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Abstract

Identifying causal effects from observational data is a perva-
sive challenge found throughout the empirical sciences. Very
general methods have been developed to decide the identifi-
ability of a causal quantity from a combination of observa-
tional data and causal knowledge about the underlying sys-
tem. In practice, however, there are still challenges to estimat-
ing identifiable causal functionals from finite samples. Re-
cently, a method known as double/debiased machine learn-
ing (DML) (Chernozhukov et al. 2018) has been proposed to
learn parameters leveraging modern machine learning tech-
niques, which is both robust to model misspecification and
bias-reducing. Still, DML has only been used for causal esti-
mation in settings when the back-door condition (also known
as conditional ignorability) holds. In this paper, we develop a
new, general class of estimators for any identifiable causal
functionals that exhibit DML properties, which we name
DML-ID. In particular, we introduce a complete identifica-
tion algorithm that returns an influence function (IF) for any
identifiable causal functional. We then construct the DML es-
timator based on the derived IF. We show that DML-ID es-
timators hold the key properties of debiasedness and doubly
robustness. Simulation results corroborate with the theory.

1 Introduction

Inferring causal effects from observational data is a funda-
mental task throughout the data-intensive sciences. There
exists a growing literature trying to understand the condi-
tions under which causal conclusions can be drawn from
non-experimental data, which comes under the rubric of
causal inference (Pearl 2000; Pearl and Mackenzie 2018). In
particular, the literature of causal effect identification (Pearl
2000, Def. 3.2.4) investigates the conditions under which an
interventional distribution P(Y = y|do(X = z)) (for short,
P, (y)), representing the causal effect of the treatment X on
the outcome Y, could be inferred from the observational dis-
tribution P(V') and the causal graph G. Causal effect identi-
fication under various settings has been extensively studied,
and algorithms and graphical conditions have been devel-
oped (Pearl 1995; Tian and Pearl 2003; Huang and Valtorta
2006; Shpitser and Pearl 2006; Bareinboim and Pearl 2012,
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2016; Jaber, Zhang, and Bareinboim 2018; Lee, Correa, and
Bareinboim 2019, 2020; Lee and Bareinboim 2020).

As a specific example, the celebrated back-door (BD)
condition (Pearl 2000, Sec. 3.3.1) (known as ignorability in
statistics (Rubin 1978)) states that P, (y) could be identi-
fied by adjustment — ie., P, (y) = >, P(ylz,2)P(z) -
whenever there exists a set of covariates Z that blocks all
the backdoor paths between X and Y in the causal graph G.
Identification algorithms express a target effect in terms of
the observational distribution, then one needs to go further,
and estimate the resulting expression from finite samples. In
practice, whenever the number of samples are finite and the
set of covariates (e.g., Z) is high dimensional — i.e., almost
always — estimating causal expressions is quite challenging.

Effective estimators have been developed for specific set-
tings. For instance, a plethora of estimators have been devel-
oped for the family of BD settings, including point and time-
series forms (Sequential BD, or SBD) (Pearl and Robins
1995); also called the g-formula (Robins 1986). These esti-
mators include regression-based methods (e.g., (Hill 2011;
Shalit, Johansson, and Sontag 2017)) or weighting-based
methods (Horvitz and Thompson 1952; Robins, Hernan, and
Brumback 2000; Johansson et al. 2018), to name a few.
More recently, estimators have been developed for identi-
fiable causal functionals under settings beyond the typical
BD/SBD (Jung, Tian, and Bareinboim 2020a,b).

Further, doubly robust estimators have been developed
for the BD/SBD setting to address model misspecification
(Robins, Rotnitzky, and Zhao 1994; Bang and Robins 2005;
Van Der Laan and Rubin 2006; Benkeser et al. 2017; Rot-
nitzky and Smucler 2019; Smucler, Sapienza, and Rotnitzky
2020), and more recently, for a few specific settings (Fulcher
et al. 2019; Bhattacharya, Nabi, and Shpitser 2020).

One noticeable feature shared across the aforementioned
estimators is the need of estimating conditional probabilities
(e.g., P(y|z,z), P(z)), called nuisance functions, or nui-
sance in short. Typically nuisance functions are estimated
by fitting a parametric model such as logistic regression.
In recent years, there is an explosion in the use of modern
machine learning (ML) methods to account for very com-
plex and high-dimensional nuisance functions, which in-
clude random forests, boosted regression trees, deep neural



networks, to cite some prominent examples. However, these
methods inherently use regularization to control overfitting,
which often translates into acute bias in estimators of the
causal estimands. In practice, this means that these estima-
tors will not be able to achieve v/N-consistency, where N is
the sample size, which is usually desirable.

