Why Normalizing Flows Fail to Detect
Out-of-Distribution Data

Polina Kirichenko* Pavel Izmailov* Andrew Gordon Wilson
pk1822@nyu.edu pi390@nyu.edu andrewgw@cims.nyu.edu
New York University New York University New York University
Abstract

Detecting out-of-distribution (OOD) data is crucial for robust machine learning
systems. Normalizing flows are flexible deep generative models that often surpris-
ingly fail to distinguish between in- and out-of-distribution data: a flow trained on
pictures of clothing assigns higher likelihood to handwritten digits. We investigate
why normalizing flows perform poorly for OOD detection. We demonstrate that
flows learn local pixel correlations and generic image-to-latent-space transforma-
tions which are not specific to the target image datasets, focusing on flows based
on coupling layers. We show that by modifying the architecture of flow coupling
layers we can bias the flow towards learning the semantic structure of the target
data, improving OOD detection. Our investigation reveals that properties that
enable flows to generate high-fidelity images can have a detrimental effect on OOD
detection.

1 Introduction

Normalizing flows [42}19,[10] seem to be ideal candidates for out-of-distribution detection, since they
are simple generative models that provide an exact likelihood. However, Nalisnick et al. [29] revealed
the puzzling result that flows often assign higher likelihood to out-of-distribution data than the data
used for maximum likelihood training. In Figure[I(a), we show the log-likelihood histogram for a
RealNVP flow model [10] trained on the ImageNet dataset [37] subsampled to 64 x 64 resolution.
The flow assigns higher likelihood to both the CelebA dataset of celebrity photos, and the SVHN
dataset of images of house numbers, compared to the target ImageNet dataset.

While there has been empirical progress in improving OOD detection with flows [29}[7,130,139, 140, 48],
the fundamental reasons for why flows fail at OOD detection in the first place are not fully understood.
In this paper, we show how the inductive biases [28,47] of flow models — implicit assumptions in
the architectures and training procedures — can hinder OOD detection.

In particular, our contributions are the following:

* We show that flows learn latent representations for images largely based on local pixel
correlations, rather than semantic content, making it difficult to detect data with anomalous
semantics.

* We identify mechanisms through which normalizing flows can simultaneously increase
likelihood for all structured images. For example, in Figure E(b, ¢), we show that the
coupling layers of RealNVP transform the in-distribution ImageNet in the same way as the
OOD CelebA.

* We show that by changing the architectural details of the coupling layers, we can encourage
flows to learn transformations specific to the target data, improving OOD detection.

*Equal contribution
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Figure 1: RealNVP flow on in- and out-of-distribution images. (a): A histogram of log-
likelihoods that a RealNVP flow trained on ImageNet assigns to ImageNet, SVHN and CelebA. The
flow assigns higher likelihood to out-of-distribution data. (b, ¢): A visualization of the intermediate
layers of a ReaNVP model on an (b) in-distribution image and (c) OOD image. The first row shows
the coupling layer activations, the second and third rows show the scale s and shift £ parameters pre-
dicted by a neural network applied to the corresponding coupling layer input. Both on in-distribution
and out-of-distribution images, s and ¢ accurately approximate the structure of the input, even though
the model has not observed inputs (images) similar to the OOD image during training. Flows learn
generic image-to-latent-space transformations that leverage local pixel correlations and graphical
details rather than the semantic content needed for OOD detection.

* We show that OOD detection is improved when flows are trained on high-level features
which contain semantic information extracted from image datasets.

We also provide code at https://github.com/PolinaKirichenko/flows_ood.

2 Background

We briefly introduce normalizing flows based on coupling layers. For a more detailed introduction,
see Papamakarios et al. and Kobyzev et al. [24].

Normalizing flows Normalizing flows [42] are a flexible class of deep generative models that
model a target distribution p* () as an invertible transformation f of a base distribution pz(z) in the
latent space. Using the change of variables formula, the likelihoods for an input = and a dataset D are
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The latent space distribution pz(z) is commonly chosen to be a standard Gaussian. Flows are typically
trained by maximizing the log-likelihood (1)) of the training data with respect to the parameters of the
invertible transformation f.

