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Abstract

We study local SGD (also known as parallel
SGD and federated averaging), a natural and
frequently used stochastic distributed optimiza-
tion method. Its theoretical foundations are cur-
rently lacking and we highlight how all exist-
ing error guarantees in the convex setting are
dominated by a simple baseline, minibatch SGD.
(1) For quadratic objectives we prove that local
SGD strictly dominates minibatch SGD and that
accelerated local SGD is minimax optimal for
quadratics; (2) For general convex objectives we
provide the first guarantee that at least sometimes
improves over minibatch SGD; (3) We show that
indeed local SGD does not dominate minibatch
SGD by presenting a lower bound on the perfor-
mance of local SGD that is worse than the mini-
batch SGD guarantee.

1. Introduction

It is often important to leverage parallelism in order to
tackle large scale stochastic optimization problems. A
prime example is the task of minimizing the loss of ma-
chine learning models with millions or billions of parame-
ters over enormous training sets.

One popular distributed approach is local stochastic gradi-
ent descent (SGD) (Coppola, 2015; Stich, 2018; Zhou and
Cong, 2018; Zinkevich et al., 2010), also known as “par-
allel SGD” or “Federated Averaging”! (McMahan et al.,
2016), which is commonly applied to large scale con-
vex and non-convex stochastic optimization problems, in-
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"Federated Averaging is a specialization of local SGD to the
federated setting, where (a) data is assumed to be heterogenous
(noti.i.d.) across workers, (b) only a handful of clients are used in
each round, and (c) updates are combined with a weighted average
to accommodate unbalanced datasets.

cluding in data center and “Federated Learning” settings
(Kairouz et al., 2019). Local SGD uses M parallel workers
which, in each of R rounds, independently execute K steps
of SGD starting from a common iterate, and then com-
municate and average their iterates to obtain the common
iterate from which the next round begins. Overall, each
machine computes 7' = K R stochastic gradients and ex-
ecutes i R SGD steps locally, for a total of N = KRM
overall stochastic gradients computed (and so N = K RM
samples used), with R rounds of communication (every K
steps of computation).

Given the appeal and usage of local SGD, there is signifi-
cant value in understanding its performance and limitations
theoretically, and in comparing it to other alternatives and
baselines that have the same computation and communica-
tion structure. That is, other methods that are distributed
across M machines and compute K gradients per round
of communication for R rounds, for a total of ' = KR
gradients per machine and R communication steps. This
structure can also be formalized through the graph oracle
model of Woodworth et al. (2018, see also Section 2).

So, how does local SGD compare to other algorithms with
the same computation and communication structure? Is lo-
cal SGD (or perhaps an accelerated variant) optimal in the
same way that (accelerated) SGD is optimal in the sequen-
tial setting? Is it better than baselines?

A natural alternative and baseline is minibatch SGD (Cotter
etal., 2011; Dekel et al., 2012; Shamir and Srebro) — a sim-
ple method for which we have a complete and tight theoret-
ical understanding. Within the same computation and com-
munication structure, minibatch SGD can be implemented
as follows: Each round, calculate the K stochastic gradi-
ent estimates (at the current iterate) on each machine, and
then average all K M estimates to obtain a single gradi-
ent estimate. That is, we can implement minibatch SGD
that takes R stochastic gradient steps, with each step using
a minibatch of size K M —this is the fair and correct mini-
batch SGD to compare to, and when we refer to “minibatch
SGD” we refer to this implementation (R steps with mini-
batch size K M).

Local SGD seems intuitively better than minibatch SGD,
since even when the workers are not communicating, they
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are making progress towards the optimum. In particular,
local SGD performs K times more updates over the course
of optimization, and can be thought of as computing gra-
dients at less “stale” and more “updated” iterates. For this
reason, it has been argued that local SGD is at least as good
as minibatch SGD, especially in convex settings where av-
eraging iterates cannot hurt you. But can we capture this
advantage theoretically to understand how and when local
SGD is better than minibatch SGD? Or even just establish
that local SGD is at least as good?

