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ABSTRACT
Competing Risk Analysis (CRA), an important problem in survival
analysis, aims to estimate the probability of occurrence of an event
in the presence of competing events. Many of the statistical ap-
proaches developed for CRA are limited by strong assumptions
about the underlying stochastic processes. To overcome these is-
sues and to handle censoring, machine learning approaches for
CRA have designed specialized cost functions. However, these ap-
proaches are not generalizable and are computationally expen-
sive. This paper formulates CRA as a cause-specific regression
problem, and proposes a simple and effective feed-forward deep
neural network model, DeepPseudo, to predict the cumulative in-
cidence function using Aalen-Johansen estimator based pseudo
values. DeepPseudo models the time-varying covariate effect on
cumulative incidence function while handling the censored ob-
servations. Experiments on real and synthetic datasets show that
DeepPseudo obtains promising and statistically significant results
compared to the previous state-of-the-art CRA approaches.

CCS CONCEPTS
•Applied computing→ Life andmedical sciences; •Comput-
ing methodologies → Neural networks.
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1 INTRODUCTION
Competing Risk Analysis (CRA) is a special type of survival analy-
sis - time-to-event analysis - that aims to estimate the probability
of occurrence of an event in the presence of competing events.
CRA is common in medical settings [10, 16] since a patient can
experience more than one type of a certain event. For example, a
patient may experience death (event) at a time 𝑡 from one of the
following causes; cardiovascular disease, breast cancer, or kidney
damage. Individuals who die of cardiovascular disease are no longer
at risk of dying of breast cancer or kidney damage. These causes of
failure are referred to as competing events, and the probability of
these events are referred to as competing risks. CRA has received
substantial attention in statistics, and machine learning literature.
Popular statistical approaches [8, 12] widely used in medical set-
ting have been extended to CRA [1, 9]. However, these models
are limited by the underlying parametric, linearity, and/or pro-
portional hazards assumptions. Recently, machine learning and
deep learning models have been developed for CRA [2, 5, 6, 11, 15].
These models, designed to overcome the drawbacks of statistical
approaches, can capture nonlinear relationships between covari-
ates and the risk of an event. Among all these models, DeepHit
[15] model - a deep learning approach which makes no underlying
assumption on the stochastic process - has shown state-of-the-art
performance for CRA. However, it consists of a very sophisticated
network and relies on a specialized objective function to handle
censoring - which is inherent in survival data. Moreover, it uses a
large model (i.e., a large number of parameters) to achieve good pre-
dictive performance for CRA, and as a result, does not provide easily
explainable results. To address these drawbacks, in this paper, we
formulate CRA as a cause-specific regression analysis problem and
propose a simple and effective deep feed-forward neural network
based model called DeepPseudo, to estimate cumulative incidence
function (CIF) [18] using Aalen-Johansen estimator based pseudo
values [14]. DeepPseudo models the non-linear time-varying co-
variate effect on cumulative incidence function and handles the
complexity of censored data by using pseudo values. We show that
a small DeepPseudo model obtains similar or better results com-
pared to existing models and it’s predictions can be explained by
use of explanation methods such as LRP [17].
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2 CRA USING PSEUDO VALUES
A survival dataset with 𝐾 competing risks is a collection of time-to-
event information of the patients along with their corresponding
event status during a follow up period. For an individual 𝑖 , com-
peting risk data is a tuple (𝑇𝑖 , 𝛿𝑖 , 𝑋𝑖 ), where 𝑖 = 1, . . . , 𝑁 . 𝑇𝑖 is the
survival time and 𝑋𝑖 = (𝑋𝑖1, ..., 𝑋𝑖𝑝 ) is a 𝑝 dimensional vector of
observed covariates for 𝑖𝑡ℎ individual. 𝛿𝑖 is the event indicator,
where

𝛿𝑖 =


𝑗 , if the 𝑖𝑡ℎ individual is uncensored and event

occurred due to cause 𝑗 ; 𝑗 = 1, 2, ..., 𝐾
0 , if the 𝑖𝑡ℎ individual is censored

Most of the CRA methods [19] model the effects of covariates
on the CRA outcomes through the cause-specific hazard function
or sub-distribution hazard function. The independent censoring
assumption for the competing risks used in cause-specific hazard
models does not hold in general, and hence, researchers have used
cumulative incidence function (CIF) [14] for CRA. There is a direct
relationship between cause-specific hazard rate and CIF when there
is only one event of interest. In the presence of competing risks,
there is no such direct relationship as the CIF depends on the crude
hazard rate of all the causes of the event. Therefore, directly mod-
eling the effect of covariates on the CIF is needed. Fine et. al. [9]
introduced a proportional hazard model to achieve this by using
a sub-distribution hazard function. An alternative regression ap-
proach based on Pseudo values was proposed by Klein et. al [14]
for directly modeling the effect of covariates on CIF. Pseudo values
are calculated for both censored and uncensored subjects for all
causes of an event at a specified time point. For the 𝑖𝑡ℎ subject, a
Jackknife pseudo value, based on the Aalen–Johansen estimate of
the CIF [13], is computed for cause 𝑘 at time horizon 𝑡∗ as

