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Abstract

We design a general framework for answering
adaptive statistical queries that focuses on
providing explicit confidence intervals along
with point estimates. Prior work in this area
has either focused on providing tight confi-
dence intervals for specific analyses, or pro-
viding general worst-case bounds for point es-
timates. Unfortunately, as we observe, these
worst-case bounds are loose in many settings
— often not even beating simple baselines like
sample splitting. Our main contribution is
to design a framework for providing valid,
instance-specific confidence intervals for point
estimates that can be generated by heuris-
tics. When paired with good heuristics, this
method gives guarantees that are orders of
magnitude better than the best worst-case
bounds. We provide a Python library imple-
menting our method.

1 Introduction

Many data analysis workflows are adaptive, i.e., they re-
use data over the course of a sequence of analyses, where
the choice of analysis at any given stage depends on
the results from previous stages. Such adaptive re-use
of data is an important source of overfitting in machine
learning and false discovery in the empirical sciences
[Gelman and Loken, 2014]. Adaptive workflows arise,
for example, when exploratory data analysis is mixed
with confirmatory data analysis, when hold-out sets are
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re-used to search through large hyper-parameter spaces
or to perform feature selection, and when datasets are
repeatedly re-used within a research community.

A simple solution to this problem—that we can view as
a naive benchmark—is to simply not re-use data. More
precisely, one could use sample splitting: partitioning
the dataset into k equal-sized pieces, and using a fresh
piece of the dataset for each of k adaptive interactions
with the data. This allows us to treat each analysis as
nonadaptive, and allows many quantities of interest to
be accurately estimated with their empirical estimate,
and paired with tight confidence intervals that come
from classical statistics. This seemingly naive approach
is wasteful in its use of data, however: the sample size
needed to conduct a series of k£ adaptive analyses grows
linearly with k.

A line of recent work [Dwork et al., 2015¢,a,b, Russo
and Zou, 2016, Bassily et al., 2016, Rogers et al., 2016,
Feldman and Steinke, 2017a,b, Xu and Raginsky, 2017,
Zrnic and Hardt, 2019, Mania et al., 2019] aims to
improve on this baseline by using mechanisms which
provide “noisy” answers to queries rather than exact
empirical answers. Methods coming from these works
require that the sample size grow proportional to the
square root of the number of adaptive analyses, dra-
matically beating the sample splitting baseline asymp-
totically. Unfortunately, the bounds proven in these
papers—even when optimized—only beat the naive
baseline when both the dataset size n, and the number
of adaptive rounds k, are very large; see Figure 1.

The failure of these worst-case bounds to beat simple
baselines in practice — despite their attractive asymp-
totics — has been a major obstacle to the practical
adoption of techniques from this literature. There are
two difficulties with directly improving this style of
bounds. The first is that we are limited by what we
can prove: mathematical analyses can often be loose by
constants that are significant in practice. The more fun-
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damental difficulty is that these bounds are guaranteed
to hold even against a worst-case data analyst, who is
adversarially attempting to find queries which over-fit
the sample: one would naturally expect that when
applied to a real workload of queries, such worst-case
bounds would be extremely pessimistic. We address
both difficulties in this paper.

Contributions In this paper, we move the empha-
sis from algorithms that provide point estimates to
algorithms that explicitly manipulate and output con-
fidence intervals based on the queries and answers so
far, providing the analyst with both an estimated value
and a measure of its actual accuracy. At a technical
level, we have two types of contributions:

First, we give optimized worst-case bounds that care-
fully combine techniques from different pieces of prior
work—-plotted in Figure 1. For certain mechanisms,
our improved worst-case bounds are within small con-
stant factors of optimal, in that we can come close to
saturating their error bounds with a concrete, adver-
sarial query strategy (Section 2). However, even these
optimized bounds require extremely large sample sizes
to improve over the naive sample splitting baseline,
and their pessimism means they are often loose.

Worst-case bounds, t=0.1,8=0.05
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Figure 1: Comparison of various worst-case bounds for
the Gaussian mechanism with the sample splitting base-
line. ‘DFHPRR’ and ‘BNSSSU’ refer to bounds given in
prior work (Dwork et al. [2015d], Bassily et al. [2016]).
The other lines plot improved worst-case bounds de-
rived in this paper, whereas ‘JLNRSS’ refers to bounds
in subsequent work (Jung et al. [2019]). (See Section 2
for the full model and parameter descriptions.)

