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Abstract

Intelligent agents are continuously faced with the challenge of optimizing a policy
based on what they can observe (see) and which actions they can take (do) in
the environment where they are deployed. Most policies can be parametrized in
terms of these two dimensions, i.e., as a function of what can be seen and done
given a certain situation, which we call a mixed policy. In this paper, we investigate
several properties of the class of mixed policies and provide an efficient and
effective characterization, including optimality and non-redundancy. Specifically,
we introduce a graphical criterion to identify unnecessary contexts for a set of
actions, leading to a natural characterization of non-redundancy of mixed policies.
We then derive sufficient conditions under which one strategy can dominate the
other with respect to their maximum achievable expected rewards (optimality). This
characterization leads to a fundamental understanding of the space of mixed policies
and a possible refinement of the agent’s strategy so that it converges to the optimum
faster and more robustly. One surprising result of the causal characterization is that
the agent following a more standard approach—intervening on all intervenable
variables and observing all available contexts—may be hurting itself, and will
never achieve an optimal performance.

1 Introduction

Agents are deployed in complex and uncertain environments where they are bombarded with high
volumes of information and are expected to operate efficiently, safely, and rationally. The discipline
of causal inference (CI) offers a compelling set of tools and a language that allows one to reason with
the structural invariances present in complex environments [1–5]. Whenever the causal mechanisms
of an underlying environment are sufficiently well-understood, the agent can design very precise
interventions, bringing a certain desired state of affairs about swiftly and cleanly (e.g., personalized
medical treatments, inequality-reducing tax policies). In the field of ML, bandits and reinforcement
learning (RL) constitute the de facto framework in which agents are designed such that a certain
policy is optimized and the corresponding goals can be efficiently achieved [6–8].

There is a growing literature exploring how these two frameworks (RL and CI) are related, and how
this understanding can be translated into more efficient decision-making in more challenging and
realistic settings. Recently, the more explicit connection between these frameworks has been made by
eliciting how causal knowledge—unobserved confounders and the causal relations between actions,
contexts, and rewards—can be used to improve decision-making in a variety of settings, including
for both interventional [9–11] and counterfactual [12, 13] reasoning (see also [14–17] and [18–21]).
Outside more traditional RL, causal inference researchers have embraced the idea of sequential
decision making in terms of conditional plans or dynamic treatment regimes, while focusing on, e.g.,
the identifiability of causal effects from observational data [22–27].
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such that removing any of its actions or contexts can negatively affect its maximum performance.
In other words, given two scopes S and S 0, if S ) S 0 and S =µ S 0, then S is said to be redundant.
For instance, since Sc � Se while Sc =µ Se, the CB policy (Fig. 1c) is redundant and the CB agent
wastes its resources not only for intervening on X1 (a redundant action) but also for taking X1 into
account for X2 (a redundant context). Furthermore, optimality of a scope S represents that there
exists no other scope S 0 (not in the equivalence class of S) such that S 0 �µ S. For example, Sd,
when optimized, is at least as good as Sa (i.e., µ⇤

Sd
� µ⇤

Sa
) in every environment, and can outperform

it in some environments (i.e., µ⇤
Sd

> µ⇤
Sa

), which demonstrates that Sa does not meet the optimality
criterion. Not every pair of scopes can be comparable: Se is not comparable to Sa nor Sd. After a
careful examination, we can indeed able to show that MPSes Sc, Sd, Se meet the optimality criterion.
Both non-redundancy and optimality are satisfied only by Sd and Se among all 15 scopes. This
example demonstrates that an intelligent agent should judiciously intervene on a carefully chosen
subset of variables with side information (context) relevant to attaining an optimal reward. More
detailed account is given in Appendix A [28].

Contributions In this work, we investigate mixed policies with respect to their expected rewards.
Our contributions are as follows. (i) We developed a graphical criterion that detects the redundancy
of contexts relative to a collection of actions taking advantage of properties pertain to optimal mixed
policies. (ii) We established sufficient conditions under which one policy scope can outperform
another, characterizing the partial order defined over the space of scopes with respect to their
maximum expected rewards achievable. We believe these results have practical implications for the
design of intelligent agents providing the basis for efficient and effective explorations of the policy
space. One fundamental implication of our analysis is that the agent following a standard approach
(i.e., intervening and observing whenever possible) may be hurting itself, and, regardless of the
number of interactions, will never be able to achieve an optimal performance.