Coupling layers We focus on normalizing flows based on affine coupling layers. In these flows,
the transformation performed by each layer is given by

Yid = Zid )
Ychange = (mchange + t(xid)) ®© eXP(S(SCid))

where xig and Zchange are disjoint parts of the input x, 1;¢ and ¥change are disjoint parts of the output
y, and the scale and shift parameters s(-) and ¢(-) are usually implemented by a neural network
(which we will call the st-network). The split of the input into xjg and Zchange is defined by a mask: a
coupling layer transforms the masked part Zchange = mask(z) of the input based on the remaining
part x;q. The transformation (2)) is invertible and allows for efficient Jacobian computation in (I)):

fa_ffl (l'idy xchange) = (yid7 ychange)a {
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Flows with coupling layers Coupling layers can be stacked together into flexible normalizing
flows: f = fK o f&=1o ... 0 fI. Examples of flows with coupling layers include NICE [9],
RealNVP [10], Glow [23]], and many others [e.g., 4] [5 [34].
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Out-of-distribution detection using likelihood Flows can be used for out-of-distribution detec-
tion based on the likelihood they assign to the inputs. One approach is to choose a likelihood threshold
€ on a validation dataset, e.g. to satisfy a desired false positive rate, and during test time identify
inputs which have likelihood lower than € as OOD. Qualitatively, we can estimate the performance of
the flows for OOD detection by plotting a histogram of the log-likelihoods such as Figure[I(a): the
likelihoods for in-distribution data should generally be higher compared to OOD. Alternatively, we
can treat OOD detection as a binary classification problem using likelihood scores, and compute accu-
racy with a fixed likelihood threshold €, or AUROC (area under the receiver operating characteristic
curve).

3 Related Work

Recent works have shown that normalizing flows, among other deep generative models, can assign
higher likelihood to out-of-distribution data [29,[7]. The work on OOD detection with deep generative
models falls into two distinct categories. In group anomaly detection (GAD), the task is to label a
batch of n > 1 datapoints as in- or out-of-distribution. Point anomaly detection (PAD) involves the
more challenging task of labelling single points as out-of-distribution.

Group anomaly detection Nalisnick et al. [30] introduce the typicality test which distinguishes
between a high density set and a typical set of a distribution induced by a model. However, the
typicality test cannot detect OOD data if the flow assigns it with a similar likelihood distribution to that
of in-distribution data. Song et al. [40] showed that out-of-distribution datasets have lower likelihoods
when batch normalization statistics are computed from a current batch instead of accumulated over
the train set, and proposed a test based on this observation. Zhang et al. [48]] introduce a GAD
algorithm based on measuring correlations of flow’s latent representations corresponding to the input
batch. The main limitation of GAD methods is that for most practical applications the assumption
that the data comes in batches of inputs that are all in-distribution or all OOD is not realistic.

Point anomaly detection Choi et al. [7]] proposed to estimate the Watanabe-Akaike Information
Criterion using an ensemble of generative models, showing accurate OOD detection on some of
the challenging dataset pairs. Ren et al. [35] explain the poor OOD detection performance of deep
generative models by the fact that the likelihood is dominated by background statistics. They propose
a test based on the ratio of the likelihoods for the image and background likelihood estimated using a
separate background model. Serra et al. [39] show that normalizing flows assign higher likelihoods to
simpler datasets and propose to normalize the flow’s likelihood by an image complexity score.

In concurrent work, Schirrmeister et al. [38]] find that invertible flows learn low-level features which
dominate the likelihood which is consistent with our results.

In this work we argue that it is the inductive biases of the model that determine its OOD performance.
While most work treats flows as black-box density estimators, we conduct a careful study of the
latent representations and image-to-latent-space transformations learned by the flows. Throughout
the paper, we connect our findings with prior work and provide new insights.

