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Abstract— Object rearrangement is a widely-applicable and
challenging task for robots. Geometric constraints must be
carefully examined to avoid collisions and combinatorial issues
arise as the number of objects increases. This work studies the
algorithmic structure of rearranging uniform objects, where
robot-object collisions do not occur but object-object collisions
have to be avoided. The objective is minimizing the number
of object transfers under the assumption that the robot can
manipulate one object at a time. An efficiently computable
decomposition of the configuration space is used to create
a “region graph”, which classifies all continuous paths of
equivalent collision possibilities. Based on this compact but rich
representation, a complete dynamic programming primitive
DFSDP performs a recursive depth first search to solve monotone
problems quickly, i.e., those instances that do not require objects
to be moved first to an intermediate buffer. DFSDP is extended
to solve single-buffer, non-monotone instances, given a choice
of an object and a buffer. This work utilizes these primitives
as local planners in an informed search framework for more
general, non-monotone instances. The search utilizes partial
solutions from the primitives to identify the most promising
choice of objects and buffers. Experiments demonstrate that
the proposed solution returns near-optimal paths with higher
success rate, even for challenging non-monotone instances, than
other leading alternatives.

I. INTRODUCTION

Object rearrangement is a critical robot skill broadly
applicable in the logistics, industrial, and service domains.
For instance, robots can rearrange merchandise in grocery
shelves as in Fig. 1(left), retrieve food in packed fridges
for home automation, or perform packaging of products for
shipping [1]. This work focuses on problems where one
object is manipulated at a time without incurring any object-
object collisions. The objective is to minimize the number
of object transfers needed to complete a rearrangement. The
setting is akin to an attendant moving cars in a crammed
parking lot. Clearly, collisions between two cars should not
occur and the attendant should minimize the number of times
he drives a car. Similar scenarios occur in manipulation,
e.g., when a soda must be retrieved from a fridge, multiple
other beverages may have to be rearranged first. While the
arm may be able to reach the objects with an overhand
grasp as in Fig. 1(right), it may not be possible to just
lift objects to avoid collisions among them. Furthermore,
given the sometimes unpredictable effects of object-object
collisions, these collisions should be avoided.
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Fig. 1. (left) Robots in logistics have to rearrange similar objects in
shelves. (right) The focus is on combinatorial and geometric aspects of
rearrangement when the arm can reach objects without colliding with them
but cannot lift objects to guarantee they do not collide with each other.

A rearrangement domain, where performance guarantees
can be argued but which is already hard, involves tabletop
setups and overhand grasps, where both robot-object and
object-object collisions can be ignored [2]. This work pushes
forward the understanding of the algorithmic structure of
rearrangement by considering object-object collisions for
uniform-shaped objects in planar setups. A principled solu-
tion pipeline is proposed (Fig. 2), which yields complete and
efficient primitives for monotone instances and an effective
informed search framework that quickly computes high-
quality non-monotone solutions. In a monotone instance,
each object needs to be moved at most once, i.e., without
having to move first to an intermediate, buffer location. The
pipeline is composed of three key components/contributions:
1. A decomposition of the space into equivalent regions
resulting in a compact region graph containing all possible
object paths in terms of collision sets that can arise. It
abstracts away the problem’s continuous, geometric aspects.
2. A novel dynamic programming routine DFSDP that solves
monotone instances quickly by reasoning over object paths
on the region graph. It’s extended to optimally solve 1-buffer,
non-monotone problems for an object and buffer choice.
3. An informed search framework that uses DFSDP varia-
tions as local planners. Given partial solutions generated by
DFSDP, it generates heuristics to explore promising objects
and buffers for quickly making progress towards the goal
arrangement.

Simulation experiments show the efficiency of the mono-
tone solver DFSDP. The informed search is shown to be faster
and to return higher-quality solutions than alternatives for
non-monotone instances. For problems with 1 or 2 buffers
where the optimal solution can be discovered, the framework
returns almost optimal solutions. An ablation study compares
against a baseline search that uses the monotone solver as a
local planner. It highlights the benefits of the non-monotone
extension of DFSDP and of the chosen heuristics.



