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Abstract

With the increased attention on thermal imagery for
Covid-19 screening, the public sector may believe there
are new opportunities to exploit thermal as a modality
for computer vision and Al. However, thermal physiol-
ogy research has been ongoing since the late nineties.
This research lies at the intersections of medicine, psy-
chology, machine learning, optics, and affective com-
puting. We will review the known factors of thermal vs.
RGB imaging for facial emotion recognition. But we
also propose that thermal imagery may provide a semi-
anonymous modality for computer vision, over RGB,
which has been plagued by misuse in facial recognition.
However, the transition to adopting thermal imagery as
a source for any human-centered Al task is not easy and
relies on the availability of high fidelity data sources
across multiple demographics and thorough validation.
This paper takes the reader on a short review of machine
learning in thermal FER and the limitations of collect-
ing and developing thermal FER data for Al training.
Our motivation is to provide an introductory overview
into recent advances for thermal FER and stimulate con-
versation about the limitations in current datasets.

Introduction

Computer vision algorithms that use data from the visible
spectrum (e.g. RGB) face a variety of challenges when it
comes to human Facial Emotion Recognition (FER) due to
the representation of superficial facial features laying on the
epidermis. Physiological response from stress, fatigue, or
other stimuli cannot be visualized on RGB but can be visu-
alized through thermal imagery due to the changes in tem-
perature detected sub-cutaneously. Thermal image data that
can capture temperature changes correlated to human vital
signs can be a powerful set of data for telemedicine applica-
tions supporting healthcare providers as a diagnostic tool for
assessing inflammation and stress (Kosonogov et al. 2017).
Skin temperature can correlate to certain vital signs and of-
fers a non-invasive method to remotely assess patients. As
the cost of high resolution thermal sensors decline and more
researchers release thermal FER datasets, there is a great
potential to apply thermal imagery for telemedicine pur-
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Figure 1: RGB, near infrared and thermal images of a resting
(up) and fatigued (down) face. In the thermal images, darker
pixels corresponds to colder and lighter to hotter. (Lopez,
del Blanco, and Garcia 2017)

poses. Since the Covid-19 pandemic, governments around
the world have begun using thermal sensors combined with
Al tools for Covid temperature screening (Ting et al. 2020).
From the U.K, China, Italy, Australia, to the U.S., multi-
ple companies are offering the promise of integrated ther-
mal sensing with facial recognition (FR) (Van Natta et al.
2020). We believe that with broader adoption of thermal FR
due to changes in HIPAA rules due to Covid-19, it will only
be natural that researchers will want to advance their tech-
nology towards emotion screening. We caution that before
leaping to thermal FER, researchers should be fully aware
of the restrictions and limitations of thermal imagery and the
problems that may underlie existing thermal FER databases.
The adoption of thermal imagery as a source for any human-
centered Al task is not easy. Thus, the goal of this paper is to
present the state of the literature and discuss the challenges
hindering the full adoption of Al as a tool for thermal FER.

Advantages of Thermal over Visible

When the public sector thinks about FER and facial recog-
nition (FR), the go-to modality is the visible spectrum usu-
ally encoded as RGB. RGB images have dominated the area
of FER, indicative through a variety of well known facial



databases used in AL! But, FR using RGB databases has
become a controversial area of computer science, requir-
ing careful consideration of its flaws and innate assumptions
within the data (Martinez-Martin 2019; Buolamwini and Ge-
bru 2018; Greene, Hoffmann, and Stark 2019; Singer and
Metz 2019; Lohr 2018). Beyond the original intended aca-
demic purposes, some RGB databases have been taken down
in order to prevent industry FR training (Murgia 2019). In
the wake of Black Lives Matters protests in June 2020,
Microsoft and IBM discontinued their development of FR,
where Amazon invoked a one year moratorium on FR based
on evidence of algorithmic discrimination against commu-
nities of color (Matsakis 2020). Of particular value to the
public sector, is whether thermal imagery for FER affords
any level of privacy protection and bias mitigation. The an-
swer may stem from the separation of thermal imagery from
other machine learning tasks, known to increase recognition
and decrease anonymity.

Figure 2: Example of data from the Iris dataset (Hammoud )

We believe that long-wave Infrared Radiation (LWIR) used
alone, as a data source for FER, may be able to provide
some form of anonymity for healthcare applications to min-
imize racial, ethnic, and potentially gender bias, when com-
pared to RGB for FER. Through its low, grey-scale resolu-
tion 2 and reliance on temperature vectors driven by underly-
ing vasculature (Ioannou, Gallese, and Merla 2014), rather
than superficial skin tone, texture, and pigmentation, ther-
mal imagery can be more challenging to easily identify in-
dividuals. But there still remains a variety of issues to pre-
serve privacy. For example, anonymity may not be possi-
ble if thermal FER is combined with the machine learning
task of FR, especially since thermal FR is well researched
with multiple methods proposed to detect and recognize in-
dividuals. The concept of separating FR from other tasks
is not uncommon. Ethicists Van Natta, et al. (Van Natta
et al. 2020), question whether during Covid-19 tempera-
ture monitoring, there is even a need to conduct FR given

ICK+, FER 2013 , FERET , EmotioNet, RECOLA, Affectiva-
MIT Facial Expression Dataset, NovaEmotions, MultiPIE, Mc-
Master Shoulder Pain, AffectNet, Aff-Wild2, the Japanese Female
Facial Facial Expression database, and CASME II for microexpres-
sions

