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Abstract

We study stochastic optimization of nonconvex loss functions, which are typical objectives for
training neural networks. We propose stochastic approximation algorithms which optimize a se-
ries of regularized, nonlinearized losses on large minibatches of samples, using only first-order
gradient information. Our algorithms provably converge to an approximate critical point of the
expected objective with faster rates than minibatch stochastic gradient descent, and facilitate better
parallelization by allowing larger minibatches.

Keywords: stochastic nonconvex optimization, minibatch stochastic gradient descent, minibatch-
prox

1. Introduction

Machine learning algorithms ultimately try to optimize the performance of models in the popula-
tion. Consider the following stochastic optimization (generalized learning) problem (Vapnik, 2000;
Shalev-Shwartz et al., 2009):

n‘lAi/n d(w) :=Eeup [U(W, §)] (1

where our goal is to learn a predictor w given the instantaneous (loss) function /(w, ) and i.i.d.
samples &1, &, . . . from some unknown data distribution D. In this work, we focus on losses ¢(w, &)
that are nonconvex functions of w; a prevalent example of this setting is the training of deep neural
networks, where w denotes the collection of trainable weights of a deep learning model, and ¢(w, &)
measures the loss of prediction (e.g., classification or regression) for the sample £ using weights w.

Despite efforts in introducing higher order optimization methods to this problem, stochas-
tic gradient descent (SGD) with minibatches and its variants (Bottou, 1991; LeCun et al., 1998;
Duchi et al., 2011; Zeiler, 2012; Kingma and Ba, 2015) remain by far the most popular methods for
training deep neural networks, due to its simplicity and superior performance than the alternatives.
In the vanilla version of minibatch SGD, we compute the averaged gradient over a small set of
samples (called minibatch), e.g. using the backpropagation algorithm, and simply take a step in the
negative direction. The use of minibatch (as opposed to a single sample for estimating the gradient)
makes the training process more stable as it reduces the variance of gradient estimate. Moreover, to
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process the same amount of samples, it takes smaller number of updates if a larger minibatch size
is used, and the backpropagation procedure on a larger minibatch can utilize massive parallelization
of linear algebra routines provided by advanced computational hardware (GPUs and clusters). As
a result, using a larger minibatch in SGD can potentially significantly reduce the parallel training
time.

Recently, there has been some empirical analysis of minibatch SGD for non-convex problems,
focusing mostly on practical issues such as the correct scaling of stepsize (learning rate) and mo-
mentum with minibatch size (Goyal et al., 2017; Hoffer et al., 2017). A prominent observation
is that, by properly setting the stepsize, minibatch SGD works well (converges to similarly good
test set performance) for a wide range of minibatch sizes, while large minibatches facilitate better
parallelization. But intriguingly, beyond certain threshold of minibatch size, training result start
to deteriorate and simply scaling the stepsize does not help. The primary goal of this work is to
theoretically investigate the issue of minibatch size in stochastic nonconvex optimization, and to
provide practical algorithms/guidance to training deep neural networks. Our analysis applies to
smooth nonconvex instantaneous losses, and uses a characterization of nonconvex functions named
almost-convexity, which we introduce below.

Problem setup In this work, we assume that the differentiable instantaneous loss ¢(w, &) is -
smooth and o-almost convex. Recall that a function f(w) is S-smooth if ||V f(w) — V f(w')|| <
B ||w — w'|| for all w, w’, and in this case we have the following quadratic approximation for f(w):

[F(w) — F) = (V1) w = Wi < 2 [l =W
On the other hand, a nonconvex function f(w) is o-almost convex for ¢ > 0 if
Fw) = f(w') = (VI(W), w = w) 2 =2 [lw—w/|*, vw,w

A convex function is 0-almost convex, and a 3-smooth function is o-almost convex for some o < 3.
For a twice differentiable function that is both 3-smooth and o-almost convex, the eigenvalues of
its Hessian matrix lie in [—o, 5].

We now discuss some properties we need when accessing the stochastic objective through sam-
ples. First, the stochastic gradient estimated on a single sample is unbiased, i.e.,

E[Vi(w,&)] = Vo(w), Yw.

Second, as is common in the stochastic optimization literature (see, e.g., Lan, 2012; Ghadimi and Lan,
2016), we assume and that the variance of the stochastic gradient is bounded by V2, i.e.,

Ee [|VE(w,&) — Vo(w)|* <V, vw.

Denote by ¢* = miny, ¢(w) the (globally) minimum value of ¢(w), which we assume to be finite.
Since in general we can not hope to efficiently obtain the global minimum of a nonconvex objective,
the reasonable goal here is to find an approximate critical point w satisfying for some € > 0 that

E|Vo(w)|? < &% 2)

We are interested in the number of samples and the amount of computation needed to achieve this
goal.
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Significance of almost convexity One may wonder whether it is reasonable to assume the non-
convex objective to be almost convex. We note that, almost convexity arises from the optimization
of general smooth nonconvex objectives. Based on the Hessian Lipschitz assumption, Carmon et al.
(2017) have shown that one can alternate over the negative curvature descent algorithm (which
eventually leads us to a point at which the Hessian has small negative eigenvalues) and optimizing
almost-convex problems, to obtain overall faster convergence than gradient descent in the non-
stochastic setting. In fact, the almost-convex procedure is shown to be the key to the faster rate;
see their Section 4 and also Allen-Zhu (2017, Appendix A). These results motivate us to study the
stochastic version of the almost-convex problems, under common assumptions used to analyze sto-
chastic gradient descent. We verify that improvement obtained in the non-stochastic case does carry
over to the stochastic case, and in turn facilitates better parallelism. On the other hand, while we
assume above that each individual loss is almost convex, relaxation to the almost convexity of only
the population objective will be discussed later.

1.1. Minibatch SGD for nonconvex stochastic optimization

The theoretical performance of minibatch SGD has been relatively well studied for convex objec-
tives (Lan, 2012; Dekel et al., 2012; Cotter et al., 2011). After T° minibatch gradient updates, each
using a stochastic gradient estimated on b samples, the accelerated minibatch SGD algorithm on a
convex ¢(w) returns an iterate w satisfying

W — Wy 2 vw — Wy
E[¢(W)_¢(W*)]§0<ﬁ!\ o el ||;ﬁ ||>’

where wy is the initialization, and w, = arg min,, ¢(w).