𝐹𝑖𝑘 (𝑡∗) = 𝑛𝐹𝑘 (𝑡∗) − (𝑛 − 1)𝐹−𝑖
𝑘

(𝑡∗)

where, 𝐹𝑘 (𝑡∗) is the Aalen–Johansen estimate of the CIF for cause 𝑘
based on a samplewith𝑛 subjects and 𝐹−𝑖

𝑘
(𝑡∗) is theAalen–Johansen

estimate of the CIF for cause 𝑘 based on leave-one-out sample with
(𝑛−1) subjects, obtained by omitting the 𝑖𝑡ℎ subject. Pseudo values
are good at handling right censored data, and thus, it has been
extensively studied by other researchers [10, 16, 20].
3 OUR PROPOSED MODEL - DEEPPSEUDO
Pseudo values based approaches [7] have shown promising results
for CRA but deep learning based models such as DeepHit [15]
have achieved superior results as the deep models can capture
non-linear relationships among covariates and the competing risks
while making limited assumptions. However, DeepHit relies on
a specialized objective function to handle censoring. To address
this issue, we propose a deep learning model called DeepPseudo,
which uses a simple deep feed-forward neural network to perform
regression analysis based on pseudo values for CRA. We propose
four variants of the DeepPseudo model based on how the pseudo
values are calculated and how cause-specific events are modeled.

Marginal DeepPseudo Model: We feed the covariates as input and
treat the pseudo values for the marginal CIF as the output of our
deep feed-forward neural network. The outputs of this model are
the cause-specific prediction of pseudo values at𝑀 evaluation time
points (𝜏1, 𝜏2, ...., 𝜏𝑀 ).

Conditional DeepPseudo Model:We first divide the discrete follow-
up time into 𝑀 intervals and calculate the cause-specific pseudo
values for the conditional CIFs for 𝑀 intervals. We consider the
intervals and causes as categorical covariates and convert them
into dummy variables. In the initial interval, all the patients are
considered. However, in the next intervals, some patients are not
considered due to failure or censoring. Therefore, the patients might
have different numbers of observations in the training data. We
predict the pseudo values for all of the causes at each of the intervals.
The model’s output layer has a single node (neuron), which predicts
the pseudo value for the CIF for a cause at a particular time point.

Cause-specific (CS) Marginal DeepPseudo Model: We extend the
Marginal DeepPseudo Model with cause-specific sub-networks to
predict the pseudo values for each cause separately. It also has
a shared sub-network to learn the shared representation of the
competing events. The cause-specific sub-networks take the output
of the shared network as input and predict the pseudo values for
the specific causes at𝑀 evaluation time points.

Cause-specific (CS) Conditional DeepPseudo Model: This model
uses cause-specific sub-networks to predict the pseudo values for
each cause separately. The input of this model is the covariates,
along with a mask variable for evaluation times. The output of
each cause-specific network is a single node, which is the predicted
pseudo value for the causes at a particular time point.

The pseudo values can be less than 0 and greater than 1 in the
presence of censoring and, thus, not interpretable. Therefore, we
transform the predicted pseudo values to [0, 1] range by using
the clipping formula: Transformed Pseudo values =𝑚𝑖𝑛(1,𝑚𝑎𝑥 (0,
Predicted pseudo values)). We trained all the above models by mini-
mizing the mean squared error loss function, which minimizes the
squared differences between the true pseudo values and predicted
pseudo values.

4 EXPERIMENTS
We evaluate the performance of our model based on the cause-
specific time-dependent concordance index (C-index) by perform-
ing a set of experiments on two real-world and one synthetic dataset.
We compare the performance of our proposed models with many
baseline and state-of-the-art CRA models. We conduct our experi-
ments on different censoring settings to evaluate our model’s per-
formance in handling right censoring in the survival data.

Datasets
SEER: The Surveillance, Epidemiology, and End Results (SEER)

Program provides information on cancer statistics to reduce the
cancer burden among the United States. We extracted a cohort
of 28366 patients out of which 23.2% died due to cervical cancer
(cause 1), 8.4% died of other causes (Cause 2), and 68.4% patients are
right-censored. We considered 13 features/covariates, including age
at diagnosis, race, marital status, histology record, Grade, tumor
size, cancer stages (TNM staging system), surgery record, cancer
therapies, histology etc., for our analysis.