Preliminaries Let us denote a variable by an uppercase letter X , whose value is denoted by its
corresponding lowercase letter x. A set of variables will be denoted by a bold uppercase letter X
with its value x. We follow notational conventions from literature on measure theory, algebra of
sets, and causal inference. We may use [̇, instead of [, to emphasize the union of two disjoint
sets. We use structural causal models (SCMs) [1, Ch. 7] as the semantical framework to represent
an underlying environment. An SCM M is a quadruple hU,V,P (U),Fi, where U is a set of
exogenous variables determined by factors outside the model following a joint distribution P (U),
and V is a set of endogenous variables whose values are determined following a collection of
functions F

.
= {fi}Vi2V such that Vi  fi(pai,ui) where PAi ✓ V\{Vi} and Ui ✓ U. The

observational distribution P (v) is defined as
P

u

Q

Vi2V
P (vi|pai,ui)P (u). Further, do(X = x)

represents the operation of fixing a set X to a constant x regardless of their original mechanisms.
Such intervention induces a submodel Mx, which is M with fX replaced to x for X 2 X. Then,
an interventional distribution Px(v\x) (or also P (v\x|do(x))) follows from Mx, and is such that
Px(v\x) =

P

u

Q

Vi2V\X P (vi|pai,ui)P (u).

Graphically, each SCM (model, for short) is associated with a causal diagram G = hV,Ei, where
each type of edge represents a different relationship among variables: (i) X!Y if X is an argument
of fY (a direct causal relationship); and (ii) X$Y if for a maximal subset W ✓ V\{X} such
that UW ?? UX and UY 6✓ UW; From the agent’s perspective, only the causal graph G of the
environment M is available, while its reward is validated through M. We operate in the non-
parametric setting, where no assumption about the form or shape of the pair hP (U),Fi is made, but
for the structural knowledge encoded in G. Whenever not even G is known, the agent can perform
active interventions to learn it; for example, see [29, 30]. We denote by G

XZ
an edge subgraph of

G which removes edges incoming to X and outgoing from Z. A submodel Mx can be presented
as G

X
with X fixed to x. Hence, causal relationships among other variables are captured in G\X,

which is the subgraph of G over V\X. We denote by GhV0i the latent projection of G onto V0, the
causal graph retaining causal relationships among V0 [31]. We adopt familial notation, ch, pa, an,
de for children, parents, ancestors, and descendants, respectively, with Ch, Pa, An, De including
arguments. Our work utilizes d-separation [32, 33] and do-calculus [34], classic graphical rules to
ascertain equalities between distributions. The omitted proofs and derivations are provided in [28].
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2 Mixed Policies: Fundamentals & Basic Results

As discussed in the previous section, a causal understanding of the underlying world helps recognize
a broad spectrum of policies with diverse scopes so as for agents to select the mode of interaction.
We now formally define the space of mixed policies with the notion of mixed policy scope.

Definition 1 (Mixed Policy Scope (MPS)). Let G be a causal graph, Y be a specific reward variable,
X? ✓ V\{Y } a set of intervenable variables, and C? ✓ V\{Y } a set of contextualizable variables.
A mixed policy scope S is defined as a collection of pairs hX,CXi such that (i) X 2 X?, CX ✓
C?\{X}, and (ii) GS is acyclic, where GS is defined as G with edges onto X removed and directed
edges from CX to X added for every hX,CXi 2 S.

For concreteness, given a causal graph G (Fig. 1a), the observational case is an MPS {}. An MPS
SCB = {hX1, {C}i, hX2, {X1,C}i} induces a graph (Fig. 1c) while {hX2, {C}i} induces a graph
in Fig. 1e. An MPS represents a class of mixed policies that share the same graphical characteristics
manifested by GS , an induced graph for Mπ .