4 Why flows fail to detect OOD data

Normalizing flows consistently fail at out-of-distribution detection when applied to common bench-
mark datasets (see Appendix [D). In this paper, we discuss the reasons behind this surprising phe-
nomenon. We summarize our thesis as follows:

The maximum likelihood objective has a limited influence on OOD detection, relative to the
inductive biases of the flow, captured by the modelling assumptions of the architecture.

Why should flows be able to detect OOD inputs? Flows are trained to maximize the likelihood
of the training data. Likelihood is a probability density function p(D) defined on the image space and
hence has to be normalized. Thus, likelihood cannot be simultaneously increased for all the inputs
(images). In fact, the optimal maximizer of (1) would only assign positive density to the datapoints in
the training set, and, in particular, would not even generalize to the test set of the same dataset. In
practice, flows do not seem to overfit, assigning similar likelihood distributions to train and and test



(see e.g. Figure[I(a)). Thus, despite their flexibility, flows are not maximizing the likelihood (I)) to
values close to the global optimum.

High density and typical sets In prior work, poor performance of normalizing flows in out-of-
distribution detection is explained by the discrepancy between typical and high-density sets of a
generative model [30]. For example, samples from a standard Gaussian distribution N (0, I) in high
dimensions are concentrated in a thin spherical shell of radius v/d where d is the dimension of the
space, and high-density points near the origin do not belong to the typical set. This phenomenon
explains how generative models can produce sound samples and at the same time assign the highest
likelihood to atypical data. However, the discrepancy between the high density and typical sets is a
very general phenomenon and the specific form that it takes in complex deep generative models such
as normalizing flows is not clear. In particular, the typicality arguments do not provide insights into
how normalizing flows distribute the likelihood and specifically why datasets of structured natural
images receive high likelihood.

What is OOD data?  There are infinitely many distributions that give rise to any value of the
likelihood objective in (1)) except the global optimum. Indeed, any non-optimal solution assigns
probability mass outside of the training data distribution; we can arbitrarily re-assign this probability
mass to get a new solution with the same value of the objective (see Appendix [A for a detailed
discussion). Therefore the inductive biases of a model determines which specific solution is found
through training. In particular, the inductive biases will affect what data is assigned high likelihood
(in-distribution) and what data is not (OOD).

What inductive biases are needed for OOD detection?  The datasets in computer vision are
typically defined by the semantic content of the images. For example, the CelebA dataset consists of
images of faces, and SVHN contains images of house numbers. In order to detect OOD data, the
inductive biases of the model have to be aligned with learning the semantic structure of the data, i.e.
what objects are represented in the data.

What are the inductive biases of normalizing flows? In the remainder of the paper, we explore
the inductive biases of normalizing flows. We argue that flows are biased towards learning graphical
properties of the data such as local pixel correlations (e.g. nearby pixels usually have similar colors)
rather than semantic properties of the data (e.g. what objects are shown in the image).

Flows have capacity to distinguish datasets In Appendix [B| we show that if we explicitly train
flows to distinguish between a pair of datasets, they can assign large likelihood to one dataset and
low likelihood to the other. However, when trained with the standard maximum likelihood objective,
flows do not learn to make this distinction. The inductive biases of the flows prefer solutions that
assign high likelihood to most structured datasets simultaneously.

5 Flow latent spaces

Normalizing flows learn highly non-linear image-to-latent-space mappings often using hundreds of
millions of parameters. One could imagine that the learned latent representations have a complex
structure, encoding high-level semantic information about the inputs. In this section, we visualize the
learned latent representations on both in-distribution and out-of-distribution data and demonstrate
that they encode simple graphical structure rather than semantic information.

Observation: There exists a correspondence between the coordinates in an image and in its
learned representation. We can recognize edges of the inputs in their latent representations.
Significance for OOD detection: In order to detect OOD images, a model has to assign
likelihood based on the semantic content of the image (see Sec. ). Flows do not represent
images based on their semantic contents, but rather directly encode their visual appearance.

