;
Kallus & Zhou, 2018; Kallus et al., 2018; Cinelli et al.,
2019). To address this challenge, we consider a partial
identification approach which reduces the parameter space
of causal effects from the observational data, called the
causal bounds. Following (Tian & Pearl, 2002), for any
S C V, we define function Q[S](v) = P,\s(s). Also,
Q[V](v) = P(v) and Q[0](v) = 1. For convenience, we
often omit input v and write Q[S]. Our first result derives
inequality relationships among @) functions.

Lemma 5. For a SCM (U,V , F, P(u)), let subsets S C
C C V. Foratopological ordering < in G, let S be ordered
by S1 < -+ < Sk. Q[S] is bounded from Q[C] as:

Q[S] € [A(S,QIC)), B(S,Q[C)].

where A(S,Q[C)), B(S,Q[C]) are functions defined as
follows. Let W = An(S)g ., f W = S,

A(S,Q[C]) = B(S,Q[C]) = QW],
where QW] =3_ .\, QC]; otherwise,

A(S.QIC)) = max QIW],
5(5.QlC]) = nin { QW] - 3 Qw1

+ B(S\ {S},Q[C)),
where Z = Pa(W)g \ Pa(S)g.

While this result may appear non-trivial, Lem. 5 generalizes
the natural bounds in (Manski, 1990) to longitudinal settings.
For instance, in Fig. 2a, P,, (s1, $2) is not identifiable due
to the presence of UCs (i.e., X1 <> S2). Let S = {55}
and C = {57, 52, X1}. Lem. 5 allows us to bound P, (s2)
from P(sy,82,21) as Py, (s2) > maxs, P(s1, $2,21) and
P, (s2) < ming, P(s1,82,21) — P(s1,21) + 1.

However, the bounds in Lem. 5 could be improved by ex-
ploiting the independence relationships among variables in
S. Consider again the example in Fig. 2a. Variables S; and
S, are independent under do(z1) (as shown in Fig. 2¢). That
iS, le (82) = le (32 ‘91) = le (827 9‘1)/P(91) This equa-
tion, together with Lem. 5, allows us to bound P, (s2) from
P(s1,s2,21) as follows: P, (s2) > maxg, P(z1,S2]s1)
and Py, (s2) < ming, P(z1,s2|s1) — P(x1]s1) + 1. Since
P(s1) € [0,1], it is immediate to see that such bounds are

tighter than those derived from Lem. 5 alone, without uti-
lizing the independence relationship (S1 1L S2)g((s,,5,}]-
Our next result applies this intuition to bound transitional
probabilities Pz, (sk|Sk \ {sk}) from the observational data
P(v) in general settings.

Theorem 5 (C-component Bounds). Given [G,11,Y], for
any Sy, € S, let C be a c-component in G that contains
S’k. LetC, = CnN S*®) and let Z = Pa,(Ck)g \ Pa(S'k)g.
Ps, (sk|8k \ {sk}) is bounded in |az, s, , bz, .s,| where

41,5, = max { A(Cy, QIC])/B(Ci \ {5}, QIC) },

bs, . = min { B(Ck. QIC))/B(Ci. \ {Si},Q[C)) }.

Among quantities in the above equation, Q[C] is identifiable
from the observational data P(v) following (Tian, 2002,
Lem. 7). Thm. 5 extends the DTR bounds in (Zhang &
Bareinboim, 2019) to an arbitrary causal diagram.

4.1. Online Learning with Causal Bounds

We next introduce efficient methods to incorporate the
causal bounds into online learning algorithms. For any Sy €
S, let Cg, denote a parameter family of Py, (sx|5% \ {sk})
induced by causal bounds [az, s, bz,,s, |- We denote by €
a sequence {Cg, : VS, € S}. Naturally, € defines a family
P of parameters for the interventional distribution Py (s).
To incorporate the causal bounds €, OFU-DTR finds the
optimal policy oy of the most optimistic instance in the
family of probabilities P. N P,. That is, we replace the
optimization problem defined in Eq. (3) with the following:

Vox (Pg(s)) (8

t
Ox = argmax  max
X T USe Pis)ebin,
Let |Cg, | denote the maximal L1 norm of any pair of prob-
ability distributions in Gy, i.e.,

|65k =

max

- n E az, .5 — ba.sl-
mkask\{sk}

Sk

We are now ready to derive the regret bound of OFU-DTR
that incorporate causal bounds € through Eq. (8).

Theorem 6. Given [G,11,Y] and causal bounds @, fix a
6 € (0,1). Wop. at least 1 — 6, it holds for any T > 1, the
regret of OFU-DTR is bounded by

R(T, M*) < A(T, €,5) +2|S|\/Tlog2IS[T/5),
where function A(T, €, 0) is defined as

5> min {€I7.17/[Ds, o, Tou(SIT/5) |

SkLES

It follows immediately that the regret bound in Thm. 6
is smaller than the bound given by Thm. 3 if T' <
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Figure 3: Simulations comparing the sequential multiple assignment randomized trail (rand), OFU-DTR algorithm (ofu-dtr),
PS-DTR algorithm (ps-dtr) and UC-DTR algorithm (uc-dtr). We use superscript + to indicate algorithms warm-started
with causal bounds derived from the confounded observational data (ofu-dtr™, ps-dtr™, uc-dtr™).