Recently, a powerful method called double/debiased ma-
chine learning (DML) (Chernozhukov et al. 2018) has been
proposed to provide ‘debiased’ estimators, which achieve

v/N-consistency with respect to the target estimand, while
admitting the use of a broad array of modern ML methods
for estimating the nuisances (including random forests, neu-
ral nets, etc). The DML has been developed and applied in
the context of causal functional estimation in a few specific
settings. (Zadik, Mackey, and Syrgkanis 2018; Syrgkanis
et al. 2019; Foster and Syrgkanis 2019; Chernozhukov et al.
2019; Kallus and Uehara 2020; Farbmacher et al. 2020).
Even though there exists a complete framework for esti-
mating arbitrary identifiable causal functionals based on ML
(Jung, Tian, and Bareinboim 2020b), the corresponding pro-
cedures do not exhibit DML properties. On the other hand,
there are effective and robust estimators for the BD case,
which is only a fraction of all the identifiable causal func-
tionals. In this paper, we aim to bridge this gap by devel-
oping DML estimators for any identifiable causal estimand,
moving beyond the BD/ignorability family. For concrete-
ness, consider the following two examples'.
Example 1. A data scientist aims to establish how cardiac
output (X)) affects the blood pressure (Y') from observational
data. In the causal model shown in Fig. 1a, the heart rate
(R) directly causes X, while being influenced by the level
of catecholamine (W), a hormone released in response to
stress. The level of total peripheral resistance (U;) affects
W and X, and the level of the analgesia (Us) influences W
and Y. Both U; and U, are unobserved confounders due
to complications in measurement (left implict as a dashed-
bidirected arrow). A standard identification algorithm de-
rives the causal effect P, (y) as:

Py (y) = (Y Py, alr,w) P(w)) /(Y Plalr,w)P(w)). (1)

Example 2. Suppose the data scientist needs to establish the
effect of a new treatment based on the cardiovascular shunt
(X1) and the lung ventilation (X5) on catecholamine (Y"). In
the causal model in Fig. 1b, X; directly affects the ventila-
tion tube (Z), the level of arterial oxygen saturation (R), and
Xo. Further, Z influences X5. X5 and R have direct impact
on Y. There are also unmeasured confounders affecting this
process: pulmonary embolism (U;) affects X; and Z, the
level of total peripheral resistance (Usz) affects X; and Y,
and the level of the anesthesia (U3) affects Z and Y. De-
spite of these unobserved confounders, the effect of interest
P, ., (y) can be identified as

Pryas (y) = D P(rlzr) Y P(ylr, 2y, @2, 2)P(z,21). ()

'The causal graphs are constructed from the classic ‘Alarm’ net-
work (Beinlich et al. 1989), originally collected from a system
used to monitor patients’ conditions.
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Figure 1: Causal graphs corresponding to Examples (1,2).
Nodes representing the treatment and outcome are marked
in blue and red respectively.

A few observations follow from these two examples. First,
note that the estimands of Egs. (1) or (2) are not in the form
of the backdoor adjustment, which means that previous work
is not applicable, and no debiased or doubly robust estima-
tors are readily available for such cases. Second, in fact, the
only viable method currently available for estimating arbi-
trary identified causal estimands, beyond a few special set-
tings, is the “plug-in” estimators (Casella and Berger 2002),
which estimate nuisance functions and plug them into the
equation. However, the plug-in estimators are exposed to the
risk of model misspecification since all nuisance functions
need to be correctly specified for the estimator to be con-
sistent. Also, they often suffer from the bias caused by the
use of flexible ML models in high-dimensional cases under
finite samples.

In this paper, we develop DML estimators for any causal
effects that is identifiable given a causal graph. More specif-
ically, our contributions are as follows:

1. We develop a systematic procedure for deriving influ-
ence functions (IFs) for estimands of any identifiable causal
effects.

2. We develop DML estimators for any identifiable
causal effect, which enjoy debiasedness and doubly robust-
ness against model misspecification and bias. Experimental
studies corroborate our results.

The proofs are provided in Appendix A in suppl. material.

2 Preliminaries

Notations. Each variable is represented with a capital let-
ter (X) and its realized value with the small letter (x). We
use bold letters (X) to denote sets of variables. Given an or-
dered set X = (Xy,---, X,,) such that X; < X for¢ < j,
we denote X = {X; - X;}, X2 = {X;,---, X,,},
and set X(¥ = () for i < 1. We use I,(V) to represent
the indicator function such that I,,(V) = 1 if and only if
V =v'; Iy/(V) = 0 otherwise. We denote D = {V ;) },

as samples drawn from P(V), and P the estimated distribu-
tion; Ep [f(V)] denotes the expectation of f(V) over P(v).

We use the typical graph terminology
Pa(C)g,Ch(C)g, De(C)g, An(C)g to represent the
union of C with its parents, children, descendants, ancestors
in the graph G. We use ND(C) to denote the nondescen-
dants of any variables in C (i.e., ND(C) = V\De(C)).



For a given topological order in G, we use Pre(C) to
denote the union of the predecessors of C; € Cin G. G(C)
denotes the subgraph of G over C. The latent projection of
a graph G over V on C C V, denoted G[C], is a graph over
C such that, in addition to edges in G(C), for every pair
of vertices (V;,V;) € C, (1) add a directed edge V; — V;
in G[C] if there exists a directed path from V; to V; in G
such that every vertex on the path is not in C; (2) add a
bidirected edge V; <> V; in G[C] if there exists a divergent
path between V; and Vj in G such that every vertex on the
path is not in C (Tian and Pearl 2003). We use GGCQ to

denote the graph resulting from deleting all incoming edges
to C; and outgoing edges from Cs in G.

