Open Graph Benchmark:
Datasets for Machine Learning on Graphs

Weihua Hu!, Matthias Fey?, Marinka Zitnik3, Yuxiao Dong?,
Hongyu Ren!, Bowen Liu®, Michele Catasta®, Jure Leskovec!

! Department of Computer Science, *Chemistry, Stanford University
2Department of Computer Science, TU Dortmund University
3Department of Biomedical Informatics, Harvard University

4Microsoft Research, Redmond
ogblcs.stanford.edu

Steering Committee
Regina Barzilay, Peter Battaglia, Yoshua Bengio, Michael Bronstein,
Stephan Giinnemann, Will Hamilton, Tommi Jaakkola, Stefanie Jegelka,
Maximilian Nickel, Chris Re, Le Song, Jian Tang, Max Welling, Rich Zemel

Abstract

We present the OPEN GRAPH BENCHMARK (OGB), a diverse set of challenging
and realistic benchmark datasets to facilitate scalable, robust, and reproducible
graph machine learning (ML) research. OGB datasets are large-scale, encompass
multiple important graph ML tasks, and cover a diverse range of domains, ranging
from social and information networks to biological networks, molecular graphs,
source code ASTs, and knowledge graphs. For each dataset, we provide a unified
evaluation protocol using meaningful application-specific data splits and evaluation
metrics. In addition to building the datasets, we also perform extensive benchmark
experiments for each dataset. Our experiments suggest that OGB datasets present
significant challenges of scalability to large-scale graphs and out-of-distribution
generalization under realistic data splits, indicating fruitful opportunities for future
research. Finally, OGB provides an automated end-to-end graph ML pipeline that
simplifies and standardizes the process of graph data loading, experimental setup,
and model evaluation. OGB will be regularly updated and welcomes inputs from the
community. OGB datasets as well as data loaders, evaluation scripts, baseline code,
and leaderboards are publicly available at https: //ogb.stanford.edu.

1 Introduction

Graphs are widely used for abstracting complex systems of interacting objects, such as social
networks [30], knowledge graphs [63], molecular graphs [92], and biological networks [9], as well as
for modeling 3D objects [75], manifolds [15], and source code [4]. Machine learning, especially deep
learning, on graphs is an emerging field [15, 38]. Recently, significant methodological advances have
been made in graph ML [35, 49, 84, 94, 100], which have produced promising results in applications
from diverse domains [77, 99, 107].

How can we further advance research in graph ML? Historically, high-quality and large-scale datasets
have played significant roles in advancing research, as exemplified by IMAGENET [23] and MS
COCO [58] in computer vision, GLUE BENCHMARK [86] and SQUAD [69] in natural language
processing, and LIBRISPEECH [64] and CHIME [10] in speech processing. However, in graph

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

ML research, commonly-used datasets and evaluation procedures present issues that may negatively
impact future progress.

Issues with current benchmarks. Most of the frequently-used graph datasets are extremely small
compared to graphs found in real applications (with more than 1 million nodes or 100 thousand
graphs) [12, 43, 85, 87, 92, 99]. For example, the widely-used node classification datasets, CORA,
CITESEER, and PUBMED [98], only have 2,700 to 20,000 nodes, the popular graph classification
datasets from the TU collection [47, 95] only contain 200 to 5,000 graphs, and the commonly-used
knowledge graph completion datasets, FB15K and WN18 [14], only have 15,000 to 40,000 entities.
As models are extensively developed on these small datasets, the majority of them turn out to be
not scalable to larger graphs [14, 49, 81, 83]. The small datasets also make it hard to rigorously
evaluate data-hungry models, such as Graph Neural Networks (GNNs) [28, 34, 56, 94]. In fact, the
performance of GNNs on these datasets is often unstable and nearly statistically identical to each
other, due to the small number of samples the models are trained and evaluated on [29, 40].

Furthermore, there is no unified and commonly-followed exper-
imental protocol. Different studies adopt their own dataset splits,
evaluation metrics, and cross-validation protocols, making it chal-
lenging to compare performance reported across various stud-
ies [29, 31, 74]. In addition, many studies follow the convention
of using random splits to generate training/test sets [14, 49, 94],
which is not realistic or useful for real-world applications and
generally leads to overly optimistic performance results [S9]. An
extensive discussion on the shortcomings of the current bench-
marks is further provided in Appendix A.

As aresult, there is an urgent need for a comprehensive suite of

real-world benchmarks that combine a diverse set of datasets of

various sizes coming from different domains. Fixed data splits Figure 1: OGB provides
as well as evaluation metrics are important so that progress can datasets that are diverse in
be measured in a consistent and reproducible way. Last but not scale, domains, and task
least, benchmarks need to provide different types of tasks, such ~categories.

as node classification, link prediction, and graph classification.

Present work: OGB. Here, we present the OPEN GRAPH BENCHMARK (OGB) with the goal
of facilitating scalable, robust, and reproducible graph ML research. The premise of OGB is to
develop a diverse set of challenging and realistic benchmark datasets that can empower the rigorous
advancements in graph ML. As illustrated in Figure 1, the OGB datasets are designed to have the
following three characteristics:

1. Large scale. The OGB datasets are orders-of-magnitude larger than existing benchmarks and
can be categorized into three different scales (small, medium, and large). Even the “small” OGB
graphs have more than 100 thousand nodes or more than 1 million edges, but are small enough to
fit into the memory of a single GPU, making them suitable for testing computationally intensive
algorithms. Additionally, OGB introduces “medium” (more than 1 million nodes or more than 10
million edges) and “large” (on the order of 100 million nodes or 1 billion edges) datasets, which
can facilitate the development of scalable models based on mini-batching and distributed training.

2. Diverse domains. The OGB datasets aim to include graphs that are representative of a wide variety
of domains, ranging from social and information networks to biological networks, molecular
graphs, source code ASTs, and knowledge graphs. The broad coverage of domains in OGB
empowers the development and demonstration of general-purpose models, and can be used to
distinguish them from domain-specific techniques. Furthermore, for each dataset, OGB adopts
domain-specific data splits (e.g., based on time, species, molecular structure, GITHUB project,
etc.) that are more realistic and meaningful than conventional random splits.

3. Multiple task categories. Besides data diversity, OGB supports three categories of fundamental
graph ML tasks, i.e., node, link, and graph property predictions, each of which requires the models
to make predictions at different levels of graphs, i.e., at the level of a node, link, and entire graph,
respectively.

The currently-available OGB datasets are summarized in Table 1, and their graph statistics are
provided in Table 2. Currently, OGB includes 15 diverse graph datasets, with at least 4 datasets

Table 1: Summary of currently-available OGB datasets. An OGB dataset, e.g., ogbg-molhiv,
is identified by its prefix (ogbg-) and its name (molhiv). The prefix specifies the category of the
graph ML task, i.e., node (ogbn-), link (ogb1-), or graph (ogbg—) property prediction. Datasets
come from diverse domains: Nature domain includes biological networks and molecular graphs,
Society domain includes academic graphs and e-commerce networks, and Information domain
includes knowledge graphs. A realistic data split scheme is provided for each dataset, whose detail
can be found in Appendices B, C, and D, for each dataset.

Category Name Domain 1;:::];‘gag: Directed Hetero #Tasks Scslllg:le s:i::) :f;sp]: Metric
products Society v - - - 1 Salesrank 8/2/90 Multi-cls class. Accuracy
Node proteins Nature - 4 - - 112 Species 65/16/19 Binary class. ROC-AUC
ogbn- arxiv Society v - v - 1 Time 54/18/28 Multi-cls class. Accuracy
papers100M Society v - v - 1 Time 78/8/14 Multi-cls class. Accuracy
mag Infomation ¢ v 4 1 Time 85/9/6 Multi-cls class. Accuracy
ppa Nature v - - - 1 Throughput 70/20/10 Link prediction Hits@100
collab Society v - - - 1 Time 92/4/4 Link prediction Hits@50
Link ddi Nature - - - - 1 Protein target 80/10/10 Link prediction Hits@20
ogbl= itation Society v - v 1 Time 99/1/1 Link prediction MRR
wikikg Information - ¢ v - 1 Time 94/3/3 KG completion MRR
biokg Information - ¢ v 4 1 Random 94/3/3 KG completion MRR
molhiv Nature v v - - 1 Scaffold 80/10/10 Binary class. ROC-AUC
Graph nolpcba Nature v v - - 128 Scaffold 80/10/10 Binary class. AP
°9bg= ppa Nature - v - - 1 Species 49/29/22 Multi-class class. Accuracy
code Information ¢ v v - 1 Project 90/5/5 Sub-token prediction F1 score

Table 2: Statistics of currently-available OGB datasets. The first 3 statistics are calculated over
raw training/validation/test graphs. The last 4 graph statistics are calculated over the ‘standardized’
training graphs, where the graphs are first converted into undirected and unlabeled homogeneous
graphs with duplicated edges removed. The SNAP library [53] is then used to compute the graph
statistics, where the graph diameter is approximated by performing BFS from 1,000 randomly-
sampled nodes. The MaxSCC ratio represents the fraction of nodes in the largest strongly connected
component of the graph.

Average Average Average Average MaxSCC Graph

Category Name Scale #Graphs #Nodes #Edges Node Deg. Clust. Coeff. Ratio Diameter
products medium 1 2,449,029 61,859,140 50.5 0.411 0.974 27

proteins medium 1 132,534 39,561,252 597.0 0.280 1.000 9

lgggi_ arxiv small 1 169,343 1,166,243 13.7 0.226 1.000 23
papersl00M large 1 111,059,956 1,615,685,872 29.1 0.085 1.000 25

mag medium 1 1,939,743 25,582,108 21.7 0.098 1.000 6

ppa medium 1 576,289 30,326,273 73.7 0.223 0.999 14

collab small 1 235,868 1,285,465 8.2 0.729 0.987 22

Link ddi small 1 4,267 1,334,889 500.5 0.514 1.000 5
ogbl- citation medium 1 2,927,963 30,561,187 20.7 0.178 0.996 21
wikikg medium 1 2,500,604 17,137,181 12.2 0.168 1.000 26

biokg small 1 93,773 5,088,434 475 0.409 0.999 8

molhiv small 41,127 25.5 27.5 22 0.002 0.993 12.0

Graph molpcba medium 437,929 26.0 28.1 22 0.002 0.999 13.6
ogbg- ppa medium 158,100 2434 2,266.1 18.3 0.513 1.000 4.8
code medium 452,741 125.2 1242 2.0 0.0 1.000 13.5

for each task category. All the datasets are constructed by ourselves, except for ogbn-products,
ogbg-molpcba, and ogbg-molhiv, whose graphs and target labels are adopted from Chiang
et al. [17] and Wu et al. [92]. For these datasets, we resolve critical issues of the existing data
splits by presenting more meaningful and standardized splits. OGB is a community-driven, open-
source initiative. Over time, we plan to release new datasets and tasks, based on the input from the
community.

In addition to building the graph datasets, we also perform extensive benchmark experiments for
each dataset. Through the experiments and ablation studies, we highlight research challenges and
opportunities provided by each dataset, especially on (1) scaling models to large graphs, and (2)
improving out-of-distribution generalization performance under the realistic data split scenarios.

OGB Graph
Datasets

OGB Data Your ML OGB OGB
Loader Model Evaluator Leaderboards
(d O]

(a) (b) ©

Figure 2: Overview of the OGB pipeline: (a) OGB provides realistic graph benchmark datasets
that cover different prediction tasks (node, link, graph), are from diverse application domains, and
are at different scales. (b) OGB fully automates dataset processing and splitting. That is, the OGB
data loaders automatically download and process graphs, provide graph objects (compatible with
PYTORCH [65] and its associated graph libraries, PYTORCH GEOMETRIC [33] and DEEP GRAPH
LIBRARY [88]), and further split the datasets in a standardized manner. (c¢) After an ML model
is developed, (d) OGB evaluates the model in a dataset-dependent manner, and outputs the model
performance appropriate for the task at hand. Finally, (e) OGB provides public leaderboards to keep
track of recent advances. Steps (b) and (d) are supported by our OGB Python package, whose usage
is explained in Appendix E.

Finally, as illustrated in Figure 2, OGB presents an automated end-to-end graph ML pipeline
that simplifies and standardizes the process of graph data loading, experimental setup, and model
evaluation, in the same spirit as OpenML [32, 82]. Specifically, given the OGB datasets (a), the
end-users can focus on developing their graph ML models (c) by using the OGB data loaders (b)
and evaluators (d), both of which are provided by our OGB Python package (https://github.
com/snap-stanford/ogb). OGB also hosts a public leaderboard (e) for publicizing state-
of-the-art, reproducible graph ML research (https://ogb.stanford.edu/docs/leader_
overview).

2 OGB Datasets and Benchmark Analyses: Overview

The goal of OGB is to catalyze graph ML research by providing realistic, diverse, and large-scale
graph datasets with unified evaluation protocols. Table 1 summarizes the OGB datasets along with
their graph types, prediction tasks, as well as evaluation protocols (data splits and evaluation metrics).

In the subsequent sections (Sections 3, 4, and 5), we detail currently-available datasets for each
task category. Along with this, we provide an extensive benchmark analysis for each dataset,
using representative node embedding models, GNNs, as well as recently-introduced mini-batch-
based GNNs. We discuss our initial findings, and highlight research challenges and opportunities
in: (1) scaling models to large graphs, and (2) improving out-of-distribution generalization under
the realistic data splits. We repeat each experiment 10 times using different random seeds and
report the mean and unbiased standard deviation of all training and test results corresponding to
the best validation results. All code to reproduce our baseline experiments is publicly available at
https://github.com/snap-stanford/ogb/tree/master/examples and is meant
as a starting point to accelerate further research on our proposed datasets. We refer the interested
reader to our code base for the details of model architectures and hyper-parameter settings.

Finally, we highlight the diversity of our graph datasets by comparing their basic graph statistics in
Table 2. Importantly, we observe the diversity in graph structure, beyond the diversity in the dataset
scales. For example, comparing the average node degrees, we see that biology-related graphs (e.g.,
ogbn-proteins, ogbl-ddi, ogbl-ppa, ogbg-ppa) are much denser than the social and
information networks. The other statistics (average clustering coefficient and graph diameter) also
vary significantly across different datasets. These differences in graph structure result in the inherent
difference in how information propagates in the graphs, which can significantly affect the behavior of
many graph ML models such as GNNs and random-walk-based node embeddings [93]. For the graph
property prediction datasets, it is worth highlighting the diversity of graph sizes (the number of nodes
and edges per graph), ranging from small molecular graphs (ogbg-molhiv and ogbg-molpcba),
to medium-sized source code ASTs (ogbg—code), up to large and dense protein-protein association
subgraphs (ogbg-ppa). Overall, the diversity in graph characteristics originates from the diverse
application domains and is crucial to evaluate the versatility of graph ML models.

3 OGB Node Property Prediction

We currently provide 5 datasets, adopted from diverse application domains, for predicting the
properties of individual nodes. Specifically, ogbn-products is an Amazon products co-purchasing
network [12] originally developed by Chiang et al. [17]. The ogbn-arxiv, ogbn-mag, and
ogbn-papers100M datasets are extracted from the Microsoft Academic Graph (MAG) [87],
with different scales, tasks, and include both homogeneous and heterogeneous graphs. Specifically,
ogbn-arxiv is a paper citation network of ARXIV papers, ogbn-mag is a heterogeneous academic
graph containing different node types (papers, authors, institutions, and topics) and their relations,
and ogbn-papers100M is an extremely large paper citation network from the entire MAG with
more than 100 million nodes and 1 billion edges. The ogbn-proteins dataset is a protein-
protein association network [80]. Below we present the ogbn-product s dataset and its baseline
experiments. Due to space constraints, we present all the datasets comprehensively in Appendix B.

The ogbn-products dataset. This dataset is an undirected and unweighted graph, representing an
Amazon product co-purchasing network [12]. Nodes represent products sold in Amazon, and edges
between two products indicate that the products are purchased together. The graphs, target labels,
and node features are generated following Chiang et al. [17], where node features are dimensionality-
reduced bag-of-words of the product descriptions. Our contribution, when adopting the dataset in
OGB, is to resolve its critical data split issue by presenting a more realistic and challenging split (see
below).

Prediction task. The task is to predict the category of a product in a multi-class classification setup,
where the 47 top-level categories are used for target labels.

Dataset splitting. We consider a more challenging and realistic dataset splitting that differs from
the one used in Chiang et al. [17]. Instead of randomly assigning 90% of the nodes for training and
10% of the nodes for testing (without a validation set), we use the sales ranking (popularity) to split
nodes into training/validation/test sets. Specifically, we sort the products according to their sales
ranking and use the top 8% for training, next top 2% for validation, and the rest for testing. This is a
more challenging splitting procedure that closely matches the real-world application where manual
labeling is prioritized to important nodes in the network and ML models are subsequently used to
make predictions on less important ones.