In the first four columns of Figure |2} we show latent representation of a ReaNVP model trained on
FashionMNIST for an in-distribution FashionMNIST image and an out-of-distribution MNIST digit.
The first column shows the original image x, and the second column shows the corresponding latent z.
The latent representations appear noisy both for in- and out-of-distribution samples, but the edges

2For the details of the visualization procedure and the training setup please see Appendicesand



of the MNIST digit can be recognized in the latent. In the third column of Figure|2| we show latent
representations averaged over K = 40 samples of dequantization nois €t = 2521 FHx + e).
In the averaged representation, we can clearly see the edges from the original image. Finally,
in the fourth column of Figure [2, we visualize the latent representations (for a single sample of
dequantization noise) from a flow when batch normalization layers are in train mode [[19]. In train
mode, batch normalization layers use the activation statistics of the current batch, and in evaluation
mode they use the statistics accumulated over the train set. While for in-distribution data there is
no structure visible in the latent representation, the out-of-distribution latent clearly preserves the
shape of the 7-digit from the input image. In the remaining panels of Figure [2] we show an analogous
visualization for a RealNVP trained on CelebA using an SVHN image as OOD. In the third panel of
this group, we visualize the blue channel of the latent representations. Again, the OOD input can
be recognized in the latent representation; some of the edges from the in-distribution CelebA image
can also be seen in the corresponding latent variable. Additional visualizations (e.g. for Glow) are in
Appendix [F|

Insights into prior work The group anomaly detection algorithm proposed in Zhang et al. [48]]
uses correlations of the latent representations as an OOD score. Song et al. [40] showed that
normalizing flows with batch normalization layers in train mode assign much lower likelihood to out-
of-distribution images than they do in evaluation mode, while for in-distribution data the difference is
not significant. Our visualizations explain the presence of correlations in the latent space and shed
light into the difference between the behaviour of the flows in train and test mode.

6 Transformations learned by coupling layers

To better understand the inductive biases of coupling-layer based flows, we study the transformations
learned by individual coupling layers.

What are coupling layers trained to do?  Each coupling layer updates the masked part Zcpange
of the input z to be Tchange <= (Tchange + t(Zia)) - €xp(s(zia)), where x4 is the non-masked part of
x, and s and ¢ are the outputs of the st-network given z;q (see Section [2). The flow is encouraged
to predict high values for s since for a given coupling layer the Jacobian term in the likelihood of
Eq. (1) is given by > j s(iq); (see Section EI) Intuitively, to afford large values for scale s without
making the latent representations large in norm and hence decreasing the density term pz(z) in (1)),
the shift — has to be an accurate approximation of the masked input Z¢pange. For example, in Figure
[T[b, ¢) the —t outputs of the first coupling layers are a very close estimate of the input to the coupling
layer. The likelihood for a given image will be high whenever the coupling layers can accurately
predict masked pixels. To the best of our knowledge, this intuition has not been discussed in any
previous work.

Observation: We describe two mechanisms through which coupling layers learn to predict
the masked pixels: (1) leveraging local color correlations and (2) using information about the
masked pixels encoded by the previous coupling layer (coupling layer co-adaptation).
Significance for OOD detection: These mechanisms allow the flows to predict the masked
pixels equally accurately on in- and out-of-distribution datasets. As a result, flows assign
high likelihood to OOD data.

6.1 Leveraging local pixel correlations

In Figure[3(a, b), we visualize intermediate coupling layer activations of a small ReaINVP model
with 2 coupling layers and checkerboard masks trained on FashionMNIST. For the masked inputs, the
outputs of the st-network are shown in black. Even though the flow was trained on FashionMNIST
and has never seen an MNIST digit, the st-networks can easily predict masked from observed pixels
on both FashionMNIST and MNIST. Figure|l{shows the same behaviour in the first coupling layers
of RealNVP trained on ImageNet.