>Thermal imaging manufacturers offer a variety of color
palettes for visualizing temperature beyond “white hot” such as
”iron bow” and ”rainbow”. It should be cautioned that some manu-
facturers offer fusion visualizations that fuse the RGB and thermal
images together thereby improving resolution.

how the overall purpose is to identify infection as opposed
to identity. It is important to caution, that although ther-
mal FR is more challenging than the visible domain, it is
feasible to use thermal imagery as a “soft” biometric due
to its invariance under lighting and pose (Reid et al. 2013;
Friedrich and Yeshurun 2002). For example, superficial vas-
cular networks are unique to each person’s face as proposed
by Buddharaju et al. (Buddharaju et al. 2007), and can be
extracted through methods like anisotropic diffusion to iden-
tify minutiae points akin to fingerprints as shown in Fig-
ure 3. Further, combining RGB with thermal can increase
recognition accuracy. For example, Nguyen et al. (Nguyen
and Park 2016) used a combination of thermal and visible
full body images for gender detection, finding that their pro-
posed method of score-level fusion (training two separate
SVM classifiers) combining thermal and visible led to a de-
crease in error of 14.672 equal error rate (EER) when com-
pared to using thermal only (19.583 EER) and visible only
(16.540 EER).

Figure 3: Vascular network extraction: (a) Original seg-
mented image; (b) Anisotropically diffused image; (c) Blood
vessels extracted using white top hat segmentation, per
(Buddharaju et al. 2007)

In addition, there has been research in the computer and
electrical engineering fields to develop sensor-level privacy
for thermal sensors in situations where people need to be
sensed and tracked, but not identified. Work by Pittaluga et
al. (Pittaluga, Zivkovic, and Koppal 2016) demonstrated dif-
ferent techniques to include digitization that masks human
temperatures measurements thereby obscuring any ability
to detect faces shown in Figure 4, manipulating the sensor
noise parameters as the thermal image is being generated,
and algorithms to under or overexpose specific pixels that
are designated as “no capture” zones. Still in research, these
techniques require different levels of hardware and firmware
upgrades based on the thermal sensor.

Thermal imagery has additional technical advantages in-
cluding how it is (1) invariant to lighting conditions un-
like RGB, allowing the detection of physiological response
(heat) to occur in low light or total darkness; (2) is a reli-
able and accurate correlation to standard physiological mea-
sures like respiration and heart rate; (3) is non-invasive
i.e., requiring no skin contact whatsoever, making it con-
venient and non-intrusive and potentially relevant for non-
communicative persons; (4) resistant to intentional deceit
since physiological responses cannot be faked, whereas vis-
ible facial expressions can be controlled; and (5) is able to
reveal facial disguises (i.e. wigs, masks) since these mate-
rials have high reflectivity and display as the brightest on
thermograms compared to human skin which is among the



Figure 4: Digitization privacy in different scenes: digitiza-
tion results in scenes with people, computers and buildings.
The left column are the input 16 bit images and the right col-
umn is the simulated output. (Pittaluga, Zivkovic, and Kop-
pal 2016)

darkest objects with low reflectivity (Pavlidis and Symosek
2000). In addition, thermal imagery offers physiological sig-
nals of social interactions from person to person. In terms
of deceit detection, it is valuable to note that RGB images
can also be used to detect microexpressions using databases
like CASME II. Microexpressions are genuine, quick facial
movements that may be uncontrollable or unnoticeable by
the individual, and therefore have been studied as an indica-
tion of deception (Yan et al. 2014). The RGB images used
for studying microexpressions, however, are different than
standard RGB FR datasets. They consist of video sequences
captured using spontaneous natural elicitation, captured at
a high frame rate of 200 fps, and labeled with facial ac-
tion units (FAUs) which are encoded combination of facial
movements based on Paul Ekman’s Facial Action Coding
System (FACS) (Ekman 1999).

Physiology and Thermal FER

A brief explanation of thermal radiation helps to understand
how facial skin acts as a radiating surface. Thermal radiation
is emitted by all objects above absolute zero (-273.15 °C).
Human skin is estimated at 0.98 to 0.99 ¢ (Yoshitomi et al.
2000). The principal of thermal image generation is well un-
derstood by the Stefan-Boltzmann law that states total emit-
ted radiation over time by a black body is proportional to 7'
where T is temperature in Kelvins: W = eocT* where W is
radiant emittance (W/ cm?), e is emissivity, o is the Stefan-
Boltzmann constant (5.6705 - 107 12W/cm?K*), and T is
Temperature (K).