A string of recent papers have attempted to analyze lo-
cal SGD for convex objectives, (e.g. Dieuleveut and Patel,
2019; Khaled et al., 2019; Stich, 2018; Stich and Karim-
ireddy, 2019). However, a satisfying analysis has so far
proven elusive. In fact, every analysis that we are aware of
for local SGD in the general convex (or strongly convex)
case with a typical noise scaling (e.g. as arising from super-
vised learning) not only does not improve over minibatch
SGD, but is actually strictly dominated by minibatch SGD!
But is this just a deficiency of these analyses, or is local
SGD actually not better, and perhaps worse, than minibatch
SGD? In this paper, we show that the answer to this ques-
tion is “sometimes.” There is a regime in which local SGD
indeed matches or improves upon minibatch SGD, but per-
haps surprisingly, there is also a regime in which local SGD
really is strictly worse than minibatch SGD.

OUR CONTRIBUTIONS

In Section 3, we start with the special case of quadratic
objectives and show that, at least in this case, local SGD is
strictly better than minibatch SGD in the worst case, and
that an accelerated variant is even minimax optimal.

We then turn to general convex objectives. In Section 4 we
prove the first error upper bound on the performance of
local SGD which is not dominated by minibatch SGD’s
upper bound with a typical noise scaling. In doing so, we
identify a regime (where M is large and K > R) in which
local SGD performs strictly better than minibatch in the
worst case. However, our upper bound does not show that
local SGD is always as good or better than minibatch SGD.
In Section 5, we show that this is not just a failure of our
analysis. We prove a lower bound on the worst-case er-
ror of local SGD that is higher than the worst-case er-
ror of minibatch SGD in a certain regime! We demon-
strate this behaviour empirically, using a logistic regression
problem where local SGD indeed behaves much worse than
mini-batch SGD in the theoretically-predicted problematic
regime.

Thus, while local SGD is frequently better than minibatch
SGD—and we can now see this both in theory and in prac-
tice (see experiments by e.g. Lin et al., 2018; Zhang et al.,
2016; Zhou and Cong, 2018)—our work identifies regimes

in which users should be wary of using local SGD with-
out considering alternatives like minibatch SGD, and might
want to seek alternative methods that combine the best of
both, and attain optimal performance in all regimes.

2. Preliminaries
We consider the stochastic convex optimization problem:

min F(z) = E [f(z;2)]. ()
We will study distributed first-order algorithms that com-
pute stochastic gradient estimates at a point € R?
via Vf(x;z) based on indpendent samples z ~ D.
Our focus is on objectives F' that are H-smooth, ei-
ther (general) convex or A-strongly convex?, with a min-
imizer z* € argmin, F(z) with ||z*|| < B. We
consider Vf which has uniformly bounded variance,
ie. sup, E.p|Vf(z;2) — VF(z)]*> < o2 We use
F(H, )\, B,d?) to refer to the set of all pairs (f, D) which
satisfy these properties. All of the analysis in this paper can
be done either for general convex or strongly convex func-
tions, and we prove all of our results for both cases. For
conciseness and clarity, when discussing the results in the
main text, we will focus on the general convex case. How-
ever, the picture in the strongly convex case is mostly the
same.

An important instance of (1) is a supervised learning prob-
lem where f(x;z) = ¢({x,$(z)),label(z)) is the loss on
a single sample. When |¢'|,|¢"| < 1 (referring to deriva-
tives w.r.t. the first argument), then H < |[¢”|[|¢(2)? <
I6(=)[? and also 0® < V|2 < |[¢P|(z)]? <
||é(2)]|?. Thus, assuming that the upper bounds on ¢, ¢
are comparable, the relative scaling of parameters we con-

sider as most “natural” is H ~ o?2.