For stochastic nonconvex optimization, Ghadimi et al. (2016) analyzed the convergence of mini-
batch SGD under the same problem setup as ours, and Ghadimi and Lan (2016) further proposed
a randomized stochastic accelerated gradient (RSAG) method which resembles the accelerated sto-
chastic approximation method for convex optimization (Lan, 2012). After 7" minibatch gradient
updates, each using stochastic gradient estimated on b samples, their algorithms return an iterate w
satisfying!

T VT

To parse this result, we observe the following:

E[Va(w)[’ <O <ﬁ<¢<wO> — ), V/B(o(wo) - ¢*>> | @

e When V' = 0, or in other words exact gradients are used, the second term vanishes and the
convergence rate reduces to ||[Vo(w)|? < O (M), recovering the rate for deter-

ministic gradient descent (Ghadimi et al., 2016). We refer to this term as the “optimization
error” since it is independent of the samples.

e The second term in (4) results from the noise in stochastic gradients, and we refer to it as
the “sample error” since it results from the sampling process. This term is asymptotically

1. This can be deduced from eqn (3.20) of Ghadimi and Lan (2016), as the variance of stochastic gradient reduces to
V2 /b when b samples are used in estimating the gradient.
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dominant as long as b = O (W
becomes dominant but since the first term is independent of b, the algorithm is no longer
sample efficient (it is using more fresh samples than needed). This is consistent with the
empirical findings of practitioners of minibatch SGD: beyond certain minibatch size, learning
slows down and in particular, the objective on test set (which is an estimate of the population
objective) do not decrease faster with the amount of computation, even though more samples

and computation (e.g., backpropagation) is involved in each stochastic gradient update.

>. Using a much larger b, the first term of (4)

Denote the total number of samples used by N = b1". The convergence rate (4) indicates that,

to find an critical point satisfying (2), the total sample needed is N () = O <w>, while
the maximum minibatch size that maintains sample efficiency, and the iteration complexity using

this minibatch size, are respectively

B VUNE ) (1 L (Blo(wo) — 6%)
=0 () 0((). -0 ().

An optimal choice of minibatch size (up to constants) for this method is thus bggag—in the reg-
mime b < brgag, increasing the minibatch size leads to reduced number of iterations, down to a
minimum of Tgrgag, but any further increase would increase the overall work performed (overall
number of vector operations), without decreasing the required number of iterations.

In a highly parallel setting, the number of mini-batch gradient evaluations 1" captures the par-
allel runtime, since each such evaluation can be efficiently parallelized over the machines, and so
throughout we account of the parallel runtime in terms of the number of such mini-batch gradient
evaluations, regardless of the number of points involved in each such mini-batch. We also account
for the overall work performed (or energy consumed), in terms of the overall number of gradient
evaluations or vector operations. For mini-batch SGD we process each point once, and so the overall
work is O(N (¢)).

1.2. Iterative convexification methods for deterministic nonconvex optimization

The approach discussed in Section 1.1 draws fresh samples in each update. A alternative approach
is to draw a single set of n training examples and minimize the empirical risk (or sample averaged
approximation) on these points using deterministic optimization techniques:

min Gw) = 3w, &), ©
i=1

We could attempt to optimize (6) using gradient descent. But recently, Carmon et al. (2017) and
Allen-Zhu (2017) demonstrated that when o < [, i.e., when the objective is not too nonconvex
(the negative eigenvalues are not too large in magnitude), one can obtain faster convergence than
gradient descent, by transforming an almost-convex objective into a series of (strongly) convex
optimization problems which are then solved very efficiently by batch accelerated gradient descent;
this technique will be discussed in detail in Section 2.1. Applying this technique to (6), to obtain a
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e Carmon et al. (2017)
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Figure 1: Illustration of theoretical guarantees for our algorithms (MP equipped with two convex
optimizers—AGD and SVRG) and the comparisons with minibatch SGD, in terms of
number of gradient steps vs. the minibatch size b (left plot), and number of gradient
steps vs. the total number of vector operations and gradient calculations. Here A =
d(wo) — ¢*. We have assumed for MP+SVRG that the parallel runtime for computing
the gradient on a minibatch of b samples (with communications) is much larger than
computing the gradient on a single example locally, see discussion in Section 3. The
regimes that are not sample-efficient are dotted.

N 2
w satisfying HV(b(W)H < €2, it is sufficient to perform?

VoB(B(wo) — min d(w)

Tgarcu = O = (N

exact (batch) gradient-based updates. Since again each such batch computation can be calculated
in parallel, we get a parallel runtime of O(Tparch) and the total number of gradient evaluations
required 18 O(TBATCH . N(E))

We suggest algorithms that are based on the same intuition and use the same convexification
procedure, but we propose tackling the stochastic optimization problem directly, using approxi-
mate gradients obtained from minibatches at each iteration. This has two advantages. First, we are
tackling the stochastic optimization objective directly, which is many cases is our true objective,
and so obtain guarantees directly on the population ||V ¢(w)|| rather than merely its empirical ap-

proximation Vé(w) ’ Second, as we shall see, but using only part of the data at each iteration,

instead of the entire data set, we can reduce the total amount of work performed (total number of
gradient computations and vector operations) without sacrificing the parallel runtime and accuracy
guarantees.

2. This amounts to plugging in v = ¢ in Carmon et al. (2017)[Lemma 3.1] for their Almost-Convex—AGD algorithm.
Note that the authors also showed the O (ﬁ) iteration complexity is achievable with second order information.
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1.3. Our contributions

We propose stochastic approximation algorithms that provably converge to an approximate criti-
cal point of the nonconvex population objective. In our template algorithm, which we refer to as
“minibatch-prox” (MP), we draw b fresh samples at each iteration and approximately optimize a
convex objective defined by these samples:

b
1
W, A arg min EZE(W,ff)—l—%Hw—wt_lHZ where v >0, for t=1,... K.
w i=1

Choosing a random iterate w from the first K iterations of MP, we have that (for large enough b)

E[Vo(w)|? < O ("WW;() = ¢*>> . ®)

MP can use larger minibatch while maintaining sample efficiency, at the cost of more complicated
operations (solvings nonlinear optimization problems) on each minibatch: With a minibatch size of

S} (%), MP solves O (M) convex subproblems.