II. RELATED WORK

An apparently simple setup involves picking objects from
tabletops, which are lifted sufficiently high before being
placed back to avoid object-object collisions [2]–[5]. This
setting is as computationally hard to solve optimally as
the Travelling Salesperson Problem (TSP) when objects’
starts and goals do not overlap [2]. Overlapping starts and
goals complicates the problem as it reduces to the Feedback
Vertex Set (FVS) problem [6], which is possibly APX-
hard. Dual arm rearrangement allows for parallelism but
complicates reasoning [3]. Integer programming is often
applied for deciding the object order together with motion
planning [2], [3]. Optimal tabletop placement has also been
approached via Answer Set Programming (ASP) [4], [5] and
informed heuristics [7]. Similarly to this work, these efforts
aim to minimize object grasps/pushes but address packing
new items into cluttered environments; this is more akin to
the unlabeled version of this works’ problem.

For more confined spaces, small monotone problems have
been addressed via backtracking search [8]. A useful struc-
ture for solving problems in the general case is a “de-
pendency graph” [9], which expresses constraints between
objects given their starts and goals. Acyclic graphs indicate
existence of monotone solutions. The “true” dependency
graph is difficult to construct in general as all object paths
must be considered. With approximations for Minimum Con-
straint Removal (MCR) paths [10], it is possible to practically
build good dependency graphs [11], [12] to solve general
instances. This paper focuses on uniform disc-shaped object
instances and object-object interactions. By constructing a
“region graph” that compactly represents all object paths, it is
possible to search over dependency graphs with efficient and
complete solvers for monotone and non-monotone instances.

Solutions for integrated task and motion planning (TAMP)
can be applied to general rearrangement [13], [14]. While
they incorporate heuristics and are probabilistically complete
(PC), it is difficult to make arguments about optimality. Fur-
thermore, insights from rearrangement planners can lead to
effective heuristics for TAMP. Pushing allows simultaneous
action on multiple objects [15]–[17] though actions may be
irreversible. Pushing has been studied in the context of robust
rearrangement under uncertainty [18]–[20].

Navigation Among Movable Obstacles (NAMO) [21] is
related to rearrangement. It is NP-hard [22] and its difficulty
depends on linearity and monotonicity notions. A problem
is linear if collision free components can be traversed in
sequence, where earlier actions do not constrain future ones.
For non-monotone, non-linear NAMO problems, a PC algo-
rithm exists for axis-aligned objects and robots [23] though it
may return highly-redundant paths. Recently, methods have
tackled online NAMO settings [24]–[26]. In object retrieval,
movable obstacles may obstruct paths and works have used
dependency reasoning to generate valid plans [18], [27]
and scale linearly in actions with the number of objects
[28]. Recently, algorithms have been proposed to explicitly
minimize the number of objects to relocate [29], [30].

III. PROBLEM SETUP AND NOTATION

Let W ⊂ R2 be a bounded polygonal region where n
labeled uniform-shaped objects O = {o1, · · · , on} reside.
An arrangement A of O is given as (p1, · · · , pn) ∈ Wn,
where pi ∈ W defines the position of oi, i.e., the coordinates
of oi’s center. A[oi] = pi indicates that object oi assumes
position pi in the arrangement A. Define as V (p) the subset
of W occupied by an object at position p. An arrangement
A is feasible if no object-object collisions occurs, i.e., A is
feasible if ∀i, j ∈ [1, n], i ̸= j : V (A[oi]) ∩ V (A[oj ]) = ∅.