Definition 2 (Mixed Policy). Given hG,Y ,X?,C?i and an SCM M ⇠ G with XY ✓ R, a mixed
policy π is a realization of a mixed policy scope S compatible with the tuple π

.
= {πX|CX

}hX,CXi2S ,

where πX|CX
: XX ⇥ XCX

7! [0, 1] is a proper probability mapping.

If we consider the MPS SCB discussed above, its mixed policy π is {πX1|{C},πX2|{C,X1}}, which is
a specific instantiation of the parameters with respect to the corresponding scope. For readability, we
may write {π(x1|c),π(x2|x1, c)}. Given an underlying SCM M, a mixed policy π induces a variant
of SCM Mπ where the function for X 2 X(π) is replaced by the corresponding πX|CX

(see [35]
for a detailed account). We denote by Pπ the joint distribution over the variables from the system
under the policy π. Throughout the paper, G, Y , C?, and X? are oftentimes implicit including an
underlying SCM M ⇠ G and, thus, Π, as well.

Expected Reward We define the expected reward of a mixed policy. To begin with, we define
intervened variables X(S)

.
= {X | hX,CXi 2 S} and active contexts C(S)

.
=

S

X2X(S) CX .

Similarly, given π ⇠ S (a mixed policy following the MPS), X(π)
.
= X(S) and C(π)

.
= C(S). Let

C� = C(π)\X(π) be the non-action contexts. Then, the expected reward for π can be expressed
as, with x simply denoting the value of X(S),

µπ =
X

y,x,c�

yPx(y, c
�)

Y

X2X(π)

π(x|cx). (1)

The expression separates the atomic interventional probability (first factor), which is inherent to
the underlying world and not affected by the policy π, from the likelihood of a specific interven-
tion given contexts (second factor), which is optimizable and defined by π. The expected reward
can also be written focusing only on a subset of intervened variables. Given X0 ✓ X(π), let
C0 =

S

X2X0 CX\X0, and Q0 = P
π\X0 where π\X0 represents π with decision rules over X0 re-

moved. Then, µπ =
P

y,x0,c0 yQ0
x0(y, c0)

Q

X2X0 π(x|cx). This expression, which hides the details

of uninteresting actions and contexts, is the building block to characterize mixed policies.

Optimality and deterministic mixed policy A mixed policy π is said to be optimal in the given
environment if and only if µπ = µ⇤ .

= maxπ02Π µπ
0 . Restricting our attention to ΠS

.
= {π 2 Π |

π ⇠ S}, we define µ⇤
S

.
= maxπ02ΠS

µπ
0 , an optimal policy π with respect to S. We call a mixed

policy deterministic if, for every πX|CX
2 π, X is determined by a function of CX .

Proposition 1. Given a mixed policy scope, there always exists a deterministic mixed policy, which
is optimal with respect to the given scope.

Not surprisingly at this point, a stochastic policy is no better than the best deterministic policy [36–38].
Still, this result has a particular importance to the treatment provided here due to its implications to
the d-separation criterion [39], which will be instrumental and discussed in depth in Sec. 3.1. Another
key implication is shown next.

Proposition 2 (Separation of Actions and Contexts). Given an MPS S, there always exists a deter-
ministic mixed policy π 2 Π such that X(π) and C(π) are disjoint and µπ = µ⇤

S .
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Figure 3: Given a causal graph (a), three induced
graphs (b,c,d) for different mixed policies where
(d) the separation is demonstrated.

A deterministic policy gives rise to the auton-
omy of each action allowing them to be deter-
mined only by non-action contexts. For concrete-
ness, consider the example shown in Fig. 3a. A
mixed policy (Fig. 3b) includes X2 listening to X1,
which enables systematic coordination between
X1 and X2. The proposition implies that X2 can
rather listen to C (which is the context of X1) di-
rectly (Fig. 3d). Further, in Fig. 3c, X2 utilizes
both X1 and C. However, it is sufficient to make
use of only C. By noting that the policy relative
to Fig. 3d can achieve optimality, while relying on lesser information than the one relative to Fig. 3c,
we investigate how to capture non-redundancy within MPSes.