Structural Causal Models. We use the language of struc-
tural causal models (SCMs) as our basic semantical frame-
work (Pearl 2000). Each SCM M over a set of variables V
induces a distribution P(v) and a causal graph G, where
solid-directed arrows encode functional relationships be-
tween observed variables, and dashed-bidirected arrows en-
code unobserved latent causes (e.g., see Fig. 1a)>. Within the
structural semantics, performing an intervention and setting
X = x is represented through the do-operator, do(X = x),
which encodes the operation of replacing the original equa-
tions of X by the constant x and induces a submodel My
and an interventional distribution P(v|do(x)) = Px(v). We
refer readers to (Pearl 2000; Bareinboim et al. 2020) for a
more detailed discussion of SCMs.

Causal Effect Identification. Given a graph G over V, an
effect Px(y) is identifiable in G if Px(y) is uniquely com-
putable from the observed distribution P(v) in any SCM
that induces G (Pearl 2000, p. 77). Complete identification
algorithms have been developed based on a decomposition
strategy using so-called confounded components.

Definition 1 (C'-component (Tian and Pearl 2002)). In a
causal graph, two variables are said to be in the same con-
founded component (for short, C-component) if and only if
they are connected by a bi-directed path, i.e., a path com-
posed solely of bi-directed edges V; <+ V.

For any C C V, the quantity Q[C] = Po\c (c),
called a C-factor, is defined as the post-intervention dis-
tribution of C under an intervention on V\C. (Tian and
Pearl 2003) showed that the causal effect Py (y) can be rep-
resented as a marginalization over a product of C-factors:

Pe(y) = Xay QD] = Xay Hfil Q [D;], where D =
An(Y)gv\x) and D; are C-components in G(D).

Semiparametric Theory. Our goal is to estimate an iden-
tifiable causal effect Py (y) from finite samples D =
{Vi}, drawn from P(V). Assume one aims to esti-
mate a target estimand ¢ = W(P) that is a functional
of P. For example, ¥ (P) = . P(y|z,z)P(z). We will

The class of SCMs inducing a directed acyclic graph (DAG) with
bidirected arrows is usually called semi-Markovian (Pearl 2000, p.
30). In general, a DAG with arbitrary latent variables can be con-
verted into a DAG with bidirected arrows, i.e. a semi-Markovian
model, by computing its latent projection on the set of observed
variables. One can show that the projection operation preserves
causal identification (Tian and Pearl 2003, Section 6).

leverage the semiparametric theory 3. Let P, = P(v)(1 +
tg(v)) for any ¢t € R and bounded mean-zero random
functions ¢(-) over random variables V, called a para-
metric submodel. If a functional ¥ (P;) is pathwise (for-
mally, Giteaux) differentiable at ¢ = 0, then there ex-
ists a function ¢(V;1,n(P)) (shortly ¢), called the influ-
ence function (IF) for the target functional 1), where n(P)
stands for the set of nuisance functions comprising ¢, sat-
isfying Ep [¢] = 0, Ep [¢?] < o0, and 2 U(P,)|;—0 =
Ep [¢(V;¢,n(P))S:(V;t =0)] where Si(v;t = 0) =
% log P;(v)|:=o is the score function (Van der Vaart 2000,
Chap. 25). An IF ¢ characterizes an estimator Ty satisfy-
ing Ty — v = % S0y #(Viyi v, n(P)) + op(N1/2)
where op(N~'/2) is a term that converges in probabil-
ity with a rate of at least N~'/2. Such T is a Regu-
lar and Asymptotic Linear (RAL) estimator of 1) (Van der
Vaart 2000, Lemma 25.23). When the IF can be decom-
posed as ¢(V; 9, n(P)) = V(V;n(P)) — 1 for some func-
tion V(V;n(P)), called the uncentered influence function
(UIF), the corresponding RAL estimator is given by Ty =
LN V(Viiy, n(P)) (Kennedy 2018).
Double/Debiased Machine Learning (DML). DML meth-
ods (Chernozhukov et al. 2018) are based on two ideas: (1)
Use a Neyman orthogonal score* to estimate the target 1,
and (2) Use cross-fitting to construct the estimator. Mak-
ing use of Neyman-orthogonal scores reduces sensitivity
with respect to nuisance parameters. Cross-fitting reduces
bias induced by overfitting. DML estimators provide v/N-
consistent estimates of the target 1) even when possibly com-
plex or high-dimensional nuisance functions are estimated at
slower N~1/4 rates (‘debiasedness’) (Chernozhukov et al.
2018). Neyman-orthogonal scores may be constructed using
IFs, and under some settings, may coincide with IFs (Cher-
nozhukov et al. 2016).

3 Expressing Causal Effects through a
Combination of mSBDs

Our goal is to develop DML estimators for any identifiable
causal effects ¢ = Py (y). Towards this goal, we present in
this section a sound and complete algorithm that expresses
any identifiable causal effects as a combination of marginal-
ization/multiplication/divisions (which will be called ‘arith-
metic combination’) of so-called mSBD estimands. Based
on this result, in the subsequent section, we derive an IF

3The aforementioned causal effect identification theory has been
developed under a non-parametric setting, i.e., without any para-
metric assumptions on the form of the SCM. To estimate an iden-
tified estimand Px (y) = ¥(P), imposing strong parametric as-
sumptions over the estimator would go against the non-parametric
nature of the identification step. Semiparametric models capture
the structural constraints (e.g., conditional independences) im-
posed by the causal graph while allowing nonparametric models
for estimating nuisance functionals (e.g., highly flexible machine
learning models such as multi-layered neural networks).

