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Abstract—The accelerated growth of computing 

technologies has provided interdisciplinary teams a platform for 
producing innovative research at an unprecedented speed. 
Advanced scientific cyberinfrastructures, in particular, provide 
data storage, applications, software, and other resources to 
facilitate the development of critical scientific discoveries. Users 
of these environments often rely on custom developed virtual 
machine (VM) images that are comprised of a diverse array of 
open source applications. These can include vulnerabilities 
undetectable by conventional vulnerability scanners. This 
research aims to identify the installed applications, their 
vulnerabilities, and how they vary across images in scientific 
cyberinfrastructure. We propose a novel unsupervised graph 
embedding framework that captures relationships between 
applications, as well as vulnerabilities identified on 
corresponding GitHub repositories. This embedding is used to 
cluster images with similar applications and vulnerabilities. We 
evaluate cluster quality using Silhouette, Calinski-Harabasz, 
and Davies-Bouldin indices, and application vulnerabilities 
through inspection of selected clusters. Results reveal that 
images pertaining to genomics research in our research testbed 
are at greater risk of high-severity shell spawning and data 
validation vulnerabilities. 

Keywords—Scientific cyberinfrastructure, vulnerability 
scanning, Graph Embedding, GitHub, virtual machine 

I. INTRODUCTION 
The rapid advancement and development of computing 

technologies over the past decade has allowed for an 
unprecedented level of innovative scientific research. From 
DNA sequencing to the simulation of planetary formations 
and black hole imaging, interdisciplinary research teams have 
benefited tremendously from scalable, high performance 

computing environments. The National Science Foundation 
(NSF) has funded key Large Facilities (LFs), designated as 
scientific cyberinfrastructure (CI), to provide agile computing 
platforms to thousands of researchers [1]. Such NSF-funded 
installations include the Open Science Grid, TeraGrid, 
CyVerse, Jetstream, and Chameleon Cloud [2]–[4]. Users 
accessing these environments can develop their own custom-
built virtual machine (VM) images to execute their desired 
scientific tasks. Figure 1 illustrates a subset of sample images 
that users can launch, e.g., Ubuntu 18.04 GUI XFCE Base.  

 
Fig. 1. Examples of User-Developed VM Images 

These images provide metadata such as image name, 
author, date published, description, and tags of keywords 
related to the image. In a typical workflow, users review 
names, tags and descriptions to identify images most suitable 
for their task. Once an image is selected, a user can spawn an 
instance of an arbitrary size, ranging from single to multiple 

Featured Images 

Image Name 

Tags 



core instances, containing varying levels of RAM. Users often 
install open source (e.g., GitHub) packages and applications 
on these images to help support their desired analytics.  

Despite offering unprecedented convenience, scalability, 
and scientific efficiency, applications from public repositories 
can contain vulnerabilities undetectable by conventional 
scanners (e.g., Nessus) [5]–[7]. These issues can potentially 
disrupt high-impact scientific workflows if exploited.  

In light of these significant ramifications, this research 
aims to identify the installed applications, their relationships 
to other applications, their vulnerabilities, and how they vary 
across images in scientific cyberinfrastructure. We develop a 
novel graph embedding approach that generates low-
dimensional vector representations of each VM image based 
on installed applications, their dependencies, and 
vulnerabilities. Our results indicate that we can cluster images 
with similar applications, providing a more intelligent and 
targeted means for assessing and mitigating vulnerabilities. 

The remainder of this paper is organized as follows. First, 
we review literature related to conventional and 
machine/deep learning-based device fingerprinting, and 
unsupervised graph embedding. Second, we present our 
research testbed and design, as well as our vulnerability 
assessment of the image applications within the scientific CI 
environment. Finally, we discuss our results and future 
direction for this research. 

II. LITERATURE REVIEW 
We review two key areas of literature. First, we review 

literature on conventional and machine/deep learning-based 
fingerprinting to identify prevailing techniques and data. 
Second, we review unsupervised graph embedding methods 
to identify how to generate low-dimensional representations 
from unlabeled graph-structured data. 