WIHS:We selected a cohort of 1164 women enrolled in WIHS [4]
study who were alive, infected with HIV, and free of clinical AIDS
during the study period December 1995- September 2006. The
dataset contains two competing risks (Highly active antiretrovi-
ral therapy (HAART) initiation (Cause 1) & AIDS/Death before
HAART (Cause 2) as well as right censoring. The dataset included



DeepPseudo : A Deep learning approach based on Pseudo values for Competing Risk Analysis KDD ’20, August 24, 2020, San Diego, CA

Table 1: Model Performance Comparisons using time dependent cause-specific C-index (mean and 95% confidence interval)

Dataset
Cause
of the
Event

Evaluation
Time Statistical Models Machine Learning Models Deep Learning Models

Cause-specific
Hazard Fine & Gray GEE (Pseudo) RSF DMGP Deephit Marginal

DeepPseudo
CS-Marginal
DeepPseudo

Conditional
DeepPseudo

CS-Conditional
DeepPseudo

SEER Cause 1 1 year 0.8649 ***
(0.8620, 0.8678)

0.8625 ***
(0.8594, 0.8655)

0.8675 ***
(0.8646, 0.8704)

0.8677 ***
(0.8652, 0.8702)

0.8713
(0.8683, 0.8743)

0.8761
(0.8726, 0.8796)

0.8767
(0.8736, 0.8798)

0.8773
(0.8743, 0.8802)

0.8659
(0.8627, 0.8691)

0.8647
(0.8612, 0.8681)

5 years 0.7962 ***
(0.7939, 0.7986)

0.7984 ***
(0.7960, 0.8009)

0.8038 ***
(0.8016, 0.8061)

0.7973 ***
(0.7947, 0.7999)

0.8030 ***
(0.7998, 0.8062)

0.8080
(0.8051, 0.8109)

0.8122
(0.8095, 0.8148)

0.8130
(0.8106, 0.8155)

0.8055
(0.8032, 0.8077)

0.8027
(0.7997, 0.8058)

Cause 2 1 year 0.8291 *
(0.8180, 0.8402)

0.7756 ***
(0.7641, 0.7871)

0.8005 ***
(0.7898, 0.8111)

0.8045 ***
(0.7962, 0.8128)

0.7634 ***
(0.7502, 0.7767)

0.8458
(0.8351, 0.8565)

0.8520
(0.8431, 0.8608)

0.8412
(0.8320, 0.8503)

0.8376
(0.8285, 0.8466)

0.8451
(0.8357, 0.8545)

5 years 0.7871 ***
(0.7812, 0.7931)

0.7751 ***
(0.7689, 0.7813)

0.7854 ***
(0.7788, 0.7921)

0.7618 ***
(0.7560, 0.7677)

0.7684 ***
(0.7633, 0.7734)

0.8028
(0.7969, 0.8087)

0.8077
(0.8016, 0.8138)

0.8089
(0.8028, 0.8150)

0.7991
(0.7907, 0.8074)

0.8138
(0.8078, 0.8197)

WIHS Cause 1 1 year 0.7225
(0.7021, 0.7429)

0.6918 .
(0.6700, 0.7135)

0.7041
(0.6818, 0.7264)

0.6947
(0.6738, 0.7157)

0.7222 ***
(0.7023, 0.7421)

0.7207
(0.6986, 0.7428)

0.7310
(0.7111, 0.7509)

0.7342
(0.7120, 0.7565)

0.7318
(0.7128, 0.7509)

0.7225
(0.7003, 0.7446)

5 years 0.6248 **
(0.6139, 0.6358)

0.6193 ***
(0.6076, 0.6310)

0.6432
(0.6308, 0.6556)

0.6073 ***
(0.5967, 0.6179)

0.6257
(0.6130, 0.6385)

0.6076 ***
(0.5931, 0.6222)

0.6189
(0.6064, 0.6315)

0.6156
(0.6040, 6272)

0.6536
(0.6436, 0.6636)

0.6381
(0.6257, 0.6505)

Cause 2 1 year 0.6638 .
(0.6471, 0.6805)

0.6465 ***
(0.6295, 0.6636)

0.6717
(0.6526, 0.6908)

0.6869
(0.6704, 0.7034)

0.6805 *
(0.6663, 0.6947)

0.6802
(0.6623, 0.6982)

0.7015
(0.6855, 0.7175)

0.7019
(0.6858, 0.7179)