Our main result is the development of a simple frame-
work called Guess and Check, that allows an analyst
to pair any method for “guessing” point estimates and
confidence interval widths for their adaptive queries,
and then rigorously validate those guesses on an addi-
tional held-out dataset. So long as the analyst mostly

guesses correctly, this procedure can continue indefi-
nitely. The main benefit of this framework is that it
allows the analyst to guess confidence intervals whose
guarantees exceed what is guaranteed by the worst-case
theory, and still enjoy rigorous validity in the event
that they pass the “check”. This makes it possible to
take advantage of the non-worst-case nature of natural
query strategies, and avoid the need to “pay for” con-
stants that seem difficult to remove from worst-case
bounds. Our empirical evaluation demonstrates that
our approach can improve on worst-case bounds by
orders of magnitude, and that it improves on the naive
baseline even for modest sample sizes: see Figure 2,
and Section 3 for details. We also provide a Python
library containing an implementation of our Guess and
Check framework.

GnC confidence widths, T=0.1,8=0.05
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Figure 2: Performance of Guess and Check with the
Gaussian mechanism providing the guesses (“GnC
Gauss”) for a plausible query strategy (see Section 3.1),
compared with the best worst-case bounds for the Gaus-
sian mechanism (“Gauss Bnd”), and the baseline.

Related Work Our “Guess and Check” (GnC)
framework draws inspiration from the Thresholdout
method of Dwork et al. [2015a], which uses a holdout
set in a similar way. GnC has several key differences,
which turn out to be crucial for practical performance.
First, whereas the “guesses” in Thresholdout are simply
the empirical query answers on a “training” portion of
the dataset, we make use of other heuristic methods
for generating guesses (including, in our experiments,
Thresholdout itself) that empirically often seem to pre-
vent overfitting to a substantially larger degree than
their worst-case guarantees suggest. Second, we make
confidence-intervals first-order objects: whereas the
“guesses” supplied to Thresholdout are simply point
estimates, the “guesses” supplied to GnC are point es-
timates along with confidence intervals. Finally, we use
a more sophisticated analysis to track the number of
bits leaked from the holdout, which lets us give tighter
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confidence intervals and avoids the need to a priori set
an upper bound on the number of times the holdout is
used. Gossmann et al. [2018] use a version of Thresh-
oldout to get worst-case accuracy guarantees for values
of the AUC-ROC curve for adaptively obtained queries.
However, apart from being limited to binary classifica-
tion tasks and the dataset being used only to obtain
AUC values, their bounds require “unrealistically large”
dataset sizes. Our results are complementary to theirs;
by using appropriate concentration inequalities, GnC
could also be used to provide confidence intervals for
AUC values. Their technique could be used to provide
the “guesses” to GnC.

Our improved worst-case bounds combine a number of
techniques from the existing literature: namely the in-
formation theoretic arguments of Russo and Zou [2016],
Xu and Raginsky [2017] together with the “monitor”
argument of Bassily et al. [2016], and a more refined ac-
counting for the properties of specific mechanisms using
concentrated differential privacy (Dwork and Rothblum
[2016], Bun and Steinke [2016b]).

Feldman and Steinke [2017a,b] give worst-case bounds
that improve with the variance of the asked queries.
In Section 3.1, we show how GnC can be used to give
tighter bounds when the empirical query variance is
small.

Mania et al. [2019] give an improved union bound for
queries that have high overlap, that can be used to im-
prove bounds for adaptively validating similar models,
in combination with description length bounds. Zrnic
and Hardt [2019] take a different approach to going
beyond worst-case bounds in adaptive data analysis,
by proving bounds that apply to data analysts that
may only be adaptive in a constrained way. A difficulty
with this approach in practice is that it is limited to
analysts whose properties can be inspected and verified
— but provides a potential explanation why worst-case
bounds are not observed to be tight in real settings.
Our approach is responsive to the degree to which the
analyst actually overfits, and so will also provide rela-
tively tight confidence intervals if the analyst satisfies
the assumptions of Zrnic and Hardt [2019].

In very recent work (subsequent to this paper), Jung
et al. [2019] give a further tightening of the worst-case
bounds, improving the dependence on the coverage
probability 5. Their bounds (shown in Figure 1) do
not significantly affect the comparison with our GnC
method since they yield only worst-case analysis.

