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Problems with Shapley-value-based explanations as feature importance
measures
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Abstract

Game-theoretic formulations of feature im-
portance have become popular as a way to
“explain” machine learning models. These
methods define a cooperative game between
the features of a model and distribute in-
fluence among these input elements using
some form of the game’s unique Shapley
values. Justification for these methods rests
on two pillars: their desirable mathematical
properties, and their applicability to specific
motivations for explanations. We show that
mathematical problems arise when Shapley
values are used for feature importance, and
that the solutions to mitigate these necessar-
ily induce further complexity, such as the
need for causal reasoning. We also draw
on additional literature to argue that Shap-
ley values are not a natural solution to the
human-centric goals of explainability.

1. Introduction

Machine learning models are increasingly being used
to replace human decision-making for tasks involving
some kind of prediction. As state-of-the-art predic-
tive machine learning models become increasingly in-
scrutable, there has been an increase in concern that
the black-box nature of these systems can obscure un-
desirable properties of the decision algorithm, such
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as illegal bias or signals accidentally learned from ar-
tifacts irrelevant to the task at hand. More recently,
attempts have been made to “explain” the output of a
complicated function in terms of its inputs to address
these and other concerns. One of the more prominent
tools in this literature has been the Shapley value, a
method for additively attributing value among players
of a cooperative game. In this setting, the “players”
are the features used by the model, and the game is
the prediction of the model. A variety of methods to
assign feature influence using the Shapley value have
recently been developed (Lipovetsky & Conklin, 2001;
Štrumbelj & Kononenko, 2014; Lundberg et al., 2018;
Datta et al., 2016b; Merrick & Taly, 2019; Frye et al.,
2019; Aas et al., 2019).

In this paper, we demonstrate that Shapley-value-based
explanations for feature importance fail to serve their
desired purpose in general. We make this argument in
two parts. Firstly, we show that applying the Shapley
value to the problem of feature importance introduces
mathematically formalizable properties which may not
align with what we would expect from an explana-
tion. Secondly, taking a human-centric perspective,
we evaluate Shapley-value-based explanations through
established frameworks of what people expect from
explanations, and find them wanting. We find that
the game theoretic problem formulation of Shapley-
value-based explanations do not match the proposed
use cases for its solution, and thus caution against their
usage except in narrowly constrained settings where
they admit a clear interpretation.

We describe the different Shapley-value-based explana-
tion frameworks in Section 2, and present our two-part
critique in Sections 3 and 4. We discuss these results
and provide some suggestions in Section 5.
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2. Background

In this section, we define the Shapley value and articu-
late the different ways in which it has been applied to
the problem of feature importance.

2.1. Classical Shapley values

In cooperative game theory, a coalitional game consists
of a set of N players and a characteristic function v
which maps subsets S ⊆ {1, 2, ..., N} to a real value
v(S), satisfying v(∅) = 0. The value function repre-
sents how much collective payoff a set of players can
gain by “cooperating” as a set. The Shapley value is
one way to allocate the total value of the grand coali-
tion, v({1, 2, ..., N}), between the individual players.
It is based on trying to answer the question: how much
does player i contribute to the coalition?

The marginal contribution ∆v(i, S) of player i with
respect to a coalition S is defined as the additional
value generated by including i in the coalition:

∆v(i, S) = v(S ∪ i)− v(S) (1)

Intuitively, the Shapley value can be understood as a
weighted average of a player’s marginal contributions
to every possible subset of players. Let Π be the set of
permutations of the integers up to N , and given π ∈ Π
let Si,π = {j : π(j) < π(i)} represent the players
preceding player i in π. The Shapley value of player i
is then

ϕv(i) =
1

N !

∑︂
π∈Π

∆v(i, Si,π) (2)

This can be rewritten in terms of the unique subsets
S ⊆ {1, 2, ..., N} and the number of permutations for
which some ordering of S immediately precedes player
i:

ϕv(i) =
1

N !

∑︂
S⊆{1,2,...,N}

|S|!(N − |S| − 1)!∆v(i, S)

(3)
This value is the unique allocation of the grand coali-
tion v({1, 2, ..., N}) which satisfies the following ax-
ioms:

Symmetry: For two players i, j, if ∆v(i, S) =
∆v(j, S) for any subset of players S, then ϕv(i) =
ϕv(j).

Dummy: For a single player i, if ∆v(i, S) = 0 for all
subsets S, then ϕ(i) = 0.

