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Abstract

Urban hotspots can be used to model the structure of urban environments and to study or predict
various aspects of urban life. An increasing interest in the analysis of urban hotspots has been
triggered by the emergence of pervasive technologies that produce massive amounts of spatio-
temporal data including cell phone traces (or Call Detail Records). Although hotspot analyses using
cell phone traces are extensive, there is no consensus among researchers about the process
followed to compute them in terms of four important methodological choices: city boundaries,
spatial units, interpolation methods and hotspot variables. Using a large scale CDR dataset from
Mexico, we provide an interpretable systematic spatial sensitivity analysis of the impact that these
methodological choices might have on the stability of the hotspot variables in both static and dynamic
settings.

Keywords
Spatial sensitivity analysis, Urban hotspots, Cell phone traces

Introduction

Urban environments can be characterized using different approaches, such as land use, mobility matrices,
or activity centers (a.k.a. hotposts). The recent availability of pervasive technologies has triggered new
ways of studying cities using different data sources such as social networks, GPS, public transport
information and also cell phone traces.

Cell phone traces (or Call Detail Records, CDRs) are collected by telecommunication networks for
billing purposes and provide - among other features - spatio-temporal data about mobility behavior. CDR
data has been proved to be useful in modeling a variety of human mobility behaviors such as analyzing
daily patterns to understand the pulse of a city (Ratti et al. 2006; Reades et al. 2007; Ahas et al. 2015);
investigating the correlation between human mobility patterns and land-use patterns as well as urban
functions (Reades et al. 2007; Bachir et al. 2017); or clustering geographic units as dense regions to
understand city dynamics at large scale (Vieira et al. 2010; Doyle et al. 2014).

A critical area in mobility behavior analysis is the identification of regions of interest (ROI) or dense
regions a.k.a. hotspots, defined as regions with high concentration of individuals for a given period of
time (Ratti et al. 2006; Vieira et al. 2010; Louail et al. 2014; Hoteit et al. 2014; L3Harris n.d.; Chen
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et al. 2019). Hotspot analyses using CDR data are generally carried out in two different scenarios (1)
modeling, with a focus on analyzing the urban structure, such as the quantification of the urban sprawl
or compactness of cities (Louail et al. 2014; Xu et al. 2019); or the analysis of the spatio-temporal
evolution of popular locations for a given region (Zuo and Zhang 2012; Ghahramani et al. 2018); and
(2) prediction, with a focus on the analysis of the predictive power of dense regions with respect to a
given variable; for example, high footfall (number of estimated visits) in a region has been associated
to high crime (Bogomolov et al. 2015; Traunmueller et al. 2014), or large numbers of individuals at
night or work times have been associated to the identification of home (residential) and work locations
(Isaacman et al. 2012). These studies are often carried out at two different spatial scales: intra-city, where
researchers focus on spatio-temporal models or predictions for a given city (Ratti et al. 2006; Reades et al.
2007); and inter-city, where researchers focus on comparing static behaviors (one-time snapshots) across
cities (Louail et al. 2014; Ahas et al. 2015).

Although hotspot analyses using cell phone traces are extensive, there is no consensus among
researchers about the process followed to compute them in terms of three important features: (i) city
boundaries used to define the area under study e.g., some researchers use metropolitan areas (Louail
et al. 2014) that represent cities as labor market areas comprising commuting behaviors, while others use
a smaller entity - the core municipality - which represents the physical boundary of a city rather than
its economic activity, and which is generally contained within a metropolitan area together with other
non-core municipalities (Ratti et al. 2006; Demographia 2020); (ii) spatial units considered to compute
the hotspots, which in the literature range from using Voronoi polygons that simulate cell phone coverage
areas (Vieira et al. 2010; Doyle et al. 2014); to uniformly distributed grids (Louail et al. 2014; Isaacman
et al. 2012; Reades et al. 2007); or census tracts (Doyle et al. 2014; Bachir et al. 2017), with the latter
two approaches requiring the use of interpolation methods (Bachir et al. 2017; Peredo et al. 2017; Ahas
et al. 2015; Kubicek et al. 2019) to distribute individuals associated to a given cellular tower across grids
or census tracts; and (iii) hotspot variables used to measure and characterize hotspots, such as the urban
sprawl and compactness measures (Angel et al. 2010; Louail et al. 2014).