A black body is an object that absorbs all electromagnetic
radiation it comes in contact with. No electromagnetic radi-
ation passes through the black body and none is reflected.
Since no visible light is reflected or transmitted, the object
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Figure 5: Long-Wave IR falls in the wavelength range of
8um to 15 ym

looks black upon visualization from thermal imagery, when
it is cold. Thermal sensors respond to infrared radiation (IR)
and produce visualizations of surface temperature. Because
LWIR operates in a sub-band of the electromagnetic spec-
trum per Figure 5 it is invariant to illuminating conditions
meaning that it can operate in low light to complete dark-
ness. By imaging temperature variations to emotionally in-
duced stimuli such as videos or pictures, thermograms reveal
genuine responses to social situations. This occurs through
activation of the autonomic nervous system (ANS) where
emotional arousal leads to a perfusion of blood vessels in-
nervated at the surface of the skin (Ioannou, Gallese, and
Merla 2014).
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Figure 6: Thermal representation for extraction of ROIs by
Ioannou

These images are called thermograms and are the data cap-
tured in thermal FER datasets, with labels based of the emo-
tional response elicited (i.e. happiness, disgust, sadness, de-
ceit, stress, etc.). Although today’s need for a touch-less
system are paramount, the concept of using thermograms
for contact-less physiological monitoring is not new and
rooted in the intersection of physiological research (Selinger
2016;Buddharaju 2007;Pavlidis 2000; Ionnou 2014) and
affective computing (Wilder 1996;Yoshitomi 2000;Goulart
2019). These include applications for FER where different
emotions are detected from thermal facial images alone, in
addition to person re-identification on thermal imagery, for
FR. Since 1996 (Wilder et al. 1996) there have been numer-
ous studies evaluating how thermograms correlate with vital
measures. In 2007, Pavlidis (Pavlidis et al. 2007) demon-
strated that thermal imagery is a reliable measure to assess
emotional arousal where different regions of the face (zygo-



Table 1: Thermal Facial Emotion Recognition Datasets

Dataset Year Pose Pairs  Affect Subj  Access Seq Multi THR VIS
Univ. Notre Dame (UND ) 2002 Spont. Yes UNK 241 R UNK  Yes LWIR Yes
Equinox (Equinox ; Heo et al. 2004) 2004 Posed UNK 3 90 N/A No No MW, LWIR Yes
IIT Delhi (Kumar ) 2007 Posed UNK UNK 108 R No UNK NIR No
Univ. Houston (Buddharaju et al. 2007) 2007 Both Yes 0 138 UNK UNK No MWIR Yes
SC-Face (Grgic ) 2009 None  Yes 0 130 R No No NIR Yes
USTC-NVIE (Wang et al. 2010) 2010 Both UNK 6 100 N/A Yes No LWIR Yes
Zhang (Zhang et al. 2010) 2010 Posed UNK 0 350 R No UNK NIR No
UCHThermalFace (Hermosilla et al. 2012) 2012 Posed No 3 102 UNK Yes No LWIR UNK
KTFE Database (Nguyen et al. 2013) 2013  Spont. Yes 7 26 UNK Yes No LWIR Yes
Iris (Hammoud ) 2013 Posed Yes 3 30 P No No LWIR Yes
RGB-D-T (Simén et al. 2016) 2016 Posed Yes 5 51 UNK UNK UNK LWIR Yes
VIS-TH (Eurecom) (Mallat and Dugelay 2018) 2018 Posed Yes 4 50 R Yes Yes LWIR Yes
RWTH Aachen Univ. (Kopaczka, Kolk, and Merhof 2018) 2018 Posed No 8 90 R Yes UNK LWIR No
Tufts Face Database (Panetta et al. 2018) 2018 Posed Yes 5 113 R Yes No NIR, LWIR Yes
UL-FMTYV (Ghiass et al. 2014) 2018 Posed Yes UNK 238 R Yes Yes N, MW, LWIR No
ThermalWorld (Kniaz et al. 2018) 2019 Spont. Yes 0 516 R No No LWIR Yes
RFLDDJ (Seo and Chung 2019) 2019 UNK  Yes UNK UNK P UNK No LWIR Yes

Dataset - Database name, Year - publication year, Pose - Posed, Spontaneous, or Both, Pairs - Visible and Thermal, Affect - Number of labeled expressions, Subj - Number of unique human subjects, Access - R
(requires permission from authors), P (publicly downloadable), Seq - Yes or No for availability in dataset of video sequences, Multi- Yes or No for multi-session recording, THR - Thermal image modality, VIS -

Yes or No for presence of visible images, UNK means information was not provided in the paper.

maticus, frontal, orbital, buccal, oral, nasal) correlate with
different emotional responses. Thermal imagery also visu-
alizes the physiology of perspiration (Pavlidis et al. 2012;
Ebisch et al. 2012), cutaneous and subcutaneous tempera-
ture variations (Hahn et al. 2012; Merla et al. 2004), blood
flow (Puri et al. 2005), cardiac pulse (Garbey et al. 2007),
and metabolic breathing patterns (Pavlidis et al. 2012) and
has been used to monitor heat stress and exertion (Bourlai
et al. 2012). The reliability of thermal temperature read-
ings have been repeatedly shown to be consistent and cor-
relate accurately with gold standard physiological measures
of electrocardiography (ECG), piezoelectric thorax stripe
for breathing monitoring, nasal thermistors, skin conduc-
tance, or galvanic skin response (GSR) (Pavlidis et al. 2007;
Sonkusare et al. 2019).