3
MP is a meta algorithm and allows us to plug in different optimizers for solving the convex

subproblems on each minibatch. In particular, when accelerated gradient descent is used as the
optimizer, the total number of gradient steps in MP+AGD with a minibatch of size © (6 V2> is

oe?

Tupacp = O (\/ﬁ(QS(Wo) - aﬁ*)) .

£2

This significantly improves Trgac in (5) when 5 >> o, and this is achieved at the cost of a larger
total computational cost (i.e., total number of vector operations and gradient computations). The
comparison is depicted in Figure 1. In particular, the right panel of the Figure we see how RSAG
and MP+AGD compare in terms of the parallel runtime (number of gradient steps) and total work
(number of individual gradient computations). The Pareto optimal point for these two resources
using RSAG is given by Trsac and N (g) respectively. MP+AGD does not dominate RSAG, but
rather allows us reduce the parallel runtime at the cost of increasing the total computation cost,
down to a minimum parallel runtime of Ty\ip_agp. This is the same parallel runtime required by the
batch methods, but we dominate them since to achieve this runtime, we still require significantly
less total computation.

We also analyze the use of other convex optimizers in MP, and develop a memory-efficient
version for it when the total number of samples used in each convex subproblem is very large.

Our results have important implications for parallel or distributed learning: they suggest that it
is possible to significantly reduce parallel runtime, but that this requires going beyond the minibatch
SGD paradigm of using each minibatch only once.

2. Minibatch-prox (MP) for nonconvex smooth loss

In this section, we first review the fundamental convexification step in our algorithms which allows
us to find approximate critical point by solving convex subproblems, and then propose the basic
version of our algorithm and analyze its convergence properties.
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2.1. Convexification of nonconvex problems

The key ingredient in our algorithms is the reduction from the optimization of a nonconvex objective
into the optimization of a series of convex problems (Bertsekas, 1979, 1999; Carmon et al., 2017;
Allen-Zhu, 2017). Consider the following iterative procedure: fort =1,..., K,

w, &~ w; = argmin F;(w) where Fy(w):=¢(w)+ % |w — w;_1]? )

where v > o. At each iteration of this algorithm, one approximately minimizes a regularized objec-
tive, where the £5 proximity term encourages the new iterate to be close to the previous iterate. With
the regularization term, the objective F;(w) is (7 — o)-strongly convex and the global minimizer
w; is unique. Similar procedures have also been used when ¢(w) is convex to speedup first order
methods (Lin et al., 2015).

We can quantify the number of convex subproblems to be solved in (9), so as to find an ap-
proximate critical point of ¢(w). Assume for now that we always obtain the exact minimizer of
the subproblem (9) at each iteration ¢, i.e., w; = wj. Then we have by the first order optimal-
ity of wy that Vo(w;) = (w1 — w¢). And in view of this optimality condition, w; is an
approximate critical point if |[w;—; — w¢|| < &/v. On the other hand, if |[w;—1 — w¢|| > £/7,
we expect to achieve large reduction in ¢(w): owing to the strong convexity of F(w), we have
F(wi_1) — F(w¢) > 552 w1 — wy|, which is equivalent to

2y —o g2
o Iwee = wlF > o
S

d(wi_1) — (W) >

We can not keep decreasing the objective in this way for more than W iterations.

The following simple lemma makes this intuition more precise when we have an approximate
minimizer at each iteration. A similar and more general result (which applies to constrained opti-
mization/composite objectives) can be found in Allen-Zhu (2017, Lemma 4.1).

Lemma 1 Let F;(w) be defined in (9). If we apply a possibly randomized algorithm A to obtain
an approximate minimizer wy satisfying

EA[Fr(we) — Fy(wy) [wi1] <, (10

then we have
Ea [Vo(we)|® < 29°Ea[[wim1 — wi® +4(8 + 7)e. (11
Corollary 2 If we run the iterative procedure (9) for K iterations, optimizing each Fi(w) to e-

suboptimality with an algorithm A, i.e., Ep [Fy(w;) — Fy(wW}) | we1] < efort =1,..., K, and
pick an iteration index R € {1, ..., K} uniformly at random, we have

4y (¢(wo) — ¢¥)
Ve +

Er.alVo(we)|* < (48 + 87)e.
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2.2. The basic MP algorithm

We now turn to solving the subproblems in (9), i.e., to minimizing the stochastic convex objective
F;(w), to which we only have access through i.i.d. samples of the underlying distribution. A natural
approach for this problem is through (approximate) empirical risk minimization: we draw b i.i.d.
samples Z, = {&},..., ¢!} and compute

b
(MP) w; = w; = argmin Ft(w) where Ft =3 Z w, &)+ = Hw — wt_1|]2 . (12)
W

Since this procedure optimizes on a minibatch of samples the nonlinearized loss (as opposed to
linearized loss which leads to minibatch SGD), we call this procedure “minibatch-prox” (MP).
Similar algorithms were proposed previously for optimizing convex problems: a version of this
algorithm with b = 1 was studied under the names “passive aggressive” update (Crammer et al.,
2006) and “implicit gradient descent” (Kulis and Bartlett, 2010) for online learning, was used for
optimizing finite-sum objectives (Bertsekas, 2015; Defazio, 2016), and the version of large b was
more recently used as the building block to develop communication-efficient distributed algorithms
for stochastic convex optimization (Li et al., 2014; Wang et al., 2017).

In order to ensure small suboptimality in the population objective F;(w) as required by Corol-
lary 2, we need to bound the difference between the empirical and the population objectives at
w¢, or in other words, the generalization performance of w;. In the following lemma, we pro-
vide the generalization guarantee based on the notion of stability (Bousquet and Elisseeff, 2002;
Shalev-Shwartz et al., 2009). Our result establishes the connection between the stability of ERM
and the variance of stochastic gradients, which have been two major and seemingly parallel assump-
tions for deriving stochastic learning guarantees, and this formal connection appears to be new in
the literature.

Lemma 3 Consider the stochastic optimization problem

F(w) = ¢(w) +r(w) = E¢ [((w, )] +7(w)

where the instantaneous loss {(w, &) is o-almost convex and [3-smooth in w, and satisfies the vari-
ance condition E¢ | V{(w,&) — Vo(w)|? < V2, and the data-independent regularizer r(w) is
~y-strongly convex with v > o. Denote w* = arg min,, F(w).

Let Z = {&1,...,&} be i.id. samples and

b
W = arg min F(w) where F( )= (ﬁ( %Z (W, &) + r(w).

w

Assume that (v — 0)b > 2(o + [3). Then the following stability results hold.