1.1 Preliminaries

As in previous work, we assume that there is a dataset
X = (z1, -+ ,xpn) ~ D™ drawn i.i.d. from an unknown
distribution D over a universe X'. This dataset is the

input to a mechanism M that also receives a sequence
of queries ¢1, ¢, ... from an analyst A and outputs, for
each one, an answer. Each ¢; is a statistical query, de-
fined by a bounded function ¢; : X — [0, 1]. We denote
the expectation of a statistical query ¢ over the data
distribution by ¢(D) = E,~p [¢(z)], and the empirical
average on a dataset by ¢(X) =1 3" | ¢(z;).

The mechanism’s goal is to give estimates of ¢;(D) for
query ¢; on the unknown D. Previous work looked at
analysts that produce a single point estimate a;, and
measured error based on the distances |a; — ¢;(D)]. As
mentioned above, we propose a shift in focus: we ask
mechanisms to produce a confidence interval specified
by a point estimate a; and width 7;. The answer (a;, 7;)
is correct for ¢; on D if ¢;(D) € (a; — 7,a; + Ti).
(Note that the data play no role in the definition of
correctness—we measure only population accuracy.)

An interaction between randomized algorithms M and
A on dataset X € X™ (denoted M(X) = A) consists
of an unbounded number of query-answer rounds: at
round 4, A sends ¢;, and M(X) replies with (a;, 7).
M receives X as input. A receives no direct input, but
may select queries adaptively, based on the answers
in previous rounds. The interaction ends when either
the mechanism or the analyst stops. We say that the
mechanism provides simultaneous coverage if, with high
probability, all its answers are correct:

Definition 1.1 (Simultaneous Coverage). Given § €
(0,1), we say that M has simultaneous coverage 1 — 3

if, for all n € N, all distributions D on X and all
randomized algorithms A,

Pr Vi e [k] :
X~D",
((bi,a0.m) Y —(M(X)=A)

¢Z(D) Gai:l:’n} > 175

We denote by k the (possibly random) number of rounds
in a given interaction.

Definition 1.2 (Accuracy). We say M is (7,0)-

accurate, if M has simultaneous coverage 1 — 8 and its

interval widths satisfy mialg]( 7; < 7 with probability 1.
ic

2 Confidence intervals from
worst-case bounds

Our emphasis on explicit confidence intervals led us to
derive worst-case bounds that are as tight as possible
given the techniques in the literature. We discuss the
Gaussian mechanism here, and defer the application to
Thresholdout to the supplementary material.

The Gaussian mechanism is defined to be an algorithm
that, given input dataset X ~ D" and a query ¢ :
X — [0,1], reports an answer a = ¢(X) + N (O, ﬁ),
where p > 0 is a parameter. It has existing analyses
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for simultaneous coverage (see Dwork et al. [2015d],
Bassily et al. [2016]) — but these analyses involve large,
sub-optimal constants. Here, we provide an improved
worst-case analysis by carefully combining existing tech-
niques. We use results from Bun and Steinke [2016a]
to bound the mutual information of the output of the
Gaussian mechanism with its input. We then apply
an argument similar to that of Russo and Zou [2016]
to bound the bias of the empirical average of a sta-
tistical query selected as a function of the perturbed
outputs. Finally, we use Chebyshev’s inequality, and
the monitor argument from Bassily et al. [2016] to ob-
tain high probability accuracy bound. Figure 1 shows
the improvement in the number of queries that can be
answered with the Gaussian mechanism with (0.1, 0.05)-
accuracy. Our guarantee is stated below, with its proof
deferred to the supplementary material.

Theorem 2.1. Given input X ~ D™ confi-
dence parameter [, and parameter p, the Gaus-
sian  mechanism is (1, )-accurate, where T =