We can even observe these changes with the naked eye, such
as embarrassment causing a person to blush (Sonkusare et
al. 2019), or fear leading to pallor (Kosonogov et al. 2017).
Merla (Merla 2014) offered a survey of thermal studies in
psychophysiology from 1990 to 2013, demonstrating a se-
ries of emotional responses detected on thermal imagery
such as startle response, fear of pain, lie detection, men-
tal workload, empathy, and guilt. These responses occur in
different regions of the face, or ROIs. Salazar-Lopez found
high arousal images elicited temperature increases on the tip
of the nose (Salazar-Lépez et al. 2015). Kosnogov (Kosono-
gov et al. 2017) found that more arousing an image, the
faster and greater the thermal response on the tip of the nose.
He speculated that the speed and magnitude of these ther-
mal responses were linked to autonomic adjustments normal
to emotional situations. Zhu (Zhu, Tsiamyrtzis, and Pavlidis
2007) found that deception was detected through increased
forehead temperature and Puri (Puri et al. 2005) found the
forehead to be correlated with stress. Social responses based
on one-on-one personal contact can also be observed. For
example, Ebisch (Ebisch et al. 2012) found “affective syn-
chronization” of facial thermal responses between mother

and child, where distress temperatures at the tip of the nose
were mimicked by the mother as she watched her child in
distress. Fernandez (Fernandez-Cuevas et al. 2015) summa-
rizes analysis by loannou et al. (Ioannou, Gallese, and Merla
2014) describing whether temperature increases, decreases,
or stays the same based on different emotions and ROIs pro-
vided in Figure 7.
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Figure 7: Skin thermal variations in the considered regions
of interest across emotions

Al and Thermal FER

Since 2000 with (Yoshitomi et al. 2000), machine learn-
ing in thermal FER has grown slowly to include emo-
tion classification by (Khan, Ingleby, and Ward 2006; Nhan
and Chau 2009; Wang et al. 2014a; Jarlier et al. 2011;
Wang et al. 2014b; Trujillo et al. 2005) with gradual adop-
tion of Al methods such as neural networks. The ability
to move away from manual, hand-crafted feature extraction
to automatic learning through neural networks has already
proven advantageous for thermal-to-visible image transla-
tion through GANs (Mallat et al. 2019; Kniaz et al. 2018;
Chen and Ross 2019), and for automated temperature vec-
tor extraction of facial ROIs (Sonkusare et al. 2019). Earlier
works in deep learning applied to thermal FER such as the
works of Wang et al. in 2014 (Wang et al. 2014a) using a



Table 2: Selected Thermal Facial Emotion Recognition Al Papers

Author Year  Affect ROIs Model Dataset Target Acc Data Code Params
Stemberger 2010  Cognitive Workload 7 ROIs ANN Custom dataset Multiple Workload ~ 81.0% (-) (-) (+)
Wang 2014  Spont. Affect Whole face DBM USTC-NVIE Valence 62.9% (+) ) (+)
Wu 2016 Posed Affect Whole face CNN RGB-D-T Multiple Affects 99.40% (-) (-) (-)
Simon 2016 Posed Affect Whole face CNN RGB-D-T Multiple Affects UNK (-) (-) (+)
Cho 2017  Stress Nose CNN Custom dataset Binary Stress 85.59% (-) ) +)
Lopez 2017 Exercise Fatigue Whole face, 3 ROIs CNN, SVM Custom dataset Binary Fatigue 23.3% -81.8% (+) (-) +)
Haque 2018 Pain Whole face CNN, LSTM  Custom dataset 5 Pain Levels 18.33% CNN (+) (-) (+)
Tlyas 2018  Spont. Affect Whole face CNN, LSTM  Custom dataset Multiple Affects 89.74% ) “) )
Elbarawy 2019 Posed Affect Whole face CNN Iris Multiple Affects 96.7% +) (-) (+)
Tlikci 2019 Posed Affect Whole face CNN Iris Multiple Affects 92.72% (+) (-) (+)
Shreyas Kamath 2019  Posed Affect Whole face CNN Tufts Face Database ~ Multiple Affects 96.2% (+) ) (+)

Year - Publication year, Affect - Expression type (Posed and Spont. mean basic discrete emotions), ROIs - facial regions of interest, Model - Deep learning algorithm type, Dataset - name of database, Target - the
predicted class (all papers identified were classification), Acc - Best classification accuracy across models reported. Data - link to database provided if custom or name of public database provided, Code - link to
code provided, Params - model parameters disclosed in paper, Annotations of (-) indicate information not disclosed, and (+) means it was disclosed in the paper.

Table 3: Examples of Thermal FER Experimental Design Parameters

Author Year  Thermal Cam. Dual Sensor  Thermal Res.  Dem. Exclusion  Subjects  Temp. Rest Time Lighting ~ Stimulus

Nhan 2010 ThermaCAM UNK UNK 9F, 3M, mean 24 yo UNK 12 UNK 20 min UNK Static images
‘Wang 2010 SAT-HY6850 UNK 320 x 240 58F, 157M, 17 - 31 yo UNK 215 Means 23.29 UNK Yes Emotional videos
Hermosilla 2012 Flir 320 TAU UNK 324 x 256 UNK UNK 102 UNK UNK UNK UNK

Nguyen 2013 NECR300 Yes UNK UNK gender, 11-32yo UNK 26 24-26 2 hrs. UNK Emotional videos
Salazar-Lopez 2015 ThermoVision A320G  UNK UNK 60F, 60M, 24 - 27 yo Yes 120 18-25 10 - 15 min. UNK Static images
Lopez 2017  Therm-App UNK 288 x 384 8F, 11M, 23 - 27yo UNK 19 UNK Until heart rate below 20 bpm UNK Exercise