3When training flow models on images or other discrete data, we use dequantization to avoid pathological
solutions [46] 44]: we add uniform noise € ~ U[0; 1] to each pixel z; € {0,1,...,255}. Every time we pass
an image through the flow f(-), the resulting latent representation z will be different.
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Figure 2: Latent spaces. Visualization of latent representations for the ReaNVP model on in-
distribution and out-of-distribution inputs. Panels 1-4: original images, latent representations, latent
representation averaged over 40 samples of dequantization noise, and latent representations for batch
normalization in train mode for a flow trained on FashionMNIST and using MNIST for OOD data.
Panels 5-8: same as 1-4 but for a model trained on CelebA with SVHN for OOD, except in panel
7 we show the blue channel of the latent representation from panel 6 instead of an averaged latent
representation. For both dataset pairs, we can recognize the shape of the input image in the latent
representations. The flow represents images based on their graphical appearance rather than semantic
content.
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Figure 3: Coupling layers. Visualization of RealNVP’s intermediate coupling layer activations,
as well as scales s and shifts ¢ predicted by each coupling layer on in-distribution (panels a, ¢) and
out-of-distribution inputs (panels b, d). ReaINVP was trained on FashionMNIST. (a), (b): ReaINVP
with a standard checkerboard masks. The st-networks are able to predict the masked pixels well both
on in-distribution and OOD inputs from neighbouring pixels. (c), (d): ReaNVP with a horizontal
mask. Despite being trained on FashionMNIST, the st-networks are able to correctly predict the
bottom half of MNIST digits in the second coupling layer due to coupling layer co-adaptation.

With the checkerboard mask, the st-networks predict the masked pixels from neighbouring pixels
(see Appendix [G for a discussion of different masks). Natural images have local structure and
correlations: with a high probability, a particular pixel value will be similar to its neighbouring pixels.
The checkerboard mask creates an inductive bias for the flow to pick up on these local correlations.
In Figure[3, we can see that the outputs of the s-network are especially large for the background
pixels and large patches of the same color (larger values are shown with lighter color), where the flow
simply predicts for example that a pixel surrounded by black pixels would itself be black.

In addition to the checkerboard mask, ReaINVP and Glow also use channel-wise masks. These masks
are applied after a squeeze layer, which puts different subsampled versions of the image in different
channels. As a result, the st-network is again trained to predict pixel values from neighbouring pixels.
We provide additional visualizations for ReaINVP and Glow in Appendix [H.

6.2 Coupling layer co-adaptation

To better understand the transformations learned by the coupling layers, we replaced the standard
masks in RealNVP with a sequence of horizontal masks that cover one half of the image (either
top or bottom). For example, the first coupling layer of the flow shown in panels (c, d) of Figure[3]
transforms the bottom half of the image based on the top half, the second layer transforms the top
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Figure 4: Effect of st-networks capacity. Histograms of log-likelihoods of in- and out-of-
distribution data for ReaINVP trained on FashionMNIST, varying the dimension [ of the bottleneck
in the st-networks. Flows with lower [ work better for OOD detection: the baseline assigns higher
likelihood to the out-of-distribution MNIST images, while the flows with [ = 50 and [ = 10 assign
much higher likelihood to in-distribution FashionMNIST data. With I = 100 the flow assigns higher
likelihood to in-distribution data, but the overlap of the likelihood distribution with OOD MNIST is
higher than for [ = 50 and [ = 10.

half based on the bottom half, and so on. In Figure[3(c, d) we visualize the coupling layers for a
3-layer RealNVP with horizontal masks on in-distribution (FashionMNIST) and OOD (MNIST) data.

In the first coupling layer, the shift output —¢ of the st-network predicts the bottom half of the image
poorly and the layer does not seem to transform the input significantly. In the second and third layer,
—t presents an almost ideal reconstruction of the masked part of the image on both the in-distribution
and, surprisingly, the OOD input. It is not possible for the st-network that was only trained on
FashionMNIST to predict the top half of an MNIST digit based on the other half. The resolution
is that the first layer encodes information about the top half into the bottom half of the image; the
second layer then decodes this information to accurately predict the top half. Similarly, the third layer
leverages information about the bottom half of the image encoded by the second layer. We refer to
this phenomenon as coupling layer co-adaptation. Additional visualizations are in Appendix [H.