1. For the regularized empirical risk minimizer w, we have

Ez [F(W) = F(w")] < Bz [6(w) - $(w)| < oo
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2. If a possibly randomized algorithm A minimizes F (W) up to §-suboptimality, i.e., A returns
an approximate solution w such that

Eza |[F(W) = F(W)] <9,
we have

8V?2 N 2(8+ 7)o
(y=o) -0’
16V2 N 2(8+7)0
(y=o)p  y—0o

EzalF(w) - F(w")]

IN

The above lemma shows that, the convergence rate of the stochastic objective F;(w) by ERM
is of the order O (%), and thus in order to achieve e-suboptimality in F;(w), it suffices to exactly
solve the ERM problem defined by O (%) samples. Moreover, the second part of Lemma 3 shows
that as long as we minimize the ERM objective F}(w) to suboptimality § = O(¢), the population
suboptimality remains of the order O(¢). Allowing inexact minimization enables us to use state-of-
the-art methods for convex optimization.

Remark 4 (Relaxation of individual almost convexity) From the proof of Lemma 3, we observe
that the most important usage of the almost convexity is to ensure that the regularized empirical ob-

Jective F( ) is (v — o)-strongly convex; as long as this holds, we obtain the ) ( o= )b> stability

forb > , without almost convexity of the instantaneous losse. As a result, we may relax our as-
sumptzon to the population loss ¢(w) being o-almost convex. Based on the [3-smoothness of {(w, )
and matrix concentration, with high probability it holds that (ZA)(W) is (o)-almost convex as long
asb > @, where d is the dimensionality of w. We will see shortly that our optimal minibatch
size shall increase with the final accuracy, so as € — 0, we indeed have that all subproblems are

sufficiently strongly convex and consequently, the same results hold with high probability.

2.3. Convergence of the basic MP algorithm

We are now ready to analyze the convergence property of MP.

Theorem 5 Sety = o+ % in the minibatch-prox algorithm (12). And assume that for

each iteration t, we draw b samples to approximate Fy(w) with b > (;Hﬁ ), and minimize the ERM
objective Ft( ) using a randomized algorithm A, such that Ez, 4 [Ft(wt) — Ft(wt) |Wt_1] <

6= b JW)b If we pick an iteration index R € {1, ..., K} uniformly at random, we have

do(p(wo) — ¢¥) n 256V n 32V /(2B + 40) (d(wo) — ¢*)
K b VK

We now add a few remarks regarding the convergence result in Theorem 5. First, the algorithm
does not converge to an approximate critical point for very small b, and in fact to satisfy (2) it is

Era||Vo(wr)|* <
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25612

necessary to have b = Y. But once b % the second term =>7— is dominated by the

Blo(wo
other two terms, and we obtam the convergence guarantee

ER’AHVQS(WR)”QS(’)(UW( 0 =6) | VA = 5] )

VbK

Compare this with the convergence rate of RSAG given in (4). We note that, while the second term
(“sample error”) is of the same order for both methods, the first term (“optimization error”) in our
method depends on ¢ instead of 3. The first term also agrees with the number of subproblems
resulted from the convexification procedure (cf. the discussion in Section 2.1).

Further assume that the second term is dominant, which is true as long as b = O (%) ,

then to find an critical point satisfying (2), the sample complexity is N(g) = O ( W),
while the maximum minibatch size (that maintains sample efficiency) and the iteration complexity

using this minibatch size are respectively

-0 (Rl D) -0 (). -0 (*H=).

Increasing the minibatch size reduces the number of iterations in the regime of b < byrp. Therefore,
MP achieves the same sample error as RSAG using the same level of samples, but when o < f3,
MP allows us to use much larger minibatch size and a smaller number of minibatches. The caveat
here, which we will address in the next section, is that MP requires solving an optimization problem
on each minibatch, as opposed to performing a single gradient step.

Stepsize By the optimality condition of (12), we have w; ~ wy_1 —% (% Z;’Zl Vi(wy, & )) . This
update resembles that of minibatch SGD, except that the gradient is evaluated at the “future” iterate.

% roughly varies like w/% (this approximation

Moreover, according to Theorem 5, the “stepsize”
is more accurate for smaller b, in which case o < +y), which scales with b if the number of total
samples N is fixed, and scales with v/b if the number of iterations K is fixed, consistent with the

findings of Goyal et al. (2017) and Hoffer et al. (2017) respectively for minibatch SGD.

Remark 6 We have shown that it suffices to approximately minimize the stochastic objective F},(w)
with O ( ) samples, by approximately minimizing the empirical objective Ft( ). But the number
of samples can be too large (as ¢ — 0) that the memory requirement is high, since we need to
store this many samples and process them multiple times. In Appendix B, we provide a modified
algorithm to resolve this issue, which achieves the same learning guarantee with the same level of
total samples, and using any (sufficiently large) minibatch size.

We demonstrate our theory and the MP algorithm on deep neural networks training in Appen-
dix A.

3. Distributed implementation of MP

In the previous Section, we presented the template algorithm MP. But MP requires solving an opti-
mization problem on a mini-batch at each iteration. We now instantiate the algorithm by suggesting

10
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Table 1: Comparisons between minibatch SGD and MP equipped with two convex optimizers, in
terms of both the runtime and the total number of vector operations to find an approximate
critical point. The runtime is measured by the number of batch gradient evaluations, each
of which cost 7, on a minibatch of b samples, and the number of serial gradient descent
updates, each of which cost 7 on a single sample. Denote by A := ¢(wg) — ¢* the initial

suboptimality. The (sufficient) sample complexity is denoted by N(¢) = O <V2B A).

4
We hide poly-logarithmic dependence on (o, 3,V, A, e, b). Regimes that are not sample-
efficient are shadowed.

Minibatch size Parallel runtime \ # vector operations ‘
b= 2 Y 7, N(e)
RSAG b= L22 LQAA X Tp Zg\f(s)
b Yy B2 xm by - N(e)
2
MP ‘%jb%i‘; ;;b N(e) x 1 ({f—; N(e)
2
+ AGD = /?6/2 % X T 5§ . Nga)
b> 2V bt CRBRA o (%) (5)" -~
MP Vﬁfb;Vsz L,()Z)XT +6‘% X 71 N(e)
+SVRG | b= 0= X Tt 5 X7 N(e)
2 2
b>—€‘;2 "E—QAXTI,—I— %-—@AXﬁ ?/%-%-N(s)

specific distributed procedures for solving this minibatch optimization problem. We consider two
possible solvers for the convex subproblems Fi(w), ¢t = 1,..., K in MP, and discuss the resulting
overall parallel runtime and the total computational cost.