Additivity: For a single player i and two value func-
tions v and w, ϕv(i) + ϕw(i) = ϕv+w(i).

2.2. Shapley values for feature importance

Several methods have been proposed to apply the Shap-
ley value to the problem of feature importance. Given
a model f(x1, x2, ..., xd), the features from 1 to d can
be considered players in a game in which the payoff v
is some measure of the importance or influence of that
subset. The Shapley value ϕv(i) can then be viewed as
the “influence” of i on the outcome.

In this section, we describe methods which consist of
defining a value function vf with respect to a model f ,
and computing (or approximating) the resulting Shap-
ley values. We will use the following notation:

D: the set of features {1, 2, ..., d}

X: a multivariate random variable {X1, X2, ..., Xd}

x: a set of values {x1, x2, ..., xd}

XS : the set of random variables {Xi : i ∈ S}

xS : the set of values {xi : i ∈ S}

2.2.1. VALUE FUNCTIONS

Shapley values have a fairly long history in the context
of feature importance. Kruskal (1987) and Lipovetsky
& Conklin (2001) proposed using the Shapley value to
analyze global feature importance in linear regression
by using the value function vf (S) to represent the R2

of a linear model f built on predictors S, to decompose
the variance explained additively between the features.
Owen & Prieur (2017) applied the Shapley value to
the problem of sensitivity analysis, where the total
variance of a function is the quantity of interest.

Many recently proposed “local” methods (Ribeiro
et al., 2016; Lundberg & Lee, 2017; Lundberg et al.,
2018) define a value function vf,x : 2d → R that de-
pends on a specific data instance x to explain how
each feature contributes to the output of the function
on this instance. The value of the grand coalition,
in this setting, is the prediction of the model at x:
vf,x(D) = f(x). In addition, to use Shapley values as
an “explanation” of the (grand coalition of) features in
this way, these methods also need to specify how vf,x
acts on proper subsets of the features.
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The definitions of Shapley sampling values (Štrumbelj
& Kononenko, 2014), as well as SHAP values (Lund-
berg & Lee, 2017), are derived from defining vf,x(S)
as the conditional expected model output on a data
point when only the features in S are known:

vf,x(S) = E[f(X)|XS = xS ] = EXS̄ |XS
[f(xS ,XS̄)]

(4)

Quantitative Input Influence (QII) (Datta et al., 2016a)
draws on ideas from causal inference to propose sim-
ulating an intervention on the features not in S, thus
breaking correlations with the features in S:

vf,x(S) = ED[f(xS ,XS̄)] (5)

where the distribution D is derived from the product of
the marginal distributions of the features in S̄. The ap-
proach of using a distribution other than that of the orig-
inal data was further generalized by (Merrick & Taly,
2019), who also propose the Formulate, Approximate,
Explain (FAE) framework, so as to unify a number of
different approaches to Shapley value explanations.

2.2.2. ALGORITHMS

Methods based on the same value function can differ in
their mathematical properties based on the assumptions
and computational methods employed for approxima-
tion. TreeSHAP (Lundberg et al., 2018), an efficient
algorithm for calculating SHAP values on additive
tree-based models such as random forests and gradient
boosting machines, can estimate EXS̄ |XS

[f(xS ,XS̄)]
by observing what proportion of the samples in the
training set matching the condition xS fall into each
leaf node, a method which does not rely on a fea-
ture independence assumption. In the algorithm for
KernelSHAP (Lundberg & Lee, 2017), conditional ex-
pectations are estimated by assuming feature indepen-
dence; samples of the features in S̄ = D \S are drawn
from the marginal joint distribution of these variables.
This effectively approximates an expectation over an
interventional distribution instead, though in a slightly
different way from QII.

In Table 1, we categorize each method based on how
they define a value function vf,x(S) and how they es-
timate that value function v̂f,x(S). In the rest of the
paper, we will refer to these value functions as either
interventional or conditional based on the estimation
method. That is to say, KernelSHAP, Shapley sampling

values, QII, and FAE are interventional methods, while
TreeSHAP as well as some other algorithms we will
introduce later are conditional.

3. Mathematical issues

We now present a number of mathematically articu-
lated problems that arise when we attempt to interpret
Shapley values as feature importance measures. These
problems arise from the estimation procedures that are
in use as well as the fundamental axiomatic structure
of Shapley values.