Horizontal masks allow us to conveniently visualize the coupling layer co-adaptation, but we hy-
pothesize that the same mechanism applies to standard checkerboard and channel-wise masks in
combination with local color correlations.

Insights into prior work Prior work showed that the likelihood score is heavily affected by the
input complexity [39] and background statistics [35]]; however, prior work does not explain why flows
exhibit such behavior. Simpler images (e.g. SVHN compared to CIFAR-10) and background often
contain large patches of the same color, which makes it easy to predict masked pixels from their
neighbours and to encode and decode the information via coupling layer co-adaptation.

7 Changing biases in flows for better OOD detection

Our observations in Sections [5 and [6 suggest that normalizing flows are biased towards learning
transformations that increase likelihood simultaneously for all structured images. We discuss two
simple ways of changing the inductive biases for better OOD detection.

By changing the masking strategy or the architecture of st-networks in flows we can improve
OOD detection based on likelihood.

Changing masking strategy We consider two three types of masks. We introduced the horizontal
mask in Section[6.2} in each coupling layer the flow updates the bottom half of the image based on
the top half or vice versa. With a horizontal mask, flows cannot simply use the information from
neighbouring pixels when predicting a given pixel, but they exhibit coupling layer co-adaptation (see
Section[6.2). To combat coupling layer co-adaptation, we additionally introduce the cycle-mask, a
masking strategy where the information about a part of the image has to travel through three coupling
layers before it can be used to update the same part of the image (details in Appendix [L.I). To
compare the performance of the checkerboard mask, horizontal mask and cycle-mask, we construct
flows of exactly the same size and architecture (RealNVP with 8 coupling layers and no squeeze
layers) with each of these masks, trained on CelebA and FashionMNIST. We present the results in
the Appendix [T} As expected, for the checkerboard mask, the flow assigns higher likelihood to the
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Figure 5: Image embeddings. Log-likelihood histograms for ReaINVP trained on raw pixel data
(first three panels) and embeddings extracted for the same image datasets using EfficientNet trained
on ImageNet. On raw pixels, the flow assigns the highest likelihood to SVHN regardless of its
training dataset. On image embeddings, flows always assign higher likelihood to in-distribution data.
When trained on features capturing the semantic content of the input, flows can detect OOD.

simpler OOD datasets (SVHN for CelebA and MNIST for FashionMNIST). With the horizontal mask,
the OOD data still has higher likelihood on average, but the relative ranking of the in-distribution
data is improved. Finally, for the cycle-mask, on FashionMNIST the likelihood is higher compared to
MNIST on average. On CelebA the likelihood is similar but slightly lower compared to SVHN.

st-networks with bottleneck Another way to force the flow to learn global structure rather than
local pixel correlations and to prevent coupling layer co-adaptation is to restrict the capacity of the
st-networks. To do so, we introduce a bottleneck to the st-networks: a pair of fully-connected layers
projecting to a space of dimension / and back to the original input dimension. We insert these layers
after the middle layer of the st-network. If the latent dimension [ is small, the st-network cannot
simply reproduce its input as its output, and thus cannot exploit the local pixel correlations discussed
in Section[6. Passing information through multiple layers with a low-dimensional bottleneck also
reduces the effect of coupling layer co-adaptation. We train a RealNVP flow varying the latent
dimension [ on CelebA and on FashionMNIST. We present the results in Figure|4 and Appendix [
On FashionMNIST, introducing the bottleneck forces the flow to assign lower likelihood to OOD
data (Figure |i). Furthermore, as we decrease [, the likelihood of the OOD data decreases but
FashionMNIST likelihood stays the same. On CelebA the relative ranking of likelihood for in-
distribution data is similarly improved when we decrease the dimension [ of the bottleneck, but
SVHN is still assigned slightly higher likelihood than CelebA. See Appendix [[|for detailed results.