*A Neyman orthogonal score is a score function ¢ satisfying
Ep[(V;¢,n(P))] = 0 and 5-%5Ep[6(V; 4, n(P)]le=0 =
0 (Chernozhukov et al. 2016, 2018).



for ¢ (that turns out to be a Neyman orthogonal score) by
first deriving an IF for mSBD estimands and using them as
buildig blocks. We first define the mSBD criterion:

Definition 2 (mSBD criterion (Jung, Tian, and Barein-
boim 2020a)). Given the pair of sets (X,Y), let X =

{X1,Xs, -+, Xn} be topologically ordered as X; =
Xo < < Xp. Let Yo = Y \ De(X) and
Y, = YN (De(X;)\ De (X=*) fori = 1, ,n.
A sequence Z = (Z1,---,Z,) is mSBD admissible
relative to (X,Y) if it holds that Z; T ND (XZL)
and (Y=' 1L X;|Y (=1, z) X0=D) for i

X,;x2i+1
1, ,n

We will use the mSBD criterion as a foundation to con-
struct general causal estimands. To this end, we formally de-
fine the notion of a mSBD-operator:

Definition 3 (mSBD operator M). Let (X,Y,Z) =
(X)), (YY), (Z;)_) be disjoint sets of ordered vari-
ables. The mSBD operator M [y | x; z] is defined by

Miy sl = X7 [T (o0, y4-0)

z k=0

xII]D(;”xU—U,zU—U,yU—U). 3)
j=1

If Z satisfies the mSBD criterion relative to (X,Y),
then the causal effect Py (y) is identifiable by Py (y) =
My | x; 2] (Jung, Tian, and Bareinboim 2020a).

We will develop a systematic procedure that can express
causal effects into the arithmetic combinations of mSBD op-
erators. Our algorithm will leverage the existing complete
identification procedure in (Tian and Pearl 2003). To estab-
lish the connection, we show next how specific C-factors
can be identified in terms of mSBD operators:

Lemma 1 (Representation of C'-factors using mSBD op-
erator). Let S denote a C-component in G. Let W C S
denote a set of nodes such that W = An(W)¢s). Let
R = Pa(S)\S, and Z = (S\W) N An(R, W). Then,

L QW] = B (w);
2. Z satisfies the mSBD criterion relative to (R, W); and
therefore P, (W) = M [w | r;z].

A special case of Lemma 1 is when W = §;
for S; being a C-component in G, we have Q[S;] =
M s; | Pa(s;) N (v\s;); 0]. We then propose an identifica-
tion algorithm that expresses any causal effect as an arith-
metic combination of mSBD operators, as shown in Algo. 1.
We call the new algorithm DML-ID since it will allow us to
realize estimators that exhibit DML properties.

DML-ID involves the marginalization of mSBD opera-
tors, which can be simplified using the following lemma:

Lemma 2 (Marginalization of mSBD opera-
tors). Let My |x;z] be an mSBD operator.
For W = De(W)gy, Y Mlylxz =
My\w | xN Pre(y\w);z N Pre(y\w)]; For
A = An(A)gry), 2o My | x2] = My\a | x;2 U 4]

Algorithm 1: DML-ID (x,y, G, P)

Input: x,y, G(V), P(v).
Output: Expression of Px(y) as arithmetic
combination of mSBD operators; Or FAIL.
1t Let V < An(Y); P(v) + P(An(Y)); and
G + G(An(Y)).
2 Find the C-components of G: Sy, -, Sg,.
3 SetQ[S;] = M [s; | Pa(s;) N (v\s;);0]. //
Lemma 1.
4 LetD = ATL(Y)G(V\X).
5 Find the C-component of G(D): Dy, --- Dy,
6 For each D; C S; for some ¢, set
Q[D,] = MCoMPILE(D., S, Q [S.)).
7 return Po(y) =Yg\, [1;2, QD]
Procedure MCOMPILE(C, T, Q [T])
a.l Let A = An(C)G(T) = {Al, Ao, - 7Ana}
such that Ay < Ay <--- < A, in G(T
a2 Let Q[A] = ZT\A Q[T).// Rpply
Lemma 2 if viable
a3 If A = C, then return Q [A].
a4 If A =T, then return FAIL.

PR

a5 else
a.6 Let S be the C-component in G(A) such that
e S pzit1 QIA]
_ >it+1
a7 Let Q [S] = H{i:AiES} ﬁ //
Apply Lemma 2 1if viable
a8 return MCOMPILE (C, S, Q [S])
end

The sub-procedure MCOMPILE in Algo. 1 derives the
expression of the C-factor Q) [D;] for each D, defined
in line 5 as an arithmetic combination (marginaliza-
tion/multiplication/division) of a set of mSBD operators
(M}, We will write Q [D;] = A7 ({MJ},,), where
AY() denote an arithmetic combination operator.

We show that DML-ID and the original complete algo-
rithm are equivalent in terms of the identification power:

Theorem 1 (Soundness and Completeness of DML-ID).
A causal effect Py (y) is identifiable if and only if DML-
ID(x,y, G, P) (Algo. 1) returns Py (y) as an arithmetic
combination of mSBD operators, in the form given by

kaq
Pe(y) =>_ [] A M) )

d\y j=1

We note that Algo. 1 runs in O (|V[®) time, where |V de-
notes the number of variables. A detailed complexity com-
plexity analysis is given in Lemma S.1 in Appendix A.