3.1. Conditional versus interventional
distributions

A fundamental difference between the interventional
and conditional value functions is revealed by what
we call the indirect influence debate. Suppose f is
defined with domain Rd, but for a certain feature i,
f(x) = f(x′) whenever xj = x′j for all j ̸= i; that is
to say, intervening on the value of xi alone does not
change the output of f . We call this a variable with no
interventional effect.

Should a feature with no interventional effect be con-
sidered an “input” to this function? We could define a
new function f ′ with domain Rd−1 to perfectly capture
the output, so perhaps not. What if, in the relevant input
space, xi is a statistical proxy for some xj which does
affect the output of f? Shapley value based feature
importance methods must grapple with these choices.

Adler et al. (2018) take the information-theoretic posi-
tion that “the information content of a feature can be
estimated by trying to predict it from the remaining
features.” This perspective can help diagnose situa-
tions where an undesirable proxy variable is being
used by a model, as in the classic case of redlin-
ing. While Adler et al. go on to analyze how the
accuracy of a model depends on indirect informa-
tion, the conditional value function aligns with this
information-theoretic principle as well: If a certain
feature i can help predict the features in S̄, then the
quantities vf,x(S ∪ i) = E[f(X)|XS∪i = xS∪i] and
vf,x(S) = E[f(X)|XS = xS ] may be meaningfully
different, meaning that the marginal contribution of
feature i is nonzero. For this reason the Shapley value
of the conditional value function may attribute influ-
ence to features with no interventional effect, a positive
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Method vf,x(S) v̂f,x(S)

KernelSHAP, Shapley sampling values EXS̄ |XS
[f(xS ,XS̄)] ED[f(xS ,XS̄)]

QII, FAE, Interventional TreeSHAP ED[f(xS ,XS̄)] ED[f(xS ,XS̄)]
Conditional TreeSHAP, Frye et al. (2019), Aas et al. (2019) EXS̄ |XS

[f(xS ,XS̄)] EXS̄ |XS
[f(xS ,XS̄)]

Table 1. Proposed value function vf,x for each method, compared with the quantity v̂f,x the algorithm actually approximates. The
interventional distribution D used depends on the method (i.e., for KernelSHAP it is the observational joint distribution of X̄).

thing from the perspective of Adler et al..

Merrick & Taly (2019), on the other hand, criticize
the capacity to attribute indirect influence as being
paradoxical, and show that interventional methods will
never attribute attribute influence to an xi which has no
interventional effect on f , which they see as a desirable
property.

Unfortunately, the decision between the two types of
value functions is a catch-22. Both methods introduce
serious issues: Choosing a conditional method requires
further modeling of how the features are interrelated,
which we describe in 3.1.1, while choosing an interven-
tional method induces an “out-of-distribution” problem
which we address in 3.1.2.

3.1.1. ISSUES WITH CONDITIONAL DISTRIBUTIONS

The conditional value function induces two major dif-
ficulties. First, the exact computation of the Shapley
value for a conditional value function would require
knowledge of 2d different multivariate distributions,
and so a significant amount of approximation or mod-
eling is necessary. Second, since influence can be
computed on an arbitrarily large set of features, it be-
comes necessary to choose a set that is meaningful
because the explanations may change based on which
features are considered.

Solutions have been proposed to deal with the compu-
tational complexity of this problem. The TreeSHAP
algorithm estimates the conditional expectations of
any tree ensemble directly, without sampling, using
information computed during model training. The algo-
rithm utilizes information about the training instances
which fall into each leaf node to model each condi-
tional distribution. It is not, however, set up to attribute
influence to variables without an interventional effect,
as the trees contain no information about the distribu-
tion of variables not in the model.

For arbitrary types of models, estimating the condi-

tional expectations requires a substantial amount of
additional modeling of relationships in the data which
are not necessarily captured by the model that one is
trying to explain. Aas et al. (2019) and Frye et al.
(2019) have developed methods that aim to generate
in-distribution samples for the relevant calculations.

Even if computational issues are resolved, there are
additional inconsistencies introduced by the capacity
of the Shapley value to attribute influence to an arbi-
trarily large feature set given a single function. The
modeler must decide which features count as players
in the cooperative game and which are redundant, and
since the problem definition posits that the attributions
add up to the value of f(x), this choice can affect the
resulting explanations.