1 . 2pkn—In(1—X) 1 1 4k
\/W'Aé%ﬁ) (P 2) i (),

We now consider the extent to which our analyses
are improvable for worst-case queries to the Gaussian
and the Thresholdout mechanisms. To do this, we de-
rive the worst query strategy in a particular restricted
regime. We call it the “single-adaptive query strategy”,
and show that it maximizes the root mean squared
error (RMSE) amongst all single query strategies un-
der the assumption that each sample in the dataset is
drawn u.a.r. from {—1,1}**! and the strategy is given
knowledge of the empirical correlations of each of the
first k features with the (k4 1)st feature (which can be
obtained e.g. with k non-adaptive queries asked prior
to the adaptive query). We provide a pseudocode for
the strategy and its analysis in the supplementary ma-
terial. To make the bounds comparable, we translate
our accuracy upper bounds for both the mechanisms
to RMSE bounds (deferred to the supplementary ma-
terial). Figure 3 shows the difference between our
best upper bound and the realized RMSE (averaged
over 100 executions) for the two mechanisms using
n = 5,000 and various values of k. (For the Gaus-
sian, we set p separately for each k, to minimize the
upper bound.) On the top, we see that the two bounds
for the Gaussian mechanism are within a factor of
2.5, even for k = 50,000 queries. Our bounds are
thus reasonably tight in one important setting. For
Thresholdout (bottom side), however, we see a large
gap between the bounds which grows with k, even for
our best query strategy'. This result points to the

"We tweak the adaptive query in the single-adaptive
query strategy to result in maximum error for Thresholdout.
We also tried “tracing” attack strategies (adapted from the

promise for empirically-based confidence intervals for
complex mechanisms that are harder to analyze.
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Figure 3: Worst-case upper (proven) and lower RMSE
bounds (realized via the single-adaptive query strategy)
with n = 5,000 for Gaussian (top) and Thresholdout
(bottom).

3 The Guess and Check Framework

In light of the inadequacy of worst-case bounds, we
here present our Guess and Check (GnC) framework
which can go beyond the worst case. It takes as inputs
guesses for both the point estimate of a query, and a
confidence interval width. If GnC can validate a guess,
it releases the guess. Otherwise, at the cost of widening
the confidence intervals provided for future guesses, it
provides the guessed confidence width along with a
point estimate for the query using the holdout set such
that the guessed width is valid for the estimate.

An instance of GnC, M, takes as input a dataset X,
desired confidence level 1 — 3, and a mechanism M,
which operates on inputs of size ny, < n. M randomly

fingerprinting lower bounds of Bun et al. [2014], Hardt and
Ullman [2014], Steinke and Ullman [2015]) that contained
multiple adaptive queries, but gave similar results.
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splits X into two, giving one part X, to M, and re-
serving the rest as a holdout X. For each query ¢;,
mechanism M, uses X, to make a “guess” (ag,4,7;) to
M, for which M conducts a validity check. If the check
succeeds, then M releases the guess as is, otherwise M
uses the holdout Xj to provide a response containing
a discretized answer that has 7; as a valid confidence
interval. This is closely related to Thresholdout. How-
ever, an important distinction is that the width of the
target confidence interval, rather than just a point es-
timate, is provided as a guess. Moreover, the guesses
themselves can be made by non-trivial algorithms.

Algorithm 1 Guess and Check

Require: Data X € X", confidence parameter /3, ana-
lyst having mechanism M, with inputs of size ng < n

Randomly split X into a guess set X, of size ny to
input into My, and a holdout X}, of size np, =n—ny
f+<0

cj for j > 0 //should just satisfy > ¢; <1

__6
2(741)2
©2(j+1) 56

for i =1 to oo do
//Compute # possible transcripts

if f > 0 then
Vignd < () e (% )
else
Vi,f,'y{ ~—1
Bi < (B - ci—1-cf) Vifrd
Receive query ¢; and guess (ag:,7i) <

My(Xy, ¢;) from analyst
an,i < ¢i(Xn)
Ty, < HoldoutTol(B;, ag i, Ti, an i)
returns a valid tolerance for ap,;
if |ag; — an,i| <7 — 7, then
Output (ag;,7;) to analyst
else
f«<f+1
Vi ma}§'y s.t. 2e=2(m=n i < Bi

0,7

//holdout answer

//HoldoutT ol

//max.

discretization parameter with validity

if vy > 0 then
Output (|an,)~,,7:) to analyst, where [y],
denotes y discretized to multiples of

else
Output L to analyst
break

//Terminate for loop

Depending on how long one expects/requires GnC to
run, the input confidence parameter S can guide the
minimum value of the holdout size n; that will be re-
quired for GnC to be able to get a holdout width 7y,
smaller than the desired confidence widths 7;,Vi > 1.
Note that this can be evaluated before starting GnC.
Apart from that, we believe what is a good split will

largely depend on the Guess mechanism. Hence, in
general the split parameter should be treated as a hy-
perparameter for our GnC method. We provide pseu-
docode for GnC in Algorithm 1, and a block schematic
of how a query is answered by GnC in Figure 4.