For simplicity, we consider initializing all algorithms at
zero. Then, Local SGD with M machines, K stochastic
gradients per round, and R rounds of communication cal-
culates its tth iterate on the mth machine for ¢ € [K R] via

27— aiy = V(@ zt) K [t
t - M m/ ml m/

ﬁ S Ty — V(@ gty K|t

where z]* ~ D ii.d., and K | ¢ refers to K dividing ¢. For

each r € [R], minibatch SGD calculates its rth iterate via
MK

n L
Ty = Typ_1 — MK ; Vf(zr—1; Zr—l) 3)

2

We also introduce another strawman baseline, which
we will refer to as “thumb-twiddling” SGD. In thumb-
twiddling SGD, each machine computes just one (rather

2An H-smooth and A-strongly convex function satisfies
2l —yl® < Fly) — F(z) = (VF(2),y — 2) < Fllz -yl

We allow A = 0 in which case F' is general convex.
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than K) stochastic gradients per round of communication
and “twiddles its thumbs” for the remaining KX — 1 com-
putational steps, resulting in R minibatch SGD steps, but
with a minibatch size of only M (instead of K M, i.e. as if
we used K = 1). This is a silly algorithm that is clearly
strictly worse than minibatch SGD, and we would certainly
expect any reasonable algorithm to beat it. But as we shall
see, previous work has actually struggled to show that local
SGD even matches, let alone beats, thumb-twiddling SGD.
In fact, we will show in Section 5 that, in certain regimes,
local SGD truly is worse than thumb-twiddling.

For a particular algorithm A, we define its worst-case per-

formance with respect to F(H, \, B, 0?) as:
F(zp) — F(z") 4)

€A = max

(f,D)eF(H,A,B,0?)

The worst-case performance of minibatch SGD for general
convex objectives is tightly understood (Dekel et al., 2012;
Nemirovsky and Yudin, 1983):

HB? oB )
+ .
R MKR

€EMB-SGD = @( )

In order to know if an algorithm like local or minibatch
SGD is “optimal” in the worst case requires understand-
ing the minimax error, i.e. the best error that any algo-
rithm with the requisite computation and communication
structure can guarantee in the worst case. This requires
formalizing the set of allowable algorithms. One possi-
ble formalization is the graph oracle model of Woodworth
et al. (2018) which focuses on the dependence structure
between different stochastic gradient computations result-
ing from the communication pattern. Using this method,
Woodworth et al. prove lower bounds which are applicable
to our setting. Minibatch SGD does not match these lower
bounds (nor does accelerated minibatch SGD, see Cotter
et al. (2011)), but these lower bounds are not known to be
tight, so the minimax complexity and minimax optimal al-
gorithm are not yet known.

Existing analysis of local SGD Table 1 summarizes the
best existing analyses of local SGD that we are aware of
that can be applied to our setting. We present the upper
bounds as they would apply in our setting, and after opti-
mizing over the stepsize and other parameters. A detailed
derivation of these upper bounds from the explicitly-stated
theorems in other papers is provided in Appendix A. As
we can see from the table, in the natural scaling H = o2,
every previous upper bound is strictly dominated by mini-
batch SGD. Worse, these upper bounds can even be worse
than even thumb-twiddling SGD when M > R (although
they are sometimes better). In particular, the first term of
each previous upper bound (in terms of M, K, R) is never
better than R~ (the optimization term of minibatch and
thumb-twiddling SGD), and can be much worse.

Table 1. Comparison of existing analyses of Local SGD for gen-
eral convex functions, with constant factors and low-order terms
(in the natural scaling H ~ ¢%) omitted. We applied existing up-
per bounds as optimistically as possible, e.g. making additional
assumptions where necessary to apply the guarantee to our set-
ting, and our derivations are explained in Appendix A. The bolded
term is the one which compares least favorably against minibatch
SGD. Analogous rates for strongly convex functions are given in
Appendix A.

Minibatch SGD ~ HB2 4 _¢B

R vVMKR
. . 2 o
glg}lijmb—tmddlmg % + \/15712
i HB? HB? aB
Stich (2018) Ras T TS + —i
Stich and Karim- HBF:M + \/;{Bﬂ
ireddy (2019) ‘
oM | H’Bto®
gl(l)zilg;i et al R T P NeTro
(Ho?B)'® g B
?Sl:ctl'lcf Zr) bound - “impr KR T VAIKE
i
Ho2B*)'/®
Our lower bound ( (KR)J — + 1(\74]?( -

(Section 5)

“This upper bound applies only when M < KR. It also re-
quires smoothness of each f(z; z) individually, i.e. not just F.