Mallat 2018 Flir DuoR Yes 160 x 120 No UNK 50 25 No Yes UNK

Goulart 2019 Therm-App UNK 384 x 288 8F,9M, 8 - 12 yo UNK 17 20-24 10 min. Yes Questionairre
Sonkusare 2019  Flir A615 UNK 640 x 480 11F, 9 M, 22 - 30 yo Yes 20 22 No alcohol & caffeine 2 hrs. prior ~ Yes Auditory stimulus
Panetta 2020 FLIR Vue Pro UNK UNK UNK UNK 113 UNK UNK Yes UNK

Year - Publication year, Thermal Cam. - Type of LWIR camera, Dual Sensor - Yes or No, captures visible and thermal simultaneously, Thermal Res. - Reported thermal pixel resolution, Dem. - Demographics of
subjects, Exclusion - Yes or No, exclusion or inclusion criteria documented, Subjects - Number of unique human subjects, Temp. - Room temperature for experiment reported in degrees Celsius, Rest Time - Time
subjects reach relaxed state prior to image capture, Lighting - Yes or No, illumination design documented, Stimulus - Type of stimulus to provoke spontaneous response, if spontaneous, UNK means information

was not found in the paper.

Deep Boltzman Machine (DBM) found that learning feature
representations directly from thermal images of the NVIE
dataset (Wang et al. 2010) led to greater accuracy (62.9%)
when predicting low and high valence, compared to statisti-
cal temperature vectors manually extracted from thermal im-
ages followed by dimensionality reduction (PCA) and SVM
(61.0%). Further, Wang asserted that the DBM learned from
features representing a mixture of thermal datasets such as
the Equinox (Equinox ) and NVIE led to greater accuracy
by 5.3%. Thermal features can outperform visible features in
FER, overall, even without deep learning methods. Goulart’s
thermal multi-affect classifier using PCA and LDA outper-
formed visible emotion classifiers particularly on challeng-
ing expressions such as disgust and fear which can range
between 40% to 50% for RGB accuracy. Whereas, Goulart’s
thermal classifiers detected disgust with 89.93% and fear at
88.22% true positive rates (Goulart et al. 2019).

Li et. al. (Li and Deng 2018) describes how Al research in
the visible domain grew based on the broad dissemination of
public, large-scaled, natural data per Figure 8. Any internet
search will reveal dozens of RGB FR databases easily ac-
cessible and downloadable, such as the Top 15 list of facial
recognition databases on Kaggle (Hamdi 2020). They iden-
tified 74 visible “deep FER” papers using CNNs, Generative
Adversarial Networks (GANs), Restricted Boltzman Ma-
chines (RBM), Deep Auto Encoders, Deep Belief Networks
(DBN), and Recurrent Neural Networks (RNN) trained on
such RGB FR datasets. But, Al in thermal FER lags behind,
possibly due to the lack of large-scale, publicly available,
and comprehensive thermal FER datasets.
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Figure 8: Growth of lab-controlled, small size data to “in-
the-wild”, larger scale data encouraged use of deep learning
algorithms in visible FER (Li and Deng 2018)

Where Li identified 74 papers, we only identified 14 thermal
FER datasets in Table 1 whose numbers have increased since
2018 possibly due to the decreasing cost of thermal cam-
eras and the easier ability to purchase them online. Further,
we identified only eleven Al thermal FER papers, shown in
Table 2, starting in 2010, indicating a slow evolution from
manual feature extraction using geometric methods to learn-
ing latent representations using deep learning. These works
do not consistently release code and have varied levels of
explanation around experimental design and arousal stimu-
lus, which we summarized in Table 3. This makes it chal-
lenging to reproduce, much less compare across studies. Re-
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Figure 9: The Tufts Face Database (Panetta et al. 2018)

searchers in thermal emotion recognition such as Goulart et
al. (Goulart et al. 2019) agree, particularly since there is no
standard thermal FER imaging benchmark dataset consis-
tently used across studies. In an empirical review reproduc-
ing 255 machine learning papers, Raff (Raff 2019) notes that
papers which are scientifically sound and complete, should
be independently reproducible based solely on explanation,
details, and descriptions. Failures in reproducibility can oc-
cur when language or notation is unclear, when the algo-
rithm is missing details about implementation or equations,
and when nuanced details are left out. In Table 1 we catalog
the few available (via request or publicly) thermal datasets
that have been used for tasks including FR and FER. They
vary in scope, where some do not have emotion labels at all,
making it difficult to benchmark and standardize results that
may eventually impact psychological and health-related de-
cisions. One example of a recently developed thermal FER
dataset is by Tufts University shown in Figure 9.

Thermal FER Data Challenges

Some researchers have noticed the lack of variation across
thermal FR dataset that fail to account for diverse emo-
tional states, alcohol intake or exercise, and ambient tem-
perature, leading them to doubt the rigor of the reported re-
sults especially in real life conditions (Shoja Ghiass 2014).
Assuming that the lack of a comprehensive thermal FER
benchmark dataset is one factor that hinders the advance-
ment of Al research, we can begin exploring the challenges
of designing such a dataset. But, developing a thermal FER
dataset is different than simply crawling the web for RGB
faces. The collection of thermal FER data requires an exper-
iment unto itself, needing institutional review board (IRB)
approval, subject recruitment, experimental design, and spe-
cialized equipment. As a result, thermal FER datasets are ex-
pensive in terms of time and labor. We have observed some
trends across databases that if addressed in the development
of a single high-fidelity dataset, may carve a path for greater
adoption of thermal AI FER studies. We justify these asser-
tions based on research in the psycho-physiology domain,
below.