Consider the addition of a redundant variable C to a
dataset with two features, A and B, so that P (XC =
XB) = 1. Suppose a model f is trained on all three
features. Intuitively, the features B and C should be
equally informative to the model and so should have
the same Shapley value under the conditional value
function. Formally, the following properties will hold:

E[f(X)|XB, XC ] = E[f(X)|XB] (6)

= E[f(X)|XC ] (7)

E[f(X)|XA, XB, XC ] = E[f(X)|XA, XB] (8)

= E[f(X)|XA, XC ] (9)

so this means vf,x(B) = vf,x(C) = vf,x(BC) and
vf,x(AB) = vf,x(AC) = vf,x(ABC). Therefore, for
any data instance x,

ϕv(A) =
1

3
∆v(A, ∅) +

2

3
∆v(A,BC)

(10)

ϕv(B) = ϕv(C) =
1

3
∆v(B, ∅) +

1

6
∆v(B,A) (11)
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Now consider what would happen if we defined a new
function f ′(xA, xB) = f(xA, xB, xB). For any data
instance, since xB = xC , f ′(x) = f(x). It is effec-
tively the same model for all in-distribution data points,
so the games vf,x and vf ′,x are the same for all sub-
sets of variables. Yet if we choose to limit the scope
of our explanation to two variables instead of three,
the attribution for both A and B will come out to be
different:

ϕ′v(A) =
1

2
∆v(A, ∅) +

1

2
∆v(A,BC) (12)

ϕ′v(B) =
1

2
∆v(B, ∅) +

1

2
∆v(B,A) (13)

Notice that ϕ′v(B) is neither equal to ϕv(B), its as-
signed influence in the 3-variable setting, nor ϕv(B) +
ϕv(C), the “total” influence of the two identical vari-
ables in the 3-variable setting. The relative apparent
importances of A and B thus depend on whether C is
considered to be a third feature, even though the two
functions are effectively the same.

It is not obvious whether two statistically related fea-
tures should be considered as separate “players” in the
cooperative game, yet this choice has an impact on the
output of these additive explanation models. Suppose,
for instance, that B is a sensitive feature, and C is a
non-sensitive feature that happens to perfectly corre-
late with it. Two different “fairness” audits of the same
function would come out with quantitatively different
results.

Frye et al. (2019) propose to a solution to the problem
in terms of incorporating causal knowledge:

...If xi is known to be the deterministic
causal ancestor of xj , one might want to
attribute all the importance to xi and none to
xj .

They propose not only discounting fully redundant
variables which are causal descendants of other vari-
ables in the model, but relaxing the symmetry axiom
which uniquely defines the Shapley value. Instead of
averaging marginal contributions over every permuta-
tion, they suggest defining a quasivalue which consid-
ers only certain permutations; for example, orderings
which place causal ancestors before their descendants.

In this framework, fully redundant features will receive
zero attribution and will not change the resulting value
of the remaining features. For instance, in the above
example, if variable C were known to be a causal
descendant of B, the Asymmetric Shapley Values of A
and B under f ′ will be the same as they were under f .

A fully specified causal model is not required to use
this method: they “span the data-agnosticism contin-
uum in the sense that they allow any knowledge about
the data, however incomplete, to be incorporated into
an explanation of the model’s behaviour.” The results
in Frye et al. (2019) demonstrate, however, the sen-
sitivity of the game theoretic approach to the amount
of prior knowledge about the relative agency of each
feature, which we consider a significant limitation of
the approach.

There are thus both practical and epistemological chal-
lenges with computing the Shapley values of games
with a conditional value function.

3.1.2. ISSUES WITH INTERVENTIONAL

DISTRIBUTIONS

Conditional value functions introduce undesirable com-
plexities to the feature importance problem, so those
inclined against methods with the capacity for attribut-
ing indirect influence may prefer the methods interven-
tional value functions instead. These methods, how-
ever, are highly sensitive to properties of the model
which are not relevant to what it has learned about the
data it was trained on.

Methods which use an interventional value function
fundamentally rely on evaluating a model on out-of-
distribution samples (Figure 1). Consider, for ex-
ample, a model trained on a data set with three fea-
tures: X1 and X2, both N(0, 1), and an engineered
feature X3 = X1X2. To calculate vf,x({1, 2}) for
some x = {x1, x2, x3}, we would have to estimate
E(f(x1, x2, X3)) over some distribution forX3 which
does not depend on x1 or x2. Therefore we will al-
most certainly have to evaluate f on some sample
{x1, x2, x′3} which does not respect x′3 = x1x2 - thus,
it is well outside the domain of the actual data distri-
bution. The model f has never seen an example like
this in training, and has therefore not learned much
about this part of the feature space. Its predictions on
this feature space are not necessarily relevant to the
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Figure 1. Samples that might be drawn to estimate E[f(1, Y )] and E[f(X, 2)] to explain f(1, 2) for some function f , given correlated
Gaussian distributions for X and Y , depending on whether the expectation is taken over X|Y = 2 and Y |X = 1 (left) or X and Y (right)

task of explaining an in-distribution sample, yet the
explanations will be affected by them.