0.6982
(0.6820, 0.7143)

0.7004
(0.6869, 0.7140)

5 years 0.6295 ***
(0.6170, 0.6420)

0.6336 ***
(0.6208, 0.6464)

0.6609 .
(0.6480, 0.6738)

0.6518 **
(0.6401, 0.6636)

0.6761
(0.6678, 0.6845)

0.6556 *
(0.6437, 0.6674)

0.6707
(0.6589, 0.6826)

0.6681
(0.6552, 0.6811)

0.6835
(0.6716, 0.6953)

0.6653
(0.6532, 0.6775)

Synthetic Cause 1 1 year 0.5923 ***
(0.5882, 0.5963)

0.5931 ***
(0.5891, 0.5971)

0.5811 ***
(0.5772, 0.5850)

0.6293 ***
(0.6247, 0.6338)

0.7508 **
(0.7479, 0.7537)

0.7532 .
(0.7500, 0.7564)

0.7554
(0.7526, 0.7581)

0.7490
(0.7461, 0.7519)

0.7606
(0.7579, 0.7633)

0.7529
(0.7501, 0.7556)

5 years 0.5784 ***
(0.5752, 0.5815)

0.5785 ***
(0.5754, 0.5817)

0.5576 ***
(0.5549, 0.5602)

0.5849 ***
(0.5813, 0.5886)

0.6761 ***
(0.6726, 0.6796)

0.6824 ***
(0.6784, 0.6865)

0.6707
(0.6678, 0.6736)

0.6805
(0.6774, 0.6836)

0.7028
(0.7000, 0.7056)

0.6903
(0.6872, 0.6933)

Cause 2 1 year 0.5954 ***
(0.5920, 0.5988)

0.5973 ***
(0.5941, 0.6006)

0.5849 ***
(0.5817, 0.5882)

0.6273 ***
(0.6238, 0.6308)

0.7483 ***
(0.7442, 0.7525)

0.7516 *
(0.7477, 0.7555)

0.7543
(0.7513, 0.7573)

0.7487
(0.7454, 0.7520)

0.7598
(0.7566, 0.7631)

0.7571
(0.7548, 0.7594)

5 years 0.5809 ***
(0.5774, 0.5844)

0.5810 ***
(0.5775, 0.5846)

0.5587 ***
(0.5549, 0.5626)

0.5841 ***
(0.5806, 0.5876)

0.6736 ***
(0.6700, 0.6772)

0.6788 ***
(0.6730, 0.6846)

0.6638
(0.6604, 0.6672)

0.6746
(0.6719, 0.6773)

0.6989
(0.6959, 0.7018)

0.6895
(0.6867, 0.6922)

Tukey’s HSD test - statistically significant codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1, (Read 0 ’***’ as significant at 0% level of significance)

the following features; the history of injection drug use at WIHS
enrollment, race, age, and CD4 nadir prior to baseline.

Synthetic data: We generated a synthetic dataset as constructed
in [15] with two competing risks. We generated the hitting times
from exponentially distribution with a mean parameter depending
on both linear and non-linear (quadratic) function. The dataset
consists of 12 features that follow standard normal distribution. We
generate 30000 observations, out of which 15000 observations are
right censored. We use this dataset to examine the performance of
the models in the presence of non-linearity in the dataset.
Models Compared: We evaluate the following models:

• Statistical Models: Cause-specific Hazard Model [19], Fine
and Gray Model [9], GEE (Pseudo values) [14]

• Machine LearningModels: RandomSurvival Forests (RSF) [11],
Deep Multi-task Gaussian Processes (DMGP) [2]

• Deep Learning Models: DeepHit [15], Our proposed mod-
els: Marginal DeepPseudo, CS Marginal DeepPseudo, Condi-
tional DeepPseudo, CS Conditional DeepPseudo models

Performance Metrics: In this paper, we use cause-specific time-
dependent concordance index [3] for evaluating the discriminatory
ability as well as the predictive accuracy of the models, which
take the time-dependency of the risks into consideration. In our
experiments, we compute the time-dependent concordance index
[3] for GEE (Pseudo values), DMGP model, Deephit model, and
DeepPseudo models. For the cause-specific hazard model, Fine &
Gray model, and Random survival forest model, we use the ’cindex’
function of R package ’pec’ for computing the C-index.