Baselines. We perform an extensive empirical study, including the representative node embedding
model, GNNs, and as well as recently-introduced mini-batch-based GNN models, as baselines.

e MLP: A multilayer perceptron (MLP) predictor that uses the given raw node features directly as
input. Graph structure information is not utilized.

e NODE2VEC: An MLP predictor that uses as input the concatenation of the raw node features
and NODE2VEC embeddings [35, 66].

e Full-batch GNNs: GCN [49] and GRAPHSAGE (mean pool) [37].

e Mini-batch training of GNNs based on NEIGHBORSAMPLING [37], CLUSTERGCN [17] and
GRAPHSAINT [103].

Note that the full-batch GCN and GRAPHSAGE are GPU memory-intensive for large graphs as
all the node embeddings need to loaded onto GPU all at once. The mini-batch training techniques,
NEIGHBORSAMPLING, CLUSTERGCN, and GRAPHSAINT, do not suffer from this issue and are
more GPU memory-efficient. All models are trained with a fixed hidden dimensionality of 256, a
fixed number of three layers, and a tuned dropout ratio € {0.0, 0.5}.

Results and discussion. Our benchmarking results in Table 3 show that the highest test performances
are attained by GNNs, while the MLP baseline that solely relies on a product’s description is not
sufficient for accurately predicting the category of a product. Even with the GNNs, we observe
the huge generalization gap!, which can be explained by differing node distributions across the
splits, as visualized in Figure 3. This is in stark contrast with the conventional random split used by
Chiang et al. [17]. Even with the same split ratio (8/2/88), we find GRAPHS AGE already achieves
88.2040.08% test accuracy with only ~ 1 percentage points of generalization gap. These results
indicate that the realistic split is much more challenging than the random split and offer an important
opportunity to improve out-of-distribution generalization.

"Defined by the difference between training and test accuracy.

Table 3: Results for ogbn-products. ® Train @ Validation Test
fRequires a GPU with 33GB of memory.

Accuracy (%)
Method Training Validation Test et
MLP 84.03+093 75.54+014 61.06+0.08 "
NODE2VEC 93.39+0.10 90.32+006 72.49+0.10
GCNfT 93.56+0.09 92.00+003 75.64+021
GRAPHSAGE' 94.09+005 92.24+007 78.50+0.14
NEIGHBORSAMPLING 92.96+007 91.70+009 78.70+0.36 Figure 3: T-SNE visualization of
CLUSTERGCN 93.75+0.13 92.12+009 78.97+033 training/validation/test nodes in
GRAPHSAINT 92.71+0.14 91.62+008 79.08+0.24

ogbn-products.

Table 3 also shows that the recent mini-batch-based GNNs? give promising results, even slightly
outperforming the full-batch version of GRAPHS AGE that does not fit into ordinary GPU memory.
The improved performance can be attributed to the regularization effects of mini-batch noise and
edge dropout [71]. Nevertheless, the mini-batch GNNs have been much less explored compared to
the full-batch GNNs due to the prevalent use of the extremely small benchmark datasets such as
CoRA and CITESEER. As a result, many important questions remain open, e.g., what mini-batch
training methods can induce the best regularization effect, and how to allow mini-batch training for
advanced GNNs that rely on large receptive-field sizes [50, 54, 93], since the current mini-batch
methods are rather limited by the number of nodes from which they aggregate information. Overall,
ogbn-products is an ideal benchmark dataset for the field to move beyond the extremely small
graph datasets and to catalyze the development of scalable mini-batch-based graph models with
improved out-of-distribution prediction accuracy.

In Appendix B.4, we present ogbn—-papers100M, which is even larger and is meant to push the
scalability to gigantic web-scale graphs in the real world.

4 OGB Link Property Prediction

We currently provide 6 datasets, adopted from diverse application domains, for predicting the
properties of links (pairs of nodes). Specifically, ogbl—ppa is a protein-protein association network
[80], ogbl-collab is an author collaboration network [87], ogb1-ddi is a drug-drug interaction
network [90], ogbl-citation is a paper citation network [87], ogbl-biokg is a heterogeneous
knowledge graph compiled from a large number of biomedical repositories, and ogbl-wikikg is
a Wikidata knowledge graph [85]. Below we present the ogbl-wikikg dataset and its baseline
experiments. Due to space constraints, we present all the datasets comprehensively in Appendix C.

The ogbl-wikikg dataset. This dataset is a Knowledge Graph (KG) extracted from the Wikidata

knowledge base [85]. It contains a set of triplet edges (head, relation, tail), capturing the different
types of relations between entities in the world, e.g., Canada CHZER Hinton. We retrieve all the

relational statements in Wikidata and filter out rare entities. Our KG contains 2,500,604 entities and
535 relation types.

Prediction task. The task is to predict new triplet edges given the training edges. The evaluation
metric follows the standard filtered metric widely used in KGs [14, 78, 81, 96]. Specifically, we
corrupt each test triplet edge by replacing its head or tail with randomly-sampled 1,000 negative
entities (500 for head and 500 for tail), while ensuring the resulting triplets do not appear in the KG.
The goal is to rank the true head (or tail) entities higher than the negative entities, which is measured
by the Mean Reciprocal Rank (MRR).

Dataset splitting. We split the triplets according to time, simulating a realistic KG completion
scenario that aims to fill in missing triplets that are not present at a certain timestamp. Specifically,
we downloaded Wikidata at three different time stamps3 (May, August, and November of 2015), and
construct three KGs, where we only retain entities and relation types that appear in the earliest May

>The GRAPHS AGE architecture is used for neighbor aggregation.
*Available at https://archive.org/search.php?query=creator$3A%22Wikidata+
editors%22

Table 4: Results for ogbl-wikikg.
fRequires a GPU with 48GB of memory.

Method . MRR .
Training (Unfiltered) Validation (Filtered) Test (Filtered)
TRANSE 0.3326-£0.0041 0.2314+0.0035 0.2535-£0.0036
DISTMULT 0.4131-0.0057 0.3142-+0.0066 0.3434+0.0079
CoMPLEX 0.4605-£0.0020 0.3612-0.0063 0.3877-+0.0051
ROTATE 0.3469-:0.0055 0.2366-£0.0043 0.2681+0.0047
TRANSE (6 xdim)? 0.6491+0.0022 0.4587-+0.0031 0.4536-+0.0028
DISTMULT (6 xdim)? 0.4339-+0.0011 0.3403+0.0009 0.3612+0.0030
COMPLEX (6xdim)f 0.4712+0.0045 0.3787-+0.0036 0.4028-:0.0033
ROTATE (6 xdim)' 0.6084-+0.0025 0.3613-£0.0031 0.3626-0.0041

KG. We use the triplets in the May KG for training, and use the additional triplets in the August and
November KGs for validation and test, respectively. Note that our dataset split is different from the
existing Wikidata KG dataset that adopts a conventional random split [89], which does not reflect the
practical usage of KG completion.

Baselines. We consider the four representative KG embedding models: TRANSE [14], DISTMULT
[96], COMPLEX [81], and ROTATE [78]. For KGs with many entities and relations, the embedding
dimensionality can be limited by the available GPU memory, as the embeddings need to be loaded
into GPU all at once. We therefore choose the dimensionality such that training can be performed on
a fixed-budget of GPU memory. Our training procedure follows Sun et al. [78], where we perform
negative sampling and use margin-based logistic loss for the loss function.

Results and discussion. Our benchmark results are provided in Table 4, where the upper-half
baselines are implemented on a single commodity GPU with 11GB memory, while the bottom-half
baselines are implemented on a high-end GPU with 48GB memory.* Training MRR in Table 4 is an
unfiltered metric,’ as filtering is computationally expensive for the large number of training triplets.

First, we see from the upper-half of Table 4 that when the limited embedding dimensionality is used,
CoOMPLEX performs the best among the four baselines. With the increased dimensionality, all four
models are able to achieve higher MRR on training, validation and test sets, as seen from the bottom-
half of Table 4. This suggests the importance of using a sufficient large embedding dimensionality
to achieve good performance in this dataset. Interestingly, although TRANSE performs the worst
with the limited dimensionality, it obtains the best performance with the increased dimensionality.
Nevertheless, the extremely low test MRR® suggests that our realistic KG completion dataset is highly
non-trivial. It presents a realistic generalization challenge of discovering new triplets based on existing
ones, which necessitates the development of KG models with more robust and generalizable reasoning
capability. Furthermore, this dataset presents an important challenge of effectively scaling embedding
models to large KGs—naively training KG embedding models with reasonable dimensionality
would require a high-end GPU, which is extremely costly and not scalable to even larger KGs.
A promising approach to improve scalability is to distribute training across multiple commodity
GPUs [52, 105, 106]. A different approach is to share parameters across entities and relations, so that
a smaller number of embedding parameters need to be put onto the GPU memory at once.

*Given a fixed 11GB GPU memory budget, we adopt 100-dimension embeddings for DISTMULT and
TRANSE. Since ROTATE and COMPLEX require the entity embeddings with the real and imaginary parts, we
train these two models with the dimensionality of 50 for each part. On the other hand, on the high-end GPU with
48GB memory, we are able to train all the models with 6 x larger embedding dimensionality.

This means that the training MRR is computed by ranking against randomly-selected negative entities
without filtering out triplets that appear in KG. The unfiltered metric has the systematic bias of being smaller
than the filtered counterpart (computed by ranking against “true” negative entities, i.e., the resulting triplets do
not appear in the KG) [14].

SNote that our test MRR on ogbl-wikikg is computed using only 500 negative entities per triplet, which
is much less than the number of negative entities used to compute MRR in the existing KG datasets, such
as FB15K and FB15K-237 (around 15,000 negative entities). Nevertheless, ROTATE gives either lower or
comparable test MRR on ogbl-wikikg compared to FB15K and FB15K-237 [78].

Table 5: Results for ogbg-molhiv. Table 6: Results for ogbg-molpcba.

Add. Virt. ROC-AUC (%) Add. Virt. AP (%)
Method Feat. Node Training Validation Test Method Feat. Node Training Validation Test
X V' 88651101 83.73:078 74.18+12 X V' 36251071 23.88+022 22.91+037
GCN 4 X 88.6512.19 82.04+141 76.06+097 GCN v X 28.04+058 20.59+033 20.20+024
v V' 90.07+469 83.844091 75.99+1.19 4 V' 38.25+050 24.951042 24.241034
X v 93.891206 84.104105 75.20+130 X V' 45704061 27.54+025 26.61+0.17
GIN 4 X 88.641254 82.324000 75.58:+1.40 GIN v X 37.05+031 23.05+027 22.66+028
4 V' 92731380 84.79+068 77.07+1.49 v V' 46.96+057 27.98+025 27.03+023

5 OGB Graph Property Prediction

We currently provide 4 datasets, adopted from 3 distinct application domains, for predicting the
properties of entire graphs or subgraphs. Specifically, ogbg-molhiv and ogbg-molpcba are
molecular graphs originally curated by Wu et al. [92], ogbg-ppa is a set of protein-protein asso-
ciation subgraphs [108], and ogbg-code is a collection of ASTs of source code [43]. Below we
present the ogbg-molhiv and ogbg-molpcba datasets and their baseline experiments. Due to
space constraints, we present all the datasets comprehensively in Appendix D.

The ogbg-molhiv and ogbg-molpcba datasets. These datasets are two molecular property
prediction datasets adopted from the MOLECULENET [92], and are among the largest of the MOLECU-
LENET datasets. Besides the two main molecule datasets, we also provide the 10 other MOLECU-
LENET datasets, which are summarized and benchmarked in Appendix F. These datasets can be used
to stress-test molecule-specific methods [46, 97] and transfer learning [40]. All the molecules are
pre-processed using RDKIT [51]. Each graph represents a molecule, where nodes are atoms, and
edges are chemical bonds. Input node features are 9-dimensional, containing atomic number and
chirality, as well as other additional atom features such as formal charge and whether the atom is
in the ring. Input edge features are 3-dimensional, containing bond type, bond stereochemistry as
well as an additional bond feature indicating whether the bond is conjugated. Note that the above
additional features are not needed to uniquely identify molecules, and are not adopted in the previous
work [40, 44]. In the experiments, we perform an ablation study on the molecule features and find
that including the additional features improves generalization performance.

Prediction task. The task is to predict the target molecular properties as accurately as possible,
where the molecular properties are cast as binary labels, e.g., whether a molecule inhibits HIV
virus replication or not. For evaluation metric, we closely follow Wu et al. [92]. Specifically, for
ogbg-molhiv, we use ROC-AUC for evaluation. For ogbg-molpcba, as the class balance is
extremely skewed (only 1.4% of data is positive) and the dataset contains multiple classification tasks,
we use the Average Precision (AP) averaged over the tasks as the evaluation metric.

Dataset splitting. We adopt the scaffold splitting procedure that splits the molecules based on their
two-dimensional structural frameworks. The scaffold splitting attempts to separate structurally differ-
ent molecules into different subsets, which provides a more realistic estimate of model performance
in prospective experimental settings. The scaffold splitting was originally proposed by Wu et al. [92]
and has been adopted by the follow-up works [40, 44, 70, 97]; however, the precise implementation
differs significantly across works, making their results not directly comparable to each other. In OGB,
we aim to standardize the scaffold split by adopting its most challenging version where test molecules
are maximally diverse.

Baselines. We consider the two representative GNNs: GCN [49] and GIN [94]. We additionally
consider augmenting the models with VIRTUAL NODES, where message-passing is performed over
an augmented graph with an additional node that is connected to all nodes in the original graph [34,
44, 55]. We use 5-layer GNNSs, average graph pooling, a hidden dimensionality of 300, and a tuned
dropout ratio of {0, 0.5}. To include edge features, we follow Hu et al. [40] and add transformed
edge features into the incoming node features.

Results and discussion. Benchmarking results are given in Tables 5 and 6. We see that GIN with
both additional features and VIRTUAL NODES provides the best performance in the two datasets.
In Appendix F, we show that even for the other MOLECULENET datasets, the additional features

consistently improve generalization performance. In OGB, we therefore include the additional
node/edge features in our molecular graphs.

We further report the performance on the random splitting, keeping the split ratio the same as the
scaffold splitting. We find the random split to be much easier than scaffold split. On random splits
of ogbg-molhiv and ogbg-molpcba, the best GIN achieves the ROC-AUC of 82.73+2.02%
(5.66 percentage points higher than scaffold) and AP of 34.40+0.90% (7.37 percentage points higher
than scaffold), respectively. The same trend holds true for the other MOLECULENET datasets, e.g.,
the best GIN performance on the random split of ogbg-moltox21 is 86.03+1.37%, which is 8.46
percentage points higher than that of the best GIN for the scaffold split (77.57+0.62% ROC-AUC).
These results highlight the challenges of the scaffold split compared to the random split, and opens up
a fruitful research opportunity to increase the out-of-distribution generalization capability of GNNss.

6 Conclusions

To enable scalable, robust, and reproducible graph ML research, we introduce the Open Graph
Benchmark (OGB)—a diverse set of realistic graph datasets in terms of scales, domains, and task
categories. We employ realistic data splits for the given datasets, driven by application-specific
use cases. Through extensive benchmark experiments, we highlight that the OGB datasets present
significant challenges for ML models to handle large-scale graphs and make accurate prediction
under the realistic data splitting scenarios. Altogether, OGB presents fruitful opportunities for future
research to push the frontier of graph ML.

OGB is an open-source initiative that provides ready-to-use datasets as well as their data loaders,
evaluation scripts, and public leaderboards. We hereby invite the community to develop and contribute
state-of-the-art graph ML models at https://ogb.stanford.edu.

Broader Impact

We expect the Open Graph Benchmark (OGB) to have a significant impact on fundamental graph ML
research as well as many of its application domains. We also discuss a potential negative impact.

Impact on Graph ML Research

Historically, high-quality and large-scale datasets have played significant roles in advancing re-
search fields (e.g., IMAGENET [23], MS-COCO [58], GLUE benchmark [86], SQUAD [69]). The
amount of impact these datasets have brought is enormous, leading to the significant methodological
advancements in the respective fields [24, 39].

We expect OGB to be a standard benchmark in graph ML, contributing to the significant advancements
of the field. To this end, our datasets are carefully designed to address the two major drawbacks
of current graph benchmark datasets, namely (1) small dataset sizes, and (2) unrealistic random
splits. Overall, OGB provides a set of diverse, realistic, and large-scale graph datasets to facilitate the
development of graph ML models that are scalable and generalizable under realistic data splits, both
of which are crucial in practice.