For concreteness, we demonstrate the application of
DML-ID using the models in Fig. (1a,1b), where the effects
P.(y), Py, 1, (y) are identifiable by the original identifica-
tion algorithm as given by Eq. (1) and Eq. (2), respectively.

Demonstration 1 (Algo. 1 for P, (y) in Example 1
(Fig. 1a)). We start with S; = {W, X, Y} and Sy = {R}



(Line 2). By Lemma 1, Q[S1] = Mw,z,y | r;0] and
Q[S2] = M[r| w;0] (Line 3). Let D = {Y'} (Line 4,5).
Run MCOMPILE(Y, S1,Q [S1]) to obtain Q[Y] (Line 6).
In Procedure MCOMPILE(), let Ay = An(Y)gw,x,y) =
{X,Y} (Line a.1), and Q[Aq]) = Y Mw,z,y | r;0] =
Mlz,y|r;w] = My by applying the marginaliza-
tion in Lemma 2 (Line a.2). Let Sy = {Y} (Line

a.6). Then, QY] = %, where 3y Q[A1] =
Mz |rw] =

My by Lemma 2 (Line a.7). Finally,
MCOMPILE(YY, Q[ |) returns Q[Y] (Line a.8), and we
obtain P, (y) = Q[Y] = 94¢ = A(My, My) (Line 7).

Demonstration 2 (Algo. 1 for P, ,,(y) in Exam-
ple 2 (Fig. 1b)). We start with S = {X1,Z,Y},
Sy = {R}, and S3 = {Xz} (Line 2). By Lemma I,
Q[S1] = Mlz1, 2,y | (22,7); 0], Q[S2] = M| 2:;0]
and Q [S3] = M [z2 | (x1,2); 0] (Line 3). Let D = {R, Y}
(Line 4). Let Dy = {Y} C Sy and D = {R} =
Sy (Line 5). Run MCOMPILE(Y, {S1},Q [S1]) to obtain
Q[Y] (Lli’le 6) Let A1 = An(Y)G(Xl,Z,Y) = {Y}
(line a.1) and Q[A1] = 37,  Mlz1,2,y] (22,7);0] =
Mly | (x2,7);21,2] by Lemma 2 (Line a.2). We obtain
QY] = QA = Mly| (var)ions] = My =
AY(My) (Line a.3). We obtain Q[R] = QI[Ss] =
MIr | z1;0] = M = A%*(My) (Line 6). Finally, we ob-
tain Py, 5, (y) =Y, AY(M1)A?(My) (Line 7).

The importance of Thm. 1 lies in that it facilitates deriving
an IF for any identified Py (y) estimands by using the IFs of
mSBD operators as a building block.

4 Influence Functions for Causal Estimands

Algo. 1 derives any identifiable causal effects Px (y) as an
arithmetic combinations of mSBDs. In this section, we de-
rive an IF for the identified estimand by first deriving an IF
for the mSBD operator. The IF will be used for constructing
a DML estimator in the next section.

Lemma 3 (Influence Function for mSBD operator). Let
the target functional be v = M |y | x; z|. Then:

1. Vo =Vu(EX,Z,Y};n(P)) below is an UIF for 1:

n+1
Vi =Hy+ Y Wi(Hip — Hy), (5)
=2
i—1 I (X;)
where, Wi = 1 and W; = [[;_; P(:L’j|x(j*1),ygj*1),z(j))

fori =2,....n+ 1, and H = 9, Hyyo = I,(Y),
and H; = Py (y>'~H 207D, y072) Iy (Y02) for
t=2,....,n+1,

Px (YZi_lly(i_Q)az(i_l)) =2 H ar(ylx, Z) Hq] ZIx,y)

zZ>i k=i—1
where qp(y|x,Z) = P(yi|x®,y* 1 Z2®) and
qj(Z|x,y) = P(Zj|X(J*1)’y(]71), Z(jfl)).
2. Let ipg = Ep[Vp]. Then upy = My | x;2).

3. 0m = om({X 2, Y 10 n(P) =V — i is an
IF for 1.

Algorithm 2: COMPONENTUIF (A7, M)

Input: A/ ({ M3}, }); Mi forr € {1,--- ,m;}.
Output: h ,; \0

Run /o4,y ({MI}2), 6 qg) < FINDH(AT, MJ).
i
2 hAijJr' — hAj,Mz;({MMg}e:]bVMg;

— [pgi) bY
M = g and § g = (Vg — fipg)-

—

3returnhy;
Procedure FINDH(A({M,}), M,)

al | Let A/({M,}), A”"({M,}) denote arithmetic
combination operators; let C' denote a quantity
not involving M.
a2 if A = C then return 0.
a3 if A = M, then return ¢, .
a4 | if A= CA then return C x FINDH(A', M,.).
as | if A= A'A" then return
FINDH(A', M,.) x A” + A’ « FINDH(A", M.,.).
a6 | if A=1/A then return
—1/(A")? x FINDH(A', M.,.)
a7 | if A=) A then return ) FINDH(A', M,).