The combination of these different features could produce significant differences in the static and
dynamic hotspots identified, i.e., urban hotspots could be sensitive to these methodological choices;
which could in turn produce conflicting findings in the hotspot analyses or in its relationship with other
urban characteristics. For example, a researcher interested in comparing the number of hotspots across
cities, could identify largely different city-rankings depending on the sets of features used. On the other
hand, a researcher interested in using spatio-temporal hotspots to predict crime in a city, could find
a strong correlation or no correlation at all between hotspots and crime, depending on the set of city
boundaries, spatial units, interpolation methods and hotspot variables considered.

In this paper, we provide a spatial sensitivity analysis for urban hotspots computed using cell phone
traces (CDR) in terms of three important spatial features: city boundaries, spatial units and interpolation
methods. The spatial sensitivity is quantified by a novel, interpretable hotspot index stability score that
measures changes in hotspot variables via statistical ranking correlation. Highly stable combinations
of spatial features will produce stable hotspot measures across settings i.e., hotspot measures will not
change across different combinations of features. The analysis presented in this paper will provide
guidelines for researchers looking to identify the most stable (less sensitive) combination of parameters
that will preserve the stability of the CDR-based hotspots independently of the city boundaries, spatial
units and interpolation methods selected; and will also pinpoint into risky combinations of features
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that might produce non-stable, CDR-based hotspot measures i.e., measures that are highly sensitive to
methodological choices.

The systematic analysis will be carried out for two settings: inter-city and intra-city, where most of the
related literature in CDR-based hotspot analyses has focused. Inter-city analyses will evaluate the stability
of the city-rankings, based on a given hotspot variable, across different combinations of city boundaries,
spatial units and interpolation methods; while intra-city analyses will focus on a dynamic sensitivity
analysis of the impact that different methodological choices have on the urban dynamics represented by
the distribution of spatio-temporal hotspots in a city. As a result, the spatial sensitivity analysis presented
in this paper will provide insights into the spatial sensitivity of traditional methodological choices in both
static and dynamic settings.

Methodology

Hotspot analyses using CDR data are critical to study city dynamics and the spatial structure of cities. To
detect hotspots, researchers generally follow a set of common steps, although its implementation varies
widely depend on research focus, application area or data availability. In this section, we will explain
the different choices that researchers have in hand when computing hotspots, and we will describe the
methodology we will use to assess the static and dynamic spatial sensitivity i.e., the impact that the choice
of varying feature combinations might have on the stability of a given hotspot measurement variable, both
in static (inter-city) and dynamic (intra-city) settings.

Researchers generally follow these four steps to the identify the hotspots in a region: (i) define the
city boundary of the city under study, (ii) define the type of spatial units used to compute hotspots,
and estimate the population for each spatial unit, (iii) detect the static or dynamic hotspots based on
the estimated population, and (iv) compute hotspot indices to quantitatively characterize, statically or
dynamically, crowded regions in a city (see Figure 1 for details).

City boundaries

The delimitation of cities or urban areas is in itself one of the traditional tasks in urban geography and
planning (Oufednicek et al. 2018). Although not the focus of this paper, it highlights the importance of
understanding the impact that different city delimitations might have on hotspot analyses. Most related
studies focused on the computation of CDR-based hotspots consider two different dimensions.

The first one is the definition of the physical city boundary. While some researchers define cities
by their metropolitan area (Louail et al. 2014; Gariazzo et al. 2019), others only consider the urban
core (Ratti et al. 2006; Chen et al. 2018; Kubicek et al. 2019). Metropolitan areas are often defined as
an aggregation of municipalities that share industry, infrastructure and housing, and that represent the
economic city with a densely populated urban core area - that might span across multiple municipalities
- and its surrounding rural, less-populated areas. On the other hand, municipalities are generally smaller
spatial units embedded within a metropolitan area, with its urban core representing the physical boundary
of the city and the region that has emerged historically as the most prominent in the metropolitan
area (Demographia 2020). Therefore, when the term city is used in current CDR-based hotspot analyses,
it is important to understand whether it refers only to the densely populated areas within a metropolitan
area (Ratti et al. 2006; Chen et al. 2018); or to the metropolitan area as a whole, including both the
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Figure 1. Hotspot Identification Process. The grey areas in Step 1 are the areas considered in each city
boundary setting e.g., the grey areas in Urban settings are urban areas, while the white areas are the rural
areas. The outer boundary is the metro area boundary and the inner boundaries are the municipalities’
boundaries.

densely populated urban area and its less-populated, rural surrounding territories (Gariazzo et al. 2019;
Le Néchet 2012; Louail et al. 2014). See Urban and UrbanRural columns in Figure 1.