A robotic arm can reach objects at any position p ∈ W
without colliding with them. Given an arrangement A, the
arm can move one object at a time from its current position
pi = A[oi] to a new position p′i, giving rise to a new
arrangement A′, where A′[oi] = p′i and ∀j ∈ [1, n], j ̸=
i : A′[oj ] = A[oj ]. The arm’s motion results in continuous
paths πi : [0, 1] → W for object oi with πi(0) = pi and
πi(1) = p′i. The arm cannot raise the picked object far
enough to guarantee collision avoidance with other objects.
Consequently, object paths can be split into valid and non-
valid paths. A path π for moving object oi is valid if it does
not result in a collision between oi and all the other objects oj
given their positions in a feasible A, where 1 ≤ j ≤ n, j ̸= i.

A candidate new position p ∈ W for object oi given
arrangement A, may cause object oi to collide with other
objects. The set of objects that collide with oi given its
position p is called as an interference set for p. Specifi-
cally, the interference set for position p of object oi given
arrangement A is defined as Ii,A(p) = {oj ∈ O, oj ̸=
oi : V (p) ∩ V (A[oj ]) ̸= ∅}. This notion can be extended
to a set of arrangements A as Ii,A(p) =

⋃︁
A∈A Ii,A(p).

Furthermore, given a path πi for object oi, the union of
interference sets along the path πi contains all objects that oi
will collide with along πi. This is defined as the interference
set Ii,A(πi) of path πi, i.e., Ii,A(πi) =

⋃︁
∀p∈πi

Ii,A(p).
The rearrangement problem considered here is to discover

a sequence of valid object paths which bring objects O
from an initial feasible arrangement AI to a final feasible
arrangement AF . The concatenation of such valid paths gives
rise to a solution path sequence Π. Optimal solution path
sequences Π∗ minimize the number of object paths needed
to solve a rearrangement problem.

This definition transforms the rearrangement problem into
a path planning problem on the arrangement space. An
arrangement space is the space of all feasible object ar-
rangements. For arbitrary arrangements Aa, Ab, there is a
transition from Aa to Ab if ∃!oi ∈ O s.t. Aa[oi] ̸= Ab[oi],
and there is a valid path πi for oi from Aa[oi] to Ab[oi].

An instance is monotone if there is a solution path se-
quence from AI to AF that contains at most one valid path
πi for each oi. Non-monotone instances require solution path
sequences where at least one object is moved at least twice,
i.e., where the object is first placed to an intermediate buffer
position before moved to its target.
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Fig. 2. A rearrangement instance is defined by the objects’ starts and goals. The approach pre-allocates candidate buffers and decomposes the space
to generate a region graph. Each region corresponds to a different interference set with existing start, goal and buffer locations. If a monotone solution
exists given all object paths in the region graph, a dynamic programming approach discovers it efficiently. For non-monotone problems, a search method
incrementally builds a tree, where nodes are arrangements and edges represent object transfers to their goals together an object moved to a buffer (called
a “perturbation”). Informed heuristics based on the dynamic programming solver guide the choice of objects and buffers for faster, high-quality solutions.

IV. REGION GRAPH

Given a set of arrangements A (e.g., {AI , AF }), the
workspace W can be decomposed into a set of closed,
path-connected regions RA. Each region contains positions
with the same interference set. Denote as D(p) := {p′ :
V [p] ∩ V [p′] ̸= ∅} the subset of W for which an object
placement will collide with an object located at p. Alg. 1
shows the region decomposition process based on A. For
each position p in each arrangement in A, each existing
region r ∈ RA is split by r ∩ D(p) and r\D(p) (lines 5-
10). After that, regions that are not path-connected are split
into their path-connected components (lines 11-13).