We provide coverage guarantees for GnC without any
restrictions on the guess mechanism. To get the guar-
antee, we first show that for query ¢;, if function
HoldoutTol returns a (1 — ;)-confidence interval 7y,
for holdout answer ay, ;, and GnC’s output is the guess
(ag,i,7:), then 7; is a (1 — ;)-confidence interval for
ag;. We can get a simple definition for HoldoutT ol
(formally stated in the supplementary material) via
an application of Chernoff bound, but we provide a
slightly sophisticated variant below that uses the guess
and holdout answers to get better tolerances, espe-
cially under low-variance queries. We defer the proof
of Lemma 3.1 to the supplementary material.

Lemma 3.1. If the function HoldoutTol in GnC (Al-
gorithm 1) is defined as

HoldoutTol(B',ay,T,an)

1tuE-D\" - 8
( AP ) S
arg min where £ solves if ag > an,
7/€(0,7) ¢ ,
_met
_ 1+u(ef+1) Ga
e -n\" o
L ) =2
arg min where £ solves 0. w.
T7/€(0,7) 1L / ’
_wet
Tre/(eltn) — M T
where 1 = ay — 7 and ¢ = 1 —ay — 7, then for

each query ¢; s.t. GnC’s output is (ag,;,7;), we have

Pr(lag: — ¢:(D)| > 7;) < fi.

Next, if failure f occurs within GnC for query ¢;, by
applying a Chernoff bound we get that v is the max-
imum possible discretization parameter s.t. 7; is a
(1 — fB;)-confidence interval for the discretized holdout
answer |ap;|,,. Finally, we get a simultaneous cover-
age guarantee for GnC by a union bound over the error
probabilities of the validity over all possible transcripts
between GnC and any analyst .4 with adaptive queries
{¢1,...,¢r}. The guarantee is stated below, with its
proof deferred to the supplementary material.

Theorem 3.2. The Guess and Check mechanism (Al-
gorithm 1), with inputs dataset X ~ D™, confidence
parameter 3, and mechanism M, that, using inputs of
size ng < n, provides responses (“guesses”) of the form
(ag,i, ;) for query ¢;, has simultaneous coverage 1 — f3.

3.1 Experimental evaluation

Now, we provide details of our empirical evaluation of
the Guess and Check framework. In our experiments,
we use two mechanisms, namely the Gaussian mecha-
nism and Thresholdout, for providing guesses in GnC.
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Figure 4: A schematic of how query ¢ is answered via our Guess and Check (GnC) framework. Dataset X is the
guess set randomly partitioned by GnC. The dotted box represents computations that are previleged, and are not

accessible to the analyst.

For brevity, we refer to the overall mechanism as GnC
Gauss when the Gaussian is used to provide guesses,
and GnC Thresh when Thresholdout is used.

Strategy for performance evaluation: Some mech-
anisms evaluated in our experiments provide worst-
case bounds, whereas the performance of others is
instance-dependent and relies on the amount of adap-
tivity present in the querying strategy. To highlight
the advantages of the latter, we design a query strategy
called the quadratic-adaptive query strategy. Briefly,
it contains two types of queries: random non-adaptive
queries in which each sample’s contribution is gener-
ated i.i.d. from a Bernoulli distribution, and adap-
tive queries which are linear combinations of previous
queries. The adaptive queries become more sparsely dis-
tributed with time; “hard” adaptive queries ¢;,7 > 1,
are asked when i is a perfect square. They are com-
puted in a similar manner as in the strategy used in
Figure 3. We provide pseudocode for the strategy in
the supplementary material.

Experimental Setup: We run the quadratic-
adaptive strategy for up to 40,000 queries. We tune
the hyperparameters of each mechanism to optimize
for this query strategy. We fix a confidence parameter
B and set a target upper bound 7 on the maximum
allowable error we can tolerate, given our confidence
bound. We evaluate each mechanism by the number
of queries it can empirically answer with a confidence
width of 7 for our query strategy while providing a
simultaneous coverage of 1 — 3: i.e. the largest number
of queries it can answer while providing (7, 8)-accuracy.