This “out-of-distribution” phenomenon has been ex-
plored recently by Hooker & Mentch (2019), who show
why “permutation-based” methods to evaluate feature
importance can be highly misleading: when values are
substituted into feature set S̄ that are unlikely or impos-
sible when conditioned on feature set S, the model f
is forced to extrapolate to an unseen part of the feature
space. They show that these feature importance meth-
ods are highly sensitive to the way in which the model
extrapolates to these edge cases, which is undesirable
information for a model “explanation” to capture.

Slack et al. (2020) demonstrate how to exploit this sen-
sitivity by devising models which illegally discriminate
on some protected feature for in-distribution samples,
but exhibit different behavior on the out-of-distribution
samples used by KernelSHAP so as to simulate “fair-
ness” in the resulting explanations. By manipulating
the model’s behavior on unfamiliar parts of the feature
space, they can twist the explanations on the familiar
part to their will.

These challenges illustrate that intervening on a sub-
set of features of a data case before applying a model
trained on a sample from a certain distribution is inher-
ently misleading.

3.2. Additivity constraints

In addition to the problems demonstrated above, which
have to do with the choice between two families of

value functions, we also identify problems which are
common to both. These are linked to the axiomatic
underpinnings of Shapley values.

For any two of the axioms described in Section 2.1,
there exists an alternative attribution between players
which satisfies those two but not the other; the Shapley
value is therefore only unique because it satisfies all
three. Since the notion of the sum of two games is not
especially meaningful, the Additivity axiom has been
described by game theorists as “mathematically con-
venient” and “not nearly so innocent as the other two”
(Osborne & Rubinstein, 1994). The choice to constrain
the value to be unique in this way has implications for
what kinds of models can be explained intuitively by
the Shapley value. Even in simple cases where feature
independence renders the interventional versus con-
ditional debate irrelevant, we find the Shapley value
conceptually limited for non-additive models.

The Shapley value seems to intuitively align with what
is considered important in an additive setting. Con-
sider applying any of the expectation value functions
to f(x) = β0 + β1x1 + ...+ βdxd where the features
Xi are independent. For any subset S,

vf,x(S) = EXS̄ |XS
[f(xS ,XS̄)] (14)

= f(xS , E[XS̄ ]) (15)

=
∑︂
j∈S

βjxj +
∑︂
j∈S̄

βjE[Xj ] + β0 (16)
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so the marginal contribution for feature i ̸∈ S is∑︂
j∈S∪i

βjxj +
∑︂
j∈S∪i¯

βjE[Xj ] + β0

−

⎛⎝∑︂
j∈S

βjxj +
∑︂
j∈S̄

βjE[Xj ] + β0

⎞⎠ (17)

=
∑︂
j∈S

βjxj + βixi +
∑︂
j∈S∪i¯

βjE[Xj ] + β0

−

⎛⎝∑︂
j∈S

βjxj + βiE[Xi] +
∑︂
j∈S∪i¯

βjE[Xj ] + β0

⎞⎠
(18)

=βi(xi − E[Xi]) (19)

In this way, the Shapley value is supported by the
common intuition that coefficient size, if variables are
appropriately scaled, signals importance in a linear
model.

The additivity axiom is aligned with additive models
in another way: the games resulting from two models
sum to the expectation game of the sum of the two
models. This seems reasonable when the models are
additive in the first place.

Now imagine if the additivity constraint were relaxed.
We could use an alternative attribution ψ which satis-
fies the other two axioms: ψ : ψ(i) = v(i) for i ∈ U
and ψ(i) = 1

|U |(v(D)−
∑︁

j∈U v(j)) whereU is the set
of dummy features. Using the expectation value func-
tion in this setting, any feature which did not satisfy
βi(xi−E[Xi]) = 0 would get the same attribution. In
this sense the additivity constraint seems necessary for
a game-based feature attribution to provide any mean-
ingful quantities about an additive model. Under an
interventional interpretation of the attribution — using
the values to assess which data changes produce the
largest model prediction change — this is not a helpful
property.