In addition, OGB aims to address the fundamental problem of reproducibility in graph ML research.
We promote the reproducibility by standardizing the research pipeline, as illustrated in Figure 2, and
provide official leaderboards, for which public code is mandatory to make a submission. Altogether,
OGB incentivises researchers to release their code, and allows researchers to easily compare different
models under equal settings.

Impact on Diverse Application Domains

In OGB, we have curated graph datasets that are relevant to a variety of practical and realistic appli-
cation domains, including science (e.g., biology, chemistry), knowledge graphs, academic graphs,
and source code ASTs. For example, we provided a biomedical knowledge graph (ogbl-biokg),
where algorithmic advances on this dataset can be immediately translated into solutions for prob-
lems in precision medicine. In another example, we provide a dataset of 450K molecular graphs
(ogbg-molpcba) that have direct implications for drug discovery. In academic domains, we

prepared a variety of prediction tasks (e.g., recommending missing citations as well as future collabo-
rations, predicting paper categories and venues, etc.), solving which can lead to improved scholarly
efficiency and to better organization of academic knowledge. In technological domains, OGB includes
a dataset of source code snippets (ogbg—code). The development of graph ML models on this
dataset can lead to exciting applications for advanced code analysis and retrieval.

To further increase the impact of OGB, all of our datasets are mapped to real entities in the world.
For example, each node in the drug-drug interaction network (ogbl-ddi) is mapped to a unique
Drug ID in DrugBank [90], each molecule in the molecule datasets (ogbg-mol+) is mapped to a
SMILES string that uniquely identifies the molecule, and each node in the paper citation networks
(ogbn-arxiv and ogbn-papers100M) is mapped into a real research paper indexed by the
Microsoft Academic Graph [87]. Such mappings to real entities allow researchers to draw scientific
insight and to augment the graphs with external information.

Potential Negative Impact

If OGB becomes the standard de-facto benchmark for graph ML, one potential negative impact is that
OGB might contribute to narrowing down the scope of future papers to the tasks and dataset types
that have been included in OGB. In order to avoid such a negative impact, we will regularly update
our datasets and tasks, based on the input from the community.

Acknowledgements

We thank Adrijan Bradaschia and Rok Sosic for their help in setting up the server and website. We
also thank Emma Pierson and Shigeru Maya for their suggestions on the paper writing. Finally, we
thank the entire community of graph ML for providing valuable feedback to improve OGB. Weihua
Hu is supported by Funai Overseas Scholarship and Masason Foundation Fellowship. Matthias Fey
is supported by the German Research Association (DFG) within the Collaborative Research Center
SFB 876 “Providing Information by Resource-Constrained Analysis”, project A6. Marinka Zitnik is
in part supported by NSF 1IS-2030459. We gratefully acknowledge the support of DARPA under
Nos. FA865018C7880 (ASED), N660011924033 (MCS); ARO under Nos. W911NF-16-1-0342
(MURI), WI911NF-16-1-0171 (DURIP); NSF under Nos. OAC-1835598 (CINES), OAC-1934578
(HDR), CCF-1918940 (Expeditions), [IS-2030477 (RAPID); Stanford Data Science Initiative, Wu
Tsai Neurosciences Institute, Chan Zuckerberg Biohub, Amazon, Boeing, JPMoran Chase, Docomo,
Hitachi, JD.com, KDDI, NVIDIA, Dell. Jure Leskovec is a Chan Zuckerberg Biohub investigator.

References

[1] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu
Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow: A system for
large-scale machine learning. In Symposium on Operating Systems Design and Implementation
OSDI), pages 265-283, 2016.

[2] Miltiadis Allamanis. The adverse effects of code duplication in machine learning models of
code. In Proceedings of the 2019 ACM SIGPLAN International Symposium on New Ideas,
New Paradigms, and Reflections on Programming and Software, pages 143—153, 2019.

[3] Miltiadis Allamanis, Hao Peng, and Charles Sutton. A convolutional attention network for

extreme summarization of source code. In International conference on machine learning,
pages 2091-2100, 2016.

[4] Miltiadis Allamanis, Marc Brockschmidt, and Mahmoud Khademi. Learning to represent
programs with graphs. arXiv preprint arXiv:1711.00740, 2017.

[5] Miltiadis Allamanis, Earl T Barr, Premkumar Devanbu, and Charles Sutton. A survey of
machine learning for big code and naturalness. ACM Computing Surveys (CSUR), 51(4):1-37,
2018.

[6] Uri Alon, Shaked Brody, Omer Levy, and Eran Yahav. code2seq: Generating sequences from
structured representations of code. arXiv preprint arXiv:1808.01400, 2018.

10

(7]

(8]

[9]

(10]

(11]

(12]

(13]

(14]

(15]

[16]

(17]

(18]

(19]

(20]

(21]

[22]

(23]

(24]

[25]

Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. code2vec: Learning distributed
representations of code. Proceedings of the ACM on Programming Languages, 3(POPL):1-29,
2019.

Jirgen Bajorath. Integration of virtual and high-throughput screening. Nature Reviews Drug
Discovery, 1(11):882-894, 2002.

Albert-Laszlo Barabasi and Zoltan N Oltvai. Network biology: understanding the cell’s
functional organization. Nature reviews genetics, 5(2):101-113, 2004.

Jon Barker, Ricard Marxer, Emmanuel Vincent, and Shinji Watanabe. The third ‘chime’speech
separation and recognition challenge: Dataset, task and baselines. In 2015 IEEE Workshop on
Automatic Speech Recognition and Understanding (ASRU), pages 504-511. IEEE, 2015.

Rianne van den Berg, Thomas N. Kipf, and Max Welling. Graph convolutional matrix
completion. arXiv preprint arXiv:1706.02263, 2017.

K. Bhatia, K. Dahiya, H. Jain, A. Mittal, Y. Prabhu, and M. Varma. The extreme classifica-
tion repository: Multi-label datasets and code, 2016. URL http://manikvarma.org/
downloads/XC/XMLRepository.html.

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor. Freebase: a
collaboratively created graph database for structuring human knowledge. In Special Interest
Group on Management of Data (SIGMOD), pages 1247-1250. AcM, 2008.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana
Yakhnenko. Translating embeddings for modeling multi-relational data. In Advances in
Neural Information Processing Systems (NeurIPS), pages 2787-2795, 2013.

Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Vandergheynst.
Geometric deep learning: going beyond euclidean data. IEEE Signal Processing Magazine, 34
(4):18-42, 2017.

Tiangi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun Xiao, Bing Xu,
Chiyuan Zhang, and Zheng Zhang. Mxnet: A flexible and efficient machine learning library
for heterogeneous distributed systems. In NeurIPS workshop on Machine Learning Systems,
2015.

Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh. Cluster-
GCN: An efficient algorithm for training deep and large graph convolutional networks. In
ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD), pages 257-266,
2019.

Gene Ontology Consortium. The gene ontology resource: 20 years and still going strong.
Nucleic acids research, 47(D1):D330-D338, 2018.

Lenore Cowen, Trey Ideker, Benjamin J Raphael, and Roded Sharan. Network propagation: a
universal amplifier of genetic associations. Nature Reviews Genetics, 18(9):551, 2017.

Allan Peter Davis, Cynthia J Grondin, Robin J Johnson, Daniela Sciaky, Roy McMorran,
Jolene Wiegers, Thomas C Wiegers, and Carolyn J Mattingly. The comparative toxicogenomics
database: update 2019. Nucleic Acids Research, 47(D1):D948-D954, 2019.

Jesse Davis and Mark Goadrich. The relationship between precision-recall and roc curves. In
International Conference on Machine Learning (ICML), pages 233-240, 2006.

David De Juan, Florencio Pazos, and Alfonso Valencia. Emerging methods in protein co-
evolution. Nature Reviews Genetics, 14(4):249-261, 2013.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In cvpr, pages 248-255. Ieee, 2009.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805,
2018.

Elizabeth Dinella, Hanjun Dai, Ziyang Li, Mayur Naik, Le Song, and Ke Wang. Hoppity:
Learning graph transformations to detect and fix bugs in programs. In International Conference
on Learning Representations (ICLR), 2020.

11

[26] Yuxiao Dong, Nitesh V Chawla, and Ananthram Swami. metapath2vec: Scalable represen-
tation learning for heterogeneous networks. In ACM SIGKDD Conference on Knowledge
Discovery and Data Mining (KDD), pages 135-144, 2017.

[27] Yuxiao Dong, Hao Ma, Zhihong Shen, and Kuansan Wang. A century of science: Globalization
of scientific collaborations, citations, and innovations. In ACM SIGKDD Conference on
Knowledge Discovery and Data Mining (KDD), pages 1437-1446. ACM, 2017.

[28] David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell, Timothy Hirzel,
Alan Aspuru-Guzik, and Ryan P Adams. Convolutional networks on graphs for learning
molecular fingerprints. In Advances in Neural Information Processing Systems (NeurIPS),
pages 2224-2232, 2015.

[29] Vijay Prakash Dwivedi, Chaitanya K Joshi, Thomas Laurent, Yoshua Bengio, and Xavier
Bresson. Benchmarking graph neural networks. arXiv preprint arXiv:2003.00982, 2020.

[30] David Easley, Jon Kleinberg, et al. Networks, crowds, and markets, volume 8. Cambridge
university press Cambridge, 2010.

[31] Federico Errica, Marco Podda, Davide Bacciu, and Alessio Micheli. A fair comparison of
graph neural networks for graph classification. arXiv preprint arXiv:1912.09893, 2019.

[32] Matthias Feurer, Jan N van Rijn, Arlind Kadra, Pieter Gijsbers, Neeratyoy Mallik, Sahithya
Ravi, Andreas Miiller, Joaquin Vanschoren, and Frank Hutter. Openml-python: an extensible
python api for openml. arXiv preprint arXiv:1911.02490, 2019.

[33] M. Fey and J. E. Lenssen. Fast graph representation learning with PyTorch Geometric. In
ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019.

[34] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl.
Neural message passing for quantum chemistry. In International Conference on Machine
Learning (ICML), pages 1273-1272, 2017.

[35] Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In
ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD), pages 855-864.
ACM, 2016.

[36] Emre Guney. Reproducible drug repurposing: When similarity does not suffice. In Pacific
Symposium on Biocomputing, pages 132—143,2017.

[37] William L Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In Advances in Neural Information Processing Systems (NeurIPS), pages 1025-1035,
2017.

[38] William L Hamilton, Rex Ying, and Jure Leskovec. Representation learning on graphs:
Methods and applications. IEEE Data Engineering Bulletin, 40(3):52-74, 2017.

[39] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages
770-778, 2016.

[40] Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande, and Jure
Leskovec. Strategies for pre-training graph neural networks. In International Conference on
Learning Representations (ICLR), 2020.

[41] Ziniu Hu, Yuxiao Dong, Kuansan Wang, and Yizhou Sun. Heterogeneous graph transformer.
In Proceedings of the International World Wide Web Conference (WWW), 2020.

[42] Laura A Hug, Brett J Baker, Karthik Anantharaman, Christopher T Brown, Alexander J Probst,
Cindy J Castelle, Cristina N Butterfield, Alex W Hernsdorf, Yuki Amano, Kotaro Ise, et al. A
new view of the tree of life. Nature Microbiology, 1(5):16048, 2016.

[43] Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis Allamanis, and Marc Brockschmidt.
Codesearchnet challenge: Evaluating the state of semantic code search. arXiv preprint
arXiv:1909.09436, 2019.

[44] Katsuhiko Ishiguro, Shin-ichi Maeda, and Masanori Koyama. Graph warp module: An auxil-
iary module for boosting the power of graph neural networks. arXiv preprint arXiv:1902.01020,
2019.

[45] S.Ivanov, S. Sviridov, and E. Burnaev. Understanding isomorphism bias in graph data sets.
arXiv preprint arXiv:1910.12091, 2019.

12

[46] Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Hierarchical generation of molecular
graphs using structural motifs. arXiv preprint arXiv:2002.03230, 2020.

[47] Kristian Kersting, Nils M Kriege, Christopher Morris, Petra Mutzel, and Marion Neumann.
Benchmark data sets for graph kernels, 2020. URL http://www.graphlearning.io/.

[48] Thomas N. Kipf and Max Welling. Variational graph auto-encoders. arXiv preprint
arXiv:1611.07308, 2016.

[49] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In International Conference on Learning Representations (ICLR), 2017.

[50] Johannes Klicpera, Aleksandar Bojchevski, and Stephan Giinnemann. Predict then propagate:
Graph neural networks meet personalized pagerank. In International Conference on Learning
Representations (ICLR), 2019.

[51] Greg Landrum et al. Rdkit: Open-source cheminformatics, 2006.

[52] Adam Lerer, Ledell Wu, Jiajun Shen, Timothee Lacroix, Luca Wehrstedt, Abhijit Bose, and
Alex Peysakhovich. Pytorch-biggraph: A large-scale graph embedding system. arXiv preprint
arXiv:1903.12287, 2019.

[53] Jure Leskovec and Rok Sosi€. Snap: A general-purpose network analysis and graph-mining
library. ACM Transactions on Intelligent Systems and Technology (TIST), 8(1):1-20, 2016.

[54] Guohao Li, Matthias Muller, Ali Thabet, and Bernard Ghanem. Deepgcns: Can gcns go as
deep as cnns? In IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 9267-9276, 2019.

[55] Junying Li, Deng Cai, and Xiaofei He. Learning graph-level representation for drug discovery.
arXiv preprint arXiv:1709.03741, 2017.

[56] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. Gated graph sequence
neural networks. In International Conference on Learning Representations (ICLR), 2016.

[57] David Liben-Nowell and Jon M. Kleinberg. The link-prediction problem for social networks.
Journal of the Association for Information Science and Technology, 58(7):1019-1031, 2007.

[58] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan,
Piotr Dollar, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In eccv,
pages 740-755. Springer, 2014.

[59] Sharon L Lohr. Sampling: design and analysis. Nelson Education, 2009.

[60] Ricardo Macarron, Martyn N Banks, Dejan Bojanic, David J Burns, Dragan A Cirovic, Tina
Garyantes, Darren VS Green, Robert P Hertzberg, William P Janzen, Jeff W Paslay, er al.
Impact of high-throughput screening in biomedical research. Nature Reviews Drug discovery,
10(3):188-195, 2011.

[61] Noél Malod-Dognin, Kristina Ban, and Natasa Przulj. Unified alignment of protein-protein
interaction networks. Scientific Reports, 7(1):1-11, 2017.

[62] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed
representations of words and phrases and their compositionality. In Advances in Neural
Information Processing Systems (NeurIPS), pages 3111-3119, 2013.

[63] Maximilian Nickel, Kevin Murphy, Volker Tresp, and Evgeniy Gabrilovich. A review of
relational machine learning for knowledge graphs. Proceedings of the IEEE, 104(1):11-33,
2015.

[64] Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev Khudanpur. Librispeech: an
asr corpus based on public domain audio books. In 2015 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages 5206-5210. IEEE, 2015.

[65] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, ef al. PyTorch: An imperative
style, high-performance deep learning library. In Advances in Neural Information Processing
Systems (NeurIPS), pages 8024-8035, 2019.

[66] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social
representations. In ACM SIGKDD Conference on Knowledge Discovery and Data Mining
(KDD), pages 701-710. ACM, 2014.

13

[67]

[68]

[69]

[70]

[71]

[72]

(73]

[74]

[75]

[76]

[77]

(78]

[79]

(80]

[81]

[82]

[83]

[84]

Janet Pifiero, Juan Manuel Ramirez-Anguita, Josep Saiich-Pitarch, Francesco Ronzano, Emilio
Centeno, Ferran Sanz, and Laura I Furlong. The DisGeNET knowledge platform for disease
genomics: 2019 update. Nucleic Acids Research, 48(D1):D845-D855, 2020.

Jiezhong Qiu, Yuxiao Dong, Hao Ma, Jian Li, Chi Wang, Kuansan Wang, and Jie Tang.
Netsmf: Large-scale network embedding as sparse matrix factorization. In Proceedings of the
International World Wide Web Conference (WWW), pages 1509-1520, 2019.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+
questions for machine comprehension of text. arXiv preprint arXiv:1606.05250, 2016.

Yu Rong, Yatao Bian, Tingyang Xu, Weiyang Xie, Ying Wei, Wenbing Huang, and Junzhou
Huang. Grover: Self-supervised message passing transformer on large-scale molecular data.
arXiv preprint arXiv:2007.02835, 2020.

Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. Dropedge: Towards deep
graph convolutional networks on node classification. In International Conference on Learning
Representations (ICLR), 2020.

Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan Titov, and
Max Welling. Modeling relational data with graph convolutional networks. In European
Semantic Web Conference, pages 593—607. Springer, 2018.