Accelerated gradient descent The first choice is the (distributed) accelerated gradient descent
(AGD, Nesterov, 2004), inAWhich case MP uses the same minibatch gradients as minibatch SGD
does. Observe that each Fi(w) is both (8 + 7)-smooth and (7 — o)-strongly convex, and by

our choice of ~, its condition number is Kk = % =0 W) which increases with

b. By the convergence rate of AGD, when minimizing Ft(w), the number of gradient descent
updates needed to achieve J suboptimality is O (\/Elog %) Consequently, the total number of
gradient descent updates throughout the MP algorithm is? O (K - \/k) and the total number of
vector operations by the algorithm is O (b- K - \/k). We provide the total number of gradient steps
and the corresponding computational cost, as functions of the problem parameters, for different
regimes of minibatch size in Table 1. Most notably, when using the maximum minibatch size byrp,
the total number of gradient descent updates is

(14)

s = 0 (VIO =60),

3. We use the O(+) notation to hide poly-logarithmic dependence on (o, 8, V, ¢(wo) — ¢*, €, b).

11
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which is asymptotically smaller than Trgac. In the worst scenario where o = [, we perform
roughly the same number of gradient descent updates as RSAG. But when ¢ < 3, we can signifi-
cantly reduce the parallel runtime.

Distributed SVRG Another option for optimizing Ft(w) is the distributed SVRG algorithm for
finite-sum problems (Lee et al., 2016; Shamir, 2016).* This algorithm alternates over two types
of operations: the evaluation of batch gradient on b samples, which can distributed into multiple
machines, and many serial stochastic gradient descent steps, each of which uses gradient computed
on a single sample on one local machine.

Denote the time cost for the two types of access by 7, and 71 respectively. According to the
convergence of distributed SVRG, the runtime needed to optimize each subproblem to sufficient
accuracy is

O(Tb—i-/ﬂ'l).

Similar to the case of AGD, we provide the runtime and the total computational cost by MP+SVRG
in Table 1.

The parallel runtime of the two types of operations, calculating the gradient of a mini-batch of
size b in parallel across machines, and calculating the gradient on a single sample locally, are not
directly relate-able. From a pure parallel computation perspective, one could argue that 7;, does not
depend much on b, since we can distribute the computation across b machines, and so 7 ~ 7. If
this is the case, MP+SVRG does not provide any advantage over RSAG, since MP+SVRG’s parallel
runtime will be dominates by %A, the same as RSAG’s.

However, more realistically, even in a parallel setting, we would expect computing the gradient
of a single point on a single machine, without any communication, would be much quicker than
parallel computation of a minibatch. If indeed 7 < 73, and in particular

=0 <;Tb> , (15)

MP+SVRG dominates both MP+AGD and RSAG: the 7, term is then the dominant term in its par-
allel runtime, with an improvement over both MP+SVRG, yet the total computational cost (number
of individual gradient computations) does not increase over the optimal cost of RSAG, and is thus
much smaller than MP+AGD—we get a reduction in parallel runtime without any additional com-
putational cost. In particular, with a minibatch of size by;p, and under the assumption (15), we get

a parallel runtime of
o(¢p(wo) — ¢7)
g2 ’

Typ-svra = O < (16)
with optimal computational cost N (¢). The requirement (15) is very reasonable, especially for large
b, considering the required ratio does not depend on b. All we require is that parallel computation
of a gradient on a large minibatch is at least a constant factor more expensive than an individual
gradient computation on one point.

4. Other parallel optimization frameworks, such as DANE (Shamir et al., 2014) and AIDE (Reddi et al., 2016), can be
applied and analyzed similarly.

12
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4. Discussion

In this work, we have focused on stochastic nonconvex optimization using only noisy first-order
gradient information, and made a step toward large minibatch training. Our results suggest that it
is beneficial to perform better optimization on each minibatch than a single gradient descent, when
the minibatch size is too large to be sample-inefficient in minibatch SGD.

Unfortunately, we could not yet remove the “optimization error” altogether from the conver-
gence rate as is achievable for stochastic convex optimization using minibatch-prox (Wang et al.,
2017): in comparison to the convergence rate (3) by accelerated minibatch SGD, the minibatch-

prox algorithm on a convex ¢(w) provides the guarantee E [¢(w) — ¢p(w)] < O (%), SO

that one could use any minibatch size b while maintaining sample efficiency. Nor could we sig-
nificantly reduce it as accelerated minibatch SGD achieved, again in the convex case (compare the
first term in (3) and (4)). We also do not know if the “sample error” is the statistical limit for the
class of problems considered here, and if a refined analysis of minibatch SGD (that makes use of the
o-almost convexity) can show the same convergence rate, which would tell if our more complicated
algorithms are indeed necessary. In combination with the convexification procedure, Carmon et al.
(2017) additionally made use of curvature information in the Hessian (which can be efficiently
obtained for deep learning models, Pearlmutter, 1994; Martens, 2010) so as to further reduce the

“optimization error”’: for their ERM algorithm, the number of gradient steps needed is O (ﬁ),

rather than O (6%) for minibatch SGD and our algorithms. We suspect that using the same technique
in stochastic optimization may yield similar improvement, at the cost of a more complex algorithm.
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Appendix A. Experiments

We now demonstrate our theory and the basic MP algorithm with an illustrative example. We
train a neural network with 2 tanh hidden layers of 512 units each, and a softmax output layer to
perform 10-way digit classification on the infinite MNIST dataset (Loosli et al., 2007). The dataset
is randomly split into 8 x 10% samples for training and 10° samples for testing. To mimic the
stochastic setting, we allow each method to load the training set into memory only once (this is
equivalent to a single training epoch for minibatch SGD).

Performance of minibatch SGD We carefully tune the training hyperparameters by grid search
for minibatch SGD with momentum, which remains a very strong method for training deep models
in practice: the fixed learning rate is selected from {0.001, 0.01, 0.05, 0.1, 0.5}, and the momen-
tum parameter from {0, 0.5, 0.8, 0.9, 0.99, 0.995}.