3 Non-Redundant Mixed Policy

Optimizing a mixed policy involves assessments of the effectiveness of its scope so that an agent can
avoid intervening or observing on unnecessary actions or contexts. Here, we define and characterize
non-redundancy of MPS. We say S subsumes S 0, denoted by S 0 ✓ S, if X(S 0) ✓ X(S) and
C0

X ✓ CX , for every hX,C0
Xi 2 S 0. Further, we denote by π

0 ✓ π, where π
0 ⇠ S 0 and π ⇠ S if

π
0(x|c0x) =

P

c00
x

π(x|cx)Pπ(c
00
x|c

0
x), for every X 2 X(S 0) where C00

X = CX\C0
X .

Definition 3. Given hG,Y ,X?,C?i, an MPS S is said to be non-redundant if there exists an SCM
M ⇠ G and π ⇠ (S,M) such that µπ 6= µπ

0 for every π
0 ( π.

The constraint on π
0 ensures that the definition of non-redundancy of MPS is focused on the

differences in actions or contexts while the behavior (i.e., π(·|·)) remains the same—π
0(x|c0x) =

Q(x|c0x) if C0
X 6= CX and Q(x|cx) = π

0(x|cx) = π(x|cx), otherwise. Hence, the constraint
provides a basis to characterize non-redundancy of MPS utilizing well-established graphical criteria.

Theorem 1. Let S = {hX,CXi}X2X be an MPS and let H = GS . S is non-redundant if and only
if (i) X ✓ an(Y )H and (ii) (C 6?? Y | CX\{C}) in H\{X}, for every X 2 X and C 2 CX .

Y

X1

C2

C1

X2

C3

Figure 4: A non-
redundant MPS

The condition (i) can be seen through rule 3 of do-calculus such that the change
of the mechanism of X has a consequence on the reward Y .1 The condition (ii)
coincides with rule 2 of do-calculus Q(y|x, cx\{c}) = Qx(y|cx\{c}), where
Q = Pπ . In words, the path from C to Y can be concatenated with X C to
form a back-door path from X to Y .2 Consider the example in Fig. 4 where
both X1 and X2 are ancestors of Y (condition (i)). Regarding condition (ii),
C1 being adjacent to Y , C2 having a path to Y through X2, and C3 being
connected to Y as C3!C2!X1!Y demonstrate that every context is non-
redundant. We provide an efficient algorithm for obtaining a unique, maximal,
non-redundant MPS (nr-mps, Alg. 2) of a given MPS in Appendix E [28].

3.1 Non-Redundancy under Optimality

Non-redundancy of MPS (Def. 3) based on a stringent constraint imposed on π
0 is insufficient

to understand, e.g., whether a context of an action would be still relevant even when π ⇠ S is
fully-optimized. Hence, we characterize the non-redundancy of MPS under optimality, which has
practical implications to an agent adapting its suboptimal policy. Recall Fig. 3c where X2 listens to
X1 as context. We showed that the dependence is vanished under the optimality (Fig. 3d). That is, the
agent would better avoid learning π(x2|c,x1) at the beginning, but optimize π(x2|c) instead.

Definition 4 (Non-Redundacy under Optimality (NRO)). Given hG,Y ,X?,C?i, an MPS S is said to
be non-redundant under optimality if there exists an SCM M compatible with G such that µ⇤

S > µ⇤
S0

for every strictly subsumed MPS S 0 ( S , i.e., 9M⇠G8S0(S(µ
⇤
S > µ⇤

S0).

1This condition was leveraged in the atomic interventions case to establish minimality [16, 17]; see also [40].
2The relevance of contextual information has been discussed in the influence diagrams literature [41, 20].

More recently, this condition was used in the case of singleton decisions (i.e., |X(S)| = 1), see [42, 43].
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Figure 5: Causal graphs exemplifying redundancies of (a) C2 � X2 by deterministic relationships,
edges to X1 and X2 from (b) C3, (c) C2, (d) X3 due to marginally or conditionally fixable contexts;
(e) represents a maximal, non-redundant MPS under an optimal condition for Fig. 4.