The second dimension focuses on whether to treat the metropolitan area as a whole unit to compute
hotspots, or to consider each embedded municipality independent of each other, albeit connected by
secondary population flows. Since metropolitan areas delimit the economic city, with mobility flows
between its core urban area and other regions, it makes sense to identify hotspots at that scale, which
would mostly characterize the commuting population (Le Néchet 2012; Louail et al. 2014). However, by
computing hotspots at that scale, local characteristics or economic structures of individual municipalities
might be ignored. For example, non-core municipalities within a metropolitan area might be sub-centers
for jobs in the region (Oufednicek et al. 2018). As a result, the mobility patterns characterizing these
municipalities might be more affected by its internal flows that by movements to and from other
municipalities (Gariazzo et al. 2019).

To carry out a comprehensive assessment of the different city boundary settings that are used by
researchers when computing CDR-based hotspots, we propose to explore the following four settings:
(1) Metropolitan Area Urban-Rural (Metro-UR), where hotspots are computed across the the whole
metropolitan area that includes all urban and rural areas; (ii) Metropolitan Area Urban (Metro-U),
where hotspots are computed across the whole metropolitan area which is defined exclusively by its
urban areas; (iii) Municipalities Urban-Rural (PerMuni-UR), where hotspots are computed per individual
municipality, and considering both urban and rural areas within the municipality; and (iv) Municipalities
Urban (PerMuni-U), where hotspots are computed individually only for the urban areas within each
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municipality. The boundary setting is denoted as b with b € {Metro-UR, Metro-U, PerMuni-UR,
PerMuni-U}. An example of the four different boundary types are shown in Step 1 in Figure 1.

Spatial units and interpolation methods

Voronoi tessellation is a common spatial unit of choice when using CDR data to understand population
dynamics (Vieira et al. 2010; Doyle et al. 2014). For each cell tower c in the cell phone infrastructure,
Voronoi tesselation is used to represent its spatial coverage or service area (see Supp. Fig. 1). The
assumption on which Voronoi tessellation is based is that users would always use the closest cell tower. In
this way, researchers associate to a given Voronoi polygon v, all the individuals that have been observed
at that cell tower c. However, Voronoi polygons (Vor) are not the only type of relevant spatial units. Some
researchers have focused on spatial regularity and have chosen grids (G) (Reades et al. 2007; Louail
et al. 2014; Isaacman et al. 2012), while others prefer to census tracts or blocks (CT) (Doyle et al. 2014;
Bachir et al. 2017) because these are the same geographic units as census data and can represent the
boundaries of neighborhoods to some extent. In this paper, we will denote the type of spatial unit as ¢
with ¢t € {CT, G, Vor}.

Voronoi tessellation assigns a set of individuals to a given Voronoi polygon, and the number of
individuals i.e., the footfall, is then used to compute hotspots. However, when using grids or census
tracts, or when a Voronoi polygon needs to be clipped because it spreads outside the boundary of a city or
a municipality, additional processing is required to assign the presence of individuals to a different spatial
unit. Grid and census tracts polygons will overlap with Voronoi polygons, and as a result, interpolation
methods that approximate the footfall in a given overlapping polygon area is required (see Supp. Fig. 1 for
an example). Similarly, clipped Voronoi polygons will require to approximate the footfall for any given
sub-polygon. With that objective in mind, we explore three types of interpolation methods commonly
present in the literature: uniform (Uni), population-based (Pop) and inverse-distance weighting(Idw)
(Louail et al. 2014; Bachir et al. 2017; Peredo et al. 2017). In this paper we will denote the interpolation
methods as ¢ with ¢ € {Uni, Pop, Idw}.

The most common interpolation method in the CDR literature is the uniform method (Uni) (Louail
et al. 2014; Kubicek et al. 2019; Kang et al. 2012). This method assumes that all individuals are located
within a given polygon uniformly. Therefore, the number of individuals in any grid or census tract
polygon overlapping with a Voronoi polygon will be proportional to its area.

The limitation of the Uniform method is that people are unlikely to be distributed over a spatial unit
uniformly, especially for vast rural areas where people are less likely to be present. Therefore, researchers
have used population-based methods (Pop) that distribute the footfall of a Voronoi polygon over a spatial
unit proportionally to the population density e.g., urban areas in the spatial unit are assigned larger
numbers of individuals than rural areas (Bachir et al. 2017).

Nevertheless, the population-based method has an important drawback since the population retrieved
from the census will represent residential population rather that footfall, which might affect the way
population dynamics in non residential areas are computed. Also, both uniform and population-based
methods assume that the association of individuals to the closest cell tower location is always correct,
which might not be the case specially for users who are at the boundaries of a given Voronoi polygon.
Thus, researchers have used a third method to overcome these limitations, the inverse distance weighting
(Idw) (Peredo et al. 2017; Ahas et al. 2015) that determines that the number of individuals in a spatial
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unit is the weighted average of its neighbor cellular towers where the weights are inversely proportional
to the distance. See Supplementary Materials for formulas and further details of these methods.