To derive and represent the IF for the Py (y) estimand
identified by Algo. 1 as given by Eq. (4), we present a cou-
ple of useful lemmas next. The first says among the mSBD
operators comprising A7 ({M3},2,), there exists a special
one, named the ‘primary mSBD operator of A7’, as defined
in the following:

Lemma 4 (Existence of primary mSBD operator). Let
D = An(Y)gv\x). Let C-components of G be S;

for i = 1,2,--- ks Let C-components of G(D) be
D; for j = 1,2,--- ,kq. For each D; C S;, let
Q[D;] = MComPILE(D;, S;,Q[S;]) = AI({MI},2)).

Then, there exists a primary mSBD operator, indexed

as M3 without loss of generality, such that M} =

M a; | Pa(s;)\si;si\a;], where A; = An(Dj)cs,)-
The following lemma provides an IF of the operator A

Lemma 5 (Influence Function for Q [ ;D). Let the target
functional be ) = Q [D;] = .Aj({./\/lj 7,)- Then, an IF of
Y is given by ¢gp,] = S hogi i where hogimi =
COMPONENTUIF(A?, MY) in Algo. 2.

We note that Algo. 2 runs in O (m?) time, where m; is
the number of mSBD operators composing 47. A detailed
analysis is given in Lemma S.2 in Appendix A. The follow-
ing result gives a special case of Algo. 2.

Corollary 1. If there are no marginalization op-
/ J(. . i =
erators Z in Am( ), then hAJvM'Zz
) OAT (g ) 00 )
We demonstrate Algo. 2 with an example. Assume
A(M1, M3a) = M1/ My, and we derive h 4, by calling

COMPONENTUIF(A, Ms). First FINDH(A, M>) is called
(line 1). Since A = C/ Mgy for C = My, ham, =

(VM;



C - FINDH(1/Mag, M5) (line a4). Then, hanr, =
—M1/(Mz2)? - FINDH(M3, My) (line a.6), and h g a1, =
—M;1/(M2)? - pru,, Where g, is IF of My (line a.3).
Finally, we obtain ha v, = —(tamy /14,) Ve — bias)
(line 2), which is consistent with Coro. 1.

Equipped with Lemmas 4 and 5, an IF for any identifiable
causal effects Py (y) is given as follows:
Theorem 2 (Influence functions for 1dent1ﬁable causal ef-
fects). Let the target functional ¢ = ( ) be given by
Eq. (4). Then, an IF of 1) is given by ¢p,_(yy = =¥+ Vp,_(y)
where Vp_(y) = Vp,(y)(V;n(P)) is an UIF given by

kq
Vo) = ZAI(VM%ﬂ{“M}}ZYL:12) H Ap({/ﬁMg}ZpJ
d\y p=2
F0 S e HA {earbi)
d\yf 2
+ ZZ (Z has M7> H A?( {UMP}e "), (6)
d\y j=2 \(=1 p#

where AP ({12 }20)) stands for AP ({M]}27)) with Mj
substituted by ppm, AV, {rag 1) rep}lacesI v
with Vg, and h y; ;= COMPONENTUIF(A’, M;).

We note that Eq. (6) could be derived in O(|V]?) time.
A detailed complexity analysis is given in Lemma S.3 in
Appendix A.

Note in Thm. 2, all Mﬂg are replaced with the correspond-
ing p s which is a condition necessary for double robust-
ness. For concreteness, consider the following examples.
Demonstration 3 (Thm. 2 for Example 1). By Demo. I,
P,(y) = QY] = AM1,Mz) = ﬁ—;, where My =
Mz, y|r;w] and My = Mz |r;w]. Since Ay =
An(Y)g(s,) = {X, Y}, My is the primary mSBD oper-
ator of A by Lemma 4. We have Vp, () = AV, iam,) +
ham, by Eq. (6), where AV, im,) = YoMy and

By
h-AA,M2 = _(/"LMI/M?/\/IQ)(VMQ - /J’Mz) by Coro. 1., or
by calling COMPONENTUIF(A, Ms). Finally, ¢p, ) =

— + Vp, (y), Where

Veo ) = (1 prmy) Vg — (s /pas) Vg — piay)) (D)

Demonstration 4 (Thm. 2 for Example 2). By Demo. 2,
Pﬂ?l,zfz(y) Zr Al(Ml)’AZ(M2) where Al(Ml) ==
My = My | (z2,7); (21,2)], and A2 (M) = My =
Mr | z1;0]. My is the primary mSBD operator of A'
by Lemma 4 (note D1 = {Y} and A1 = An(Y)s, =

~

Dy). We have Vp, . ¢y = > A"V, ) A% () +
> haz a, A (1at) by Egq. (6) where A'(Var,) =
VMI’ A2(HM2) = MMy Al(ﬂ/\/h) = KMy and
ha2my, = Vm, — Bm, by Coro. 1, or by calling
COMPONENTUIF(A?, My). Finally, ¢p, . ) = —% +
Vb, ., (y) Where

val.mg(Z/) = Z(VMMLMg + (VM2 - ,LLMQ)N/VH)' (®)

T

5 Double Machine Learning Estimators
In this section, we construct DML estimators for any iden-
tifiable causal effects Py (y) from finite samples D =
{V (i)}, based on the IF discussed above. The resulting
DML estimators have nice properties of debiasedness, as
well as doubly robustness, in a sense similar to the dou-
bly robustness of BD/SBD estimators found in the litera-
ture (Robins, Rotnitzky, and Zhao 1994; Bang and Robins
2005); i.e., an estimator Ty composed of the nuisances
n = (no,m1) is said to be doubly robust if Ty is consistent
whenever models for either 79 or n; are correctly specified.