We will investigate a criterion more general than Thm. 1—whether, for a set of actions X0 ✓ X?, a set
of contexts C0 ( CX0\X0 are relevant while taking account of deterministic relationships (Prop. 1).
One approach is to characterize an opposite condition, i.e., µ⇤

S = µ⇤
S0 for S 0 ( S , as follows.

Proposition 3. Given an MPS S, let X0 ✓ X(S) and C0 ( CX0\X0 be actions and non-action
contexts of interest, respectively, and let Q0 = P

π\X0 . Given a mixed policy π ⇠ S optimal with

respect to S , if there exist decision rules {π0(x|(x0 [̇ c0) \ cx)}X2X0 such that

µ⇤
S =

X

y,c0,x0

yQ0
x0(y, c0)

Y

X2X0

π
0(x|(x0 [̇ c0) \ cx), (2)

then, CX0\(C0 [̇ X0) are jointly redundant to X0 under optimality, and S 0 .
= (S\X0) [ {hX,C0 \

CXi}X2X0 satisfies µ⇤
S = µ⇤

S0 .

Proof. This follows from the definition of non-redundancy under optimality and expected reward.

To closely investigate a sufficient condition for Prop. 3, we start by discussing the implication of
deterministic relationships, which characterizes an optimal policy, on the d-separation criterion. The
graphical criterion handles deterministic mechanisms (i.e., conditional intervention) by excluding
them appearing as common causes, e.g., X!, in a trail [39]. This corresponds to adding those
implied variables to the conditionals, in which we explicitly represent with an operation d·e for clarity.
Given conditionals Z, the implied variables with respect to Z is computed as follows. Initially setting
dZe  Z, we update dZe  dZe [ {X 2 X(S) | CX ✓ dZe} until it is converged. Then, given
π ⇠ S, an optimal policy with respect to S, a conditional independence statement W ?? T | Z for
Pπ becomes W ?? T | dZe in Gπ . Consider C 2 CX for some X 2 X(π). The redundancy of a
single context can now be expressed as (C ?? Y | dCX\{C}e)H\{X}. For instance, in Fig. 5a, C2 as

a context of X2 is independent to Y given C1 in a graph with X2 removed since d{C1}e = {C1,X1}
and C2 X1!Y is not a valid trail anymore. Hence, C2 is removable from CX2

.

Next, we illustrate contexts that unnecessarily induce correlations among actions without any
implications on Y (see Appendix E.1 for the derivations of the examples in Fig. 5). In Fig. 5b,
both X1 and X2 utilize C3 as their contexts. where µπ = Ec3 [Eπ[y|c3]]. Since there exists
c⇤3 = argmaxc32XC3

Eπ[y|c3], we can derive that µπ  Eπ[y|c
⇤
3]. Given that c⇤3 is merely a

constant, new decision rules π0(xi|c1)
.
= Q(xi|c1, c

⇤
3) = π(xi|c1, c

⇤
3) for i 2 {1, 2} yield the same

optimal reward. A more sophisticated example is shown in Fig. 5c where a redundant context can be
fixed conditioned on the remaining contexts. The expected reward is expressed as

µπ =
P

c1,c2
Q(c2|c1)

�P

y,x yPx(y, c1)π(x1|c1, c2)π(x2|c1, c2)
�
=

P

c1,c2
Q(c2|c1)µπ(c1, c2).

Let c⇤2 be a function taking c1 such that c⇤2(c1) = argmaxc2 µπ(c1, c2) for c1 2 XC1
. Then,


P

c1
µπ(c1, c

⇤
2(c1)) =

P

y,c1,x
yPx(y, c1)π(x1|c1, c

⇤
2(c1))π(x2|c1, c

⇤
2(c1)).