We plot the average and standard deviation of the
number of queries k answered before it exceeds its
target error bound in 20 independent runs over the
sampled data and the mechanism’s randomness. When
we plot the actual realized error for any mechanism, we
denote it by dotted lines, whereas the provably valid
error bounds resulting from the confidence intervals
produced by GnC are denoted by solid lines. Note that
the empirical error denoted by dotted lines is not actu-
ally possible to know without access to the distribution,
and is plotted just to visualize the tightness of the prov-
able confidence intervals. We compare to two simple
baselines: sample splitting, and answer discretization:
the better of these two is plotted as the thick solid
line. For comparison, the best worst-case bounds for
the Gaussian mechanism (Theorem 2.1) are shown as
dashed lines. Note that we improve by roughly two
orders of magnitude compared to the tightest bounds
for the Gaussian. We improve over the baseline at
dataset sizes n > 2, 000.

Boost in performance for low-variance queries:
Since all the queries we construct take binary values
on a sample x € X, the variance of query ¢; is given by
var(¢:) = ¢:(D)(1—6:(D)), as ¢:(D) = Pr (¢4(x) = 1).
Now, var(¢;) is maximized when ¢;(D) = 0.5. Hence,
informally, we denote query ¢; as low-variance if either
¢i(D) < 0.5, or ¢;(D) > 0.5. We want to be able
to adaptively provide tighter confidence intervals for
low-variance queries (as, for e.g., the worst-case bounds
of Feldman and Steinke [2017a,b] are able to). For in-
stance, in Figure 5, we show that in the presence of
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low-variance queries, using Lemma 3.1 for HoldoutT ol
(plot labelled “GnC Check:MGF”) results in a signif-
icantly better performance for GnC Gauss as com-
pared to using a Chernoff bound (plot labelled “GnC
Check:Chern”). We fix 7, = 0.05, and set ¢;(D) = 0.9
for i > 1. We can see that as the dataset size grows,
using Lemma 3.1 provides an improvement of almost 2
orders of magnitude in terms of the number of queries &k
answered. This is due to Lemma 3.1 providing tighter
holdout tolerances 75, for low-variance queries (with
guesses close to 0 or 1), compared to those obtained via
the Chernoff bound (agnostic to the query variance).
Thus, we use Lemma 3.1 for HoldoutTol in all exper-
iments with GnC below. The worst-case bounds for
the Gaussian don’t promise a coverage of 1 — 3 even
for £k =1 in the considered parameter ranges. This is
representative of a general phenomenon: switching to
GnC-based bounds instead of worst-case bounds is of-
ten the difference between obtaining useful vs. vacuous
guarantees.

Low-variance queries, T=£=0.05
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Figure 5: Gain in performance for GnC Gauss by using
Lemma 3.1 for HoldoutTol (“GnC Check:MGF”), as
compared to the simple variant obtained via Chernoff
bound (“GnC Check:Chern”).

Performance at high confidence levels: The
bounds we prove for the Gaussian mechanism, which
are the best known worst-case bounds for the con-
sidered sample size regime, have a substantially sub-
optimal dependence on the coverage parameter (3 :
v/1/B. On the other hand, sample splitting (and
the bounds from Dwork et al. [2015d], Bassily et al.
[2016] which are asymptotically optimal but vacuous at
small sample sizes) have a much better dependence on
B :1n(1/25). Since the coverage bounds of GnC are
strategy-dependent, the dependence of 7 on S is not
clear a priori. In Figure 6, we show the performance of
GnC Gauss (labelled “GnC”) when 8 € {0.05,0.005}.
We see that reducing 8 by a factor of 10 has a neg-
ligible effect on GnC’s performance. Note that this

is the case even though the guesses are provided by
the Gaussian, for which we do not have non-vacuous
bounds with a mild dependence on [ in the considered
parameter range (see the worst-case bounds, plotted
as “Bnd”) — even though we might conjecture that
such bounds exist. This gives an illustration of how
GnC can correct deficiencies in our worst-case theory:
conjectured improvements to the theory can be made
rigorous with GnC'’s certified confidence intervals.

High confidence levels, T=0.1
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Figure 6: Performance of GnC Gauss (“GnC”), and the
best Gaussian bounds (“Bnd”), for 5 € {0.05,0.005}.