Implementation:We created 5 sets of 5-Fold cross-validation
dataset for our experiments. We maintain a constant ratio of uncen-
sored and censored individuals in each fold. We convert the categor-
ical variables into one-hot-encoded dummy variables. We choose
the best hyperparameter setting based on the average C-index as
the performance metric on the validation dataset by varying the
following hyperparameters: number of hidden layers [2, 3, 4, 5, 6, 7,
8], number of nodes [32, 64, 128], dropout [0.1, 0.2, 0.3, 0.4] or l2 reg-
ularization [0.01 0.001, 0.0001], ’selu’ activation function, batch size

64 and [’SGD’, ’Adam’] optimizer with a learning rate of [0.01, 0.001,
0.0001, 0.00001]. During hyperparameter tuning, we perform early
stopping and choose the best model based on the minimum valida-
tion loss. We consider two competing risks in all the experiments,
and calculate the cause-specific time-dependent concordance index
at two evaluation times; 1 year and 5 years, which is of interest to
most clinicians. We also perform pairwise statistical significant test
(Tukey’s HSD test) between the best DeepPseudo model and other
baseline models.
5 RESULTS AND DISCUSSION
The model comparison results are shown in Table 1. For the SEER
dataset, our DeepPseudo models showed statistically significant
performance over all the other models except the DeepHit model in
almost all the cases. Our DeepPseudo models perform similar or bet-
ter than the DeepHit model in most cases. On theWIHS dataset, our
DeepPseudo models give significantly better performance than all
the other baseline models, especially for 5 years of evaluation time.
On the Synthetic dataset, our best DeepPseudo model (i.e., Condi-
tional DeepPseudo model) showed a very promising improvement
over all the other benchmarks, and the improvement is statistically
significant. It is clear that the statistical models showed the worst
performance on Synthetic data as these models are limited by the
linearity assumptions between covariates and risks, whereas the
synthetic data was generated considering the non-linear relation-
ship. Our model and other deep models capture both the linear and
non-linear relationships present in the dataset and thus perform
much better. An interesting finding is that our DeepPseudo models
obtain better results over the statistical GEE approach, which also
uses pseudo values for CRA. Table 2 shows that our model handles
the censoring in the survival data better than all the models in
almost all of the different censoring settings. It is worth noting
that our DeepPseudo models use around 50 thousand parameters
to obtain similar or better results than the DeepHit model, which
uses >1 Million parameters.

Explaining Our Model Predictions: Even though deep learn-
ing models provide accurate results, they are black-box models.
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Figure 1: Explaining DeepPseudo Predictions using feature relevance plot using LRP evaluated on SEER training data

Thus, it becomes challenging to use them in medical and other crit-
ical applications if their predictions cannot be understood. To ad-
dress this issue, we employ Layer-wise Relevance Propagation [17]
approach to explain the predictions of our proposed DeepPseudo
model, i.e., we explain the covariates’ contribution to the prediction.
We calculate the relevance score of all the features based on the 100
best predictions and the 100 worse predictions as measured by the
training mean squared errors. Figure 1 shows the feature relevance
distribution for these 200 predictions. In this figure, it is evident
that our model can identify the important features for good and
bad predictions. For instance, for the best predictions, features such
as large tumor size and surgery, are chosen as important covariates
for prediction, which are correct as they are highly indicative of
survival risk for the patient.

6 CONCLUSION
This paper formulates competing risks analysis as a pseudo value
based regression problem and proposes simple deep feed-forward
neural network based models, referred to as DeepPseudo models,
to predict the pseudo values as a substitute for the cumulative inci-
dence function. Our proposed models do not use any special cost
functions or make any strong assumptions about the relationship
between the covariates and risks. Our model achieves similar or
better performance than the existing CRA approaches and is apt
at handling censoring. In addition, our model allows the use of
off-the-self explanation approaches to provide explanations to its
predictions. For future work, we will work on theoretical guar-
antees, and conduct extensive experiments on CRA datasets with
multiple causes.

Table 2: Model comparisons on SEER data for different cen-
soring settings (Cen) at 1 year evaluation time
Cause of
the Event Algorithms No Cen 1k Cen 2k Cen 3k Cen 4k Cen 5k Cen

Cause 1 Fine & Gray 0.7160 0.7186 0.7179 0.7139 0.7073 0.6929
RSF 0.7664 0.7662 0.7608 0.7481 0.7356 0.7199

Deephit 0.7735 0.7717 0.7646 0.7529 0.7399 0.7247
DeepPseudo 0.7738 0.7737 0.7664 0.7575 0.7442 0.7250

Cause 2 Fine & Gray 0.6103 0.6161 0.6180 0.6170 0.6381 0.6259
RSF 0.6826 0.6838 0.6706 0.6706 0.6566 0.6097

Deephit 0.7244 0.7140 0.7246 0.7117 0.7232 0.6563
DeepPseudo 0.7417 0.7541 0.7415 0.7432 0.7192 0.6996
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