Building on (Chernozhukov et al. 2016, Thm. 1), we show
that the IF ¢ p_(y) in Thm. 2 is a Neyman orthogonal score:

Proposition 1. Let the target functional v = Py (y) be
given in Eq. (4). The IF ¢p_(y) for 1 given in Thm 2isa
Neyman orthogonal score for 1.

A DML estimator for Py (y), named DML-ID (DML es-
timator for any identifiable causal effects), is constructed ac-
cording to (Chernozhukov et al. 2018) as follows:

Definition 4 (Double Machine Learning Estima-
tor for identifiable causal effects (DML-ID) ). Let
Vp,(y)(V;n(P)) given in Eq. (6) be the UIF for the target
functional ¢ = Px (y). Let D = {V ;) }*; denote samples
drawn from P(v). Then, the DML-ID estimator T for
1) = Py (y) is constructed as follows:

1. Split D randomly into two halves: Dy and D, .

2. For k € {0, 1}, use Dy, to construct models for 1( Py ), the
nuisance functions estimated from samples Dy,.

3. TN =D keqony (% 2 vien, Ve (Vi 77(P17k)))-

We show that DML-ID estimators attain the two afore-
mentioned properties, the main result of this section:

Theorem 3 (Properties of DML-ID). Let Py (y) be any
identifiable causal effects. Let D = An(Y)gev\x). Let
C-components of G be S; for i = 1,2,--- ks Let C-
components of G(D) be D; for j = 1,2,--- ,kq. For
each D; C S, let A; = An(Dj)G(Si), and let ./\/l{ =
My, | x;;2;] be the primary mSBD operator (defined in
Lemma 4), where X; = Pa(S;)\S; = {X;;}2,, Y, =
A;=1{Y;i}i20 Z; =S\A; = {Z;:};2,.

Let Ty be the DML-ID estimator of Py (y) defined in
Def. 4, constructed based on the UIF Vp,_y)(V;n(P)). Tn
is \/N-consistent and asymptotically normal if,

1. Debiasedness: Models for all nuisance functions n(P)
converge at least at rate op(N~'/*); or

2. Doubly Robustness: For every
J = 1 2,--+ kg, the models for either ‘
{P(yjaly; "1, % o, Z()) P(z,ly; 0, %070, 07,
or {P(gr:N|yJ(Z U,xJ(z D, z;N)Y . are correctly speci-
fied.

By virtue of these properties, DML-ID estimators attain
root-N consistency even when nuisances converge much
slower (say, fourth-root-/V) or some nuisances are misspeci-
fied, without restricting the complexity of estimation models
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Figure 2: Plots for (Top) Example 1, and (Bottom) Example 2. (a,b,c),(e,f,g) WAAE plots for scenarios ‘Debiasedness’ (‘DB’),
‘Doubly Robustness’ (‘DR-1" and ‘DR-2’). (d,h) Error bar charts comparing WAAE at N = 10, 000 for Example (1,2). Shades

are representing standard deviation. Plots are best viewed in color.

for nuisances (e.g., Donsker condition). As a result, one can
employ flexible ML models (e.g., neural nets) for estimating
nuisances in estimating the causal functional.

Demonstration 5 (Thm. 3 to Example 1). The DML-ID
estimator T for ¢ = P, (y) in Example 1 is constructed
based on the UIF in Eq. (7), where My = M [z,y | r;w]
and My = Mz | r;w]. T is consistent and asymptot-
ica/l\ly nor@al provided Ehat modeli for nui/s\ance functions
n(P) = {P(ylz,r,w), P(x|r,w), P(rlw), P(w)} converge
at least at rate op(N~Y*). From Demo. 3, the primary
mSBD operator is My. Then, Thm. 3 states that T is con-
sistent if {P(z,y|r,w), P(w)} or {P(rlw)} are correctly
specified; note the correct estimate for P(z,y|r,w) implies
the correctness of estimates for P(x|r,w). To compare, we
note that a plug-in estimator for Eq. (1) is consistent if

{]3(33, ylr,w), ﬁ(w)} are correctly specified.

Demonstration 6 (Thm. 3 to Example. 2). The DML-ID
estimator T for ¢ = Py, 5, (y) is constructed based on
the UIF in Eq. (8), where My = My | (x2,r);x1, 2],
My = Mr | x1;0]. T is consistent and asymptotically
normal provided that models for nuisance functions 77(}3) =
{P(y|r,z1,29,2), P(za|z,21), P(r|z1), P(2,21)}  con-
verge at least at rate 0p(N‘1/4). Both My, My are
p;imary mSBD operators. Thm. 3 states Tn isA consistent if
{P(y|r,A.r1,m2,z),P(z,,rAl)} or {P(r|x1), P(xslx1,2)};
and {P(r|z1)} or {P(x1)} are correctly specified,
which is equivalent to {P(y|r,z1,22,2), P(z,21)} or
{P(r|zy), P(z2|21,2)} be correctly specified. The plug-in
estimator for Eq. (2) is consistent if {P(y|r,x1,22,2)
P(z,21), P(r|1)} are correctly specified.