We vary the minibatch size b in {200, 1000, 2000, 10000}, and for each each b select the opti-
mal combination of learning rate and momentum based on the objective on the test set. The test set
objective vs. number of samples processed for different minibatch sizes are given in Figure 2 (left
plot). We note that this type of learning curve (or error vs. epoch) is typically used for evaluating
learning methods (e.g., Goyal et al., 2017), and is quite reasonable since the number of samples

13
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test objective
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Figure 2: Performance of minibatch SGD with different minibatch sizes.

processed corresponds to the total energy spent. Observe that with smaller b, minibatch SGD con-
verges to lower objective function values (although we have trained the neural network for only one
epoch, the trained model with b = 200 has a cross-entropy loss of 0.0026 and a low classification
error rate of 0.062% on the test set). The difference in final test objectives is small for b = 200 and
b = 1000, but we start to see clear degradation of accuracy for b = 10000.

On the other hand, we provide test set objective vs. number of updates in Figure 2 (right plot).
And we observe that the decrease of objective is much steeper for larger b, implying that a single
gradient descent update with large b is of higher quality.

Performance of MP We now show that MP can achieve significantly higher accuracy with b =
10000, even slight improving over that of minibatch SGD with b = 200, using the same number of
fresh samples and moderate number of gradient updates.

In our MP implementation, we approximately solve the subproblems on each minibatch with g
gradient descent steps with momentum?, yielding a training procedure similar to that of minibatch
SGD, except that each large minibatch is kept in memory for g steps before switching to the next
one, and that the gradient contains a retraction term v(w — wy_1) from the quadratic regularization.
The learning rate and momentum parameter are tuned over a smaller grid around the optimal values
for minibatch SGD. We tune g over {5, 10, 20, 50} and the regularization parameter vy over the
grid {O, 1076, 107, 1072, 1}. This implementation reduces to minibatch SGD when v = 0 and
g=1.

For each ~, we select the combination of rest hyperparameters that gives the lowest test objec-
tive. Learning curves (objective vs. # fresh samples, and objective vs. # updates) for different values
of ~ are given in Figure 3, where we also compare with the learning curves of minibatch SGD at
b = 200 and b = 10000. Observe that, with moderate values of g, MP can match the objective
vs. # fresh samples curve of minibatch SGD at b = 200 so that it is sample-efficient (the trained
model with v = 1072 and g = 50 has a cross-entropy loss of 0.0004 and a classification error rate
of 0.012%). On the other hand, MP is close to minibatch SGD at b = 10000 for the objective vs. #
updates learning curve, so that each step is still of high quality and quickly decreases the objective.

5. Gradient descent with momentum and accelerated gradient descent have similar forms of updates.

14



STOCHASTIC NONCONVEX OPTIMIZATION WITH LARGE MINIBATCHES

test objective
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| ‘i\mh ——SGD, b = 200
\ W |——scp,b=10
0.08 | VL‘“wimﬁ—MP,b: Wwhy—0, g-s|1 0087
o \ N MR =104y =107 g = 50
= \ MP, b =104,y = 1074, g = 50 0.06 |
5 0.06 | ——MPb=10%y =102 g =50 | :
% i MPb=10~v=19=5
1 [T H
; 0.04 | V,‘mv Y M, | 0.04
3 i ‘ MMy Aﬁ“‘\/\/\
0.02 ¢
0.02
0 2000 4000 6000 8000 10000
0 2 4 6 8 # updates
# fresh samples %108 up
Figure 3: Performance of MP+AGD with different ~.
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Figure 4: Performance of MP+AGD with v = 0 and different number of gradient updates per
minibatch g.

We have seen in Figure 3 that in fact v = 0 works quite well without the retraction term
(difference in final objectives are not significant for small ), implying that simply processing the
same large minibatch multiple times in minibatch SGD helps improve the sample efficiency. For this
simple method, we provide the learning curves at different g values in Figure 4. From this figure, it
is clear that we have speedup in terms of # gradient updates (or parallel runtime) at various levels
of test objective (and hence classification error rate). For example, to obtain a test objective of 0.01
(roughly corresponding to an acceptable error rate of 0.32%), we can use MP with b = 10000 and
g = 5 for about 2600 updates, while minibatch SGD with b = 200 obtains the same objective after
about 17000 updates. This result demonstrates the success of a practical version of our method: if
we have a constant stream of data, we can perform several gradient steps on each large minibatch in
a parallel system to improve runtime, without losing much statistical precision.
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Choice of hyperparameters We comment on how to select in practice the hyperparameters—
minibatch size b, regularization parameter v, and the number of gradient steps on each minibach g.
Intuitively, one may set b to be as large as possible to fully utilize the parallel system, and set the
number of steps g to be relatively small to use more fresh samples. Finally, y is a type of stepsize
and is better tuned on a validation set, as one would do for minibatch SGD. These are essentially
the principles we followed in the above experiments.

Appendix B. A memory-efficient version of MP

We have shown in previous sections that it suffices to approximately minimize the stochastic ob-
jective Fi(w) with O (6%) samples, by approximately minimizing the empirical objective £} (w).
But the number of samples can be too large (as € — 0) that the memory requirement is high, since
we need to store this many samples and process them multiple times. In this section, we provide a
modified algorithm to resolve this issue, which achieves the same learning guarantee with the same
level of total samples, and using any (sufficiently large) minibatch size.

The modified algorithm is based on the analysis of minibatch-prox by Wang et al. (2017) for
convex objectives. The authors showed that for Lipschitz and strongly convex stochastic objective,
the minibatch-prox algorithm achieves the optimal O(1/n) rate® using n total samples and any
minibatch size. We can therefore apply their results to the problem of miny, F;(w) at each iterations.

In this section, we use F'(x) = ¢(x) + 3 [|x — y||? to denote the stochastic objective F;(w)
at any iteration, which is (5 + 7)-smooth and (v — o)-strongly convex in x. The lemma below
is parallel to Wang et al. (2017, Theorem 8). Its proof is also similar to theirs, with the difference
being the stability used: theirs used stability for Lipschitz losses, whereas ours use the stability for
smooth loss given in Lemma 3.