A. Conventional and Machine/Deep Learning-Based OS 
Fingerprinting 
Operating system (OS) fingerprinting is a commonly used 

method for identifying and representing devices on a network. 
Two fingerprinting approaches exist: passive and active. 
Passive approach identifies the device OS by observing 
network traffic, while active approach directly sends packets 
to a machine and analyzes the response [8]. These approaches 
are used to remotely gather OS data to generate an identifying 
signature for inventorying, updating, and/or patching outdated 
systems [9], [10], using tools such as Nmap, Ettercap, and p0f  
[11]. Generated fingerprints from these tools are useful for 
identifying device properties but do not allow for 
comprehensive direct comparisons between machines. We 
expand our review to gain insight from machine and deep 
learning-based fingerprinting techniques. 

Device fingerprinting has seen widespread adoption of 
machine and deep learning techniques in recent years. These 
techniques have been popularized due to the exponentially 
increasing number of Internet of Things (IoT) devices. New 
methods have been developed to generate fingerprints for 
endpoint and device identification [12]–[14], and device 
localization/positioning [15]–[18]. Researchers have 
successfully leveraged data testbeds consisting of IoT devices, 
their network traffic data, and radio frequency data for input 
into machine/deep learning models [19]. 

 While fingerprinting has been performed using a variety 
of features and sources, prevailing techniques omit host 
features such as installed applications and their dependencies 
[20]. These applications can include vulnerabilities linked to 
certain features (e.g.  dependencies) [21]. In scientific CI, it is 
imperative to understand inter-application relationships 
within each VM image. This requires a method that captures 
application relationships to create a holistic representation. 

B. Unsupervised Graph Embedding Methods 
Graph analytics are a group of methods that can capture 

information that is hidden within graphs. Graph embedding 
methods are effective in generating fixed representations of 
entire graphs in a Euclidean space while still preserving the 
graph structures [22]. This representation can then be used for 
subsequent tasks, such as clustering or classification. There 
are four levels of granularity for graph embedding methods: 
node, edge, substructure, and whole graph embedding. Given 
our task of creating a representation of an entire image 
utilizing unlabeled data, we review relevant unsupervised 
whole-graph embedding methods.  

Graph embedding methods can be split into two major 
categories based on their operations. Graph2vec and GL2vec 
are graph kernel-based, whereas NetLSD, GeoScattering, SF, 
and FGSD use spectral fingerprinting methods based on 
extracted graph statistics [23]. Inspired by doc2vec, graph2vec 
uses negative sampling to create rooted subgraphs of the nodes 
within a graph and trains a skip-gram model to maximize the 
probability of predicting subgraphs [24]. GL2vec is an 
extension of graph2vec that can handle edge labels [25]. 
NetLSD [26], GeoScattering [27], SF [28], and FGSD [29] all 
rely on statistical characteristics of the graph and spectral 
features. Kernel-based methods are often preferred as they 
create whole graph and feature embeddings jointly. 
Consequently, they are suitable for downstream clustering or 
classification algorithms. 

Graph embedding methodology is similar to deep learning 
methods found in device fingerprinting, as it uses data features 
to create a single representation. Therefore, they can be 
leveraged to capture representations that provide more 
comprehensive views of a device or system.  



Fig. 2. Proposed Graph Embedding Framework for Images 

III. RESEARCH GAPS AND QUESTIONS 
We have identified several limitations from previous 

literature. First, ML/DL-based fingerprinting has been used 
for downstream tasks such as device positioning yet omits 
vulnerability information. Second, prevailing fingerprinting 
techniques have primarily used temporal data and have not 
been applied on datasets to capture application relationships 
and their features. Third, graph embedding methods have not 
yet been formulated for system fingerprinting. These 
limitations motivate the following research questions: 

1) How can we develop an unsupervised deep learning 
framework to automatically generate a representation of a 
VM image in scientific cyberinfrastructure? 