While the proposed modifications do not completely resolve the issue of OOD data having higher
likelihood, the experiments support our observations in Section[6: preventing the flows from lever-
aging local color correlations and coupling layer co-adaptation, we improve the relative likelihood
ranking for in-distribution data.

8 Out-of-distribution detection using image embeddings

In Section ] we argued that in order to detect OOD data the model has to assign likelihood based on
high-level semantic features of the data, which the flows fail to do when trained on images. In this
section, we test out-of-distribution detection using image representations from a deep neural network.

Normalizing flows can detect OOD images when trained on high-level semantic representa-
tions instead of raw pixels.

We extract embeddings for CIFAR-10, CelebA and SVHN using an EfficientNet [43]] pretrained
on ImageNet [37] which yields 1792-dimensional feature We train RealNVP on each of the
representation datasets, considering the other two datasets as OOD. We present the likelihood
histograms for all datasets in Figure[5(b). Additionally, we report AUROC scores in Appendix Table
[2. For the models trained on SVHN and CelebA, both OOD datasets have lower likelihood and the
AUROC scores are close to 100%. For the model trained on CIFAR-10, CelebA has lower likelihood.
Moreover, the likelihood distribution on SVHN, while significantly overlapping with CIFAR-10, still
has a lower average: the AUROC score between CIFAR-10 and SVHN is 73%. Flows are much
better at OOD detection on image embeddings than on the original image datasets. For example, a

“The original images are 3072-dimensional, so the dimension of the embeddings is only two times smaller.
Thus, the inability to detect OOD images cannot be explained just by the high dimensionality of the data.



flow trained on CelebA images assigns higher likelihood to SVHN, while a flow trained on CelebA
embeddings assigns low likelihood to SVHN embeddings (see Appendix D for likelihood distribution
and AUROC scores on image data).

In concurrent work, Zisselman and Tamar [49] use residual flows to approximate a distribution of
intermediate layer activations of a pretrained neural network classifier and achieve strong performance
in supervised out-of-distribution detection.

Non-image data In Appendix [K|we evaluate flows on tabular UCI datasets, where the features
are relatively high-level compared to images. On these datasets, normalizing flows assign higher
likelihood to in-distribution data.

9 Conclusion

Many of the puzzling phenomena in deep learning can be boiled down to a matter of inductive biases.
Neural networks in many cases have the flexibility to overfit datasets, but they do not because the
biases of the architecture and training procedures can guide us towards reasonable solutions. In
performing OOD detection, the biases of normalizing flows can be more of a curse than a blessing.
Indeed, we have shown that flows tend to learn representations that achieve high likelihood through
generic graphical features and local pixel correlations, rather than discovering semantic structure that
would be specific to the training distribution.

While we show that flows tend to focus on low-level features of the image rather than its semantic
content when assigning likelihoods, flows are often able to produce samples semantically similar to
the training data. To the best of our knowledge, the question of how the flows are able to produce
these samples and to what extent they suffer from memorization of the training data has not been
thoroughly studied in the literature. We leave a careful study of the sampling in normalizing flows as
an exciting direction for future work.

To provide insights into prior results [e.g., 29, [7} 130, 140} 48, |39], part of our discussion has focused
on an in-depth exploration of the popular class of normalizing flows based on affine coupling layers.
We hypothesize that many of our conclusions about coupling layers extend at a high level to other
types of normalizing flows [e.g., 3,16, 12,121 |14} 32} 41,18, |8]. A full study of these other types of
flows is a promising direction for future work.

10 Broader impact

Out-of-distribution detection is crucial for robust, reliable and fair machine learning systems. Mitchell
et al. [27] and Gebru et al. [13]] argue that applying machine learning models outside of the context
where they were trained and tested can lead to dangerous and discriminatory outcomes in high-stake
domains. We hope that our work will generally contribute to the understanding of out-of-distribution
detection and facilitate methodological progress in this area.
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