In summary, we consider in our paper the following combinations C' of spatial units and interpolation
methods: (CT,Uni), (CT, Pop), (G,Uni), (G, Pop), (G, Idw), (Vor,Uni), (Vor, Pop), with grids of
500 x 500 meters, since this is one of the most common choices in the literature (Louail et al. 2014; Chen
et al. 2018). This is not meant to be a complete list of combinations. There are different types of spatial
units and interpolation methods of interest. For example, one could take into account the terrain or land
cover information to assign different relative population density (Deville et al. 2014). Here we aim to
analyze commonly used methods to shed light on potential stability issues. An example of the different
spatial units and interpolation methods explored are shown in Step 2 in Figure 1.

Hotspot detection

To compute the hotspots of a city, we need to first identify the spatial units with a significant number of
individuals. Hotspot detection is a binary classification problem, where the spatial units with a estimated
number of people above a threshold value ¢ are considered as hotspots.

There exist different methods to determine the threshold § (Hoteit et al. 2014; Louail et al. 2014).
However, as previous work has shown, § can be constrained within a lower and an upper bound across
methods (Louail et al. 2014). Given the estimated footfall for a set of spatial units, the lower bound of &
is defined as the average of the set of footfall values; while the upper bound i.e., the strictest definition of
hotspot, is computed using the Loubar method based on the Lorenz curve (see Supplementary Materials
and Supp. Fig. 2). In this paper, we will focus on the use of the upper bound, since it constitutes the
strictest approach to measure the spatial structure of the most important places, and a result, strongest
common denominator across different threshold definitions considered in the literature. In addition, we
will focus on hourly hotspots computed considering all day and only work and night (home) hours. An
in-depth explanation of the hotspot detection process can be found in the Supplementary Materials.

Hotspot measurement variables

In this paper, we will explore three types of hotspot measurement variables or indices that have been
traditionally used in related literature for hotspot analyses at inter-city and intra-city levels: (1) hotspot
scale, (2) degree of urban sprawl and (3) urban compactness. The first type quantifies the number of
hotspots detected and the geographical area covered by them. The last two types of indices focus on
the quantification of urban structure (Louail et al. 2014; Le Néchet 2012; Schwanen et al. 2001; Ewing
2008). Research in quantitative geography and urban economics has shown the importance of studying
urban structure, as it can shape people’s mobility in terms of travel distance, model choice and car
usage (Schwanen et al. 2001; Le Néchet 2012), the transportation system in terms of energy consumption
or air pollution (Le Néchet 2012; Ewing 2008), and economic growth performance (Xu et al. 2019; Huang
et al. 2007).

Next, we provide a list of the indices. Full description and formulas are covered in the Supplemental
Materials. We will measure hotspot scale with the number of hotspots (NHS) and the area covered by
the hotspots (AHS). Urban sprawl represents a type of metropolitan decentralization or sub-urbanization
where a large percentage of a city’s residential and/or business activity takes place outside of its central
location (Wassmer 2000). We use the two indices to quantify the degree of urban sprawl: compacity

Prepared using sagej.cls



coefficient (COMP) and mass compacity coefficient (MCOMP). Urban compactness is closely related to
urban sprawl: the larger the degree of urban sprawl, the smaller the compactness of a city. However, one
major difference between urban compactness and urban sprawl indices is that sprawl is always measured
with respect to the size of a city e.g., normalized by the square root of the geographical area, while
compactness is based on the assumption that the most compact form of a shape is a circle (Angel et al.
2010). Therefore, compactness indices measure compactness in terms of geometrical properties, and are
thus normalized by the reference circle, e.g., an equal-area or equal-perimeter circle. Urban compactness
indices range from O to 1, with 1 representing the exact continuous circle. We consider the following
four indices that are commonly used in hotspot measurement literature: cohesion (COHE), proximity
(PROX), normalized moment of inertia (NMI) and normalized mass moment of inertia (NMMI).

Hotspot index stability

To measure the spatial sensitivity of urban hotspot identification with respect to city boundaries, spatial
units and interpolation methods, we propose a hotspot index stability measure based on statistical
ranking correlation. Methodological combinations associated to (un)stable stability measures will reveal
(high)low spatial sensitivity which will in turn produce (different)similar outcomes in terms of hotspot
identification across methological settings. Our analysis will focus on the identification of highly
stable methodological combinations (low sensitivity) that will produce similar hotpot analyses across
methodological choices. This paper shows that ranking correlation is an effective approach to measure
stability while offering high interpretability via simple ranking comparisons. In addition, we explore
hotspot index stability in both static (inter-city) and dynamic (intra-city) hotspot settings.