2) How can we capture the image applications, their 
relationships, and detected vulnerabilities using a graph 
embedding? 

IV. RESEARCH DESIGN AND TESTBED 
We propose a novel unsupervised graph embedding 

framework to answer these questions. The framework, shown 
in Figure 2, has three components: (1) Data Extraction and 
Pre-Processing; (2) Graph Transformation and Embedding; 
and (3) Embedding Evaluation. We describe each component 
in further detail in the following sub-sections.  

A. Data Extraction and Pre-Processing 
We collected user system data from a major NSF-funded 

scientific cyberinfrastructure platform with more than 7,000 
participating institutions and 45,000 users in life sciences. To 
protect their privacy, we have anonymized their name. The 
data collection has two phases: extracting application data 
from the VM images and vulnerability assessment on the 
collected applications. We describe both in turn. 

1) Image Data Collection 
Using the Advanced Package Tool (APT), we collected 

software application data from each launchable image hosted 
on the CI platform, including current and previous versions 
of images. This resulted in 148 total images. Of these images, 
126 were Ubuntu-based Linux distributions. Given the 
distribution of Linux variants, we use the subset of Ubuntu- 

 

based images. Over 6 million packages were collected from 
these images. Most applications provide a URL to the 
homepage where the application is maintained. We 
summarize the application homepage distribution in Table 1. 

TABLE I.  APPLICATION HOMEPAGES PER IMAGE 

Application 
Homepage 

Number of 
Applications 

Percent of Total 
Applications 

GitHub 817,646 11.96% 
Gnu 631,254 9.23% 

Sourceforge 444,254 6.5% 
Metacpan 257,842 3.77% 
Haskell 158,013 2.31% 

kde 151,451 2.21% 
launchpad 145,707 2.13% 

null 1,321,399 19.32% 
Other 2,911,046 42.57% 

 
The leading domain is GitHub, an open social coding 

repository, which more than 800,000 applications reference. 
19.32% of our applications do not have homepages, and 
42.57% lead to other homepages with less than 2% of total 
applications. Given GitHub’s prevalence, we analyze the 
relevant GitHub repositories that maintain the collected 
applications. We summarize our findings in Table 2. 

TABLE II.  APPLICATION GITHUB REPOSITORY SUMMARY 

Data Type Root Repositories 
Number of Repositories (distinct) 8,701 

Number of Forks 1,258,075 
Number of Commits 5,200,563 

Size (files) 43,358,089 
Number of Issues 225,327 

Number of Languages 69 
Top Programming Languages  Python (1,811), C (1,536) 

 
We identified 8,701 distinct repositories containing over 

43 million files from GitHub that are related to the 
applications found on collected images. Python and C are the 
most frequent, for approximately 40% of all repositories. 
GitHub vulnerability scanners are then assessed based on 
functionality with those programming languages. 

2) Application Vulnerability Assessment 
We reviewed 14 GitHub vulnerability scanners and 

selected two based on coverage and usage. Bandit and 



FlawFinder are both scanners designed to identify secrets, 
insecurities, and attack vulnerabilities that exist within 
Python and C code hosted on GitHub. Both tools categorize 
vulnerabilities into High, Medium, and Low severities. High 
vulnerabilities include SSL with bad versions, blacklisted 
Python input calls, and deprecated libraries. Medium 
vulnerabilities include hardcoded SQL expressions, 
paramiko calls in Python, and various XML methods. Finally, 
Low vulnerabilities include try/except functions, blacklisted 
Python imports, and certain subprocess spawns. We scanned 
each repository in our testbed for vulnerabilities and 
summarize selected results in Table 3. 