Roded Sharan, Silpa Suthram, Ryan M Kelley, Tanja Kuhn, Scott McCuine, Peter Uetz, Taylor
Sittler, Richard M Karp, and Trey Ideker. Conserved patterns of protein interaction in multiple
species. Proceedings of the National Academy of Sciences, 102(6):1974-1979, 2005.

Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Giinnemann.
Pitfalls of graph neural network evaluation. arXiv preprint arXiv:1811.05868, 2018.

Martin Simonovsky and Nikos Komodakis. Dynamic edge-conditioned filters in convolutional
neural networks on graphs. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 3693-3702, 2017.

Koustuv Sinha, Shagun Sodhani, Joelle Pineau, and William L Hamilton. Evaluating logical
generalization in graph neural networks. arXiv preprint arXiv:2003.06560, 2020.

Jonathan M Stokes, Kevin Yang, Kyle Swanson, Wengong Jin, Andres Cubillos-Ruiz, Nina M
Donghia, Craig R MacNair, Shawn French, Lindsey A Carfrae, Zohar Bloom-Ackerman, ef al.
A deep learning approach to antibiotic discovery. Cell, 180(4):688-702, 2020.

Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian Tang. Rotate: Knowledge graph
embedding by relational rotation in complex space. In International Conference on Learning
Representations (ICLR), 2019.

Damian Szklarczyk, Alberto Santos, Christian von Mering, Lars Juhl Jensen, Peer Bork, and
Michael Kuhn. STITCH 5: augmenting protein—chemical interaction networks with tissue and
affinity data. Nucleic Acids Research, 44(D1):D380-D384, 2016.

Damian Szklarczyk, Annika L. Gable, David Lyon, Alexander Junge, Stefan Wyder, Jaime
Huerta-Cepas, Milan Simonovic, Nadezhda T Doncheva, John H Morris, Peer Bork, ef al.
STRING vl11: protein—protein association networks with increased coverage, supporting
functional discovery in genome-wide experimental datasets. Nucleic Acids Research, 47(D1):
D607-D613, 2019.

Théo Trouillon, Johannes Welbl, Sebastian Riedel, Eric Gaussier, and Guillaume Bouchard.
Complex embeddings for simple link prediction. In International Conference on Machine
Learning (ICML), pages 2071-2080, 2016.

Joaquin Vanschoren, Jan N. van Rijn, Bernd Bischl, and Luis Torgo. Openml: Networked
science in machine learning. SIGKDD Explorations, 15(2):49-60, 2013. doi: 10.1145/
2641190.2641198. URL http://doi.acm.org/10.1145/2641190.2641198.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and
Yoshua Bengio. Graph attention networks. In Infernational Conference on Learning Represen-
tations (ICLR), 2018.

Petar Velickovi¢, William Fedus, William L Hamilton, Pietro Lio, Yoshua Bengio, and R Devon
Hjelm. Deep graph infomax. In International Conference on Learning Representations (ICLR),
2019.

14

[85] Denny Vrandeci¢ and Markus Krotzsch. Wikidata: a free collaborative knowledgebase.
Communications of the ACM, 57(10):78-85, 2014.

[86] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman.
Glue: A multi-task benchmark and analysis platform for natural language understanding. arXiv
preprint arXiv:1804.07461, 2018.

[87] Kuansan Wang, Zhihong Shen, Chiyuan Huang, Chieh-Han Wu, Yuxiao Dong, and Anshul
Kanakia. Microsoft academic graph: When experts are not enough. Quantitative Science
Studies, 1(1):396-413, 2020.

[88] Minjie Wang, Lingfan Yu, Da Zheng, Quan Gan, Yu Gai, Zihao Ye, Mufei Li, Jinjing Zhou,
Qi Huang, Chao Ma, Ziyue Huang, Qipeng Guo, Hao Zhang, Haibin Lin, Junbo Zhao,
Jinyang Li, Alexander J Smola, and Zheng Zhang. Deep graph library: Towards efficient and
scalable deep learning on graphs. ICLR Workshop on Representation Learning on Graphs and
Manifolds, 2019. URL https://arxiv.org/abs/1909.01315.

[89] Xiaozhi Wang, Tianyu Gao, Zhaocheng Zhu, Zhiyuan Liu, Juanzi Li, and Jian Tang. Kepler:
A unified model for knowledge embedding and pre-trained language representation. arXiv
preprint arXiv:1911.06136, 2019.

[90] David S Wishart, Yannick D Feunang, An C Guo, Elvis J Lo, Ana Marcu, Jason R Grant,
Tanvir Sajed, Daniel Johnson, Carin Li, Zinat Sayeeda, et al. DrugBank 5.0: a major update to
the DrugBank database for 2018. Nucleic Acids Research, 46(D1):D1074-D1082, 2018.

[91] Felix Wu, Tianyi Zhang, Amauri Holanda de Souza Jr, Christopher Fifty, Tao Yu, and Kilian Q
Weinberger. Simplifying graph convolutional networks. In International Conference on
Machine Learning (ICML), 2019.

[92] Zhengin Wu, Bharath Ramsundar, Evan N Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S
Pappu, Karl Leswing, and Vijay Pande. Moleculenet: a benchmark for molecular machine
learning. Chemical science, 9(2):513-530, 2018.

[93] Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and
Stefanie Jegelka. Representation learning on graphs with jumping knowledge networks. In
International Conference on Machine Learning (ICML), pages 5453-5462, 2018.

[94] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations (ICLR), 2019.

[95] Pinar Yanardag and SVN Vishwanathan. Deep graph kernels. In ACM SIGKDD Conference
on Knowledge Discovery and Data Mining (KDD), pages 1365-1374. ACM, 2015.

[96] Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. Embedding entities
and relations for learning and inference in knowledge bases. In International Conference on
Learning Representations (ICLR), 2015.

[97] Kevin Yang, Kyle Swanson, Wengong Jin, Connor Coley, Philipp Eiden, Hua Gao, Angel
Guzman-Perez, Timothy Hopper, Brian Kelley, Miriam Mathea, et al. Analyzing learned
molecular representations for property prediction. Journal of chemical information and
modeling, 59(8):3370-3388, 2019.

[98] Zhilin Yang, William W Cohen, and Ruslan Salakhutdinov. Revisiting semi-supervised
learning with graph embeddings. In International Conference on Machine Learning (ICML),
pages 4048, 2016.

[99] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton, and Jure
Leskovec. Graph convolutional neural networks for web-scale recommender systems. In
ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD), pages 974-983,
2018.

[100] Rex Ying, Jiaxuan You, Christopher Morris, Xiang Ren, William L Hamilton, and Jure
Leskovec. Hierarchical graph representation learning with differentiable pooling. In Advances
in Neural Information Processing Systems (NeurIPS), 2018.

[101] Jiaxuan You, Rex Ying, and Jure Leskovec. Position-aware graph neural networks. In
International Conference on Machine Learning (ICML), 2019.

[102] David Younger, Stephanie Berger, David Baker, and Eric Klavins. High-throughput character-
ization of protein—protein interactions by reprogramming yeast mating. Proceedings of the
National Academy of Sciences, 114(46):12166-12171, 2017.

15

[103] Hanqging Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor Prasanna.
GraphSaint: Graph sampling based inductive learning method. In International Conference on
Learning Representations (ICLR), 2020.

[104] Muhan Zhang and Yixin Chen. Link prediction based on graph neural networks. In Advances
in Neural Information Processing Systems (NeurIPS), pages 5165-5175, 2018.

[105] Da Zheng, Xiang Song, Chao Ma, Zeyuan Tan, Zihao Ye, Jin Dong, Hao Xiong, Zheng Zhang,
and George Karypis. Dgl-ke: Training knowledge graph embeddings at scale. arXiv preprint
arXiv:2004.08532, 2020.

[106] Zhaocheng Zhu, Shizhen Xu, Jian Tang, and Meng Qu. Graphvite: A high-performance
cpu-gpu hybrid system for node embedding. In Proceedings of the International World Wide
Web Conference (WWW), pages 2494-2504, 2019.

[107] Marinka Zitnik, Monica Agrawal, and Jure Leskovec. Modeling polypharmacy side effects
with graph convolutional networks. Bioinformatics, 34(13):457-466, 2018.

[108] Marinka Zitnik, Marcus W Feldman, Jure Leskovec, et al. Evolution of resilience in protein
interactomes across the tree of life. Proceedings of the National Academy of Sciences, 116
(10):4426-4433, 2019.

[109] Xu Zou, Qiuye Jia, Jianwei Zhang, Chang Zhou, Zijun Yao, Hongxia Yang, and Jie Tang.
Dimensional reweighting graph convolution networks, 2020. URL https://openreview.
net/forum?id=SJeLO34KwS.

16

Appendices

A Shortcomings of Current Benchmarks 1
B Comprehensive Descriptions of OGB Node Property Prediction 3
B.1 ogbn-products: Amazon Products Co-purchasing Network 3
B.2 ogbn-proteins: Protein-Protein Association Network 5
B.3 ogbn-arxiv: Paper Citation Network 5
B.4 ogbn-papersl00M: Paper Citation Network 6
B.5 ogbn-mag: Heterogeneous Microsoft Academic Graph (MAG) 7
C Comprehensive Descriptions of OGB Link Property Prediction 8
C.1 ogbl-ppa: Protein-Protein Association Network 10
C.2 ogbl-collab: Author Collaboration Network 10
C.3 ogbl-ddi: Drug-Drug Interaction Network 11
C4 ogbl-citation: Paper Citation Network 12
C.5 ogbl-wikikg: Wikidata Knowledge Graph 13
C.6 ogbl-biokg: Biomedical Knowledge Graph 14
D Comprehensive Descriptions of OGB Graph Property Prediction 15
D.1 ogbg-molx: Molecular Graphs 16
D.2 ogbg-ppa: Protein-Protein Association Network 17
D.3 ogbg-code: Abstract Syntax Tree of SourceCode 18
E OGB Package 20
E.1 OGBDataLoaders i 20
E2 OGBEvaluators e 20
F More Benchmark Results on ogbg—-mol Datasets 21

A Shortcomings of Current Benchmarks

We first review commonly-used graph benchmarks and discuss the current state of the field. We
organize the discussion around three categories of graph ML tasks: predictions at the level of nodes,
links, and graphs.

Node property prediction. Currently, the three graphs (CORA, CITESEER and PUBMED) proposed
in Yang et al. [98] have been widely used as semi-supervised node classification datasets, particularly
for evaluating GNNSs. The sizes of these graphs are rather small, ranging from 2,700 to 20,000 nodes.
Recent studies suggest that datasets at this small scale can be solved quite well with simple GNN
architectures [74, 91], and the performance of different GNNs on these datasets is nearly statistically
identical [29, 40]. Furthermore, there is no consensus on the splitting procedures for these datasets,
which makes it hard to fairly compare different model designs [74]. Finally, a recent study [109]
shows that these datasets have some fundamental data quality issues. For example, in CORA, 42% of
the nodes leak information between their features and labels, and 1% of the nodes are duplicated.
The situation for CITESEER is even worse, with leakage rates of 62% and duplication rates of 5%.

Some recent works in graph ML have proposed relatively large datasets, such as PPI (56,944 nodes),
REDDIT (334,863 nodes) [38] and AMAZON2M (2,449,029 nodes) [17]. However, there exist some
inherent issues with the proposed data splits. Specifically, 83%, 65% and 90% of the nodes are
used for training in the PPI, REDDIT and AMAZON2M datasets, respectively, which results in an
artificially small distribution shift across the training/validation/test sets. Consequently, as may be
expected, the performance improvements on these benchmarks have quickly saturated. For example,
recent GNN models [17, 103] can already yield F1 scores of 99.5 for PPI and 97.0 for REDDIT, and
90.4% accuracy for AMAZON2M, with extremely small generalization gaps between training and
test accuracy. Finally, it is also practically required for graph ML models to handle web-scale graphs
(beyond 100 million nodes and 1 billion edges) in industrial applications [99]. However, to date,
there have been no publicly available graph datasets of such scale with label information.

In summary, several factors (e.g., size, leakage, splits, etc.) associated with the current use of existing
datasets make them unsuitable as benchmark datasets for graph ML.

Link property prediction. Broadly, there are two lines of efforts for the link-level task: link
prediction in homogeneous networks [57, 104] and relation completion in (heterogeneous) knowledge
graphs [14, 41, 63]. There are several problems with the current benchmark datasets in these areas.

First, representative datasets are either extremely small or do not come with input node features. For
link prediction, while the well-known recommender system datasets used in Berg et al. [11] include
node features, their sizes are very small, with the largest having only 6,000 nodes. On the other
hand, although the Open Academic Graph (OAG) used in Qiu et al. [68] comprises tens of millions
of nodes, there are no associated node features. Regarding the knowledge graph completion, the
widely-used dataset, FB 15K, is very small, containing only 14,951 entities, which is a tiny subset of
the original Freebase knowledge graph with more than 50 million entities [13].

Second, similar to the node-level task, random splits are predominantly used in link-level predic-
tion [14, 35]. The random splits are not realistic in many practical applications such as friend
recommendation in social networks, in which test edges (friend relations after a certain times-
tamp) naturally follow a different distribution from training edges (friend relations before a certain
timestamp).

Finally, the existing datasets are mostly oriented to applications in recommender systems, social
media and knowledge graphs, in which the graphs are typically very sparse. This may result in
techniques specialised for sparse link inference that are not generalizable to domains with dense
graphs, such as the protein-protein association graphs and drug-drug interaction networks typically
found in biology and medicine [20, 67, 79, 80, 90]. Very recently, Sinha et al. [76] proposed a
synthetic link prediction benchmark to diagnose model’s logical generalization capability. Their
focus is on synthetic tasks, which is complementary to OGB that focuses on realistic tasks.

Graph property prediction. Graph-level prediction tasks are found in important applications in
natural sciences, such as predicting molecular properties in chemistry [28, 34, 40], where molecules
are naturally represented as molecular graphs.

In graph classification, the most widely-used graph-level datasets from the TU collection [47] are
known to have many issues, such as small sizes (i.e., most of the datasets only contain less than 1,000
graphs),7 unrealistic settings (e.g., no bond features for molecules), random data splits, inconsistent
evaluation protocols, and isomorphism bias [45]. A very recent attempt [29] to address these issues
mainly focuses on benchmarking ML models, specifically the building blocks of GNNss, rather than
developing application-oriented realistic datasets. In fact, five out of the six proposed datasets are
synthetic.

Recent work in graph ML [40, 44] has started to adopt MOLECULENET [92] which contains a set of
realistic and large-scale molecular property prediction datasets. However, there is limited consensus
in the dataset splitting and molecular graph features, making it hard to compare different models in a
fair manner. OGB adopts the MOLECULENET datasets, while providing unified dataset splits as well
as the molecular graph features that are found to provide favorable performance over naive features.

"Recently, some progress has been made to increase the dataset sizes: http://graphlearning.io.
Nevertheless, most of them are still small compared to the OGB datasets, and evaluation protocols are not
standardized.

Beyond molecular graphs, OGB also provides graphs from other domains, such as biological networks
and Abstract Syntax Tree (AST) representations of source code. These types of graphs exhibit distinct
characteristics from molecular graphs, enabling the evaluation of the versatility of graph ML models.

B Comprehensive Descriptions of OGB Node Property Prediction

We currently provide 5 datasets, adopted from 3 different application domains, for predicting
the properties of individual nodes. Specifically, ogbn-products is an Amazon products co-
purchasing network [12] originally developed by Chiang et al. [17] (¢f. Appendix B.1). The
ogbn-arxiv, ogbn-mag, and ogbn-papers100M datasets are extracted from the Microsoft
Academic Graph (MAG) [87], with different scales, tasks, and include both homogeneous and het-
erogeneous graphs. Specifically, ogbn—-arxiv is a paper citation network of arXiv papers (cf. Ap-
pendix B.3), ogbn-mag is a heterogeneous academic graph containing different node types (papers,
authors, institutions, and topics) and their relations (c¢f. Appendix B.5), and ogbn-papersl100Mis
an extremely large paper citation network from the entire MAG with more than 100 million nodes and
1 billion edges (cf. Appendix B.4). The ogbn-proteins dataset is a protein-protein association
network [80] (¢f. Appendix B.2).

The 5 datasets exhibit highly diverse graph statistics, as shown in Table 2. Notably, the biological
network, ogbn—proteins, is much denser than the social/information networks as can be observed
from its large average node degree and small graph diameter. On the other hand, the co-purchasing
network, ogbn-products, has more clustered graph structure than the other datasets, as can
be seen from its large average clustering coefficient. Finally, the heterogeneous academic graph,
ogbn-mag, exhibits rather interesting graph characteristics, simultaneously having small average
node degree, clustering coefficient, and graph diameter.