By incorporating c⇤2 into π, we can introduce π
0 such that π(x1|c1, c

⇤
2(c1))π(x2|c1, c

⇤
2(c1)) =

π
0(x1|c1)π

0(x2|c1), satisfying Prop. 3. The variables being fixed are not necessarily conditioned on
its parents (or ancestors). An example conditioning on its child is illustrated in (Fig. 5d) where we
can elicit, e.g., π(x1|x

⇤
3(c2), c2)

.
= π

0(x1|c2).

Given a general causal graph and an MPS, the aforementioned phenomena can be arbitrarily complex.
We present a general criterion to test such redundancies by first proposing a lemma to obtain an
intermediate expression. Let V�V denote a subset of V preceding V 2 V given an order � over V.
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Lemma 1. Given an MPS S, which satisfies non-redundancy (Thm. 1), let X0 ✓ X(S), actions of
interest, C0 ( CX0\X0. non-action contexts of interest. If there exists a subset of exogenous variables
U0 in GS , a subset of endogenous variables Z in GS that disjoints with C0 [̇ X0 and subsumes
CX0\(C0 [̇ X0), and an order � over V0 .

= C0 [̇ X0 [̇ Z such that

1. (Y ?? πX0 | dX0 [̇ C0e)GS
,

2. (C ?? πX0

�C
,Z�C ,U

0 | d(X0 [̇ C0)�Ce)GS
for every C 2 C0, and

3. V0
�X is disjoint with de(X)GS

and subsumes pa(X)GS
for every X 2 X0,

then, the expected reward for π, a deterministic policy optimal with respect to S , can be written as

µπ =
X

y,c0,x0

yQ0
x0(y, c0)

X

u0,z

Q(u0)
Y

Z2Z

Q(z|v0
�z,u

0)
Y

X2X0

π(x|cx). (3)

Lemma 1 offers a sufficient condition for obtaining the intermediate expression (Eq. (3)) for us to
rewrite µπ as proposed in Prop. 3. The order � dictates how the chain rule is applied in deriving
the expression and what variables will appear as conditional for the probability terms. The first two
conditions are relevant to separate Q0

x0(y, c0) from the rest. The third one is to obtain π(x|cx) from
Q(x|v0

�x,u
0). We revisit Fig. 4 where we will ultimately show that, indeed C2 and C3 are redundant

contexts under optimality. Given C0 = {C1} and X0 = {X1,X2}, consider Z = {C2,C3}, U0 = ;,
and order �= hC3,C1,X2,C2,X1i. We can derive the following expression for the expected reward
(with subscripts concatenated),

µ⇤
S =

P

y,x,c1
yQ0

x(y|c1)
P

c23
Q(c123,x) (4)

=
P

y,x,c1
yQ0

x(y|c1)
P

c23
Q(c3)Q(c1|c3)Q(x2|c13)Q(c2|c13,x2)Q(x1|c123,x2) (5)

=
P

c3
Q(c3)

P

y,x,c1
yQ0

x(y, c1)
P

c2
Q(c2|c13,x2)π(x2|c3)π(x1|c12). (6)

We now provide a sufficient condition that further polishes the intermediate expression from Lemma 1
so as to represent it as the expected reward for a smaller MPS than the original one, fulfilling the
condition presented in Prop. 3.

Theorem 2. Let U0, Z, and� satisfy Lemma 1. For Z 2 Z, let VZ be a minimal subset of V0
�Z [U

0

such that Q(Z | VZ) = Q(Z | V0
�Z ,U

0). We define fix(T) with respect to {hZ,VZi}Z2Z, that is,

with T̂
.
= dTe [ {Z 2 Z | VZ\U

0 ✓ dTe}, fixed(T) is T if T = T̂ and fixed(T̂), otherwise. If
fixed(CX\Z) ◆ CX for X 2 X0, then, S 0 .

= (S\X0) [ {hX,CX\Zi}X2X0 satisfies µ⇤
S0 = µ⇤

S .