Lemma 7 Assume the same conditions of Lemma 3 on the instantaneous loss. Consider the fol-
lowing iterative procedure: fors=1,...,5

Xs & Xy = argmin G4(x)
p 1 v p
WMmGdﬂv—F@%+SHX—X&HP—”nEQK&$)+2WX—YV+QWX—X&Na
i
where ps > 0, and Zs = {3, ..., &5} are m i.i.d. samples drawn from the underlying distribution

at iteration s. Let X, be the output of a randomized algorithm A satisfying Ez, A [Gs (xs) — G, (f(s)] <

ns. Then with the following choices of parameters:

_ _ 2
m22(0+/8), psz(’y o)(s 1)’ ne = Ves ~i,
v-o 2 (B+v)m s
we have for Xg = ﬁ Zle sXs that
20012
Xs) — N < ——MmMm—.
BF(xs) - Fx')] < o

6. This rate is optimal in the sense of Nemirovski and Yudin (1983) and Agarwal et al. (2012).
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Algorithm 1 Memory-efficient minibatch-prox for stochastic nonconvex optimization miny, ¢(w).

Initialize wy.
fort=1,2,...,Kdo
/I Approximately solve miny, ¢(w) + 3 [w — w1 |12
Intialize inner loop xét)
fors=1,2,...,5do

Draw m fresh samples 70 = {ﬁf S ,52;5}
Approximately compute

1 & 5
(t) min — ;f(xﬁf’ )+ % |x — Wt—1H2 (t) H

by accelerated gradient descent or finite-sum methods
end for ©
2 S t
Wi <— m Z s=1 5Xs
end for
Output: Pick R € {1,..., K} uniformly at random and return wp.

Let the total number of samples used in this procedure be b = m.S. This lemma shows that the
(@) (%) convergence rate for '(x) (as in Lemma 3) is still achievable, by iteratively drawing smaller
minibatches and solving one simpler ERM on each.

This approach leads to an algorithm with intuitively two levels of minibatch-prox, one for the
convexification of nonconvex objective, and the other for memory efficiency. We provide the sketch
of the resulting algorithm in Algorithm 1.

Appendix C. Proof of Lemma 1

Proof Due to the (5 + v)-smoothness of F;(w) and the optimality condition that V Fy(w}) = 0,
we have (Nesterov, 2004, Theorem 2.1.5)

Ea |[VE(W)II* < 2(8+7) - Ba [F(we) — Fi(w;)] < 2(8 +7)e.
Then, by the definition of F;(w), it holds that

E4||[Vo(w)|* = Ea[|[VE(wy) —v(wy — wip)|?
< 2B [|VE(wo)[* + 29°Ea [ wi1 — wi|?
<A(B+7)e+ 29°E 4 [|wio1 — we|?

where we have used the fact that (z + y)? < 2(z% + y?) in the first inequality. |
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Appendix D. Proof of Corollary 2

Proof By the definition of F;(w), we have
Ealp(wio1) — ¢(wy)] = Ea | Fy(Wi—1) — Fir(wy) + % [we1 — Wt||2}
= Fy(wi—1) — Fr(wi) + Eqg [Ft(Wf) — Fy(wy) + g Wit — we|?
> JEA Wit - wil® e

where the expectation is taken over randomness at iteration ¢.
Averaging this inequality over ¢ = 1,..., K and taking expectation over randomness in all
iterations, we have

1 & s 2Balo(wo) — d(wi)] 2 2(d(wo) —¢*) 2
KZPMWH_MHS N +;s——7?——+?

This implies that if we randomly pick R € {1,..., K}, it holds that
2(¢(wo) — ¢%) | 2¢

Erallwp1 —wg||> < =2 22+ =
7K Y

Plugging this into Lemma 1 yields the desired result. |

Appendix E. Proof of Lemma 3

Proof The first part of this proof is adapted from that of Shalev-Shwartz and Ben-David (2014)[Section 13.3.2]
for smooth and nonnegative losses. Note that our bound does not assume the nonnegativity of the
instantaneous loss.

Exact ERM Denote by Z(¥) the sample set that is identical to Z except that the i-th sample &; is
replaced by another random sample £/, by F'()) (w) the empirical objective defined using Z(, i.e.,

. 1
FO(w) = 3 ( Zé(w, &)+ U(w, §§)> + r(w),
J#i
and by w(") = argmin,, F()(w) the empirical risk minimizer of £'() (w).
First, observe that

+r(w) — r(w)

b b
~ (1) £ _ P £ v &) — o(w@ ¢ . . .
_ 1484 a&)b U(w, &) i E(vai) bg(w 751') + (F(Z)(viz(’)) _ F(Z)(W))
< f(w(i)aﬁi)b— (W, &) n LW, &) —bf(‘i’(i)vfz/-) 7 ; o H‘;V(z‘) s 2

where we have used in the inequality the fact that w( is the minimizer of () (w), which is (y—o)-
strongly convex.
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On the other hand, it follows from the (y — ¢)-strong convexity of F'(w) that

. 2
w(® — W&

F(w) = F(w) > 12

Combining the above two inequalities, and applying the o-almost convexity and S-smoothness
of /(w, &), we obtain

(v — )b Hw@ _w|
< (4w, &) — 00w, &) ) + (£0w,€) — e, €)) (17)
VLD, ), W — )+ T — ] (e, €, - w )+ 7w -

. . . 2
—(Ve(w, &) = VW, ), WO = W) + o W) - w

~(Ve(w D, &) = Vo(w), Wl W) + (Vo(w() - Vo(w), W) — W)
(Vo) — Vi, ), % W) + o [w® —w|”

)| + [vew, &) = Vo)) - [w vifHJr(oJrﬁ)Hw@—WQ
(18)

< (w0~ vt

)b

By the assumption that o + 3 < (V_TJ, we then have

1
v—0)b— (04 5)

- (HVE(\?V D &) — Vo(w®)

)

(e~

0|+ [[vec. &) - vow)

E

<

(- |+ |[ve &)~ Vaw)]).

Taking expectations of (17) and (18) over the samples and plugging in the above inequality
yields

2B ey [6() = O(W)]

- <<7 - o é(i ;{22) Faufe) (HWWV“), &) — Vo(wl?)