Baselines. We consider the following representative models as our baselines unless otherwise
specified.

e MLP: A multilayer perceptron (MLP) predictor that uses the given raw node features directly as
input. Graph structure information is not utilized.

e NODE2VEC: An MLP predictor that uses as input the concatenation of the raw node features
and NODE2VEC embeddings [35, 66].

e GCN: Full-batch Graph Convolutional Network [49].

e GRAPHSAGE: Full-batch GraphSAGE [37], where we adopt the mean pooling variant and a
simple skip connection to preserve central node features.

e NEIGHBORSAMPLING (optional): A mini-batch training technique of GNNs [37] that samples
neighborhood nodes when performing aggregation.

e CLUSTERGCN (optional): A mini-batch training technique of GNNs [17] that partitions the
graphs into a fixed number of subgraphs and draws mini-batches from them.

e GRAPHSAINT (optional): A mini-batch training technique of GNNs [103] that samples sub-
graphs via a random walk sampler.

The three mini-batch GNN training, NEIGHBORSAMPLING, CLUSTERGCN, and GRAPHSAINT,
are explored only for graph datasets where full-batch GCN/GRAPHS AGE did not fit into the common
GPU memory size of 11GB. The mini-batch GNNs are more GPU memory-efficient than the full-
batch GNNs because they first partition and sample the graph into subgraphs. Hence, in order to
train the network, they require only a small amount of nodes to be loaded into the GPU memory at
each mini-batch. Inference is then performed on the whole graph without GPU usage. To choose
the architecture for the mini-batch GNNs, we first run full-batch GCN and GRAPHSAGE on an
NVIDIA Quadro RTX 8000 with 48GB of memory, and then adopt the best performing full-batch
GNN architecture for the mini-batch GNNs. All models are trained with a fixed hidden dimensionality
of 256, a fixed number of two or three layers, and a tuned dropout ratio € {0.0,0.5}.

B.1 ogbn-products: Amazon Products Co-purchasing Network

The ogbn-products dataset is an undirected and unweighted graph, representing an Amazon
product co-purchasing network [12]. Nodes represent products sold in Amazon, and edges between
two products indicate that the products are purchased together. The graphs, target labels, and node
features are generated following Chiang et al. [17], where node features are dimensionality-reduced

Table 7: Results for ogbn-products.
fRequires a GPU with 33GB of memory.

Accuracy (%)
Training Validation Test

MLP 84.03+093 75.54+0.14 61.06+0.08
NODE2VEC 93.39+0.10 90.32+006 72.49+0.10
GCNf 93.56+0.09 92.00+003 75.64+021
GRAPHSAGE' 94.09+0.05 92.24+007 78.50+0.14

NEIGHBORSAMPLING 92.96+007 91.70+0.09 78.70+036
CLUSTERGCN 93.75+0.13 92.12+009 78.97+0.33
GRAPHSAINT 92.71+0.14 91.62+008 79.08+0.24

Method

@® Train @ Validation Test

Figure 4: T-SNE visualization of training/validation/test nodes in ogbn—-products.

bag-of-words of the product descriptions. Our contribution, when adopting the dataset in OGB, is to
resolve its critical data split issue by presenting a more realistic and challenging split (see below).

Prediction task. The task is to predict the category of a product in a multi-class classification setup,
where the 47 top-level categories are used for target labels.

Dataset splitting. We consider a more challenging and realistic dataset splitting that differs from
the one used in Chiang et al. [17]. Instead of randomly assigning 90% of the nodes for training and
10% of the nodes for testing (without a validation set), we use the sales ranking (popularity) to split
nodes into training/validation/test sets. Specifically, we sort the products according to their sales
ranking and use the top 8% for training, next top 2% for validation, and the rest for testing. This is a
more challenging splitting procedure that closely matches the real-world application where manual
labeling is prioritized to important nodes in the network and ML models are subsequently used to
make predictions on less important ones.

Discussion. Our benchmarking results in Table 7 show that the highest test performances are
attained by GNNs, while the MLP baseline that solely relies on a product’s description is not
sufficient for accurately predicting the category of a product. Even with the GNNs, we observe
the huge generalization gap®, which can be explained by differing node distributions across the
splits, as visualized in Figure 4. This is in stark contrast with the conventional random split used by
Chiang et al. [17]. Even with the same split ratio (8/2/90), we find GRAPHS AGE already achieves
88.2040.08% test accuracy with only ~ 1 percentage points of generalization gap. These results
indicate that the realistic split is much more challenging than the random split and offer an important
opportunity to improve out-of-distribution generalization.

Table 7 also shows that the recent mini-batch-based GNNs® give promising results, even slightly
outperforming the full-batch version of GRAPHSAGE that does not fit into ordinary GPU memory.
The improved performance can be attributed to the regularization effects of mini-batch noise and
edge dropout [71]. Nevertheless, the mini-batch GNNs have been much less explored compared to

8Defined by the difference between training and test accuracy.
°The GRAPHS AGE architecture is used for neighbor aggregation.

the full-batch GNNs due to the prevalent use of the extremely small benchmark datasets such as
CORA and CITESEER. As a result, many important questions remain open, e.g., what mini-batch
training methods can induce the best regularization effect, and how to allow mini-batch training for
advanced GNNss that rely on large receptive-field sizes [50, 54, 93], since the current mini-batch
methods are rather limited by the number of nodes from which they aggregate information. Overall,
ogbn-products is an ideal benchmark dataset for the field to move beyond the extremely small
graph datasets and to catalyze the development of scalable mini-batch-based graph models with
improved out-of-distribution prediction accuracy.

B.2 ogbn-proteins: Protein-Protein Association Network

The ogbn—-proteins dataset is an undirected, weighted, and typed (according to species) graph.
Nodes represent proteins, and edges indicate different types of biologically meaningful associations
between proteins, e.g., physical interactions, co-expression or homology [18, 80]. All edges come
with 8-dimensional features, where each dimension represents the strength of a single association
type and takes on values between 0 and 1 (the larger the value, the stronger the association). The
proteins come from 8 species.

Prediction task. The task is to predict the presence of protein functions in a multi-label binary
classification setup, where there are 112 kinds of labels to predict in total. The performance is
measured by the average of ROC-AUC scores across the 112 tasks.

Dataset splitting. We split the protein nodes into training/validation/test sets according to the species
which the proteins come from. This enables the evaluation of the generalization performance of the
model across different species.

Discussion. The ogbn-proteins dataset does not have input node features'”, but has edge
features on more than 30 million edges. In our baseline experiments, we opt for simplicity and use
the average edge features of incoming edges as node features.

Benchmarking results are shown in Table 8. Surprisingly, simple MLPs!! perform better than more
sophisticated approaches like NODE2VEC and GCN. Only GRAPHSAGE is able to outperform the
naive MLP approach, which indicates that central node information (that is not explicitly modeled
in GCN in its message-passing) already contains a lot of crucial information for making correct
predictions.

We further evaluate the best performing GRAPHS AGE on conventional random split with the same
split ratio as the species split. On the random split, we find the generalization gap is extremely low,
with 87.83+0.03% test ROC-AUC that is only 0.27 percentage points lower than the training ROC-
AUC (88.10+0.01%). This is in contrast to 10.18 percentage points of generalization gap (training
AUC minus test AUC) in the species split, as calculated from the GRAPHS AGE experiment in Table
8. The result suggests the unique challenge of across-species generalization that needs to be tackled
in future research.

Since the number of nodes in ogbn-proteins is fairly small and easily fit onto common GPUs, we
did not run the CLUSTERGCN and GRAPHSAINT experiments. Nonetheless, this dataset presents
an interesting research question of how to utilize edge features in a more sophisticated way than just
naive averaging, e.g., by the usage of attention or by treating the graph as a multi-relational graph (as
there are 8 different association types between proteins). The challenge is to scalably handle the huge
number of edge features efficiently on GPU, which might require clever graph partitioning based on
the edge weights.

B.3 ogbn-arxiv: Paper Citation Network

The ogbn—arxiv dataset is a directed graph, representing the citation network between all Com-
puter Science (CS) ARXIV papers indexed by MAG [87]. Each node is an ARX1V paper and each
directed edge indicates that one paper cites another one. Each paper comes with a 128-dimensional

'%In our preliminary experiments, we used one-hot encodings of species ID as node features, but that did not
work well empirically, which can be explained by the fact that the species ID is used for dataset splitting.

"Note that the input features here are graph-aware in some sense, because they are obtained by averaging the
incoming edge features.

Table 8: Results for ogbn—-proteins.
ROC-AUC (%)

Method Training Validation Test

MLP 81.78+048 77.06+0.14 72.04+0.48
NODE2VEC 79.76+1838 70.07+053 68.81+0.65
GCN 82.77+0.16 79.21+0.18 72.51+035

GRAPHSAGE 87.86+0.13 83.34+0.13 77.68-0.20

Table 9: Results for ogbn—-arxiv.

Accuracy (%)
Method Training Validation Test
MLP 63.58+081 57.65+0.12 55.50+0.23
NODE2VEC 76.43+081 71.29+0.13 70.07+0.13
GCN 78.87+066 73.00+0.17 71.74+0.29

GRAPHSAGE 82.35+151 72.77+016 71.49+027

feature vector obtained by averaging the embeddings of words in its title and abstract. The embed-
dings of individual words are computed by running the WORD2VEC model [62] over the MAG corpus.
In addition, all papers are also associated with the year that the corresponding paper was published.

Prediction task. The task is to predict the 40 subject areas of ARXIV CS papers,'? e.g., cs.Al,
¢s.LG, and ¢s.0S, which are manually determined (i.e., labeled) by the paper’s authors and ARX1V
moderators. With the volume of scientific publications doubling every 12 years over the past
century [27], it is practically important to automatically classify each publication’s areas and topics.
Formally, the task is to predict the primary categories of the ARXIV papers, which is formulated as a
40-class classification problem.

Dataset splitting. The previously-used Cora, CiteSeer, and PubMed citation networks are split
randomly [98]. In contrast, we consider a realistic data split based on the publication dates of the
papers. The general setting is that the ML models are trained on existing papers and then used to
predict the subject areas of newly-published papers, which supports the direct application of them
into real-world scenarios, such as helping the ARXTV moderators. Specifically, we propose to train
on papers published until 2017, validate on those published in 2018, and test on those published since
2019.

Discussion. Our initial benchmarking results are shown in Table 9, where the directed graph is
converted to an undirected one for simplicity. First, we observe that the naive MLP baseline that does
not utilize any graph information is significantly outperformed by the other three models that utilize
graph information. This suggests that graph information can dramatically improve the performance
of predicting a paper’s category. Comparing models that do utilize graph information, we find GNN
models, i.e., GCN and GRAPHS AGE, slightly outperform the NODE2VEC model. We also conduct
additional experiments on conventional random split with the same split ratio. On the random split,
we find that GCN achieves 73.54+0.13% test accuracy, suggesting that the realistic time split is indeed
more challenging than the random split, providing an opportunity to improve the out-of-distribution
generalization performance. Furthermore, we think it will be fruitful to explore how the edge direction
information as well as the node temporal information (e.g., year in which papers are published) can
be taken into account to improve prediction performance.

B.4 ogbn-papersl100M: Paper Citation Network

The ogbn-papers100M dataset is a directed citation graph of 111 million papers indexed by
MAG [87]. Its graph structure and node features are constructed in the same way as ogbn-arxiv
in Appendix B.3. Among its node set, approximately 1.5 million of them are ARXIV papers, each of

Phttps://arxiv.org/corr/subjectclasses

Table 10: Results for ogbn—-papers100M.

Accuracy (%)
Training Validation Test

MLP 54.84+043 49.60+029 47.24+031
SGC 67.54+043 66.48+020 63.29-+0.19

Method

which is manually labeled with one of ARX1V’s subject areas (cf: Appendix B.3). Overall, this dataset
is orders-of-magnitude larger than any existing node classification datasets.

Prediction task. Given the full ogbn-papers100M graph, the task is to predict the subject
areas of the subset of papers that are published in ARX1V. The majority of nodes (corresponding
to non-ARXIV papers) are not associated with label information, and only their node features and
reference information are given. The task is to leverage the entire citation network to infer the labels
of the ARXIV papers.'3 In total, there are 172 ARXIV subject areas, making the prediction task a
172-class classification problem.

Dataset splitting. The splitting strategy is the same as that used in ogbn-arxiv, i.e., the time-
based split. Specifically, the training nodes (with labels) are all ARX1V papers published until 2017,
while the validation nodes are the ARXIV papers published in 2018, and the models are tested on
ARXIV papers published since 2019.

Discussion. Our initial benchmarking results are shown in Table 10, where the directed graph is
converted to an undirected one for simplicity. As most existing models have difficulty handling
such a gigantic graph, we benchmark the two simplest models,'* MLP and SGC [91], which is
a simplified variant of textscGCN [49] that essentially pre-processes node features using graph
adjacency information. We obtain SGC node embeddings on the CPU (requiring more than 100GB
of memory), after which we train the final MLP with mini-batches on an ordinary GPU.

We see from Table 10 that the graph-based model, SGC, despite its simplicity, performs much better
than the naive MLP baseline. Nevertheless, we observe severe underfitting of SGC, indicating that
using more expressive GNNSs is likely to improve both training and test accuracy. It is therefore
fruitful to explore how to scale expressive and advanced GNNs to the gigantic Web-scale graph,
going beyond the simple pre-processing of node features. Overall, ogbn-papers100M is by far
the largest benchmark dataset for node classification over a homogeneous graph, and is meant to
significantly push the scalability of graph models.

B.5 ogbn-mag: Heterogeneous Microsoft Academic Graph (MAG)

The ogbn-mag dataset is a heterogeneous network composed of a subset of the Microsoft Academic
Graph (MAG) [87]. It contains four types of entities—papers (736,389 nodes), authors (1,134,649
nodes), institutions (8,740 nodes), and fields of study (59,965 nodes)—as well as four types of
directed relations connecting two types of entities—an author “is affiliated with” an institution,'> an
author “writes” a paper, a paper “cites” a paper, and a paper “has a topic of” a field of study. Similar
to ogbn-arxiv described in Appendix B.3, each paper is associated with a 128-dimensional
WORD2VEC feature vector, and all the other types of entities are not associated with input node
features.

Prediction task. Given the heterogeneous ogbn-mag data, the task is to predict the venue (confer-
ence or journal) of each paper, given its content, references, authors, and authors’ affiliations. This is
of practical interest as some manuscripts’ venue information is unknown or missing in MAG, due to
the noisy nature of Web data. In total, there are 349 different venues in ogbn-mag, making the task
a 349-class classification problem.

Dataset splitting. We follow the same time-based strategy as ogbn-arxiv and
ogbn-papers100M to split the paper nodes in the heterogeneous graph, i.e., training models

BIn practice, the trained models can also be used to predict labels of even non-ARXIV papers.
“NODE2VEC is omitted as it is computationally costly on such a gigantic graph.
'SFor each author, we include all the institutions that the author has ever belonged to.

Table 11: Results for ogbn-mag.
fRequires a GPU with 14GB of memory.

Accuracy (%)

Method Training Validation Test

MLP 28.33+020 26.26+0.16 26.92+0.26
GCN 29.71+0.19 29.53+022 30.43+0.25
GRAPHSAGE 30.79+0.19 30.70+0.19 31.53+0.15
METAPATH2VEC 38.35+139 35.06+0.17 35.44+036
R-GCNfT 75.87+4.19 40.84+041 39.77+046
NEIGHBORSAMPLING 68.53+727 47.61+068 46.78+0.67
CLUSTERGCN 79.65+4.12 38.40+031 37.32+037
GRAPHSAINT 79.64+170 48.37+026 47.51+022

to predict venue labels of all papers published before 2018, validating and testing the models on
papers published in 2018 and since 2019, respectively.

Discussion. As ogbn-mag is a heterogeneous graph, we consider slightly different sets of GNN and
node embedding baselines. Specifically, for GCN and GRAPHSAGE, as they are originally designed
for homogeneous graphs, we apply the models over the homogeneous subgraph, retaining only paper
nodes and their citation relations. We also consider the RELATIONAL-GCN (R-GCN) [72] that is
specifically designed for heterogeneous graphs and uses specialized message passing parameters
for different edge types. Since only “paper” nodes come with node features, we use trainable
embeddings for the remaining nodes. For the node embedding model, instead of NODE2VEC, we
adopt METAPATH2 VEC [26], as it is specifically designed for heterogeneous graphs. For each relation,
e.g., an author “writes” a paper, the reverse relation, e.g., a paper “is written by’ an author, is added
to allow bidirectional message passing in GNNs.