Thm. 2 provides a condition where Eq. (3) can be transformed to µ⇤
S0 . To do so, it examines whether

terms Q(z|vz) can be removed by fixing Z to z⇤ conditional on vz in connection with the context to
be removed. That is,

µ⇤
S =

marginally fixable
z }| {
X

u0

Q(u0)
X

y,c0,x0

y Q0
x0(y, c0)

| {z }

irrelevant to Z

to fix conditionally
z }| {
X

z

Y

Z2Z

Q(z|vz)

| {z }

defines dependency

Y

X2X0

π(x|

given
z}|{

cx\z,

to infer
z }| {

cx \ z)
| {z }

to be ⇡
0(x|cx\z)

, (7)

We explain the theorem by deriving further from Eq. (6). C3 can be fixed to a constant c⇤3 so that,


P

y,x,c1
yQ0

x(y, c1)
P

c2
Q(c2|c1, c

⇤
3,x2)π(x2|c

⇤
3)π(x1|c1, c2). (8)

There exists x⇤
2 2 XX2

where we can replace π(x2|c
⇤
3) with π

0(x2) such that π0(x⇤
2) = 1.


P

y,x,c1
yQ0

x(y, c1)
P

c2
Q(c2|c1, c

⇤
3,x

⇤
2)π

0(x2)π(x1|c1, c2). (9)

These steps first correspond to checking fixed(;) = {C3,X2} and, then, safely replacing the decision
rule for X2 by eliminating C3 from its context since fixed(CX2

\Z) ◆ CX2
= {C3}. Next, the opti-

mal c2 is determined with respect to c1, i.e., Q(c2|c1, c
⇤
3,x

⇤
2), where we can replace π(x1|c1, c

⇤
2(c1))

by π
0(x1|c1),

=
P

c1,c2
Q(c2|c1, c

⇤
3,x

⇤
2)

P

y,x yQ
0
x(y, c1)π

0(x2)π(x1|c1, c2) (10)


P

y,x,c1
yQ0

x(y, c1)π
0(x2)π(x1|c1, c

⇤
2(c1)) (11)

=
P

y,x,c1
yQ0

x(y, c1)π
0(x1|c1)π

0(x2) = µ⇤
S0 . (12)

These steps correspond to checking fixed(CX1
\Z) = fixed({C1}) = {C1,C3,X2,C2} ◆ {C1,C2}

for X1. Since µ⇤
S0  µ⇤

S by the existence of π 2 S that can emulate π
0 2 S 0, and µ⇤

S0 � µ⇤
S

by the derivation (Eq. (12)), we can conclude that µ⇤
S0 = µ⇤

S . As a consequence, MPS S is not
non-redundant under optimality due to the ineffective contexts {C2,C3} with respect to {X1,X2}.
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Figure 6: A causal graph G (a) and its induced graphs (a,b,c,d) where the mixed policy scope on the
right is better than or equal to the one on the left with respect to their optimal rewards.

4 A Partial Order over Mixed Policies and Possible-Optimality

Equipped with the notion of non-redundancy under optimality (NRO, Def. 4), an agent can more
efficiently optimize its policy than relying on generic non-redundancy (Def. 3). Yet, an important
question is whether an MPS is worth to explore for an agent to converge to an optimal policy. Consider
for an instance, see Figs. 6a to 6d which represent various NRO MPSes. However, even without
interacting with an environment, we can claim µ  µ⇤

S0  µ⇤
S00  µ⇤

S000 , that is, the next MPS
is better than or equal to (simply better or improved hereinafter) the one regarding their optimal
expected rewards in any model: First, µ  µ⇤

S0 since there exists an optimal X1 value, x⇤
1; Next,

µ⇤
S0  µ⇤

S00 , there exists an optimal X2 value, and can be determined without conditional on X1,
which is implied; Finally, µ⇤

S00  µ⇤
S000 since X1 can better behave by taking an effective context C

into account. Therefore, the agent can only optimize parameters involving S 000 (Fig. 6d) to obain
an effective policy. Against this background, we characterize such a partial order over the space of
MPSes with respect to their maximum expected rewards achievable: when one MPS is better than the
other. To begin a formal discussion, we introduce possible-optimality of MPS.

Definition 5 (Possibly-Optimal MPS). Given hG,X?,C?,Y i, let S be a set of NRO MPSes. An
MPS S 2 S is said to be possibly-optimal if there exists M ⇠ G such that µ⇤

S > maxS02S\{S} µ
⇤
S0 .