122|Dg, ux, |T log(|S|T/6)/|€s, |* for some Sj. This
means that the causal bounds € give OFU-DTR a head start
when bounds € are informative, i.e., the dimension |Cg, | is
small for some Si. When Py, (s|5k \ {sr}) is identifiable,
i.e., |Cg,| = 0, no exploration is required.

Posterior Sampling We also provide an efficient method
to account for the observational data through causal bounds
€ in PS-DTR. We will employ a rejection sampling proce-
dure which repeatedly samples from ¢ until the sampled
estimate PL(s) is compatible with the parameter family P...
That is, we replace Step 4 in PS—DTR with the following:

repeat P.(s) ~ ¢(-|3;) until P.(s) € P,

The remainder of PS—DTR proceeds accordingly, without
any modification. We next show that the above proce-
dure allows PS-DTR to achieve the similar performance
as OFU-DTR provided with the causal bounds C.

Theorem 7. Given [G,11,Y], a prior ¢ and causal bounds
C, if ¢ satisfies Eq. (5), it holds for any T' > 1, the regret of
PS—DTR is bounded by

R(T,¢) < A(T,€,1/T) +1, ©)
where function A(T, €, ) follows the definition in Thm. 6.

Thm. 7 implies that PS-DTR provided with causal bounds
€ consistently dominate its counterpart without using any
observational data in terms of the performance. The con-
dition of improvements coincides with that of OFU-DTR,
which we show in Thm. 6.

5. Experiments

We evaluate the new algorithms on several SCMs, including
multi-stage treatment regimes for lung cancer (Nease Jr &
Owens, 1997) and dyspnoea (Cowell et al., 2006). We found
that the new algorithms consistently outperform the state-
of-art methods in terms of both the online performance and
the efficiency of utilizing the observational data.

Throughout all the experiments, we test OFU-DTR algo-
rithm (ofu-dtr) with failure tolerance 6 = 1/7', OFU-DTR
with causal bounds (ofu-dtr™) with causal bounds derived
from the observational data, PS-DTR algorithm (ps-dtr)
using uninformative dirichlet priors, and PS-DTR incor-
porating causal bounds via rejection sampling (ps-dtr™).
As a baseline, we also include the sequential multiple as-
signment randomized trail (rand), UC-DTR algorithm (uc-
dtr), and causal UC—DTR algorithm (uc-dtr*) developed in
(Zhang & Bareinboim, 2019). To emulate the unobserved
confounding, we generate 2 x 10 observational samples
using a behavior policy and hide some of the covariates (i.e.,
some columns). Each experiment lasts for T' = 5.5 x 103
episodes. For all algorithms, we measure their average re-
grets R(T, M*)/T over 100 repetitions. We refer readers to
(Zhang & Bareinboim, 2020, Appendix E) for more details
on the experiments.

Lung Cancer We test the model of treatment regimes
for lung cancer described in (Nease Jr & Owens, 1997).
Given the results of CT for mediastinal metastases, the physi-
cian could decide to perform an additional mediastinoscopy
test. Finally, based on the test results and treatment his-
tories, the physician could recommend a thoracotomy or
a radio therapy. The average regret of all algorithms are
reported in Fig. 3a. We find that our algorithms (ofu-dtr,
ofu-dtr™), leveraging the causal diagram, demonstrate faster
convergence compared to the state-of-art methods (uc-dtr,
uc-dtrt). The causal bounds derived from the observational
data generally improve the online performance (ofu-dtr™,
uc-dtr™). By exploiting sharper causal bounds, ofu-dtr™
finds the optimal treatment policy almost immediately while
uc-dtr still does not converge until 4 x 10% episodes. We
also compare the performance of OFU-DTR and PS-DTR
in Fig. 3b. In the pure online settings (without any pre-
vious observation), ps-dtr shows faster convergence than
ofu-dtr. Provided with the same causal bounds, ps-dtr™
rivals ofu-dtr™ in terms of the performance and finds the
optimal policy after only 500 episodes.
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Dyspnoea We test the model of treatment regimes for
dysponea (shortness of breath) described in (Cowell et al.,
20006), called DEC-ASIA. Based on the patients’ travel his-
tory, the physician could decide to perform a chest X-ray.
If a test is carried out, the doctor has access to the results
and the symptom of dysponea at the time she determin-
ing whether to hospitalize or not. We measure the average
regrets for all algorithms, reported in Figs. 3c and 3d. As ex-
pected, OFU-DTR consistently outperforms the state-of-art
methods UC-DTR in terms of both the online performance
(ofu-dtr, uc-dtr) and the efficiency of extrapolating obser-
vational data (ofu-dtr™, uc-dtr*). Compared to OFU-DTR,
PS-DTR demonstrates faster convergence in the pure online
settings (ps-dtr) and achieves similar regrets when obser-
vational data are provided (ps-dtr™). These results suggest
that PS—-DTR seems to be an attractive option in practice.

6. Conclusion

We present the first online algorithms with provable regret
bounds for learning the optimal dynamic treatment regime
in an unknown environment while leveraging the order rela-
tionships represented in the form of a causal diagram. These
algorithms reduce the learning problem to finding an opti-
mal policy for the most optimistic instance from a family of
causal models whose interventional distributions are impre-
cise, bounded in a set of convex intervals. We believe that
our results provide new opportunities for designing dynamic
treatment regimes in unknown, and structured environments,
even when the causal effects of candidate policies are not
point-identifiable from the confounded observational data.
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