TABLE III.  VULNERABILITY ASSESSMENT RESULTS FOR BANDIT 

Vulnerable 
Applications Vulnerabilities Most Frequent Vulnerable 

Repository/Application 
Number of 

Vulnerabilities 

47,932 High 1,634 
usit-gd/zabbix 104 

CoreSecurity/impacktct 77 
ctuning/ck 30 

91,571 Medium 9,959 
PacificBiosciences/pbcore 1,599 

annulen/webkit 373 
feist/pcs 293 

144,481 Low 221,869 
sympy/sympy 66,344 

annulen/webkit 9,559 
dask/dask 4,581 

 
In total, 233,642 vulnerabilities were detected through 

Bandit, while 25,170 vulnerabilities were detected by 
FlawFinder. 1,634 vulnerabilities are identified as high 
severity, propagating across 47,932 applications for each 
image. In the medium severity results, both 
PacificBiosciences/pbcore and feist/pcs are directly linked to 
biology/health APIs. These tools report and detect individual 
vulnerabilities but do not provide a means to assess which 
images contain vulnerable applications or their dependencies. 
A different method is required to capture inter-application 
relationships that the vulnerability scanners overlook. 

B. Graph Transformation and Embedding 
A graph embedding-based approach can capture inter-

application relationships and provide a fine-grained 
representation of the images for downstream clustering tasks. 
The installed applications on an image can be represented as 
a graph. Relationships are created between applications based 
on shared dependencies. Following this principle, we define 
our graphs as G=(A,E,F), where G is an undirected graph, A 
is the node set, {u1, u2, u3, … un}, of GitHub-maintained 
applications in an image, E is the edge set, {e1, e2, e3, …en}, 
of all edges between applications based on shared 
dependencies, and F is a feature matrix of all vulnerabilities 
for that application.  

As indicated in the literature review, selection of graph 
embedding algorithm is contingent upon the data 
characteristics, task, and research objective. The described 

graph formulation includes nodal features and undirected 
edges. Our proposed analytics requires a method that operates 
without prior knowledge of the graph and incorporates nodal 
features. Therefore, we select graph2vec. The embedding 
generation process with graph2vec follows five steps [24]:  

• Step 1: Nodes are negatively sampled and relabeled 
to create rooted subgraphs in the graph.  

• Step 2: A skip-gram model is trained to maximize the 
probability of predicting subgraphs that exist in the 
input graph.  

• Step 3: The embedding is then learned from the 
extracted subgraphs over several epochs. 

• Step 4: A final embedding is produced as a one-hot 
vector. 

• Step 5: Steps 1-4 repeat for each graph in a given set.  

In our case, subgraphs are generated around each 
application, capturing its dependencies with other 
applications. Images that have similar applications and 
dependencies will thus have similar embeddings.   

C. Embedding Evaluation 
The generated image embeddings are subsequently 

clustered using K-means, a prevailing partitional clustering 
algorithm. We evaluate these clusters using Silhouette (SI), 
Calinski-Harabasz (CH), and Davies-Bouldin (DBI) indices 
to help identify the optimal number of clusters by measuring 
cluster quality, maximizing intra-cluster similarities and 
minimizing inter-cluster differences. SI uses average 
dissimilarity between points to show the structure of the data 
and its possible clusters [30]. CH represents the ratio of 
within-cluster and between cluster dispersion, where a higher 
number represents well separated and compact clusters [31]. 
DBI measures the ratio of within-cluster to between-cluster 
distances [32]. Each metric has been used extensively in 
previous clustering research [33], [34]. 

V. RESULTS AND DISCUSSION 
We evaluate for cluster sizes from 3 to 20 to identify the 

optimal number of clusters. SI scores closer to one, a DBI 
score closer to zero, and high CH ratio indicate stronger 
performance. We summarize evaluation results in Table 4. 
The best performance is highlighted in boldface. 

TABLE IV.  IMAGE CLUSTER EVALUATION METRICS 

K Clusters Evaluation Metrics 
Silhouette Calinski-Harabasz Davies-Bouldin 

3 0.429 58.526 1.116 
6 0.709 158.762 0.625 
9 0.824 415.824 0.37 
10 0.808 466.881 0.398 
20 0.622 992.431 0.440 

 



Evaluation results indicate that nine-clusters provides the 
highest SI at 0.824, and lowest DBI score at 0.37, while still 
maintaining a high CH ratio. Given these results, we run k-
means for nine clusters and plot the results in Figure 3. The 
numbers are the ID for each image. Clusters are color-coded, 
circled, and labeled.  