Include video sequences

Video sequences present timing of the arc of expression on-
set and delay. It is important to capture intensity and du-
ration of expression which has been found consistent with
automatic movement and neuropsychological models (Tian,
Kanade, and Cohn 2005). Levenson et al. (Levenson 1988)
indicated that duration of an emotional response is 0.5 — 4
seconds. But Nguyen (Nguyen et al. 2013) cites mistakes

in many of the leading thermal recognition databases. In
the USTC-NVIE database their procedure for data acquisi-
tion had video gaps between each emotion clip at 1-2 min-
utes which is too short for participants to establish a neutral
emotion status. Research indicates that for thermal response
(cutaneous skin temperature), there is a delay after stimu-
lus that needs to be accounted for and recorded (Ioannou,
Gallese, and Merla 2014) and temperature change can oc-
cur in less than 30 seconds upon stimulation (Pavlidis et al.
2012). Temperature changes at the tip of the nose can occur
as fast as 10 seconds after stimulus and last 20 - 30 sec-
onds regardless of distress or soothing (Ebisch et al. 2012).
In a more recent paper, (Sonkusare et al. 2019) were able to
quantify the temporal dynamics of thermal response when
compared to gold standard measures like Galvanic Skin Re-
sponse (GSR) demonstrating that thermal response occurred
only 2 seconds later than GSR when exposed to an auditory
stimulus. Static images without a time axis can be incom-
plete and will fail to capture the complete physiological sig-
nal and emotional response.

Enable spontaneous response

Many existing thermal databases that are focused only on
FR have discrete, posed affects based on the labeling de-
fined by Ekman (Ekman 1999). But affective researchers ar-
gue that spontaneous emotional reactions are more realistic
since, “people show blends of emotional displays...hence,
the classification of human non-verbal affective feedback
into a single “basic”-emotion category may not be realistic.”
(Gunes and Pantic 2010; McDuff, Girard, and El Kaliouby
2017). Further, multiple emotions typically occur as op-
posed to a single discrete response. For example, in a 1993
study by Gross et al. 85 subjects self-reported a variety of
feelings after watching a close-up arm amputation medical
video (Gross and Levenson 1993).
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Figure 2. Emotion self-reports by condition for the amputation film, with standard errors of the mean.

Figure 10: Multiple feelings self-reported after exposure to
high arousal video (Gross and Levenson 1993)

Another argument against discrete labels is the possibility
that people express emotions as internalizers or external-



izers, meaning different people suppress emotional expres-
sion in different ways making it difficult to truly capture ex-
pression in a basic, discrete manner (Gross and Levenson
1993). To elicit spontaneous response, emotion researchers
use static images such as the International Affective Pic-
ture System (Kosonogov et al. 2017) or short clips of emo-
tional videos (Nguyen et al. 2013). In a recent 2019 study by
Sonkusare et al. (Sonkusare et al. 2019), they use an auditory
stimulus described in Figure 11 to mimic a startle response,
spontaneously.

—— = W
Calming video ) Startle stimulus

0 10 20 30 40 50 60
Time (s)

Figure 11: Example of an emotional stimulus by Sonkusare
et al. to elicit a spontaneous response. A calming ocean
video clip was played for 60 seconds. A loud gunshot sound
(80dB) was played at 40seconds to mimic a startle response.
(Sonkusare et al. 2019)

Provide social or personal context

In a similar vein to spontaneous, natural emotion collec-
tion, providing social context in an experimental setting will
change the nature of the emotion recorded. Context labeling
to account for elicitation methods that are prompted spon-
taneously through personal elicitation (i.e. images, videos),
versus social interaction with another person (or robot per
(Goulart et al. 2019)) may signal different physiological re-
sponses reflected in thermal imagery. Factors that influence
these responses may include interpersonal distance, gaze
direction, and opposite gender in the interaction (Kosono-
gov et al. 2017; Gunes and Pantic 2010). A sociodynamic
model of emotions (Mesquita and Boiger 2014) asserts that
emotions “emerge in interplay with and derive their specific
function from the social context. This means that emotional
experience and behavior will be differently constructed
across various contexts”. For example, Goulart (Goulart et
al. 2019) analyzed emotional response for 17 children dur-
ing a human-child robot interaction experiment shown in
Figure 12. Using Principle Component Analysis (PCA) and
Linear Discriminant Analysis (LDA), they inferred happi-
ness and surprise as the most frequently expressed, which
were consistent with what the children self-reported upon
interacting with the New-Mobile Autonomous Robot for In-
teraction with Autistics (N-MARIA) robot.