Under an interventional interpretation, Shapley val-
ues are as uninformative for non-additive models as
this alternative attribution is for linear ones. For in-
stance, any value function which always evaluates to
0 except on the grand coalition will evenly distribute
influence among players. Consider a model given by
f(x) = Πd

j=1xd where the features are independent

and centered at 0. Then for any subset S,

vf,x(S) = E[f(XS ,XS̄)|XS = xS ] (20)

= E[
d∏︂

j=1

Xd|XS = xS ] (21)

=
d∏︂

j=1

E[Xj |XS = xS ] (22)

=

⎛⎝∏︂
j∈S

xj

⎞⎠⎛⎝∏︂
j∈S̄

E[xj ]

⎞⎠ (23)

which, since E[xj ] is 0, is always 0 unless S = D.
Then the Shapley value for every feature i is 1

df(x),
regardless of the value xi. Even if, for instance, the
magnitude of one of the variables is much higher than
the other. This property will, in fact, hold for all multi-
plicative functions of independently distributed, zero-
centered data.

Shapley values are touted for their “model-agnostic”
quality, but under the lens of a particular interpretation,
this is not the case.

4. Human-centric issues

The analysis from Section 3 demonstrates the math-
ematical issues with feature importance methods de-
rived from Shapley values and suggests how one might
mitigate them. In this section we turn to the human side
of the interaction between feature importance methods
and the people who use them. This perspective is closer
in spirit to the “human-grounded metrics” that Doshi-
Velez & Kim (2017) describe in comparison with the
“functionally-grounded evaluation” of the previous sec-
tion.

We use the framework set out by Selbst & Barocas
(2018), who argue that there are three general motiva-
tions behind the call for explanations in AI.

The first is a fundamental question of auton-
omy, dignity, and personhood. The second
is a more instrumental value: educating the
subjects of automated decisions about how to
achieve different results. The third is a more
normative question—the idea that explain-
ing the model will allow people to debate
whether the model’s rules are justifiable.
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In this section, we attempt to reconcile the Shapley
value feature importance formalization of machine
learning “explanations” with these three goals. We
argue that the theoretical properties of the Shapley
value are not naturally well-suited to any one of these
objectives. While we focus here on these issues in the
context of Shapley values, many of these critiques also
apply to other explanatory methods.

4.1. Explanations as contrastive statements

The presence of the phrase “right to explanation” in
the GDPR illustrates the sense many of us have that
it is inherently unethical to make decisions about an
individual without providing an explanation, in a way
that Selbst & Barocas (2018) argue has more to do
with “procedural justice” than “wanting an explanation
for the purpose of vindicating certain specific empow-
erment or accountability goals.”

It is not immediately clear how to formally evaluate a
method that provides explanations merely because it
should, rather than to improve on a particular metric
or task. In this setting, Doshi-Velez & Kim suggest the
empirical approach of running user tests where humans
are provided with explanations and they evaluate their
“quality”. But in fact, what humans consider a good
explanation has been studied extensively in the social
sciences, leading to several formal theories of how
humans generate and select explanations.

Miller (2019) provides an overview of this literature.
One of his major findings is that the way humans ex-
plain phenomena to each other is through contrastive
statements:

People do not explain the causes for an event
per se, but explain the cause of an event rela-
tive to some other event that did not occur;
that is, an explanation is always of the form
“Why P rather than Q?”, in which P is the tar-
get event and Q is a counterfactual contrast
case that did not occur.

He attributes this insight to work by Lipton (1990).
More recently, a similar argument has been made by
Merrick & Taly (2019), referencing earlier work by
Kahneman & Miller (1986).

We now outline different ways in which Shapley values

can be interpreted as contrastive explanations.

4.1.1. SHAPLEY VALUE SETS AS A SINGLE

CONTRASTIVE STATEMENT

The above-mentioned research supports the hypothesis
that people ask for explanations when the outcome, P,
is “unexpected” compared to the outcome Q. In this
sense, we can interpret Shapley-based explanations
as a contrastive statement where the outcome to be
explained is v(D) and the foil – the counterfactual
case which did not happen – is implicitly set to be v(∅).
In the “local” settings described earlier, v(D) is f(x)
and v(∅) is E(f(x)):

f(x) = E(f(x)) + ϕ1 + ϕ2 + ...+ ϕd

Thus, the Shapley values can be thought of as a set
of answers to the question, “Why f(x) rather than
E(f(x))?”