We should note that in an extremely low noise regime
o < H?B?min{4;, %}, the bound of Khaled et al.
(2019) can sometimes improve over minibatch SGD. How-
ever, this only happens when K R steps of sequential SGD
is better than minibatch SGD—i.e. when you are better off
ignoring M — 1 of the machines and just doing serial SGD

on a single machine (such an approach would have error

% + jKiR). This is a trivial regime in which every update
for any of these algorithms is essentially an exact gradient
descent step, thus there is no need for parallelism in the
first place. See Appendix A.3 for further details. The upper
bound we develop in Section 4, in contrast, dominates their
guarantee and shows an improvement over minibatch that
cannot be achieved on a single machine (i.e. without lever-
aging any parallelism). Furthermore, this improvement can
occur even in the natural scaling H = o2 and even when
minibatch SGD is better than serial SGD on one machine.

We emphasize that Table 1 lists the guarantees specialized
to our setting—some of the bounds are presented under
slightly weaker assumptions, or with a more detailed de-
pendence on the noise: Haddadpour et al. (2019a); Stich
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and Karimireddy (2019) analyze local SGD assuming not-
quite-convexity; and Dieuleveut and Patel (2019); Wang
and Joshi (2018) derive guarantees under both multiplica-
tive and additive bounds on the noise. Dieuleveut and Pa-
tel (2019) analyze local SGD with the additional assump-
tion of a bounded third derivative, but even with this as-
sumption do not improve over mini-batch SGD. Numerous
works study local SGD in the non-convex setting (see e.g.
Haddadpour et al., 2019b; Stich and Karimireddy, 2019;
Wang et al., 2017; Yu et al., 2019; Zhou and Cong, 2018).
Although their bounds would apply in our convex setting,
due to the much weaker assumptions they are understand-
ably much worse than minibatch SGD. There is also a large
body of work studying the special case R = 1, i.e. where
the iterates are averaged just one time at the end (Godichon-
Baggioni and Saadane, 2017; Jain et al., 2017; Li et al.,
2014; Rosenblatt and Nadler, 2016; Zhang et al., 2012;
Zinkevich et al., 2010). However, these analyses do not
easily extend to multiple rounds, and the R = 1 constraint
can provably harm performance (see Shamir et al., 2014).
Finally, local SGD has been studied with heterogeneous
data, i.e. where each machine receives stochastic gradients
from different distributions—see Kairouz et al. (2019, Sec.
3.2) arecent survey.

An Alternative Viewpoint: Reducing Communication
In this work, we focus on understanding the best achievable
error for a given M, K, and R. However, one might also
want to know to what extent it is possible to reduce com-
munication without paying for it. Concretely, fix T' = KR,
and consider as a baseline an algorithm which computes T’
stochastic gradients on each machine sequentially, but is
allowed to communicate after every step. We can then ask
to what extent we can compete against this baseline while
using less communication. One way to do this is to use Lo-
cal SGD, which reduces communcation by a factor of K.
However, the amount by which we can reduce communca-
tion using Local SGD is easily determined once we know
the error of Local SGD for each fixed K. Therefore, this
viewpoint of reducing communcation is essentially equiva-
lent to the one we take.

3. Good News: Quadratic Objectives

As we have seen, existing analyses of local SGD are no bet-
ter than that of minibatch SGD. In the special case where F'
is quadratic, we will now show that not only is local SGD
sometimes as good as minibatch SGD, but it is always as
good as minibatch SGD, and sometimes better. In fact, an
accelerated variant of local SGD is minimax optimal for
quadratic objectives. More generally, we show that the lo-
cal SGD anologue for a large family of serial first-order
optimization algorithms enjoys an error guarantee which
depends only on the product K R and not on K or R indi-

vidually. In particular, we consider the following family of
linear update algorithms:

Definition 1 (Linear update algorithm). We say that a first-
order optimization algorithm is a linear update algorithm
if, for fixed linear functions £§t), Lg), the algorithm gener-
ates its t + 1st iterate according to

Tyyp1 = E(Qt) (;L'l, .. ,xt,Vf(Egt)(:cl, . ,mt);zt)) (6)

This family captures many standard first-order methods in-
cluding SGD, which corresponds to the linear mappings
ﬁgt)(xlv ooy xy) = xpand xq = x4 — 0V f (245 2). An-
other notable algorithm in this class is AC-SA (Ghadimi
and Lan, 2013), an accelerated variant of SGD which also
has linear updates. Some important non-examples, how-
ever, are adaptive gradient methods like AdaGrad (Duchi
etal., 2011; McMahan and Streeter, 2010)—these have lin-
ear updates, but the linear functions are data-dependent.