Collect multimodal pairs

In 2000 Yoshitomi (Yoshitomi et al. 2000) classified dis-
crete affects by combining visible, thermal, and audio sig-
nals from 21 test subjects, achieving 85% accuracy. Zhu et

Figure 12: Experimental setup showing the child-robot in-
teraction by Goulart et al. (Goulart et al. 2019) (a) Before
showing the robot; (b) After presenting it.

al. (Zhu, Tsiamyrtzis, and Pavlidis 2007) discussed multi-
modal data as “cross scale” data for biomedical research,
or interconnections of different types of data using Al to
infer mappings even if some data is missing. In essence,
both were developing multimodal machine learning models,
where multiple modalities, or types of information, may be
combined to increase the accuracy of models (Baltrusaitis,
Ahuja, and Morency 2018). The approach to collect pairs is
not new. Nguyen collected thermal FER pairs for the KTFE
database (Nguyen et al. 2013) and the Iris (Hammoud ), Eu-
recom (Mallat and Dugelay 2018), and University of Notre
Dame (UND ) also have pairs which offer greater flexibil-
ity for different Al use cases like image translation for per-
son re-identification. This includes research into thermal-to-
visible GANs (Mallat and Dugelay 2018; Kniaz et al. 2018;
Chen and Ross 2019; Zhang et al. 2018). With paired images
capturing the RGB and LWIR images simultaneously using
a camera equipped with a dual sensor, offers a mapping be-
tween both modalities for an Al algorithm to learn.

Figure 13: Example of TV-GAN trained on multimodal pairs
for thermal-to-visible image translation (Zhang et al. 2018)

Document experimental setup

Documenting experimental setup is important in order to
minimize bias in the resulting thermogram, which can be af-
fected by a variety of environmental and human subject con-
ditions. Ioannao (Ioannou, Gallese, and Merla 2014) articu-
lates in his paper on the potential and limitations of thermal
imaging in physiology that, “Cutaneous thermal responses
to external stimuli of psychophysiological valence could re-



sult in small temperature variations of the ROIs. Thus, it is
extremely important to ensure that the observed temperature
variations are not artifacts due to either environmental phys-
iological causes or simply subject motion.” Some of these
can be minimized, the methods of which should be recorded
and shared in the paper so that other thermal FER data col-
lection trials can be repeated or improved to control for these
external factors.

Rotating shaft

Subject

.
E:' 78 inches

Visible/Thermal
Cameras

(a) (b)

Figure 14: Experimental Setup for Iris dataset capture (Kong
et al. 2007)

In Table 3 we provide a sample of experimental parameters
from several thermal FER papers and show how they vary
from paper to paper. This demonstrates non-standard setups
over the years of thermal FER research that could affect the
reusability and generalization of these data for Al experi-
ments. But, different papers vary in the extent of how much
they document their experimental protocol provided in an
example set of papers in Table 3. Multiple factors need to be
managed in order to minimize variables in the environment
that influence thermal capture, leading to potentially mis-
leading thermograms such as 1) Cold or warm air, as well as
humidity, 2) Facial expressions (e.g. open mouth), 3) Physi-
cal conditions (e.g. lack of sleep, alcohol, caffeine), 4) Men-
tal state (i.e. fear, stress, excitement), 5) Opaque to glasses,
6) Skin temperature variance through the day (Kosonogov
et al. 2017). Fernandez et al. provide a comprehensive re-
view of environmental, individual, and technical factors that
influence IR reliability per Figure 15 (Ferndndez-Cuevas et
al. 2015).

Experimental design also includes the demographics of re-
cruited subjects. Very few details are provided about race
and ethnicity shown in Table 3 for the exception of (Lopez,
del Blanco, and Garcia 2017) who indicated that nine out
of 19 individuals were of Chinese ethnicity. With the eth-
ical problems of visible FR in failing to train algorithms
on a representative and balanced minority dataset, thermal
FER researchers need to understand exactly what subjects
are being included in the data and what underlying assump-
tions are being broadcast into training. Further, we have so
far been discussing thermal FER on adults in the various
papers introduced. Very few studies, limited to (Goulart et
al. 2019) for child-robot interaction, (Ioannou et al. 2013)
for guilt, (Ebisch et al. 2012) for child-mother imprinting,
(Manini et al. 2013) for mother-child of vicarious autonomic
response, collect thermal FER data on children. For the ex-
ception of Panetta et al., none of the thermal databases we
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Figure 15: Factors influencing thermal imagery of humans
(Fernandez-Cuevas et al. 2015)

identified appear to include children in their dataset, to the
author’s knowledge for thermal FER. So far, much work is
still needed to generate an ethnically and age-diverse ther-
mal FER dataset. Lastly, experimental set-up should also
document technical methods that aim at normalizing the de-
tected thermal face. For example, Wang et al. (Wang et al.
2014a) describes using the Otsu threshold algorithm to bina-
rize the thermal images, detecting the face boundary, and re-
moving baseline temperature to minimize the effects of tem-
perature changes in the environment. Similar methods were
introduced by Friedrich and Yeshurun in 2002 (Friedrich and
Yeshurun 2002).

Accounting for Sensor Differences

Lastly, the cost of thermal sensors through vendors like
FLIR, have decreased over the past decade with increasingly
higher quality resolution made accessible to the public. Prior
papers have extensively used the Iris and Equinox (now dis-
continued) datasets. But with the release of more custom
datasets as shown in Table 1, is it fair to compare the output
of thermal images from one sensor against another, which
may have different optical properties? Or, is it sufficient that
each sensor operates in the LWIR band? Many researchers
have used different thermal sensors over the years: Pavlidis
detected anxiety in thermal imagery in 2000 using an un-
cooled thermal camera with a spectral band of 8m-14um
manufactured by Raytheon (the ExplorIR model) (Pavlidis
and Symosek 2000), Nguyen in 2014 used a NEC R300 col-
lecting in the 8um-14m band (Nguyen et al. 2013), Aureli
in 2015 used a FLIR SC660, an uncooled microbolometer
sensor that collects in the 7.5um — 13pm band (Aureli et
al. 2015), and Eurecom researchers in 2018 used a FLIR
Duo-Pro, an uncooled VOx Microbolometer sensor operat-
ing in 7.5pum—-13.5 pm (Mallat and Dugelay 2018). Table 3
provides a selection of thermal cameras used across various
thermal FER studies as examples of how the cameras vary
from study to study.