While the expected value of a function seems like a nat-
ural foil to an “unexpected” f(x), due to the properties
of the expectation, there may not be a scenario in the
data space of X with the outcome E(f(x)). Thus, the
expected value may not be “expected” by anyone with
a reasonable understanding of the situation at hand at
all.

If we are willing to consider intervention distributions
(Section 2.2.1), then the framework provided by Mer-
rick & Taly (2019) provides a slightly different con-
trastive explanation: in their setting, the Shapley value
assignment can be thought of as a set of answers to
the question, “Why f(x) rather than f(r)?”, where
r is chosen from the reference distribution. This of
course requires the specification of the reference dis-
tribution and carries with it the estimation issues de-
scribed above in Section 3.1.2.

4.1.2. MARGINAL CONTRIBUTIONS AS

CONTRASTIVE STATEMENTS

An alternate way to consider Shapley value-based
methods as contrastive statements is by examining the
marginal contribution of features. The set of marginal
contributions of each feature i, which are averaged
in a certain way over all subsets S to calculate the
Shapley value, can be thought of as a set of contrastive
explanations. Each quantity ∆(i, S) represents a con-
trastive explanation for why feature i is important:
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“Why choose a model with S and i rather than a model
with just S? Because it improves v by ∆(i, S) amount.”
This quantity is an important part of stepwise selection,
a modeling procedure in which features which increase
the accuracy of a model are successively added to the
modeling set.

Note that regardless of what order features were actu-
ally added to the model in, all permutations are con-
sidered when the Shapley value is calculated. It is not
clear that taking an average of quantities representing
“all possible contrastive explanations” for a certain set
of foils is a sensible way to summarize information.
Instead, Miller (2019) argues that humans are selective
about explanations: certain contrasts are more mean-
ingful than others. An example of this is the difference
between necessary and sufficient causes:

Lipton argues that necessary causes are pre-
ferred to sufficient causes. For example, con-
sider mutations in the DNA of a particular
species of beetle that cause its wings to grow
longer than normal when kept in certain tem-
peratures. Now, consider that there are two
such mutations, M1 and M2, and either is
sufficient to cause the mutation. To contrast
with a beetle whose wings would not change,
the explanation of temperature is preferred
to either of the mutationsM1 orM2, because
neither M1 nor M2 are individually neces-
sary for the observed event; merely that ei-
ther M1 or M2. In contrast, the temperature
is necessary, and is preferred, even if we
know that the cause was M1.

Consider, without specifying how to quantify the im-
portance v of a feature coalition, computing some kind
of allocation for each feature to analyze the positive
classification of a beetle with longer wings. Lipton’s ar-
gument above suggests that since all “yes” cases share
a property T , a contrastive statement highlighting this
is more relevant than comparisons based on M1 or M2.
This is fundamentally at odds with the idea that the
“yes” prediction should be split additively between dif-
ferent coalitions of M1, M2 and T , a property induced
by the notion of the Shapley value.

4.2. Using Shapley-valued based methods to
enable action

One motivation for “explaining” a function is to enable
individuals to figure out how to achieve a desirable out-
come. For example, one might allow an individual to
query the model for a specific contrastive explanation
in which the person p’s outcome, f(p), is compared
with a person q with desirable outcome f(q) = Q de-
termined by the user, such that the user might be able to
alter their own situation to approximate q. This setup
has been formalized as the “counterfactual explanation”
problem by Wachter et al. (2017) (with an analysis of
hidden assumptions by Barocas et al. (2020)). Ustun
et al. (2019) further specify a way to model this prob-
lem by searching for changes within characteristics
which are actually mutable; they call this the “action-
able recourse” problem (with a corresponding analysis
by Venkatasubramanian & Alfano (2020)).

Unlike these methods, Shapley value based frame-
works do not explicitly attempt to provide guidance
how a user might alter one’s behavior in a desirable
way. Further, observing that a certain feature carries
a large influence over the model does not necessarily
imply that changing that feature (even significantly)
will change the outcome favorably.

Suppose, in a very simple nonlinear example, that a
univariate model is defined as f(x) = 2−(x−1)2, for
someX ∼ N(0, 1). A person for whom x = 1 will get
f(1) = 2, andE(X) = 0, so the Shapley value for this
person’s single input is then ϕ(x) = 2. Suppose they
were hoping for an even higher score. The fact that
the value is positive, along with the general knowledge
that 1 is a bit high with respect to an average value of
X , might make this person think that increasing their
x value even more will increase their score – but it will
not.