For a linear update algorithm A, we will use local-A to de-
note the local SGD analogue with A replacing SGD. That
is, during each round of communication, each machine in-
dependently executes K iterations of A and then the M re-
sulting iterates are averaged. For quadratic objectives, we
show that this approach inherits the guarantee of .4 with the
benefit of variance reduction:

Theorem 1. Let A be a linear update algorithm
which, when executed for T iterations on any quadratic
(f,D) € F(H,\ B,o?), guarantees EF (z1) — F* <
€(T,0?). Then, local-A’s averaged final iterate Txp =

LS will satisfy EF (g ) — F* < (KR, 57).

We prove this in Appendix B by showing that the average
iterate Z, is updated according to .A—even in the middle
of rounds of communication when Z; is not explicitly com-
puted. In particular, we first show that

Fepr =LY <fla‘:f
| M
= S (e (e ) )) ()
m’'=1
Then, by the linearity of VF' and K(t), we prove

- / N
Vi Z Vf(ﬁgt)(xin ,...,m?”);z{"’ )1

_ VF([,?)(@, o ,gzt)) @)

E

. . . 2 b
and its variance is reduced to ;. Therefore, A’s guarantee
carries over while still benefitting from the lower variance.

To rephrase Theorem 1, on quadratic objectives, local-A is
in some sense equivalent to K R iterations of .4 with the
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gradient variance reduced by a factor of M. Furthermore,
this guarantee depends only on the product K R, and not
on K or R individually. Thus, averaging the T'th iterate of
M independent executions of .4, sometimes called “one-
shot averaging,” enjoys the same error upper bound as 7T’
iterations of size- M minibatch-.A.

Nevertheless, it is important to highlight the boundaries of
Theorem 1. Firstly, A’s error guarantee ¢(7', o) must not
rely on any particular structure of the stochastic gradients
themselves, as this structure might not hold for the implicit
updates of local-A. Furthermore, even if some structure
of the stochastic gradients is maintained for local-A, the
particular iterates generated by local-.4 will generally vary
with K and R (even holding K R constant). Thus, Theorem
1 does not guarantee that local-A with two different values
of K and R would perform the same on any particular in-
stance. We have merely proven matching upper bounds on
their worst-case performance.

We apply Theorem 1 to yield error upper bounds for local-
SGD and local-AC-SA (based on the AC-SA algorithm of
Ghadimi and Lan (2013)) which is minimax optimal:

Corollary 1. For any quadratic (f,D) € F(H,\ =
0, B,0?), there are constants ¢y and cy such that local-
SGD returns a point & such that

HB? B
srto) < (ME o),

_|_
KR VMKR

and local-AC-SA returns a point T such that

B2 oB
EF(z)— F* <c .
() _@( i MKR)
In particular, local-AC-SA is minimax optimal for

quadratic objectives.

Comparing the bound above for local SGD with the bound
for minibatch SGD (5), we see that the local SGD bound
is strictly better, due to the first term scaling as (K R)~!
as opposed to R~!. We note that minibatch SGD can also
be accelerated (Cotter et al., 2011), leading to a bound with
better dependence on R, but this is again outmatched by the
bound for the (accelerated) local-AC-SA algorithm above.
A similar, improved bound can also be proven when the
objective is a strongly convex quadratic.