GnC with different guess mechanisms: GnC is
designed to be modular, enabling it to take advantage of
arbitrarily complex mechanisms to make guesses. Here,
we compare the performance of two such mechanisms
for making guesses, namely the Gaussian mechanism,
and Thresholdout. In Figure 7, we first plot the number
of queries answered by the Gaussian (“Gauss Emp”)
and Thresholdout (“Thresh Emp”) mechanisms, respec-
tively, until the maximum empirical error of the query
answers exceeds 7 = 0.1. It is evident that Thresh-
oldout, which uses an internal holdout set to answer
queries that likely overfit to its training set, provides
better performance than the Gaussian mechanism. In
fact, we see that for n > 5000, while Thresholdout is
always able to answer 40,000 queries (the maximum
number of queries we tried in our experiments), the
Gaussian mechanism isn’t able to do so even for the
largest dataset size we consider. Note that the “em-
pirical” plots are generally un-knowable in practice,
since we do not have access to the underlying distri-
butions. But they serve as upper bounds for the best
performance a mechanism can provide.

Next, we fix § = 0.05, and plot the performance of
GnC Gauss and GnC Thresh. We see that even though
GnC Thresh has noticeably higher variance, it provides
performance that is close to two orders of magnitude
larger than GnC Gauss when n > 8000. Moreover, for
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Figure 7: Performance of GnC with Gaussian (“GnC
Gauss”), and Thresholdout (“GnC Thresh”) mecha-
nisms, together with their empirical error.

n > 8000, it is interesting to see GnC Thresh guaran-
tees (7, B)-accuracy for our strategy while consistently
beating even the empirical performance of the Gaussian.
We note that the best bounds for both the Gaussian
and Thresholdout mechanisms alone (not used as part
of GnC) do not provide any non-trivial guarantees in
the considered parameter ranges.

Responsive widths that track the empirical er-
ror: The GnC framework is designed to certify guesses
which represent both a point estimate and a desired
confidence interval width for each query. Rather than
having fixed confidence interval widths, this framework
also provides the flexibility to incorporate guess mecha-
nisms that provide increased interval widths as failures
accumulate within GnC. This allows GnC to be able
to re-use the holdout set in perpetuity, and answer
an infinite number of queries (albeit with confidence
widths that might grow to be vacuous).

In Figure 8, we fix n = 30000,8 = 0.05,, = 0.06,
and plot the performance of GnC Gauss such that
the guessed confidence width 7;41 = min (1.47;,0.17) if
the “check” for query ¢; results in a failure, otherwise
Ti+1 = T;. For comparison, we also plot the actual
maximum empirical error encountered by the answers
provided by GnC (“GnC Gauss Emp”). It corresponds
to the maximum empirical error of the answers of the
Gaussian mechanism that is used as a guess mechanism
within GnC, unless the check for a query results in a
failure (which occurs 4 times in 40000 queries), in which
case the error corresponds to the discretized answer
on the holdout. We see that the statistically valid
accuracy guaranteed by GnC is “responsive” to the
empirical error of the realized answers produced by the
GnC, and is almost always within a factor of 2 of the
actual error.
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Figure 8: The accuracy of GnC with Gaussian guesses
provides “responsive” confidence interval widths that
closely track the empirical error incurred by the guesses
of the Gaussian mechanism (“GnC Gauss Emp”).

Discussion: The runtime of our GnC system is domi-
nated by the runtime of the mechanism providing the
guesses. For each guess, the GnC system need only
compute the empirical answer of the query on the hold-
out set, and a width (for example, from Lemma 3.1)
that comes from a simple one-dimensional optimiza-
tion. Thus, GnC with any particular Guess mechanism
will have an execution time comparable to that of the
Guess mechanism by itself. It is also important to note
that GnC can be combined with any guess-generating
mechanism, and it will inherit the worst-case general-
ization behavior of that mechanism. However, the GnC
will typically provide much tighter confidence bounds
(since the worst-case bounds are typically loose).

4 Conclusion

In this work, we focus on algorithms that provide ex-
plicit confidence intervals with sound coverage prob-
abilities for adaptively posed statistical queries. We
start by deriving tighter worst-case bounds for several
mechanisms, and show that our improved bounds are
within small constant factors of optimal for certain
mechanisms. Our main contribution is the Guess and
Check framework, that allows an analyst to use any
method for “guessing” point estimates and confidence
interval widths for their adaptive queries, and then
rigorously validate those guesses on an additional held-
out dataset. Our empirical evaluation demonstrates
that GnC can improve on worst-case bounds by orders
of magnitude, and that it improves on the naive base-
line even for modest sample sizes. We also provide a
Python library (Rogers et al. [2019]) implementing our
GnC method.
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