This problem stems from the fact that the contrastive
quantity E(f(x)) is not desirable, but even if v(∅) is
chosen to be some desirable outcome f(q) of some q,
such as in Merrick & Taly (2019), the Shapley values
themselves do not correspond to specific actions: the
interventional effect of changing one input from x to
that from q is just one of the marginal contributions
that are averaged together to form the Shapley value of
that input, as we discussed in Section 4.1.2.
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4.3. Shapley-based explanations for normative
evaluation

Shapley-value-based explanations are primarily used
for purposes of normative evaluation: deciding whether
a model’s behavior is acceptable (Bhatt et al., 2020).
This is done either at the development stage, to help
a human evaluate a model, or at the decision-making
stage, to help a human evaluate a specific decision
made by a model. In this section we explore how the
information content of the Shapley value is insuffi-
cient for evaluation. We marshal evidence to make
three points. Firstly, data scientists do not have a clear
mental model of what insights Shapley-value-based
analysis brings. Secondly, in the face of this uncer-
tainty, they tend to rely on narrative and confirmation
biases. Thirdly, even if they do understand the analy-
sis, it is not obvious that it can be operationalized for
specific evaluation tasks.

Since there is no standard procedure for converting
Shapley values into a statement about a model’s behav-
ior, developers rely on their own mental model of what
the values represent. Kaur et al. (2020) conducted a
contextual inquiry and survey of data scientists to ob-
serve their interpretation of interpretability tools includ-
ing the SHAP Python package. They found that many
participants did not have an accurate mental model of
what a SHAP analysis represents, yet used them to
make decisions on whether the model was ready for
deployment, over-trusting and misusing the tool.

Using feature importance during model development
in this way is ripe for narrative and confirmation biases.
Passi & Jackson (2018) conducted ethnographic field-
work with a corporate data science team and described
situations in which applying intuition to feature impor-
tance was a key component of the model development
cycle. In one instance, when developers communicated
the results of a modeling effort to project managers,
the stakeholders immediately decided it was “useful”
based entirely on the feature importance list:

Certain highly-weighted features matched
business intuitions, and everyone in the
meeting considered this a good thing.
. . . Regarding counter-intuitive feature im-
portances, [a data scientist] reminded [the
stakeholders] that machine-learning models

do not approach data in the same way hu-
mans do. He pointed out that models use “a
lot of complex math” to tell us things that
we may not know or fully understand.

This suggests that even when an individual lacks a
correct mental model of the meaning of Shapley values,
they may use them to justify their evaluation anyway,
whether or not this analysis is well-founded.

In support of this hypothesis, empirical studies have
shown that interpretability is not always helpful in task-
specific settings. Poursabzi-Sangdeh et al. (2018),
for instance, demonstrated that “interpretable” models
may not be easier to evaluate:

Participants who were shown a clear model
with a small number of features were bet-
ter able to simulate the model’s predictions.
However, contrary to what one might ex-
pect when manipulating interpretability, we
found no improvements in the degree to
which participants followed the model’s pre-
dictions when it was beneficial to do so.
Even more surprisingly, increased trans-
parency hampered people’s ability to detect
when the model makes a sizable mistake and
correct for it, seemingly due to information
overload.

This suggests that common intuition for the benefits
of interpretability (and the types of questions it can
help answer) may be based on faulty assumptions, and
these questions should instead be concretely specified
and tested. For instance, data scientists might want to
know:

• Whether an error was made at any point in the
data processing pipeline for a certain feature

• Whether the model is acting upon spurious corre-
lations or other artifacts of training data

• Whether the model exhibits inappropriate biases

• Whether the model’s accuracy will improve if a
certain feature is included or excluded

While Shapley-value-based methods might help quali-
tatively inform investigations that lead to answers to
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these questions, it is not clear that they provide di-
rect answers to any specific question related to the
points of interest above. ?, for instance, conducted a
human-grounded evaluation of SHAP and did not find
evidence that it helped users assess the correctness of
predictions.

5. Conclusion

Shapley values enjoy mathematically satisfying theo-
retical properties as a solution to game theory problems.
However, applying a game theoretic framework does
not automatically solve the problem of feature impor-
tance, and our work shows that in fact this framework
is ill-suited as a general solution to the problem of
quantifying feature importance. Rather than relying
on notions of mathematical correctness, our work sug-
gests that we need more focused approaches that stem
from specific use cases and models, developed with
human accessibility in mind.
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