Inter-city Index Stability. Inter-city analyses focus on comparing rankings of cities based on a given
static hotspot index and set of spatial and interpolation features. Similar rankings across various feature
sets will reveal stable hotspot indices. To measure the stability of a given inter-city index, we propose
the following approach. For each combination of city boundary b, type of spatial unit ¢ (Vor, G or CT)
and interpolation method ¢ (Uni, Pop or Idw), we compute the hotspots and hotspot indices described in
the methodology section across all cities under study. Next, we conduct Spearman correlation for each
pair of city rankings resulting from different combinations of features, and compute the stability of an
index for a given city boundary, as the average of all correlation coefficients across spatial units and
interpolation methods. High average correlation coefficients across combinations of features will reveal
that the hotspot index is stable i.e., the ranking of the cities for a given index is similar independently of
the spatial features used. Researchers could select any set of features since the rankings do not appear to
change, and as result, any correlation analyses between hotspots and other features would also be robust.
On the other hand, low average correlation coefficients will identify indices that should not be used since
the rankings vary widely depending on the combination of features.

Let C = {(CT,Uni),(CT, Pop), (G,Uni), (G, Pop), (G, Idw),(Vor,Uni),(Vor, Pop)} be the
list of combinations of type ¢ spatial units and interpolation method ¢ considered in this study, with |C/| as
the number of combinations and C; as the j-th combination where 1 < j < |C|. For each hotspot index
ind € {NHS, AHS, COMP, MCOMP, COHE, PROX, NMI, NMMI}, city boundary b and combination
C; = (t;,1;), we first compute the permanent hotspots (all-day/work-hour/home-hour) and then compute
the index values for all cities under study. Each combination C; will produce an array of index values, one
per city, defined as indy, ¢, . Next, for each pair of combinations C'; and C}, we compute the correlation
coefficient for index ind and city boundary b as:
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Coe findp,j,x = Spearman(indy ¢, , indy, ¢, ) €))

The coefficient measures the similarity of rankings among cities. Then the stability for index ind and
city boundary b is computed as:

1
tability; = ind,b,j,k 2
Stabilityas = e =) | 2 Coclnanan @
IR> s J

Spearman correlation coefficients will be interpreted as follows (Statstutor 2020): a stability score in
range of [0.8,1) is considered very strongly stable; in range of [0.6,0.8) is considered strongly stable;
moderately stable in the [0.4,0.6) range; weakly stable in the range of [0.2,0.4) and unstable in the
[0.0,0.2) range.

Intra-city Index Stability. Intra-city analysis focuses on comparing hotspot rankings across time
for a given city, providing insights into the role that methodological choices have on city dynamics.
Index stability at the intra-city level is helpful to identify the indices that provide similar rankings across
time, independently of the spatial and interpolation features used. To measure the stability of an index
at the intra-city level, given a city a defined using an city boundary setting b, we first compute the
hotspots at each hour / using combination C; = (t;,4;). This yields a 24-hour vector indy, ¢, for each
combination C; and city a. Pairs of combinations C'; and C);, are compared in terms of ranking similarity
in city a via Spearman correlation.

Coefindpajk = Spearman(indbpj,a, indycp.q) 3)

The intra-city level stability for index ¢nd at city a using city boundary b is the computed as:

1
tabilit in a = T A~ AN in a,j, 4
Stabilityina,p, CTICI=1) Z Coe find,b,a,jk 4)
J,k<Z|C, j#k

Finally, to identify the stability of a given index for a certain city boundary and spatial combination,
we average the stability measure across all the cities a € A under study:

A
.. 1 ..
Stabilitying,p = 1 E Stabilitying,p,a (®)]

a=1

Stable indices could then be used to robustly study the relationship between hotspots and urban growth
or transportation efficiency, for example; while unstable indices would be discouraged from use given the
variability of the rankings they provide.

Results
In this section, we describe the dataset used and the results for the inter-city level analysis. Intra-city level

results are explained in the Supplemental Materials.
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Figure 2. Stability (Standard deviation) of all indices in different boundary settings. The gradient background
color is based on the stability score ranging from 0 to 1, the darker the orange color is, the closer it is to 1.