?

6 Experimental Studies
6.1 Experiments Setup

We evaluate the proposed estimators on the models in Exam-
ples 1 and 2. Details of the models and the data-generating
process are described in Appendix B. Throughout the exper-
iments, the target causal effect is j1(x) = Px (Y = 1), with
ground-truth pre-computed.

We compare DML-ID with Plug-In Estimator (PI), the
only viable estimator working for any identifiable causal
functional. Nuisance functions are estimated using gradient
boosting models called XGBoost (Chen and Guestrin 2016),
which is known to be flexible.

Accuracy Measure Given D with N samples, let fipmp (x)
and fipi(x) be the estimated Py (Y = 1) using DML-ID
and PI estimators. For each 1 € {fipmL(X),fip1(x)},
we assess the quality of the estimator by computing the
weighted average absolute error (WAAE), averaged over
the density of the intervention X = x: WAAE(n) =
> (%) — u(x)| P (x), where Py (x) = Nx /N for Ny =
% Zf\; _IX(X(i)), following a common practice in statistics
in assessing the error of estimates for non-binary treatment
(Kennedy et al. 2017; Lee, Kennedy, and Mitra 2020). We
run 100 simulations for each N = {500, 1000, - - - , 10000}
and take the average of those 100 results. We call plot of the
average WAAE vs. the sample size N the WAAE plot.

Simulation Strategy To show debiasedness (‘DB’) prop-
erty, we add a ‘converging noise’ €, decaying at a N~ ¢
rate (i.e., € ~ Normal(N~®, N~2%)) for a = 1/4, to the
estimated nuisance values to control the convergence rate
of the estimator for nuisances, following the technique in
(Kennedy 2020). We simulate a misspecified model for nui-
sance functions of the form P(v;|-) by replacing samples for
V; with randomly generated samples V/, training the model

13(1);\), and using this misspecified nuisance in computing
the target functional, following (Kang, Schafer et al. 2007).



6.2 Experimental Results

Debiasedness (DB) The WAAE plots for the debiasedness
experiments are shown in Fig. 2 (a) and (e) for Examples 1
and 2, respectively. The DML-ID estimator shows the debi-
asedness property against the converging noise decaying at
N~—1/4 rates, while the PI estimator converges much slower,
for both Examples 1 and 2.

Doubly robustness (DR) The WAAE plots for the doubly
robustness experiments are shown in Fig. 2 (b, c¢) for Ex-
ample 1 and (f, g) for Examples 2. Two misspecification
scenarios are simulated for each example. For Example 1,
nuisance {P(z,y|r,w), P(w)} are misspecified in ‘DR-1’,
and {P(r|w)} is misspecified in ‘DR-2’. We note that PI
estimator under DR-2 scenario does not have model mis-
specification since P(r|w) is not a nuisance of PI estima-
tor. For Example 2, nuisance {P(y|x1,x2,7,2), P(21,2)}
are misspecified in ‘DR-1", and { P(r|x1), P(x2|x1,2)} are
misspecified in ‘DR-2’. The results support the doubly ro-
bustness of DML-ID, whereas PI may fail to converge, more
prominently, when misspecification is present (i.e., DR-1).

Finally, to further assess the performance of DML-ID
when compared against PI, we present the error bar chart
of averages and +1 standard deviations of WAAESs with the
fixed N = 10, 000 for each of the three scenarios (DB, DR-
1, DR-2) in Fig. 2 (d) for Example 1 and in Fig. 2 (h) for
Example 2.

We emphasize that the main reason for choosing the plug-
in estimator as the baseline for comparison is because it is
the only counterpart to DML-ID as an estimator of arbitrary
identifiable causal effects. The estimator CCWQO’) in (Jung,
Tian, and Bareinboim 2020a) covers some special settings
and is applicable to Example 1, but not to Example 2. A
comparison with CWO on Example 1 is provided in Ap-
pendix B.3, showing CWO does not enjoy debiasedness or
doubly robustness. Finally, we note that if covariate adjust-
ment is the only way of identifying the causal effect, then
DML-ID will reduce to the existing DML estimator. If there
are other possible expressions for the causal effect in addi-
tion to the covariate adjustment (e.g., front-door), Algo. 1
may output an estimand that is not in the form of covariate
adjustment, leading to a different estimator. It’s an interest-
ing question to investigate the performances of estimators
based on different expressions for the same causal effect.

7 Conclusion

We derived influence functions (Thm. 2) and developed a
class of DML estimators, named DML-ID (Def. 4), for any
causal effects identifiable given a causal graph. These esti-
mators are guaranteed to have the property of debiasedness
and doubly robustness (Thm. 3). Our experimental results
demonstrate that DML-ID estimators are significantly more
robust against model misspecification and slow convergence
rate in learning nuisances compared to the only viable esti-
mator working for any identifiable causal estimand (plug-in
estimators). We hope the new machinery developed here will
allow empirical scientists to derive more reliable and robust
causal effect estimates by integrating modern ML methods
that are capable of handling complex, high-dimensional data

with causal identification theory.
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