:

|+ (Ve €) - Vo)

< By (90,6 - TowO)| 4 [t €) - Tt

< i (B [Bro 905960 - orwO ] 4 22 [E{e;} [vecs.) - Vo] )
o 1V

~(y—o)b

where we have used the triangle inequality in the first step, the assumption 2(c + 3) < (y — 0)b
in the second step, the fact that (z + y)? < 2(22 + y?) in the third step, and the assumption on the
variance of stochastic gradient in the final step.
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Since W minimizes F'(w), we have F'(w) < F'(w*) and consequently

2
By [F()] = Bz [F(%) +0(5) = 6(%)] < P(w') + Bz [0(5) —6(9)] < ) + =2

Then the first part of the lemma follows.

Inexact ERM  For the approximate solution w, due to the (7 — o’)-strong convexity of F'(w), we
have

2

25
y—o

EzalW = W|* < —=—Eza [P(W) - F(W)| <

Now, in view of the (8 + v)-smoothness of F'(w), it holds that

B+
2

SEzA[IVEW)| - [[w — w[] +

Eza[F(w) - F(w)] <EzA(VF(W), w — W) + Ega | —wl?

B+
2

< Bz |[V2B+7) - (Fw) = F(w) | —wl| +

<Ez[F(W) - F(W")]+ (8+7) - Eza|Ww — W]
8V2 N 2(B+ )8

(y—oa)b y—o

Eza W — w|?

B+
2

Eza W —w|?

<

where we have used Nesterov (2004, Theorem 2.1.5) in the third inequality, and the fact that xy <

x? + % in the fourth inequality. Then the lemma follows by combining this inequality with the
stability of exact ERM. |

Appendix F. Proof of Theorem 5

Proof Let§ = 82 then by the second part of Lemma 3, it holds that

(B+7)b>
Bz [Fiw) — F(w))) < o
Combining this with Corollary 2 yields
B |Votwn)? < TN 4 4515, S
60 =) T 0G0y B

Minimizing the right hand side over v yields the optimal choice v = o + % and the

desired result.
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Appendix G. Proof of Lemma 7

Proof Denote by x* = argmin, F(x) the unique minimizer of F(x), and by G(x) = ¢(x ) +
7% - yl? + 2lx—xs1 ||? the population counterpart of G'4(x), with unique minimizer x* =
arg min, G4(x). In the following, we also use the shorthand L = f + v, and A = v — 0.

First, by the (A + ps)-strong convexity of G(x), we have

A A A A+ ps

Ga(x") > Gi(%e) + [x* — %% (19)

By the first part of Lemma 3 (we are now applying the lemma to G(x) and G(x), whose data-

independent regularizer 2 x —yl|* + ||x xs_1||% is (7 + ps)-strongly convex), we have that

Ez, [op(x}) — L3705, &)] < W as long as m > g\‘ff ) Therefore, taking expectation

of (19) over Z; yields

. . 8V? A+ . .
PO+ 5 = x| 2 Bz [P + 5 1% = xol = S+ =55 —xsnﬂ
16V?2 C2(L4ps)ns | At ps

(A +pom A+ ps 2

1Y x5
> By, |Flx) + 22 [t — x| x| eo
where we have used the second part of Lemma 3 in the second inequality.

Next, we relate X, to x, for the last term of (20). By the (A + p;)-strong convexity of Gs(x),

we have Ez, 4 [|%Xs — X H2 < /\%f;S , and then by the triangle inequality

Ez.alx* = %" 2 Ez a |lx" — x| = [1%s — ||

> Bz, 41" = %" = 2Bz, 4 [I1x* — | - [1%s — 1]

> Bz allx" = x| = 2y/Ez, 4l —x.[7Ez,a %, — x|

2ns

— 21
A+ ps @h

> B a %" = x,2 = 2/Ez, 4 llx* — x|

where the third inequality is due to the Cauchy-Schwarz inequality.
Substituting (21) into (20) and rearranging terms, we obtain

Ez, alF(xs) — F(x")] <Ez, 4

)‘+p8 * 2
At Py —xs\]

Ps Jlxr — a2 -
2 2

16V2 2(L + ps)ns
2 2LAPI o e B It —

(A + ps)m A+ ps

Setting ps = ’\( L) , and multiplying both sides by s, we further obtain

4 4
32V2 (4L + As)n
+ +

m

X A(s—1)s As(s+1 .
SEz, AlF(xs) — F(x")] <z, {() I — x| = 25D e xsﬂ

S sy Bz, a (s + 1) I = %),
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Summing the above inequality over s = 1, ..., S yields
E is (F(xs) — F(x*)) | + & |5 FDIX = XSHQI
s=1 ’ 4
32V25 4L

< Zns+zsns+zm¢ s e -xlf]. @)

Bounding ||x* — xs||> Dropping the E {Zs 15 (F(xs) — F(x*))} term from (22) which is non-
negative, we have

E [S(S+1)Ix" — xs]”|

128V25 16L

< Zns+428ns+4zx/)\sns\/ s(s+1) ||x* — xs]| }

Now apply Lemma 8 and we obtain

. 128725 161 & 5 5
E[S(SJrl) Ix —XSH?] S\ TS 2[4 sme 4 Ve
s=1 s=1 s=1

Note that this bound increases with S.

Bounding the function value Dropping the E [S (S+1)|x* — XSHﬂ term from (22) which is
nonnegative, we have

S
E | s(F(x,) = F(x))
s=1
3228 2
< ZneranerZ\/Asns\/ 1) [[x* — x|
32V | 4L
< Zns ans

S S S S
128V25 16L
+<§ \/)\sns> Sy Y Y ne 4[4 sne+4d Asne | (@23)
s=1 s=1 s=1 s=1

We require that 1, decays with s, and in particular

V2s 1

Lm %

s < %. Then (24) ensures

Ns = (24)

Recall that 77 | -

S S
V2s V28
SE:1 Ns < Q—Lm , E Asng < 2 T and

m
s=1
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Plugging them into (23), and noting that A < L, we obtain

| s (F(x,) — F(x")) < 100V2S5

Am
s=1

By returning the weighted average xg = ﬁ Zle sxs and the convexity of F'(x), we
obtain the desired result. |

Appendix H. An auxiliary lemma

Lemma 8 (Schmidt et al., 2011, Lemma 1) Assume that the non-negative sequence {ug} satisfies
the following recursion for all S > 1:

S
U%’ < AS + ZASUS7

s=1

with Ag an increasing sequence, Ay > u% and \g > 0 for all s. Then, for all S > 1, we have

1S 1S 2\ 2 s
uSSiZ)\s"i_ AS+<2Z/\S> S\/AS+Z/\5~
s=1 s=1 s=1
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