Study Area and Dataset

To carry out our analyses, we use pseudonymised CDR data from the 59 top metropolitan areas in Mexico
(see Supp. Fig. 3). The data covers cell phone activity from October 2009 to June 2010. No individual
data has been used, only aggregated statistics at the cell tower level to quantify the number of unique users
per hour. City boundaries have been defined using official shapefiles for metropolitan areas as defined by
CONAPO, the National Population Council in Mexico (CONAPO 2015). Municipalities, census tracts
(known as AGEBs in Mexico) and urban and rural areas have been extracted from INEGI, the statistical
department in Mexico, with data from 2010 (INEGI 2010).

Inter-city level analysis

Figure 2 shows the stability scores for each hotspot index and city boundary, with each table representing
all-day, work-hour and home-hour hotspots. Recall that each stability value is computed as the average of
all Spearman correlations between all pairs of combinations of spatial units and interpolation methods.
To measure that variance, each table also shows the standard deviation of the stability in parentheses.
Here, we describe the main outcomes, followed by an in-depth discussion in the next section. Based on
the Figure, we observe:

1) All hotspot indices are the most stable when cities are defined by their urban municipalities only
(PerMuni-U) with average correlations between different spatial unit and interpolation combinations
ranging from 0.62 to 0.86 - strongly correlated - across methods. Hotspot indices are least stable when
cities are defined by their metropolitan area and considering both urban and rural regions (Metro-UR,
with stability values from 0.33 to 0.59). Generally, it is fair to say that all indices tend to be more stable
in (less sensitive to) settings that consider only urban areas and independent municipalities, rather than
whole metropolitan areas. As a result, and whenever possible, city boundaries that consider only urban
municipalities should be favored in inter-city analyses since the ranking of cities will likely remain stable
and comparisons with other urban features - e.g., crime - will be robust thus avoiding conflicting results.

2) Scale of hotspot indices (NHS, AHS) and urban sprawl indices (COMP, MCOMP) are the most
stable (less sensitive to methodological combinations). For 3 out of 4 city boundary settings, NHS,
COMP and MCOMP are at least strongly stable. Therefore, compared to the compactness indices,
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researchers have more freedom to choose the boundary settings and interpolation methods for inter-
city level comparisons that are based on scale of hotspots and degree of urban sprawl. This means that
under the same city boundary setting, comparison among cities in terms of these indices or correlation
with other factors using them are less likely to produce conflicting findings across combinations of types
of spatial units and interpolation methods i.e., hotspot identification is less sensitive to them. Finding
(1) revealed that PerMuni-U produces the most stable indices across types. However, the second most
stable boundary setting for scale of hotspots and urban sprawl is different. Scale of hotspots’ second
best setting is Metro-U while for urban sprawl is PerMuni-UR. For urban sprawl, the difference between
the stability in PerMuni-UR and in PerMuni-U is small. Therefore, as long as researchers are using
PerMuni-based settings, whether or not to include rural areas does not have a large impact in terms of
stability (sensitivity).

3) Compactness indices (COHE, PROX, NMI and NMMI) are the least stable indices meaning these
hotspot measures are extremely sensitive to methodological combinations. When making comparisons at
the inter-city level in terms of compactness indices, researchers should first pay attention to the boundary
settings because compactness indices are strongly stable only in the PerMuni-U setting and moderate
to weakly stable in the other three settings. When PerMuni-U setting is undesired, e.g., rural areas
need to be incorporated, our proposed method allows researchers to explore in depth the relationship
between spatial units, interpolation methods and stability for a selected city boundary; to then choose
the most stable combination within the unstable setting. For example, Supp. Fig. 4 shows the Spearman
correlations among the different combinations for the PROX index in the Metro-UR boundary setting. We
can observe that, in general, the stability across all combinations is low. However, if researchers need to
use a Metro-based setting, the (G, Pop) combination tends to have the largest average correlations (0.49)
and thus, the largest stability which would make it the top candidate combination to use when extracting
hotspots at both urban and rural scales. Similar results are observed for COHE, NMI and NMMI.

4) In most cases, the stability for different indices and boundary settings is similar among all-day,
work-hour and home-hour permanent hotspots. But the home-hour stability in Metro-UR settings for
COHE, PROX and NMI is consistently smaller than all-day and work-hour. Finally, a similar intra-city
analysis can be found in the Supplemental Materials.

Discussion

In this section, we explore some of the potential reasons behind the stability findings described in the
previous section. Complementary analyses can be found in the Supplementary Materials.