Algorithm 1: Region Decomposition(A)
1 M ← ∅, RA ← ∅
2 for A ∈ A do
3 for p ∈ A do
4 for r ∈ RA do
5 if r ∩ D(p) ̸= ∅ then
6 RA ←RA ∪ {r ∩ D(p)}, r ← r \ D(p)
7 if r is ∅ then RA ← RA \ {r}
8 d← (W ∩D(p)) \M
9 if d ̸= ∅ then RA ←RA ∪ {d}

10 M ←M ∪ D(p)
11 for r ∈ RA do
12 RA ←RA \ {r}
13 for c ∈ components(r) do RA ←RA ∪ {c}
14 return RA

The region graph GA = (RA, EA) has regions as nodes.
An edge (r1, r2) ∈ EA exists if and only if r1∪r2 is a path-
connected subset of W . Given a walk W on GA with vertex
sequence R = (r0, ..., rk), its interference set is I(W ) =⋃︁

ri∈RA
I(ri). Any continuous path in the workspace can be

associated with a walk on the region graph with the same
interference set. Since multiple paths in W may correspond
to the same path in GA, the paths in the region graph form
equivalence classes of workspace paths sharing the same
interference set. Although multiple paths in the region graph
can have the same interference set, a region graph for one or
more arrangements categorizes all paths for an object into a
finite number of classes. Thus, for any object, it is possible to
systematically explore all path options between two positions
in terms of interference sets.

Since the focus is on finding solutions with minimum
interference sets, it is not necessary to discover every ho-
motopy class of workspace paths traversing the regions but
rather only the classes of paths with varying interference sets.
Thus, in order to reduce the number of region adjacencies, it

is reasonable to only check adjacency between regions pairs
with interference sets differing by one object.

V. HIGH PERFORMANCE MONOTONE SOLVER

For a monotone problem, there are 2n different arrange-
ments, where an object can be placed either at its start or
goal. Given an arrangement A, let O(A) = {oi : A[oi] =
AF [oi]} denote the subset of objects at their goals. A is
accessible if the subproblem of moving O(A) from AI to
A is monotone. If A is known to be accessible, solving the
subproblem of moving O\O(A) from A to AF is sufficient
for solving the full problem. In addition, the subproblem’s
solution does not depend on O(A)’s ordering.

Algorithm 2: DFSDP(T , AC , AF , G{AI ,AF })

1 for o ∈ O\O(AC) do
2 Anew[O\{o}] = AC [O\{o}]
3 Anew[o] = AF [o]
4 if Anew not in T then
5 π,Dπ ← RG-DFS(G{AIAF }, AC , Anew, Dπ)
6 if π ̸= ∅ then
7 T [Anew].parent← AC

8 if Anew ̸= AF then
9 T, Dπ = DFSDP(T, Dπ , Anew, AF , G{AI ,AF })

10 if AF ∈ T then return T, Dπ

11 return T, Dπ

Given this observation, a dynamic program DFSDP is pre-
sented in Alg. 2 to solve the monotone problem. It grows a
search tree T in the arrangement space rooted at AI . Each
node on the tree is accessible from the root and DFSDP tests
its connection to AF in a depth-first manner. Alg. 2 first
enumerates all possible objects and attempts to move each
of them from their current positions to their goals (lines 1-3).
When the newly constructed arrangement Anew is not in T
(line 4), a valid path for the object o from AC [o] to AF [o]
is searched (line 5). If a valid path is found (line 6), Anew

is labeled accessible and added to T (line 7). If Anew is not
AF , the program recurses on it (lines 8-9). Otherwise, the
solution is found (line 10) with corresponding object paths.
DFSDP searches for an object path local to AC

within a subgraph of the region graph G{AI ,AF } =
(R{AI ,AF}, E{AI ,AF }) constructed from AI and AF . This
subgraph ignores dependencies from non-occupied positions.
Since there are 2n different region subgraphs (one per
arrangement AC), but only n pairs of start/goal positions,
paths are stored in a dictionary Dπ for each start/goal
pair for future queries. Since the dictionary Dπ is enriched



incrementally, time is saved in subsequent calls to DFSDP by
first checking Dπ . RG-DFS, the path finding algorithm for
objects on the region graph, is only executed when no valid
object path local to AC was previously found.
Proposition 1. DFSDP over the region graph G{AI ,AF } =
(R{AI ,AF}, E{AI ,AF }) is complete for monotone instances.