Our benchmarking results are shown in Table 11. First, we see that MLP, GCN, and GRAPHSAGE
perform worse than the models that actually utilize heterogeneous graph information, i.e., METAP-
ATH2VEC, R-GCN, and the mini-batch GNNs.'® This highlights that exploiting the heterogeneous
nature of the graph is essential to achieving good performance on this dataset.

Second, we see that the mini-batch GNNs, especially NEIGHBORSAMPLING and GRAPHSAINT,
give surprisingly promising results, outperforming the full-batch R-GCN by a large margin. This is
likely due to the regularization effect of the noise induced by mini-batch sampling and edge dropout
[71]. In contrast, CLUSTERGCN gives worse performance than its full-batch variant, indicating that
the bias introduced by the pre-computed partitioning has a negative effect on the model’s performance
(as can be also seen by its highly overfitting training performance).

Nevertheless, heterogeneous graph models as well as their mini-batch training methods have been
much less explored compared to their homogeneous counterparts, due to the smaller number of
established benchmarks. Overall, ogbn-mag is meant to catalyze the development of scalable and
accurate heterogeneous graph models, going beyond homogeneous graphs. A fruitful research direc-
tion is to adopt advanced techniques developed for homogeneous graphs to improve the performance
on heterogeneous graphs.

C Comprehensive Descriptions of OGB Link Property Prediction

We currently provide 6 datasets, adopted from diverse application domains for predicting the prop-
erties of links (pairs of nodes). Specifically, ogbl-ppa is a protein-protein association network
[80] (cf: Appendix C.1), ogbl—-collab is an author collaboration network [87] (cf. Appendix C.2),
ogbl-ddi is a drug-drug interaction network [90] (c¢f. Appendix C.3), ogbl-citationis a
paper citation network [87] (¢f. Appendix C.4), ogbl-biokg is a heterogeneous knowledge graph

'®The R-GCN architecture is used for neighbor aggregation.

compiled from a large number of biomedical repositories (cf. Appendix C.6), and ogbl-wikikgis
a Wikidata knowledge graph [85] (¢f. Appendix C.5).

The different datasets are highly diverse in their graph structure, as shown in Table 2. For ex-
ample, the biological networks (ogbl-ppa and ogbl-ddi) are much denser than the academic
networks (ogbl-collab and ogbl-citation) and the knowledge graphs (ogbl-wikikg
and ogbl-biokg), as can be seen from the large average node degree, small number of nodes,
and the small graph diameter. On the other hand, the collaboration network, ogbl-collab, has
more clustered graph structure than the other datasets, as can be seen from its high average clustering
coefficient. Comparing the two knowledge graph datasets, ogbl-wikikg and ogbl-biokg, we
see that the former is much more sparse and less clustered than the latter.

Baselines. We implement different sets of baselines for link prediction datasets that only have a
single edge type, and KG completion datasets that have multiple edge/relation types.

Baselines for link prediction datasets. We consider the following representative models as our
baselines for the link prediction datasets unless otherwise specified. For all models, edge features
are obtained by using the Hadamard operator ® between pair-wise node embeddings, and are then
inputted to an MLP for the final prediction. During training, we randomly sample edges and use
them as negative examples. We use the same number of negative edges as there are positive edges.
Below, we describe how each model obtains node embeddings:

e MLP: Input node features are directly used as node embeddings.

e NODE2VEC: The node embeddings are obtained by concatenating input features and
NODE2VEC embeddings [35, 66].

e GCN: The node embeddings are obtained by full-batch Graph Convolutional Networks (GCN)
[49].

e GRAPHSAGE: The node embeddings are obtained by full-batch GraphSAGE [37], where we
adopt its mean pooling variant and a simple skip connection to preserve central node features.

o MATRIXFACTORIZATION: The distinct embeddings are assigned to different nodes and are
learned in an end-to-end manner together with the MLP predictor.

e NEIGHBORSAMPLING (optional): A mini-batch training technique of GNNs [37] that samples
neighborhood nodes when performing aggregation.

e CLUSTERGCN (optional): A mini-batch training technique of GNNs [17] that partitions the
graphs into a fixed number of subgraphs and draws mini-batches from them.

e GRAPHSAINT (optional): A mini-batch training technique of GNNs [103] that samples sub-
graphs via a random walk sampler.

Similar to the node property prediction baselines, the mini-batch GNN training,
NEIGHBORSAMPLING, CLUSTERGCN, and GRAPHSAINT, are experimented only for graph
datasets where full-batch GCN and GRAPHSAGE did not fit into the common GPU memory size of
11GB. To choose the GNN architecture for the mini-batch GNNs, we first run full-batch GCN and
GRAPHSAGE on a NVIDIA Quadro RTX 8000 with 48GB of memory, and then adopt the best
performing full-batch GNN architecture for the mini-batch GNNs. All models are trained with a fixed
hidden dimensionality of 256, a fixed number of three layers, and a tuned dropout ratio € {0.0,0.5}.

Baselines for KG completion datasets. We consider the following representative KG embedding
models as our baselines for the KG datasets unless otherwise specified.

TRANSE: Translation-based KG embedding model by Bordes et al. [14].

DISTMULT: Multiplication-based KG embedding model by Yang et al. [96].

CoMPLEX: Complex-valued multiplication-based KG embedding model by Trouillon ef al. [81].
ROTATE: Rotation-based KG embedding model by Sun et al. [78].

For KGs with many entities and relations, the embedding dimensionality can be limited by the
available GPU memory, as the embeddings need to be loaded into GPU all at once. We therefore
choose the dimensionality such that training can be performed on a fixed-budget of GPU memory. Our
training procedure follows Sun et al. [78], where we perform negative sampling and use margin-based
logistic loss for the loss function.

Table 12: Results for ogbl-ppa.

Hits@100 (%)
Method Training Validation Test
MLP 0.46-0.00 0.46-0.00 0.46-+0.00
NODE2VEC 24.43+092 22.53+088 22.26+0.83
GCN 19.89+151 18.45+140 18.67+1.32
GRAPHSAGE 18.53+2385 17.24+264 16.55+2.40

MATRIXFACTORIZATION 81.65+9.15 32.28+428 32.29+0.94

C.1 ogbl-ppa: Protein-Protein Association Network

The ogbl-ppa dataset is an undirected, unweighted graph. Nodes represent proteins from 58
different species, and edges indicate biologically meaningful associations between proteins, e.g.,
physical interactions, co-expression, homology or genomic neighborhood [80]. We provide a graph
object constructed from training edges (i.e., no validation and test edges are contained). Each node
contains a 58-dimensional one-hot feature vector that indicates the species that the corresponding
protein comes from.

Prediction task. The task is to predict new association edges given the training edges. The evaluation
is based on how well a model ranks positive test edges over negative test edges. Specifically, we rank
each positive edge in the validation/test set against 3,000,000 randomly-sampled negative edges, and
count the ratio of positive edges that are ranked at the K -th place or above (Hits@ K'). We found
K =100 to be a good threshold to rate a model’s performance in our initial experiments. Overall,
this metric is much more challenging than ROC-AUC because the model needs to consistently rank
the positive edges higher than nearly all the negative edges.

Dataset splitting. We provide a biological throughput split of the edges into training/validation/test
edges. Training edges are protein associations that are measured experimentally by a high-throughput
technology (e.g., cost-effective, automated experiments that make large scale repetition feasible [8,
60, 102]) or are obtained computationally (e.g., via text-mining). In contrast, validation and test
edges contain protein associations that can only be measured by low-throughput, resource-intensive
experiments performed in laboratories. In particular, the goal is to predict a particular type of protein
association, e.g., physical protein-protein interaction, from other types of protein associations (e.g.,
co-expression, homology, or genomic neighborhood) that can be more easily measured and are known
to correlate with associations that we are interested in.

Discussion. Our initial benchmarking results are shown in Table 12. First, the MLP baseline'”
performs extremely poorly, which is to be expected since the node features are not rich in this dataset.
Surprisingly, both GNN baselines (GCN, GRAPHSAGE) and NODE2VEC fail to overfit on the
training data and show similar performances across training/validation/test splits. The poor training
performance of GNNSs suggests that positional information, which cannot be captured by GNNs alone
[101], might be crucial to fit training edges and obtain meaningful node embeddings. On the other
hand, we see that MATRIXFACTORIZATION, which learns a distinct embedding for each node (thus,
it can express any positional information of nodes), is indeed able to overfit on the training data, while
also reaching better validation and test performance. However, the poor generalization performance
still encourages the development of new research ideas to close this gap, e.g., by injecting positional
information into GNNs or by developing more sophisticated negative sampling techniques.

C.2 ogbl-collab: Author Collaboration Network

The ogbl-collab datasetis an undirected graph, representing a subset of the collaboration network
between authors indexed by MAG [87]. Each node represents an author and edges indicate the
collaboration between authors. All nodes come with 128-dimensional features, obtained by averaging
the word embeddings of papers that are published by the authors. All edges are associated with two
types of meta-information: the year and the edge weight, representing the number of co-authored
papers published in that year. The graph can be viewed as a dynamic multi-graph since there can be
multiple edges between two nodes if they collaborate in more than one year.

'""Here we obtain node embeddings by applying a linear layer to the raw one-hot node features.

10

Table 13: Results for ogbl-collab.

Use most Hits@50 (%)

Method recent edges Training Validation Test

MLP X 45.70+166 24.02+145 19.27+129
NODE2VEC X 99.73+036 57.03+052 48.88+054
GCN X 84.28+1.78 52.63+1.15 44.75+1.07
GRAPHSAGE X 93.58+059 56.88+0.77 48.10+0.31
MATRIXFACTORIZATION X 100.00+0.00 48.96+029 38.86-+0.29
GCN 4 84.28+178 52.63+115 47.14+145
GRAPHSAGE 4 93.58+059 56.88+077 54.63+1.12

Prediction task. The task is to predict the author collaboration relationships in a particular year given
the past collaborations. As the task is a time-series problem, it is natural for models to incorporate
the most recent edge information to make prediction, e.g., use validation edges when predicting test
edges. The evaluation metric is similar to ogbl-ppa in Appendix C.1, where we would like the
model to rank true collaborations higher than false collaborations. Specifically, we rank each true
collaboration among a set of 100,000 randomly-sampled negative collaborations, and count the ratio
of positive edges that are ranked at K -place or above (Hits@ K'). We found K = 50 to be a good
threshold in our preliminary experiments.

Dataset splitting. We split the data according to time, in order to simulate a realistic application in
collaboration recommendation. Specifically, we use the collaborations until 2017 as training edges,
those in 2018 as validation edges, and those in 2019 as test edges.

Discussion. Our initial benchmarking results are shown in Table 13. First, we consider the con-
ventional setting where validation edges are used only for model selection. From the upper half
of Table 13, we see that NODE2VEC achieves the best results, followed by the two GNN models
and MATRIXFACTORIZATION. This can be explained by the fact that positional information, i.e.,
past collaborations, is a much more indicative feature for predicting future collaboration than solely
relying on the average paper representations of authors, i.e., the same research interest. Notably,
MATRIXFACTORIZATION achieves nearly perfect training results, but cannot transfer the good results
to the validation and test splits, even when heavy regularization is applied. Overall, it is fruitful to
explore injecting positional information into GNNSs, and develop better regularization methods. This
dataset further provides a unique research opportunity for dynamic multi-graphs. To demonstrate
the potential benefit of time-series modeling, we use the same GCN and GRAPHSAGE models as
before but at test time, we additionally incorporate the most recent edges (i.e., validation edges) as
input to the models. From the lower half of Table 13, we see that the test performances of both
GNN models increase significantly by using validation edges at the inference time. One promising
direction to further increase the performance is to treat edges at different timestamps differently, as
recent collaborations may be more indicative about the future collaborations than the past ones.

C.3 ogbl-ddi: Drug-Drug Interaction Network

The ogb1l-ddi dataset is a homogeneous, unweighted, undirected graph, representing the drug-drug
interaction network [90]. Each node represents an FDA-approved or experimental drug. Edges
represent interactions between drugs and can be interpreted as a phenomenon where the joint effect
of taking the two drugs together is considerably different from the expected effect in which drugs act
independently of each other.

Prediction task. The task is to predict drug-drug interactions given information on already known
drug-drug interactions. The evaluation metric is similar to ogb1l-collab discussed in Appendix
C.2, where we would like the model to rank true drug interactions higher than non-interacting
drug pairs. Specifically, we rank each true drug interaction among a set of approximately 100,000
randomly-sampled negative drug interactions, and count the ratio of positive edges that are ranked
at K-place or above (Hits@K). We found K = 20 to be a good threshold in our preliminary
experiments.

11

Table 14: Results for ogbl-ddi.

Hits@20 (%)
Method Training Validation Test
NODE2VEC 37.82+135 32.92+121 23.26+2.09
GCN 63.95+217 55.50+208 37.07+5.07
GRAPHSAGE 72.24+045 62.62+037 53.90-+4.74

MATRIXFACTORIZATION 56.56+1388 33.70+264 13.68+4.75

Dataset splitting. We develop a protein-target split, meaning that we split drug edges according
to what proteins those drugs target in the body. As a result, the test set consists of drugs that
predominantly bind to different proteins from drugs in the train and validation sets. This means that
drugs in the test set work differently in the body, and have a rather different biological mechanism of
action than drugs in the train and validation sets. The protein-target split thus enables us to evaluate
to what extent the models can generate practically useful predictions [36], i.e., non-trivial predictions
that are not hindered by the assumption that there exist already known and very similar medications
available for training.

Discussion. Our initial benchmarking results are shown in Table 14. Since ogbl-ddi does not
contain any node features, we omit the graph-agnostic MLP baseline for this experiment. Furthermore,
for GCN and GRAPHSAGE, node features are also represented as distinct embeddings and learned
in an end-to-end manner together with the GNN parameters.

Interestingly, both the GNN models and the MATRIXFACTORIZATION approach achieve significantly
higher training results than NODE2VEC. However, only the GNN models are able to transfer this
performance to the test set to some extent, suggesting that relational information is crucial to allow
the model to generalize to unseen interactions. Notably, most of the models show high performance
variance, which can be partly attributed to the dense nature of the graph and the challenging data
split. We further perform the conventional random split of edges, where we find GRAPHSAGE is
able to achieve 80.88+2.42% test Hits@20. This indicates that the protein-target split is indeed more
challenging than the conventional random split. Overall, ogb1-ddi presents a unique challenge of
predicting out-of-distribution links in dense graphs.

C.4 ogbl-citation: Paper Citation Network

The ogbl-citation dataset is a directed graph, representing the citation network between a
subset of papers extracted from MAG [87]. Similar to ogbn-arxiv in Appendix B.3, each node is
a paper with 128-dimensional WORD2VEC features that summarizes its title and abstract, and each
directed edge indicates that one paper cites another. All nodes also come with meta-information
indicating the year the corresponding paper was published.

Prediction task. The task is to predict missing citations given existing citations. Specifically, for
each source paper, two of its references are randomly dropped, and we would like the model to rank
the missing two references higher than 1,000 negative reference candidates. The negative references
are randomly-sampled from all the previous papers that are not referenced by the source paper. The
evaluation metric is Mean Reciprocal Rank (MRR), where the reciprocal rank of the true reference
among the negative candidates is calculated for each source paper, and then the average is taken over
all source papers.

Dataset splitting. We split the edges according to time, in order to simulate a realistic application in
citation recommendation (e.g., a user is writing a new paper and has already cited several existing
papers, but wants to be recommended additional references). To this end, we use the most recent
papers (those published in 2019) as the source papers for which we want to recommend the references.
For each source paper, we drop two papers from its references—the resulting two dropped edges
(pointing from the source paper to the dropped papers) are used respectively for validation and testing.
All the rest of the edges are used for training.

Discussion. Our initial benchmarking results are shown in Table 15, where the directed graph
is converted to an undirected one for simplicity. Here, the GNN models achieve the best results,

12

Table 15: Results for ogbl—-citation.
TRequires a GPU with 40GB of memory

MRR

Method Training Validation Test

MLP 0.2889+0.0014 0.2898+0.0014 0.2904+0.0013
NODE2VEC 0.6831+0.0011 0.5944+0.0011 0.5964+0.0011
GCNf 0.9064+0.0100 0.8449-+0.0108 0.8456-+0.0110
GRAPHSAGE' 0.8891+0.0079 0.8217+0.0086 0.8228-+0.0084
MATRIXFACTORIZATION 0.9171+00179 0.5311+0.0565 0.5316+0.0565
NEIGHBORSAMPLING 0.8621+0.0008 0.8048+0.0013 0.8048-+0.0015
CLUSTERGCN 0.8754+0.0033 0.7999+0.0027 0.8021+0.0029
GRAPHSAINT 0.8626+0.0046 0.7933+0.0046 0.7943+0.0043

followed by MATRIXFACTORIZATION and NODE2VEC. Among the GNNs, GCN performs better
than GRAPHSAGE. However, these GNNs use full-batch training; thus, they are not scalable
and require more than 40GB of GPU memory to train, which is intractable on most of the GPUs
available today. Hence, we also experiment with the scalable mini-batch training techniques of
GNNs, NEIGHBORSAMPLING, CLUSTERGCN, and GRAPHSAINT. Interestingly, we see from
Table 15 that these techniques give worse performance than their full-batch counterpart, which is
in contrast to the node classification datasets (e.g., ogbn—-products and ogbn-mag), where the
mini-batch-based models give stronger generalization performances. This limitation presents a unique
challenge for applying the mini-batch techniques to link prediction, differently from those pertaining
to node prediction. Overall, ogbl-citation provides a research opportunity to further improve
GNN models and their scalable mini-batch training techniques in the context of link prediction.