Stability of hotspot scale indices (NHS and AHS) at the inter-city level

As explained in the previous section, hotspot scale indices (NHS and AHS) are more stable (less sensitive
to methodological choices) when city boundaries are defined using only urban municipalities. We posit
that this might be due to the fact that rural areas, which generally have smaller footfall, are dramatically
changing the Lorenz curves and, as a result, the scale of the hotspots computed. We will now analyze in
depth a few case examples that are representative of the global trends observed in our analyses. Figure
3(a) shows the Spearman correlation coefficients for the NHS index across all the combinations of spatial
unit and interpolation methods per each of the four boundary settings. We can observe that combinations
(G, Uni) and (G, Idw) are weakly or even not correlated with other methods in the Metro-UR causing
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Figure 3. Spearman correlation coefficients Coe fini=nHs,b,5,k (@-d), Coe fina=cor p,b,j,k (€-h),
Coefina=PrOX b5,k (i-]) between each pair of combinations (C;,C%) under four different boundary settings.
The coefficient matrix is symmetric whose lower triangular part is omitted.

the low stability score. Changing to other boundary settings, such as excluding the rural areas, all the
coefficients involving methods (G, Uni) and (G, Idw) have a large increase and as a result NHS becomes
more stable in Metro-U setting. Therefore, we will compare the NHS computed based on combinations
(G, Idw) and (G, Pop) to explore what might cause the unstability or dissimilarity in the cities ranking.

Figure 4(a) and 4(b) shows the comparison between Metro-UR and Metro-U settings for city 34
(Puebla-Tlaxcala) and city 39 (Rioverde-Ciudad Fernidndez). Each plot represents the Lorenz curve used
to compute NHS,, based on a combination C' = (¢, 7) of type of spatial units ¢ and interpolation method ¢
in city a. We can observe that the more rural areas a city has, the more heavily the shape of Lorenz curve
is changed by different combinations C', which causes variations in the number of hotspots identified. For
example, Figure 4(a) shows that under the Metro-UR setting, NHS34 = 200 and for NHS39 = 34 based
on the combination (G, Pop), which means that the ranking of city 34 is higher than 39. Changing to
the combination (G, Idw), NHS34 decreases to 138 but NHS3g increases to 466 reversing the rankings
between city 34 and 39 has reversed. This is caused by the fact that city 39 has more rural areas (99%)
than city 34 (70%), and the Lorenz curve for city 39 is impacted more (much more closer to the diagonal)
by changing from (G, Pop) to (G, Idw) than the curve for city 34.
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Figure 4. Lorenz curves for Loubar-based hotspots detection in city 34 and 39 in different boundary settings.
The x-axis is rescaled to the number of spatial units to better explain the difference in NHS. Combination (G,
Pop) and (G, Idw) are shown for comparison. City 34 has 70% of rural areas and 39 municipalities with various
percentage of rural areas while city 39 has 99% of rural areas and 2 municipalities both with more than 95% of
rural areas.

On the other hand, the spatial units in the rural areas are not considered in the hotspot detection under
the Metro-U setting. For example, the number of grids considered in city 39 in Metro-U setting is about
250, much smaller than in Metro-UR setting which is about 14, 500. The impact brought by the variation
in percentage of rural areas is mitigated by focusing on urban areas only in the Metro-U setting i.e.,
the change in the Lorenz curve and the change in NHS from (G, Pop) to (G,Idw) is smaller and more
consistent in both cities. When changing from (G, Pop) to (G, Idw), NHS3, increases from 196 to 205
and NHS3 increases from 27 to 56. Therefore the ranking of both cities is better preserved by these two
combinations.

Next, we shift our focus to the Permuni-UR setting. In PerMuni-based settings hotspots are detected
per municipality. Therefore, the Lorenz curves might be affected by the percentage of rural areas in each
municipality. City 34 as a whole metropolitan area has 70% rural areas, but it has 39 municipalities with
various percentages of rural areas from 1% to 92%. Four example municipalities are shown in Figure 4(c).
City 39 has 2 municipalities, both of which have similar percentages of rural areas as city 39 as a whole
(Figure 4(d)). We observe that for municipalities with high percentage of rural areas e.g., municipality
22163,21074, 24024, 24011, the Lorenz curves are heavily impacted by changing from (G, Pop) to (G,
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Idw). For municipalities with lower percentage of rural areas e.g., municipality 21114, 21041, the Lorenz
curves are less impacted. As a result, changing from (G, Pop) to (G, Idw), the NHS34 changes from 905
to 3663 and the NHS39 changes from 60 to 503. Although city 34 still has a smaller change in NHS
(increased 3 times) than city 39 (increased 7.4 times), the ranking between them is preserved. Therefore
the stability of NHS in Permuni-UR is better than in Metro-UR.