Prior Work in the Quadratic Setting Local SGD
and related methods have been previously analyzed for
quadratic objectives, but in slightly different settings. Jain
et al. (2017) study a similar setting and analyze our “mini-
batch SGD” for M = 1 and fixed K R, but varying K and
R. They show that when K is sufficiently small relative
to R, then minibatch SGD can compete with K R steps of
serial SGD. They also show that for fixed M > 1 and b7,

when b is sufficiently small then the average of M indepen-
dent runs of minibatch SGD with T steps and minibatch
size b can compete with T steps of minibatch SGD with
minibatch size Mb. These results are qualitatively simi-
lar to ours, but they analyze a specific algorithm while we
are able to provide a guarantee for a broader class of al-
gorithms. Dieuleveut and Patel (2019) analyze local SGD
on quadratic objectives and show a result analogous to our
Theorem 1. However, their result only holds when M is
sufficiently small relative to K and R. Finally, there is a
literature on “one-shot-averaging” for quadratic objectives,
which corresponds to an extreme where the outputs of an
algorithm applied to several different training sets are aver-
aged, (e.g. Zhang et al., 2013a;b). These results also high-
light similar phenomena, but they do not apply as broadly
as Theorem 1 and they do not provide as much insight into
local SGD specifically.

4. More Good News: General Convex
Objectives

In this section, we present the first analysis of local SGD for
general convex objectives that is not dominated by mini-
batch SGD. For the first time, we can identify a regime of
M, K, and R in which local SGD provably performs bet-
ter than minibatch SGD in the worst case. Furthermore, our
analysis dominates all previous upper bounds.

Theorem 2. Let (f,D) € F(H,\, B,0?). When A = 0,
an appropriate average of the iterates of Local SGD with

an optimally tuned constant stepsize satisfies for a univer-
sal constant c

E[F(2) - F(z")]

R {HB2 , 0B (Ho?BY)
- KR MKR  K/3R2/3°
HB? oB
KR JKT%}

If A > 0O, then an appropriate average of the iterates of
Local SGD with decaying stepsizes satisfies for a universal
constant ¢

E[F(2) — F(z7)]

AKR o2
< e¢-mi 2 _
<e mm{HB exp( 4H) VKR
Ho? log(0 4 M)
MK R? ’
AMKR o?
2 J—
HB exp( 10 )+ )\KR}'

This is proven in Appendix C. We use a similar approach

as Stich (2018), who analyzes the behavior of the aver-
: = _ 1 M m L

aged iterate Ty = 7y ,,_; 2", even when it is not ex-
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plicitly computed. They show, in particular, that the aver-
aged iterate evolves almost according to size- M -minibatch
SGD updates, up to a term proportional to the dispersion
of the individual machines” iterates & S"M_ ||z, — 277||%.
Stich bounds this with O(n? K25?), but this bound is too
pessimistic—in particular, it holds even if the gradients are
replaced by arbitrary vectors of norm ¢. In Lemma 5, we
improve this bound to O(n? K o) which allows for our im-
proved guarantee.’ Our approach resembles that of Khaled
et al. (2019), which we became aware of in the process
of preparing this manuscript, however our analysis is more
refined. In particular, we optimize more carefully over the
stepsize so that our analysis applies for any M, K, and R
(rather than just M < K R) and shows an improvement
over minibatch SGD in a significantly broader regime, in-
cluding when o2 > 0 (see Appendix A.3 for additional
details).

Comparison of our bound with minibatch SGD We
now compare the upper bound from Theorem 2 with the
guarantee of minibatch SGD. For clarity, and in order to
highlight the role of M, K, and R in the convergence rate,
we will compare rates for general convex objectives when
H = B = 02 = 1, and we will also ignore numerical
constants and the logarithmic factor in Theorem 2. In this
setting, the worst-case error of minibatch SGD is:

1 1
emB-sGD = O| = + ——= 9
MB-SGD ( R KR R> )
Our guarantee for local SGD from Theorem 2 reduces to:

1 1
10
K3R3 + MKR) (10

eLsep < O <

These guarantees have matching statistical terms of
#m’ which cannot be improved by any first-order al-
gorithm (Nemirovsky and Yudin, 1983). Therefore, in
the regime where the statistical term dominates both rates,
ie. MK < R and MK < R, both algorithms will
have similar worst-case performance. When we leave this
noise-dominated regime, we see that local SGD’s guaran-
tee K~3R™3 is better than minibatch SGD’s R~ when
K 2 R and is worse when K < R. This makes sense
intuitively: minibatch SGD benefits from computing very
precise gradient estimates, but pays for it by taking fewer
gradient steps; conversely, each local SGD update is much
noisier, but local SGD is able to make K times more up-
dates.