C.5 ogbl-wikikg: Wikidata Knowledge Graph

The ogbl-wikikg dataset is a Knowledge Graph (KG) extracted from the Wikidata knowledge
base [85]. It contains a set of triplet edges (head, relation, tail), capturing the different types of
relations between entities in the world, e.g., Canada CMEEN Hinton. We retrieve all the relational
statements in Wikidata and filter out rare entities. Our KG contains 2,500,604 entities and 535 relation

types.

Prediction task. The task is to predict new triplet edges given the training edges. The evaluation
metric follows the standard filtered metric widely used in KGs [14, 78, 81, 96]. Specifically, we
corrupt each test triplet edges by replacing its head or tail with randomly-sampled 1,000 negative
entities (500 for head and 500 for tail), while ensuring the resulting triplets do not appear in KG. The
goal is to rank the true head (or tail) entities higher than the negative entities, which is measured by
Mean Reciprocal Rank (MRR).

Dataset splitting. We split the triplets according to time, simulating a realistic KG completion
scenario that aims to fill in missing triplets that are not present at a certain timestamp. Specifically,
we downloaded Wikidata at three different time stamps18 (May, August, and November of 2015), and
constructed three KGs where we only retain entities and relation types that appear in the earliest May
KG. We use the triplets in the May KG for training, and use the additional triplets in the August and
November KGs for validation and test, respectively. Note that our dataset split is different from the
existing Wikidata KG dataset that adopts a conventional random split [89], which does not reflect the
practical usage.

Discussion. Our benchmark results are provided in Table 16, where the upper-half baselines are
implemented on a single commodity GPU with 11GB memory, while the bottom-half baselines are

8Available at https://archive.org/search.php?query=creator%3A%22Wikidata+
editors%22

13

Table 16: Results for ogbl-wikikg.
fRequires a GPU with 48GB of memory.

Method MRR

Training (Unfiltered) Validation (Filtered) Test (Filtered)
TRANSE 0.3326+0.0041 0.2314+0.0035 0.2535+0.0036
DISTMULT 0.4131-0.0057 0.3142-+0.0066 0.3434-+0.0079
CoMPLEX 0.4605+0.0020 0.3612-+0.0063 0.3877+0.0051
ROTATE 0.3469+0.0055 0.2366-+0.0043 0.2681+0.0047
TRANSE (6 xdim)? 0.6491+0.0022 0.4587+0.0031 0.4536-+0.0028
DISTMULT (6 xdim)? 0.4339-+0.0011 0.3403-0.0009 0.3612-+0.0030
COMPLEX (6xdim)f 0.4712-+0.0045 0.3787-+0.0036 0.4028-:0.0033
ROTATE (6 xdim)f 0.6084+0.0025 0.3613+0.0031 0.3626+0.0041

implemented on a high-end GPU with 48GB memory.' Training MRR in Table 16 is an unfiltered
metric,?” as filtering is computationally expensive for the large number of training triplets.

First, we see from the upper-half of Table 16 that when the limited embedding dimensionality is used,
CoMPLEX performs the best among the four baselines. With the increased dimensionality, all four
models are able to achieve higher MRR on training, validation and test sets, as seen from the bottom-
half of Table 16. This suggests the importance of using a sufficient large embedding dimensionality
to achieve good performance in this dataset. Interestingly, although TRANSE performs the worst
with the limited dimensionality, it obtains the best performance with the increased dimensionality.
Nevertheless, the extremely low test MRR?! suggests that our realistic KG completion dataset
is highly non-trivial. It presents a realistic generalization challenge of discovering new triplets
based on existing ones, which necessitates the development of KG models with more robust and
generalizable reasoning capability. Furthermore, this dataset presents an important challenge of
effectively scaling embedding models to large KGs—naively training KG embedding models with
reasonable dimensionality would require a high-end GPU, which is extremely costly and not scalable
to even larger KGs. A promising approach to improve scalability is to distribute training across
multiple commodity GPUs [52, 105, 106]. A different approach is to share parameters across entities
and relations, so that a smaller number of embedding parameters need to be put onto the GPU memory
at once.

C.6 ogbl-biokg: Biomedical Knowledge Graph

The ogbl-biokg dataset is a Knowledge Graph (KG), which we created using data from a large
number of biomedical data repositories. It contains 5 types of entities: diseases (10,687 nodes),
proteins (17,499), drugs (10,533 nodes), side effects (9,969 nodes), and protein functions (45,085
nodes). There are 51 types of directed relations connecting two types of entities, including 39 kinds of
drug-drug interactions, 8 kinds of protein-protein interaction, as well as drug-protein, drug-side effect,
drug-protein, function-function relations. All relations are modeled as directed edges, among which
the relations connecting the same entity types (e.g., protein-protein, drug-drug, function-function) are
always symmetric, i.e., the edges are bi-directional.

"Given a fixed 11GB GPU memory budget, we adopt 100-dimension embeddings for DISTMULT and
TRANSE. Since ROTATE and COMPLEX require the entity embeddings with the real and imaginary parts, we
train these two models with the dimensionality of 50 for each part. On the other hand, on the high-end GPU with
48GB memory, we are able to train all the models with 6 x larger embedding dimensionality.

This means that the training MRR is computed by ranking against randomly-selected negative entities
without filtering out triplets that appear in KG. The unfiltered metric has the systematic bias of being smaller
than the filtered counterpart (computed by ranking against “true” negative entities, i.e., the resulting triplets do
not appear in the KG) [14].

2INote that our test MRR on ogbl-wikikg is computed using only 500 negative entities per triplet, which
is much less than the number of negative entities used to compute MRR in the existing KG datasets, such
as FB15K and FB15K-237 (around 15,000 negative entities). Nevertheless, ROTATE gives either lower or
comparable test MRR on ogbl-wikikg compared to FB15K and FB15K-237 [78].

14

Table 17: Results for ogbl-biokg.

Method MRR

Training (Unfiltered) Validation (Filtered) Test (Filtered)
TRANSE 0.5145-+0.0005 0.7456-£0.0003 0.7452+0.0004
DisTMULT 0.5250-0.0006 0.8055-£0.0003 0.8043-£0.0003
CoMPLEX 0.5315=+0.0006 0.8105=+0.0001 0.8095-+0.0007
ROTATE 0.5363-£0.0007 0.7997+0.0002 0.7989-+0.0004

This dataset is relevant to both biomedical and fundamental ML research. On the biomedical side,
the dataset allows us to get better insights into human biology and generate predictions that can
guide downstream biomedical research. On the fundamental ML side, the dataset presents challenges
in handling a noisy, incomplete KG with possible contradictory observations. This is because the
ogbl-biokg dataset involves heterogeneous interactions that span from the molecular scale (e.g.,
protein-protein interactions within a cell) to whole populations (e.g., reports of unwanted side effects
experienced by patients in a particular country). Further, triplets in the KG come from sources with
a variety of confidence levels, including experimental readouts, human-curated annotations, and
automatically extracted metadata.

Prediction task. The task is to predict new triplets given the training triplets. The evaluation protocol
is exactly the same as ogbl-wikikg in Appendix C.5, except that here we only consider ranking
against entities of the same type. For instance, when corrupting head entities of the protein type, we
only consider negative protein entities.

Dataset splitting. For this dataset, we adopt a random split. While splitting the triplets according to
time is an attractive alternative, we note that it is incredibly challenging to obtain accurate information
as to when individual experiments and observations underlying the triplets were made. We strive to
provide additional dataset splits in future versions of the OGB.

Discussion. Our benchmark results are provided in Table 17, where we adopt 2000-dimensional
embeddings for DISTMULT and TRANSE, and 1000-dimensional embeddings for the real and
imaginary parts of ROTATE and COMPLEX. Negative sampling is performed only over entities of the
same types. Similar to Table 16 in Appendix C.5, training MRR in Table 17 is an unfiltered metric.??

Among the four models, COMPLEX achieves the best test MRR, while TRANSE gives significantly
worse performance compared to the other models. The worse performance of TRANSE can be
explained by the fact that TRANSE cannot model symmetric relations [81] that are prevalent in this
dataset, e.g., protein-protein and drug-drug relations are all symmetric. Overall, it is of great practical
interest to further improve the model performance. A promising direction is to develop a more
specialized method for the heterogeneous knowledge graph, where multiple node types exist and the
entire graph follows the pre-defined schema.

D Comprehensive Descriptions of OGB Graph Property Prediction

We currently provide 4 datasets, adopted from 3 distinct application domains, for predicting the
properties of entire graphs or subgraphs. Specifically, ogbg-molhiv and ogbg-molpcba are
molecular graphs originally curated by Wu et al. [92] (cf. Appendix D.1), ogbg-ppa is a set of
protein-protein association subgraphs [108] (¢f. Appendix D.2), and ogbg-code is a collection of
ASTs of source code [43] (¢f. Appendix D.3).

The different datasets are highly diverse in their graph structure, as shown in Table 2. For example,
compared with the other graph datasets, the biological subgraphs, ogbg—ppa, have much larger
number of nodes per graph, as well as much denser and clustered graph structure, as seen by the large
average node degree, large average clustering coefficient, and large graph diameter.

21n Table 17, training MRR is lower than validation and test MRR because it is an unfiltered metric (computed
by ranking against randomly-selected negative entities), and is expected to give systematically lower MRR than
the filtered metric (computed by ranking against “true” negative entities, i.e., the resulting triplets do not appear
in the KG).

15

This is contrast to the molecular graphs, ogbg-molhiv and ogbg-molpcba, as well as the
ASTs, ogbg-code, both of which are tree-like graphs—in fact, ASTs are exactly trees—with small
average node degrees, small average clustering coefficient, and large average graph diameter. Despite
the similarity, the molecular graphs and the ASTs are distinct in that the ASTs have much larger
number of nodes with well-defined root nodes.

Baselines. We consider the following representative GNNs as our baselines unless otherwise specified.
GNNss are used to obtain node embeddings, which are then pooled to give the embedding of the entire
graph. Finally, a linear model is applied to the graph embedding to make predictions.

e GCN: Graph Convolutioanl Networks [48].

e GCN+VIRTUAL NODE: GCN that performs message passing over augmented graphs with
virtual nodes, i.e., additional nodes that are connected to all nodes in the original graphs [34, 44,
55].

e GIN: Graph Isomorphism Network [94].

e GIN+VIRTUAL NODE: GIN that performs message passing over augmented graphs with virtual
nodes.

To include edge features, we follow Hu et al. [40] and add transformed edge features into the
incoming node features. For all the experiments, we use 5-layer GNNs, average graph pooling, a
hidden dimensionality of 300, and a tuned dropout ratio € {0.0,0.5}.

D.1 ogbg-molx*: Molecular Graphs

The ogbg-molhiv and ogbg-molpcba datasets are two molecular property prediction datasets
of different sizes: ogbg-molhiv (small) and ogbg-molpcba (medium). They are adopted from
the MOLECULENET [92], and are among the largest of the MOLECULENET datasets. Besides the
two main molecule datasets, we also provide the 10 other MOLECULENET datasets, which are
summarized and benchmarked in Appendix F. These datasets can be used to stress-test molecule-
specific methods [46, 97] and transfer learning [40]. All the molecules are pre-processed using
RDKIT [51]. Each graph represents a molecule, where nodes are atoms, and edges are chemical
bonds. Input node features are 9-dimensional, containing atomic number and chirality, as well as
other additional atom features such as formal charge and whether the atom is in the ring. Input edge
features are 3-dimensional, containing bond type, bond stereochemistry as well as an additional
bond feature indicating whether the bond is conjugated. Note that the above additional features are
not needed to uniquely identify molecules, and are not adopted in the previous work [40, 44]. In
the experiments, we perform an ablation study on the molecule features and find that including the
additional features improves generalization performance.

Prediction task. The task is to predict the target molecular properties as accurately as possible,
where the molecular properties are cast as binary labels, e.g., whether a molecule inhibits HIV
virus replication or not. For evaluation metric, we closely follow Wu et al. [92]. Specifically, for
ogbg-molhiv, we use ROC-AUC for evaluation. For ogbg—-molpcba, as the class balance is
extremely skewed (only 1.4% of data is positive) and the dataset contains multiple classification tasks,
we use the Average Precision (AP) averaged over the tasks as the evaluation metric.?

Dataset splitting. We adopt the scaffold splitting procedure that splits the molecules based on their
two-dimensional structural frameworks. The scaffold splitting attempts to separate structurally differ-
ent molecules into different subsets, which provides a more realistic estimate of model performance
in prospective experimental settings. The scaffold splitting was originally proposed by Wu et al. [92]
and has been adopted by the follow-up works [40, 44, 70, 97]; however, the precise implementation
differs significantly across works, making their results not directly comparable to each other. In OGB,
we aim to standardize the scaffold split by adopting its most challenging version where test molecules
are maximally diverse.

Discussion. Benchmarking results are given in Tables 18 and 19. We see that GIN with the additional
features and VIRTUAL NODES provides the best performance in the two datasets. In Appendix F, we
show that even for the other MOLECULENET datasets, the additional features consistently improve

BWu et al. [92] originally used a closely-related metric, PRC (Precision Recall Curve)-AUC, but Davis and
Goadrich [21] showed that AP is more appropriate to summarize the non-convex nature of PRC.

16

Table 18: Results for ogbg-molhiv.

Method Additional Virtual ROC-AUC (%)
Features Node Training Validation Test
X 4 88.65+101 83.73+078 7418412
GCN 4 X 88.65:219 82.04+141 76.06+097
4 v/ 90.07+4¢0 83.84+001 75.99+1.19
X v 93.89+296 84.1+1.05 75.2+1.30
GIN 4 X 88.64-254 82.32+090 75.58=1.40
4 4 92.73+380 84.79+068 77.07+1.49
Table 19: Results for ogbg-molpcba.
Additional Virtual AP (%)
Method Features Node Training Validation Test
X v 36.25+071 23.88+022 22.91+037
GCN v X 28041058 20.59+033 20.20+024
4 4 38.25+050 24.95+042 24.24+034
X v 45.70+061 27.54+025 26.61+0.17
GIN v X 37.05+031 23.05+027 22.66+0.28
4 V' 46961057 27.98:1025 27.03:023

generalization performance. In OGB, we therefore include the additional node/edge features in our
molecular graphs.

We further report the performance on the random splitting, keeping the split ratio the same as the
scaffold splitting. We find the random split to be much easier than scaffold split. On random splits
of ogbg-molhiv and ogbg-molpcba, the best GIN achieves the ROC-AUC of 82.73+2.02%
(5.66 percentage points higher than scaffold) and AP of 34.40+0.90% (7.37 percentage points higher
than scaffold), respectively. The same trend holds true for the other MOLECULENET datasets, e.g.,
the best GIN performance on the random split of ogbg-moltox21 is 86.03+1.37%, which is 8.46
percentage points higher than that of the best GIN for the scaffold split (77.57+0.62% ROC-AUC).
These results highlight the challenges of the scaffold split compared to the random split, and opens up
a fruitful research opportunity to increase the out-of-distribution generalization capability of GNNss.

D.2 ogbg-ppa: Protein-Protein Association Network

The ogbg-ppa dataset is a set of undirected protein association neighborhoods extracted from the
protein-protein association networks of 1,581 different species [80] that cover 37 broad taxonomic
groups (e.g., mammals, bacterial families, archaeans) and span the tree of life [42]. To construct the
neighborhoods, we randomly selected 100 proteins from each species and constructed 2-hop protein
association neighborhoods centered on each of the selected proteins [108]. We then removed the
center node from each neighborhood and subsampled the neighborhood to ensure the final protein
association graph is small enough (less than 300 nodes). Nodes in each protein association graph
represent proteins, and edges indicate biologically meaningful associations between proteins. The
edges are associated with 7-dimensional features, where each element takes a value between 0
and 1 and represents the strength of a particular type of protein protein association such as gene
co-occurrence, gene fusion events, and co-expression.