Stability of urban sprawl indices (COMP and MCOMP) at the inter-city level

As discussed in the previous section, urban sprawl indices computed with PerMuni-based boundary
settings appear to be more stable than Metro-based ones (less sensitive to Metro-based choices). One
of the possible reasons might be the different ways in which the population of a metropolitan area can be
distributed across municipalities. For example, some metropolitan areas have a dominant urban core with
the majority of human activities, while in other metropolitan areas there might be municipalities acting
as sub-centers with similar levels of activity as their urban cores.

Take city 25 (Morelia) and 46 (Tlaxcala-Apizaco) as examples (Figure 5). Both cities have multiple
municipalities. But in city 25, the urban core is dominating, that is, the population of city 25 is mostly
concentrated in one core urban region e.g., (CT, Pop) and (Vor, Pop) in Metro-UR setting in Figure 5(a).
While in city 46, the location of the hotspots varies. With the combination (CT, Pop) in Metro-UR,
the permanent hotspots concentrate in the left-bottom corner (Figure 5(b)), just like city 25. But with
the combination (Vor, Pop) in Metro-UR, permanent hotspots in other municipalities are detected thus
increasing the value of the COMP index. As a result, since different metropolitan areas have different
distributions of population over multiple municipalities, hotspots indices computed over metropolitan-
based settings are not as stable. On the other hand, detecting hotspots in the municipality-based settings
is more stable because the permanent hotspots are local to each municipality and overall the hotspots
spread over multiple municipalities (see the second row in Figure 5(a) and 5(b)). And because COMP is
normalized by the square-root of city’s geographical area, the distance between hotspots spreading over
the city is normalized. Therefore variances in the population distribution bring less instability to COMP
indices across spatial units and interpolation methods.

Rural areas also appear to play a role in index stability. Figure 3(e) - 3(h) shows the correlation
coefficients for each pair of spatial unit and interpolation method combination across all boundary
settings for the COMP index. We can observe that combinations (Vor, Uni) and (Vor, Pop) are the least
correlated with other combinations, especially in settings including rural areas. When considering rural
areas, the Voronoi polygons can cover large regions e.g., the plot of (Vor, Pop) using the Metro-UR setting
in Figure 5, as the cell towers tend to be sparse in rural areas. Since urban sprawl indices are computed
based on the distance among centroids of polygons, these large Voronoi polygons drag the centroids away
from dense population areas; and since the sizes of the Voronoi polygons are not homogeneous across
different metropolitan areas, the inclusion of rural areas brings in high instability to hotspot urban sprawl
indices. Finally, other minor discussion points can be found in the Supplemental Materials.

Conclusions

The rich spatio-temporal information provided by CDR data has provided great potential for studying
human mobility dynamics in urban environments. A bulk of the literature has used CDR data to study
the relationship between human dynamics - modelled through hotspot areas in cities - and various urban
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Figure 5. Permanent hotspots detected by combinations (CT, Uni) (Vor, Pop) for city 25 and 46.

characteristics, such as spatial structure, transportation efficiency and energy consumption. However,
most of these studies are based on ad-hoc selections of city boundaries and spatial units.

In this paper, we provide a novel interpretable approach to carry out a systematic analysis of the
stability of various hotspot indices in both static (inter-city) and dynamic (intra-city) settings. We have
found that at the inter-city level, the urban municipality boundary is the best setting to obtain stable
and robust city ranking results. Indices for scale of hotspots and degree of urban sprawl are strongly
stable across all city boundary settings. Therefore, when a particular city boundary setting is desired,
NHS, AHS, COMP and MCOMP are good indices to work with. If the compactness family of indices
(COHE, PROX, NMI and NMMI) are of interest, it is better to use the municipalities with urban and rural
areas (PerMuni-UR setting). If other city boundaries are required, we recommend using the (G, Pop)
interpolating method as this method tends to be most correlated with other methods in all settings.

For intra-city level, the stability of indices are mostly weakly stable. Only the degree of urban sprawl
(COMP and MCOMP) in Metro-based settings have moderate stability. The stability of indices in
different cities has large variation, meaning some indices can be very strongly stable across interpolation
methods in some cities but not stable at all in other cities. We have not found any index or boundary
setting that would work well across cities. Thus it is vital for researchers to use a consistent type of
spatial units and interpolation methods across analyses.

This paper does not provide a comprehensive analysis of all the combinations of spatial units and
interpolation methods that exist in the literature, but rather an analysis of the most common approaches
currently used in the field. In addition, the analysis presented focuses only in one country. As future work,
we will expand and generalize our spatial sensitivity analysis to more methodological choices, such as
different grid sizes, or interpolation methods that consider terrain and land use patterns; and we will
explore the applicability of our results to other countries.
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