 
Fig. 3. Selected Image Clusters 

The image clusters are relatively self-contained, with 
some overlap. Cluster B contains the highest number of 
images with 31, and cluster H contains the lowest number 
with six images. The average cluster size was 14 images. 
Cluster C contains images that are primarily base Ubuntu 
distributions. Cluster E contains images primarily loaded 
with RStudio. Clusters A, F, and G contain images designed 
for RNA and hybridized genome sequencing. We present the 
average number of vulnerabilities per cluster for each 
vulnerability in Figure 4. 

 
Fig. 4. Average Number of Vulnerabilities by Type Per Cluster 

The most frequent type of vulnerability is related to 
insecure functions implemented in the code. This issue has 

over 8,000 counts in clusters A, E, G, and I. Clusters E and I 
possessed the highest number of average vulnerabilities. 
These clusters contained significantly higher counts of 
insecure function, input, and module vulnerabilities, at 
11,954, 8,433, and 6,269, respectively. Cluster H contained 
the minimum, at 459, 394, and 350. Cluster H contained 
1,500 total vulnerabilities, the lowest average number.  

We further examine clusters H and I based on the 
difference in total number and severities of vulnerabilities. 
Cluster H contains six images with low severity 
vulnerabilities. 462 vulnerabilities were related to spawning 
subprocesses without shells and 210 vulnerabilities pertained 
to data validation. Cluster I contains seven images with high- 
severity insecure input and insecure function vulnerabilities 
that seldom occur in cluster H. These include 1,129 shell 
spawning issues and 612 data input functions. Vulnerabilities 
that spawn shells pose tremendous risk, as hackers can exploit 
these shells to execute arbitrary commands and disrupt 
operations. For example, ‘rm -rf /’ can be passed as a 
parameter to a spawned shell to delete all files in the root 
directory. This destructive attack shell injection command 
that can set back scientific workflows by months if data and 
custom developed programs are erased. In cluster I, these 
specifically affect images that provide computational 
resources for genomics-related scientific workflows. Given 
the frequency and severity of these vulnerabilities, images in 
cluster I are at a much higher risk of disruption compared to 
those in cluster H. 

These results suggest that images in clusters E and I 
should be prioritized for vulnerability mitigation, followed 
closely by those in clusters A and G. Scientific CI 
administrators can follow two strategies to remediate the 
detected vulnerabilities. First, issues should be opened on 
corresponding GitHub repositories to alert the maintainer of 
the specific insecure functions. Second, automated 
notifications can be sent to image users of the identified 
vulnerable applications and/or by specific vulnerability types. 
For shell spawning vulnerabilities, users should ensure that 
they change the shell parameter to ‘False’ within the related 
Python file. For input validation vulnerabilities, users should 
ensure that they properly sanitize their data, omitting 
potential arbitrary code prior to execution. 

VI. CONCLUSION AND FUTURE DIRECTIONS 
 Scientific CI provides environments to thousands of 

scientists that enable them to execute high-impact scientific 
inquiries and discovery. However, these environments may 
contain unconventional vulnerabilities, which expose users to 
potential disruption of high-impact scientific workflows. Our 
proposed research framework provides a novel approach for 
automatically detecting and grouping unconventional 
vulnerabilities applicable to multiple scientific CI. User 
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images are grouped together based on similar applications 
and vulnerabilities. As a result, they can facilitate targeted 
mitigation and remediation activities. 

There are several promising directions for future work. 
First, we intend to incorporate multiple data sources from 
other CI’s to further demonstrate the generalizability of the 
proposed approach. Second, we plan to create a more holistic 
representation through a multi-view learning strategy 
incorporating additional image features. Both directions can 
further help improve scientific CI cybersecurity. 
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