Prediction task. Given a protein association neighborhood graph, the task is a 37-way multi-class
classification to predict what taxonomic group the graph originates from. The ability to successfully
tackle this problem has implications for understanding the evolution of protein complexes across
species [22], the rewiring of protein interactions over time [73, 108], the discovery of functional

17

Table 20: Results for ogbg-ppa.

Virtual Accuracy (%)

Method Node Training Validation Test

X 97.68+022 64.97+034 68.39+0.384
GCN

v 97.00+t1.00 65.11+048 68.57+0.561

X 97.55+052 65.62+107 68.92+1.00
GIN

v 98.28+046 66.78+1.05 70.37+1.07

Legend . Module (#0) et Source code
. ASTNodeType ‘def run_model(model)::

: (pre-order DFS index) :

| e s FunctionDef (#1) AST edge
run_model
arguments (#2) T Call (#4)
Name@#3) | .- - Attribute (#5) Name (#6)
del del
moee Abstract Syntax Tree (AST) ri“ mo*e
next-token AN
= edge _ .

Figure 5: Example input graph in ogbg-code, obtained by augmenting the original Python AST.

associations between genes even for otherwise rarely-studied organisms [19], and would give us
insights into key bioinformatics tasks, such as biological network alignment [61].

Dataset splitting. Similar to ogbn-proteins in Appendix B.2, we adopt the species split, where
the neighborhood graphs in validation and test sets are extracted from protein association networks of
species that are not seen during training but belong to one of the 37 taxonomic groups. This split
stress-tests the model’s capability to extract graph features that are essential to the prediction of the
taxonomic groups, which is important for biological understanding of protein associations.

Discussion. Benchmarking results are given in Table 20. Interestingly, similar to the ogbg-mol
datasets, GIN with VIRTUAL NODE provides the best performance. Nevertheless, the generalization
gap is huge (almost 30 percentage points). For reference, we also experiment with the random
splitting scenario, where we use the same model (GIN+VIRTUAL NODE) on the same split ratio.
On the random split, the test accuracy is 92.91+0.27%, which is more than 20 percentage points
higher than the species split. This again encourages future research to improve the out-of-distribution
generalization with more challenging and meaningful split procedure.

D.3 ogbg-code: Abstract Syntax Tree of Source Code

The ogbg-code dataset is a collection of Abstract Syntax Trees (ASTs) obtained from approx-
imately 450 thousands Python method definitions. Methods are extracted from a total of 13,587
different repositories across the most popular projects on GITHUB (where “popularity” is defined as
number of stars and forks). Our collection of Python methods originates from GITHUB CodeSearch-
Net [43] 24, a collection of datasets and benchmarks for machine-learning-based code retrieval. The
authors paid particular attention to avoid common shortcomings of previous source code datasets [2],
such as duplication of code and labels, low number of projects, random splitting, etc. In ogbg—-code,
we contribute an additional feature extraction step, which includes: AST edges, AST nodes (as-
sociated with features such as their types and attributes), tokenized method name. Altogether,
ogbg-code allows us to capture source code with its underlying graph structure, beyond its token
sequence representation.

Prediction task. The task is to predict the sub-tokens forming the method name, given the Python

Pnttps://github.com/github/CodeSearchNet

18

Table 21: Results for ogbg—code.
Virtual F1 score (%)

Method Node Training Validation Test
X 44814279 29734014 31.63+0.18
GCN
v 45.76+228 30.62+007 32.63+0.13
X 44.97+301 29.81+0.14 31.63+0.20
GIN
v 47.01+2.10 30.20+0.16 32.04+0.18

method body represented by AST and its node features—i.e., node type (from a pool of 97 types),
node attributes (such as variable names, with a vocabulary size of 10002), depth in the AST, pre-order
traversal index (as illustrated in Figure 5). This task is often referred to in the literature as “code
summarization” [3, 6, 7], because the model is trained to find succinct and precise description (i.e.,
the method name chosen by the developer) for a complete logical unit (i.e., the method body). Code
summarization is a representative task in the field of machine learning for code not only for its
straightforward adoption in developer tools, but also because it is a proxy measure for assessing how
well a model captures the code semantic [5]. Following Alon et al. [6, 7], we use an F1 score to
evaluate predicted sub-tokens against ground-truth sub-tokens.”” The average length of a method
name in the ground-truth is 2.6 sub-tokens, following a power-law distribution.

Dataset splitting. We adopt a project split [2], where the ASTs for the train set are obtained from
GITHUB projects that do not appear in the validation and test sets. This split respects the practical
scenario of training a model on a large collection of source code (obtained, for instance, from the
popular GITHUB projects), and then using it to predict method names on a separate code base. The
project split stress-tests the model’s ability to capture code’s semantics, and avoids a model that
trivially memorizes the idiosyncrasies of training projects (such as the naming conventions and the
coding style of a specific developer) to achieve a high test score.

Discussion. Benchmarking results are given in Table 21, where we add “next-token edges” on
top of the AST (as illustrated in Figure 5) to better capture the semantics of code graphs [25]. 2
For the decoder, we use independent linear classifiers to predict sub-tokens at each position of the
sub-token sequence.?” The evaluation is performed against the ground-truth sub-tokens. We see from
Table 21 that GCN with VIRTUAL NODES provides the best performance. Nevertheless, we observe
a huge generalization gap (more than 10 percentage points). For reference, we also experiment
with the random splitting scenario, where we apply the same model (GCN+VIRTUAL NODE) on
the same split ratio. On the random split, the test F1 score is 36.58+0.30%, which is approximately
4 percentage points higher than that of the project split in Table 21, indicating that the project
split is indeed harder than the random split. Overall, this dataset presents an interesting research
opportunity to improve out-of-distribution generalization under the meaningful project split, with
a number of fruitful future directions: how to leverage the fact that the original graphs are actually
trees with well-defined root nodes, how to pre-train GNNs to improve generalization [40], and how
to design a better encoder-decoder architecture with the graph data. To facilitate these directions, we
provide enough meta-information, such as the original code snippet as well as an easy-to-use script
to transform raw Python code snippets into the ASTs.

ZThe previous works find that the F1 score over sub-tokens is suitable to assess the quality of a method name
prediction, as the semantic of a method name depends solely on its sub-tokens. Note that the F1 score does
not take the sub-token ordering into account; thus, “run_model” and “model_run” are considered as exact
match.

%The inverse edges are also added to allow bidirectional message passing. The edge direction is recorded in
the edge features.

27 Although the F1 score is order-insensitive, in our preliminary experiments, we find that our order-sensitive
decoder performs slightly better than order-insensitive decoder (predicting whether each vocabulary is included
in the target sequence or not). During training, all the target sequences are truncated to the length of 5 (Covering
99% of the target sequences), and vocabulary size of 5,000 is used for prediction (covering 90% of the sub-tokens
in the target sequences). We additionally added one vocabulary “UNK” to handle any rare/unknown sub-tokens.
Predicting “UNK?” sub-token is counted as false positive when the F1 score is calculated.

19

E OGB Package

The OGB package is designed to make the pipeline of Figure 2 easily accessible to researchers,
by automating the data loading and the evaluation parts. OGB is fully compatible with PYTORCH
and its associated graph libraries: PYTORCH GEOMETRIC and DEEP GRAPH LIBRARY. OGB
additionally provides library-agnostic dataset objects that can be used by any other Python deep
learning frameworks such as TENSORFLOW [1] and MXNET [16]. Below, we explain the data
loading (cf. Appendix E.1) and evaluation (cf. Appendix E.2). For simplicity, we focus on the task of
the graph property prediction (cf. Appendix 5) using PYTORCH GEOMETRIC. For the other tasks,
libraries, and more details, refer to https://ogb.stanford.edu.

E.1 OGB Data Loaders

The OGB package makes it easy to obtain a dataset object that is fully compatible with PYTORCH
GEOMETRIC. As shown in Code Snippet 1, it can be done with only a single line of code, with the
end-users only needing to specify the name of the dataset. The OGB package will then download,
process, store, and return the requested dataset object. Furthermore, the standardized dataset splitting
can be readily obtained from the dataset object.

>>> from ogb.graphproppred import PygGraphPropPredDataset
>>> dataset = PygGraphPropPredDataset (name="ogbg-molpcba")
Pytorch Geometric dataset object

>>> split_idx = dataset.get_idx_split ()

Dictionary containing train/valid/test indices.

>>> train_idx = split_idx["train"]

torch.tensor storing a list of training indices.

Code Snippet 1: OGB Data Loader

E.2 OGB Evaluators

OGB also enables standardized and reliable evaluation with the ogb. * . Evaluator class. As
shown in Code Snippet 2, the end-users first specify the dataset they want to evaluate their models
on, after which the users can learn the format of the input they need to pass to the Evaluator
object. The input format is dataset-dependent. For example, for the ogbg-molpcba dataset, the
Evaluator object requires as input a dictionary with y_ t rue (a matrix storing the ground-truth
binary labels?®), and yv_pred (a matrix storing the scores output by the model). Once the end-users
pass the specified dictionary as input, the Evaluator object returns the model performance that is
appropriate for the dataset at hand, e.g., the Average Precision for ogbhg-molpcba.

>>> from ogb.graphproppred import Evaluator

Get Evaluator for ogbg-molpcba

>>> evaluator = Evaluator (name = "ogbg-molpcba™)

Learn about the specification of input to the Evaluator.
>>> print (evaluator.expected_input_format)

Prepare input that follows input spec.

>>> input_dict = {"y_true": y_true, "y_pred": y_pred}

Get the model performance.

result_dict = evaluator.eval (input_dict)

Code Snippet 2: OGB Evaluator

2The shape of the matrix is the number of data points times the number of tasks. The matrix can be either a
PYTORCH tensor or NUMPY array.

20

Table 22: Summary of ogbg-molx* datasets. For all the datasets, we use the scaffold split with
the split ratio of 80/10/10.

Category Name #Graphs l:ll\?z?i%(sa ?E;agiz #Tasks %‘;l; Metric
tox21 7,831 18.6 19.3 12 Binary class. ROC-AUC
toxcast 8,576 18.8 19.3 617 Binary class. ROC-AUC
muv 93,087 24.2 26.3 17 Binary class. AP

Molecular 23C€ 1,513 34.1 36.9 1 B@nary class. ROC-AUC

Graph bbbp 2,039 24.1 26.0 1 B%nary class. ROC-AUC

ogbg-mol clintox 1,477 26.2 27.9 2 Binary class. ROC-AUC
sider 1,427 33.6 354 27 Binary class. ROC-AUC
esol 1,128 13.3 13.7 1 Regression RMSE
freesolv 642 8.7 8.4 1 Regression RMSE
lipo 4,200 27.0 29.5 1 Regression RMSE

F More Benchmark Results on ogbg—mol x Datasets

Here we perform benchmark experiments on the other 10 datasets from MOLECULENET [92]. The
datasets are summarized in Table 22. The detailed description of each dataset is provided in Wu et al.
[92]. We use the same experimental protocol and hyper-parameters as in Appendix D.1. The dropout
rate is fixed to 0.5. As evaluation metrics, we adopt ROC-AUC for all the binary classification
datasets except for ogbg-molmuv that exhibits significant class imbalance (only 0.2% of labels
are positive). For the ogbg-molmuv dataset, we use Average Precision (AP), which is a more
appropriate metric for heavily-imbalanced data [21, 92]. For the regression datasets, we adopt Root
Mean Squared Error (RMSE); the lower, the better.

The benchmark results for each dataset are provided in Tables 23-32. We observe the followings.

o The additional features almost always help improve generalization performance. In fact, on top of
GIN+VIRTUAL NODE, including the additional features gives either comparable or improved
performance on 9 out of the 10 datasets (except for ogbg—molbace in Table 26). This motivates
us to include these additional features in our OGB molecular graphs.

e Adding VIRTUAL NODES often improves generalization performance; for example, on top of
GIN, adding VIRTUAL NODES gives either comparable or improved performance on 9 out of the
10 datasets (except for ogbg—clintox in Table 28).

e The optimal GNN architectures (GCN or GIN) vary across the datasets. This raises a natural
question: can we design a GNN architecture that performs well across the molecule datasets?

Altogether, we hope our extensive benchmark results on a variety of molecule datasets provide useful
baselines for further research on molecule-specific graph ML models.

21

Table 23: Results for ogbg-moltox21.

Table 24: Results for ogbg-moltoxcast.

Add. Virt. ROC-AUC (%) Add. Virt. ROC-AUC (%)
Method Feat. Node Training Validation Test Method Feat. Node Training Validation Test
X v 90.01+1.81 81.12+037 75.51+1.00 X v 88.89+088 70.52+034 66.33+035
GCN v X 92064093 79.04+0.10 75294060 GCN v X 8521+160 67484033 63.54+04
v V' 93284218 82.05:1043 77.4610.6 v v 89.89108 71.65+038 66.71+045
X v\ 93.131094 8147103 7621408 X V' 8551105 69.62+066 66.18+068
GIN v/ X 93.06+0ss 78324045 74.91+051 GIN v X 84.65:156 68.62+063 63.41+074
vV V' 93674103 82174035 77.57+06 vV 8642+049 72324035 66.13+050

Table 25: Results for ogbg—molmuv.

Table 26: Results for ogbg-molbace.

Add. Virt. AP (%) Add. Virt. ROC-AUC (%)
Method Feat. Node Training Validation Test Method Feat. Node Training Validation Test
X V' 6671387 8481155 2.48:283 X V' 87.85+508 78.994203 T1.44-+401
GCN v X 2272469 2141146 11391257 GCN ¢/ X 91741100 73741149 79154144
vV V' 23641710 22.0+108 10984201 vV 91161286 80.25+1.43 6893695
X V' 26491704 15744219 7.9142.13 X V' 87844175 77214101 76.41 4268
GIN v X 17.94:406 19.004215 8.78+2.07 GIN v X 92.07+26 73.30+105 72.97+400
vV V' 25951785 1742413 9.844271 vV 92041577 80.81-171 73464504

Table 27: Results for ogbg—molbbbp.

Table 28: Results for ogbg-molclintox.

Add. Virt. ROC-AUC (%) Add. Virt. ROC-AUC (%)
Method Feat. Node Training Validation Test Method Feat. Node Training Validation Test
X V' 9042435 93.464027 68.6242.19 X V' 83.11+457 88.78+145 68.66+495
GCN v X 9697+131 94744031 68.87+151 GCN v X 98141001 99241047 91.30+173
v V' 9829:179 9595040 67.80+235 v V' 97.35:130 99.57+0.15 88.55+2.09
X V' 94.06+185 94.664035 69.88+170 X V' 86.12+550 90.79+110 61.79+477
GIN v X 9599i244 94.83+052 68.17+14s GIN v X 9631:+177 98.54+048 88.14+251
v V' 97704171 95.68+1040 69.71+192 v V' 93514178 99.18+053 84.064354

Table 29: Results for ogbg-molsider.

Table 30: Results for ogbg-molesol.

Add. Virt. ROC-AUC (%) Add. Virt. RMSE
Method Feat. Node Training Validation Test Method Feat. Node Training Validation Test
X V' 73824102 59.86+051 61.65+1.06 X V' 08831000 1.128+00%2 1.143%0075
GCN v X 82741200 64.64108 59.60+177 GCN v X 062910041 10220034 1.11440036
v V' 77504258 61.884059 59.84+154 v v/ 0.758+0147 0.991+004 1.015+0.096
X V' 7237107 59.841086 57.75L114 XV 07460158 0.92100s5 1.02620063
GIN 4 X 80.132201 64.14+124 57.60+1.40 GIN v X 0.628=z0041 1.007+0028 1.173+0.057
vV V' 76.60+138 62.41+409 57.57+156 v V' 067510131 0.878:003 09980066
Table 31: Results for ogbg-molfreesolv. Table 32: Results for ogbg-mollipo.
Add. Virt. RMSE Add. Virt. RMSE
Method o ot. Node Training Validation Test Method pt. Node Training Validation Test
X v/ 1.16320157 2.744+0201 2.413+0.105 X v/ 0.669+0058 0.855+0032 0.823+0.029
GCN v/ X 0982:0100 2.58240207 26402020 ~ GCN ¢ X 0.662+0046 0.816-0024 0.797-0023
v v 121940153 292240185 2.186:40.120 v v/ 0.54510041 0.766:0011 0.771+0016
X v/ 1.006+0225 2.567+0.10 2.307-+0340 X v/ 04884002 0.749:0018 0.741+0.024
GIN v X 120520360 2.342+0378 2.755+0349 GIN v X 047910027 074220011 0.757+0018
4 v/ 0.93420138 218140205 2.151+0.205 v v/ 0.399+0023 0.679-+0014 0.704+0.015

22