3In recent work, Stich and Karimireddy (2019) present a new

analysis of local-SGD which, in the general convex case is of the

2 s ..
form M I;;B + \/;CIBW' As stated, this is strictly worse than mini-

batch SGD. However, we suspect that this bound should hold for
any 1 < M’ < M because, intuitively, having more machines
should not hurt you. If this is true, then optimizing their bound
over M’ yields a similar result as Theorem 2.

This establishes that for general convex objectives in the
large-M and large-K regime, local SGD will strictly out-
perform minibatch SGD. However, in the large-M and
small- K regime, we are only comparing upper bounds, so
it is not clear that local SGD will in fact perform worse
than minibatch SGD. Nevertheless, it raises the question of
whether this is the best we can hope for from local SGD.
Is local SGD truly better than minibatch SGD in some
regimes but worse in others? Or, should we believe the
intuitive argument suggesting that local SGD is always at
least as good as minibatch SGD?

5. Bad News: Minibatch SGD Can
Outperform Local SGD

In Section 3, we saw that when the objective is quadratic,
local SGD is strictly better than minibatch SGD, and en-
joys an error guarantee that depends only on K R and not
K or R individually. In Section 4, we analyzed local SGD
for general convex objectives and showed that local SGD
sometimes outperforms minibatch SGD. However, we did
not show that it always does, nor that it is always even com-
petitive with minibatch SGD. We will now show that this is
not simply a failure of our analysis—in a certain regime,
local SGD really is inferior (in the worst-case) to mini-
batch SGD, and even to thumb-twiddling SGD. We show
this by constructing a simple, smooth piecewise-quadratic
objective in three dimensions, on which local SGD per-
forms poorly. We define this hard instance (f,D) €
F(H,\, B,c?) as

flw;2) = ;(azl - 2)2+§<x2—5§>2 (11)

A ol e

where Pz = 0] = P[z = —0] = § and [y], = max{y,0}.
Theorem 3. For 0 < X < 1L there exists (f,D) €
F(H,\, B,c?) such that for any K > 2 and M, R > 1,
local SGD initialized at O with any fixed stepsize, will out-
put a point T such that for a universal constant c

EF(Z) — min F(x)

T
H1/302/BB4/3
K2/3R2/3

Ho? 9
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We defer a detailed proof of the Theorem to Appendix D.
Intuitively, it relies on the fact that for non-quadratic func-
tions, the SGD updates are no longer linear as in Section 3,
and the local SGD dynamics introduce an additional bias
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term which does not depend* on M, and scales poorly with
K, R. In fact, this phenomenon is not unique to our con-
struction, and can be expected to exist for any “sufficiently”
non-quadratic function. With our construction, the proof
proceeds by showing that the suboptimality is large unless
T3 & % but local SGD introduces a bias which causes
3 to “drift” in the negative direction by an amount pro-
portional to the stepsize. On the other hand, optimizing the
first term of the objective requires the stepsize to be rela-
tively large. Combining these yields the first term of the
lower bound. The second term is classical and holds even
for first-order algorithms that compute M K R stochastic
gradients sequentially (Nemirovsky and Yudin, 1983).

In order to compare this lower bound with Theorem 2 and
with minibatch SGD, we again consider the general convex
setting with H = B = 02 = 1. Then, the lower bound re-

ducesto K~ 3R™35 +(MKR)~ 3, Comparing this to The-
orem 2, we see that our upper bound is tight up to a factor
of K~5 in the optimization term. Furthermore, compar-
ing this to the worst-case error of minibatch SGD (9), we
see that local SGD is indeed worse than minibatch SGD
in the worst case when K is small enough relative to R.
The cross-over point is somewhere between K < VR and
K < R; for smaller K, minibatch SGD is better than local
SGD in the worst case, for larger K, local SGD is better in
the worst case. Since the optimization terms of minibatch
SGD and thumb-twiddling SGD are identical, this further
indicates that local SGD is even outperformed by thumb-
twiddling SGD in the small K and large M regime.