Table 4: Summary of Thermal FER Data Challenge

Challenge

Consequence

Mitigation

Opportunities

Include video sequences

Static images fail to capture the
complete temporal dynamics of
emotional response.

Including labeled videos in thermal
FER dataset.

Spatio-temporal labeling of thermal
onset, delay, duration of physiolog-
ical response.

Enable spontaneous response

Discrete posed expressions may not
invoke realistic physiological re-
sponse.

Add spontaneous elicitation where
possible, in addition to discrete set.

Natural, “in the wild” expressions
that offer accurate representations
of emotion.

Provide social or personal context

Thermal data collected without so-
cial stimuli may not be useable for
social use cases.

If appropriate, label social con-
text or if controlling for, document
how social response has been mini-
mized.

Social interaction thermal FER ex-
pressions, with labeled context and
scenarios.

Collect multimodal pairs

No opportunity to increase ac-
curacy or learn from additional
modality mappings if only one
modality (thermal) is collected.

May require dual sensor, or ex-
perimental design for simultaneous
capture using two cameras.

Multimodal pairs for various social,
spontaneous elicited thermal FER
domains.

Document experimental setup

Confounding through uncontrolled
environmental variables can lead to
misleading images.

Report at minimum, the parameters
shown in in Table 3.

Standard thermal FER experimen-
tal protocol for design and demo-
graphic documentation.

Accounting for Sensor Differences

Untested margin of error for im-
ages collected using different ther-

No mitigation strategy. This is an
open research question.

Assessment with optical engineers
to determine margin of error across

mal sensors.

sensors for human thermal FER.

Recommendations

It is daunting to attempt to design a universal, thermal FER
benchmark dataset that can account for the myriad of chal-
lenges we described. Extensive funding for time, labor, and
evaluation would be required. Some challenges are easier to
mitigate than others, for example improving the documenta-
tion of experimental setup possibly using templates by Ge-
bru et al. (Gebru et al. 2018) and Mitchell et al. (Gebru et
al. 2018; Mitchell et al. 2019) versus designing physiologi-
cal stimuli. But, there may be more feasible short-term so-
lutions that emphasize quality of reviewing the limitations
of individual datasets and annotating each with a new la-
beling system. First, we have observed there are a number
of custom datasets as described in Table 2 and are confi-
dent that our review missed several proprietary, unpublished,
non-English, or classified thermal FER datasets. As a result,
there are likely multiple thermal FER databases available all
collected with a different set of subjects, experimental se-
tups, and labeling. Offering these in a central online loca-
tion, would be one step towards inventorying the breadth of
data already available worldwide.

Secondly, combining across multiple existing thermal FER
datasets and labeling by sensor, domain, posed or sponta-
neous emotion, resolution, and presence of social context,
and stimulus, may be one step towards the aggregation of
a larger database. Gathering training data across different
datasets is not unusual in thermal FER, as previously noted
when Wang et al. (Wang et al. 2014a) combined the NVIE
and Equinox datasets to train his DBM model. Both first and
second steps would require an effort across researchers to
offer up and make available their thermal FER datasets.

Third, despite our review of the thermal FR and FER lit-
erature, we struggled to identify any research to evaluate
the limits of obfuscating age, gender, ethnicity, and race us-
ing thermal imagery. Although some papers affirmed that

Figure 16: Participants from diverse multimodal dataset col-
lected by the IRIS Lab in 2006 (Chang et al. 2006)

their dataset consisted of diverse demographics (Chang et
al. 2006) per Figure 16, none to our knowledge, conducted
quantitative tests with human reviewers and inter-rater statis-
tics to test whether or not sensitive demographics could be
masked. We believe that in order to assert that thermal im-
agery can afford any privacy protection and minimize bias,
tests must be developed using IRB approval. More broadly,
future work should take careful consideration into the sci-
entific questions their research is tackling and the impact
it may have in developing or prolonging undesired biases
(Friedman and Nissenbaum 1996). Biometrics related re-
search is inherently sensitive and solutions can be valu-
able to society (Jai 2016). As such researchers should make
sure they are familiar with ethical concerns that have oc-
curred in neighboring application areas (Ensign et al. 2018;
Chouldechova 2017; Kleinberg, Mullainathan, and Ragha-



van 2016) and remain open to understanding new per-
spective in which their research may be helpful or detri-
mental, and could be improved to reduce potential risks
(Skirpan and Gorelick 2017; Goldsmith and Burton 2017;
Sylvester and Raff 2018).

Conclusion

In this paper, we introduced the advantages of using thermal
imagery over RGB for facial FER and provided a survey of
thermal FER Al papers, datasets, and selected samples of
experimental design protocols. There are several technical
benefits of using thermal imagery compared to RGB images
for FER, one of which potentially being semi-anonymity.
Howeyver, there are few labeled, standard thermal affective
data sets available for Al training. We have provided a sum-
mary of the proposed challenges, with our insights on the
consequences, mitigation, and opportunities for each in Ta-
ble 4.
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