Since there exists a one-to-many mapping from region
graph paths to all possible object paths in W , the path finding
algorithm RG-DFS effectively searches for object paths
when searching the region graph in a depth-first manner.
Furthermore, the search tree is finite since the region graph
is finite given a finite number of objects. Therefore, RG-DFS
is complete, which leads to the completeness of DFSDP.

In order to solve non-monotone instances, at least one
object has to be moved to a buffer. This work refers to an
action of moving object oi to a buffer bi as a perturbation
and denoted as P (oi, bi). A perturbation at A splits the
movement of object oi into two phases: A[oi] → bi given the
perturbation and bi → AF (oi). While a monotone solution
can be treated as a permutation of n actions ao1 , ..., aon
where each action aoi moves oi from AI [oi] to AF [oi], a
non-monotone solution with the perturbation P (oi, bi) can be
viewed as a permutation of n+ 1 actions with partial order
enforced between the two actions involving oi. Thus, the
monotone planner DFSDP is extended into a planner EDFSDP,
which solves 1-buffer, non-monotone problems given a spe-
cific choice of object oi and buffer bi to which oi moves.

VI. NON-MONOTONE FRAMEWORK

For general non-monotone problems, solution quality and
computation time are largely determined by the choice of
which objects to move to a buffer and which buffer to use.
Alg. 3 describes a non-monotone search for this purpose,
which searches through the space of perturbations P (oi, bi).

Algorithm 3: Informed-Search(AI , AF )
1 T ← ∅
2 Tnew = DFSDP-LocalPlanner(AI , AF )
3 if AF ∈ Tnew.V then return Tnew

4 T ← T + Tnew

5 while T is not connected to AF do
6 AC ← SELECT-EXPANSION-NODE(T )
7 if AC = ∅ then AC ← RANDOMNODE(T.V )
8 OC ← SELECT-PERTURBATION-OBJECT(AC )
9 BC ← SELECT-PERTURBATION-BUFFER(AC ,OC)

10 for P (oi, bi) ∈ (OC ,BC) do
11 Tnew = EDFSDP-LocalPlanner(AC,AF, P(oi, bi))
12 if AF ∈ Tnew.V then return T + Tnew

13 else T ← T + Tnew

The framework receives as input the problem instance
(AI ,AF ) and returns a search tree in the arrangement space
with a path from AI to AF . It initializes the search tree
T (line 1) and calls the proposed monotone solver, which
recursively calls Alg. 2, to return a subtree Tnew rooted at
AI (line 2) and identify if the problem is monotone (line
3). If the problem is not monotone, the partial solution
(subtree) Tnew is added to the search tree (line 4) and new
perturbations are attempted until a solution is found (line

5). For each perturbation, the algorithm decides on a new
expansion node (the arrangement AC to launch the non-
monotone local planner) (line 6) and which objects OC (line
8) to place in which buffers BC (line 9). For each computed
perturbation P (oi, bi) (line 10), the non-monotone planner
(e.g. EDFSDP) attempts to solve the subproblem AC → AF

with P (oi, bi) (line 11) and a solution is returned if solved
(line 12). Otherwise, a partial solution Tnew is added to the
search tree (line 13). If no expansion node is recommended,
a random node in the tree will be selected for potential
perturbations (line 7) in order to ensure exhaustiveness. For
the accompanying experiments, the search stops when a time
threshold is exceeded.

As indicated in Alg. 3, the key component of selecting
a promising perturbation involves, selecting an arrangement
node AC to expand, deciding which objects to move to
buffers, and selecting buffers to use.
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Super Node
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Fig. 3. A search tree built according to Alg. 3. Nodes correspond to
arrangements, while directed edges correspond to monotone transitions from
one arrangement to another. A super node is a set of nodes which are
accessible from the same root; they are connected via a ”perturbation”
(blue arrow), where an object is moved to a buffer. Except for the initial
arrangement AI , roots of super nodes (blue circles) are perturbation nodes.