In the partial order sense, POMPSes are the maximal elements among NRO MPSes. To study the
partial order, we present two operations which take an MPS and return an improved MPS: (i) adding
observations for existing actions and (ii) adding new interventions. These two operations offer
sufficient conditions for identifying non-POMPSes.

Proposition 4. Given an MPS S and X 2 X(S), adding C 2 C?\{X} as a context of X , resulting
S 0 = (S\{X}) [ {hX,CX [ {C}i} improves S if C 62 de(X)GS

and C ?? Y | dCXe in H\{X}.

This proposition is straightforward. Note however that the resulting MPS may not be NRO as an
added observation can cancel out the relevance of the existing contexts, e.g., Prop. 2 can be viewed as
adding observations and removing now irrelevant observations. Further, any set of observations that
can be added to a set of actions to improve an MPS can also simply be added sequentially.

Adding new interventions Intervention replaces the natural mechanism for X 2 X? with an
artificial one π(x|z). To guarantee that the alternative one can perform at least as good as the natural
one, we should understand what information X originally takes and whether the new contexts Z
carry information tantamount to the original one. If every parent of X 2 X? is contextualizable
(e.g., no UC), the problem becomes trivial (e.g., Markovian). Otherwise, we examine the existence
of a back-door path.3 Let Q = Pπ and H = Gπ for some S ⇠�1

π. Given X 2 X?\X(π) and
Z ✓ C?\{X}, if (i) (Y ?? X | dZe)HX

and (ii) X 62 an(Z)H, then

µπ =
P

y,x,z yQ(y|x, z)Q(x|z)Q(z)
(i)
=

P

y,x,z yQ
0
x(y|z)Q(x|z)Q(z)

(ii)
=

P

y,x,z yQ
0
x(y|z)Q(x|z)Q0

x(z)
.
=

P

y,x,z yQ
0
x(y, z)π

0(x|z)
.
= µπ

0 ,

for some π
0. Since π

0 can be optimized, µ⇤
S  µ⇤

S[{hX,Zi}. However, naively generalizing the

criterion to handle a set of interventions is insufficient. Consider Fig. 7a, an observational policy
where X = X? and C = C?. Based on the aforementioned criteria, X1 and X2 shall not be intervened
simultaneously (by replacing X to X): C2 cannot be used as Z since X1 2 an(C2)G ; X2 $ C2 ! Y
is an open back-door path. We propose a solution for adding interventions simultaneously, powered
by Thm. 2.

3[16, 17] studied ‘possibly-optimal’ atomic interventions (C? = ∅) where their conclusions can be essentially
reduced to finding actions with no back-door path to Y while varying the strengths of UCs.
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Broader Impact

Our work investigates the efficiency and effectiveness of AI agents to explore the environments
and ultimately achieve optimality. Our results provide a tool for AI engineers and researchers to
identify where the inefficiency of a policy may be coming from, including potentially unintended side
effects. Further, the characterization provided in this work can suggest how systemic improvements
are possible given non-parametric causal understanding of the underlying systems. The very topic of
our paper about efficiency and effectiveness has been studied for several decades in diverse fields:
bandits, reinforcement learning, design of experiments, etc. Hence, it is not difficult to imagine that
our work will share the common problems with other automated decision making tools and methods
such as (i) the system optimized based on an ill-defined reward may harm ‘unknown unknowns’
(e.g., increasing the revenue of alcoholic beverage companies based on targeted advertising over
recovering alcoholics if their health is not properly modeled) or (ii) the optimization can be impossible
due to the participants of adversarial players (e.g., rewarding the number of software bugs fixed
makes software engineers to create more bugs to fix, see Goodhart’s law). Mitigating the first kind
of risks will require deploying proper countermeasure through, e.g., regulations by governments.
The second kind of risks (errors or failures) can be detected through examining possible changes
of underlying mechanisms (i.e., anomaly detection). However, the current work does not consider
multiple adversarial participants (e.g., game-theoretic settings), which is a subject of future research.
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