Finally, it is interesting to note that in the strongly convex
case (where A > 0), the gap between local GD and mini-
batch SGD can be even more dramatic: In that case, the
optimization term of minibatch SGD scales as exp(—R)
(see Stich (2019) and references therein), while our the-
orem implies that local SGD cannot obtain a term better
than (K R)~2. This implies an exponentially worse depen-
dence on R in that term, and a worse bound as long as
R 2 log(K).

In order to prove Theorem 3 we constructed an artificial,
but easily analyzable, situation where we could prove ana-
Iytically that local SGD is worse than mini-batch. In Fig-
ure 1, we also demonstrate the behaviour empirically on
a logistic regression task, by plotting the suboptimality of
local SGD, minibatch SGD, and thumb-twiddling SGD it-
erates with optimally tuned stepsizes. As is predicted by

“To see this, consider for example the univariate function
f(z;2) = 2 + [2]3 + z2 where z is some zero-mean bounded
random variable. It is easy to verify that even if we have infinitely
many machines (M = o0), running local SGD for a few iterations
starting from the global minimum = = 0 of F(x) := E.[f(z; 2)]
will generally return a point bounded away from 0. In contrast,
minibatch SGD under the same conditions will remain at 0.

Theorem 3, we see local SGD goes from performing worse
than minibatch in the small K = 5 regime, but improving
relative to the other algorithms as K increases to 40 and
then 200, when local SGD is far superior to minibatch. For
each fixed K, increasing M causes thumb-twiddling SGD
to improve relative to minibatch SGD, but does not have
a significant effect on local SGD, which is consistent with
introducing a bias which depends on K but not on M. This
highlights that the “problematic regime” for local SGD is
where there are few iterations per round.

6. Future work

In this paper, we provided the first analysis of local SGD
showing improvement over minibatch SGD in a natural set-
ting, but also demonstrated that local SGD can sometimes
be worse than minibatch SGD, and is certainly not optimal.

As can be seen from Table 1, our upper and lower bounds
for local SGD are still not tight. The first term depends
on K'/3 versus K?/3—we believe the correct behaviour
might be in between, namely /K, matching the bias of K-
step SGD. The exact worst case behaviour of local SGD is
therefore not yet resolved.

But beyond obtaining a precise analysis of local SGD, our
paper highlights a more important challenge: we see that
local SGD is definitely not optimal, and does not even al-
ways improve over minibatch SGD. Can we suggest an op-
timal algorithm in this setting? Or at least a method that
combines the advantages of both local SGD and minibatch
SGD and enjoys guarantees that dominate both? Our work
motivates developing such an algorithm, which might also
have benefits in regimes where local SGD is already better
than minibatch SGD.

To answer this question will require new upper bounds and
perhaps also new lower bounds. Looking to the analysis
of local AC-SA for quadratic objectives in Corollary 1, we
might hope to design an algorithm which achieves error

2
H32 oB ) (12)
KR) MKR

for general convex objectives. That is, an algorithm which
combines the optimization term for K R steps of accel-
erated gradient descent with the optimal statistical term.
If this were possible, it would match the lower bound of
Woodworth et al. (2018) and therefore be optimal with re-
spect to this communication structure.

EF(2) — F(z*) < 0<(
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Figure 1. We constructed a dataset of 50000 points in R?® with the ith coordinate of each point distributed independently according to
a Gaussian distribution A(0, 12). The labels are generated via Ply = 1|z] = o(min{(w},z) + b}, (w3, z) + b3}) for wi,wi ~

K2

N (0, Iosx25) and b7, b5 ~ N'(0,1), where o(a) = 1/(1+exp(—a)) is the sigmoid function, i.e. the labels correspond to an intersection
of two halfspaces with label noise which increases as one approaches the decision boundary. We used each algorithm to train a linear
model with a bias term to minimize the logistic loss over the 50000 points, i.e. f is the logistic loss on one sample and D is the empirical
distribution over the 50000 samples. For each M, K, and algorithm, we tuned the constant stepsize to minimize the loss after r rounds
of communication individually for each 1 < r < R. Let xa,r , denote algorithm A’s iterate after the rth round of communication when
using constant stepsize 7). The plotted lines are an approximation of ga(r) = min,, F(za ) — F(z*) for each A where the minimum

is calculated using grid search on a log scale.
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