A. Selecting Arrangements for Expansion

As shown in Fig. 3, the search tree can be divided
into multiple subtrees, referred to as super nodes, based
on perturbations. Each super-node is rooted at AI or a
perturbation node (blue circles), which is defined as the
arrangement derived from a perturbation. Given a super node
rooted at A, other members of the super node are the nodes
on the search tree which are reachable from A via monotone
transitions, i.e., without perturbations. In Fig. 3, assuming a
path from Aa to AF can be found via the local planner
EDFSDP given a perturbation P (oj , bj), then that path can
also be found by calling EDFSDP from Ar, the root of the
super node that Aa belongs in. If the solution path exists
along some of the siblings of Aa, but is not discoverable
from Aa, calling EDFSDP at Ar will still work. Therefore, for
each super node, launching the planner from the root is the
preferred way to generate solutions. Among the super-nodes,
those with fewer perturbations relative to AI are prioritized.
Among those with the same number of perturbations, those
with more objects at their goal positions are prioritized as
they are more similar to AF .

B. Selecting Objects for Perturbation

Once an arrangement is selected to be expanded, a de-
cision needs to be made about which objects to move to
a buffer. Intuitively, a highly constraining object, whose
current position AC [o] blocks other objects to make progress
to their goals, should be prioritized. Symmetrically, a highly
constrained object, whose goal position AF [o] is blocked by



other objects not at their goals, should not be considered to
move directly towards its goal. In summary, the priority for
selecting perturbations should be given to objects that are
both highly constraining and constrained.

The extent to which an object is constraining or con-
strained can be measured via its degree in an approximate
dependency graph, which uses the interference set Ii,A(p)
of the current positions of objects not yet moved to their
goals in AC . In particular, denote O(AC) as the sets of
objects not yet moved to their goals at AC . If the current
position AC [oi] of an object oi ∈ O(AC) interferes with the
goal position AF [oj ] of another object oj ∈ O(AC), then it
creates a dependency edge e(j, i), indicating that oj depends
on object oi. An indicator variable 1(j, i) is defined as

1(j, i) =

{︄
1, if V (AC [oi]) ∩ V (AF [oj ]) ̸= ∅
0, otherwise.

where 1(j, i) = 1 indicates the existence of edge e(j, i).
Given all such dependency edges, define DI(oi) =∑︁
oj∈O(AC) 1(j, i) as the inner degree of dependency which

indicates the degree of which the object oi is constraining at
AC and DO(oi) =

∑︁
oj∈O(AC) 1(i, j) as the outer degree of

dependency which indicates the degree of which the object oi
is constrained at AC . Then, all objects in O(AC) are ranked
in descending order of DI(oi) + DO(oi), so that the most
constraining and constrained objects are prioritized.

C. Selecting Buffers for Perturbation

Given an instance (AI ,AF ), candidate buffers are gener-
ated before the search. The process samples buffers overlap-
ping with the fewest start and goal positions of objects, as
well as of previously generated buffers. Besides the candidate
buffers generated, unoccupied start and goal positions can
also be used as buffers for some arrangement AC . Given
this observation, each object oi is assigned a buffer online
by ranking candidates according to the following priorities.
Buffers not overlapping with starts and goals are considered
first as long as they are reachable from AC [oi]. Then, start
positions of objects already at goals in AC are considered.
Finally, goal positions not occupied in AC are considered.

VII. EXPERIMENTS
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Fig. 4. A distribution of
monotone (M), non-monotone
(Non-M), and failed (F) cases
among 50 instances (y-axis) for
increasing density (x-axis).

To evaluate performance of
the proposed algorithms, exper-
iments on monotone and non-
monotone instances are per-
formed for different environ-
ment “density” levels. The den-
sity of the environment is de-
fined as the ratio of the area oc-
cupied by objects to that of the
environment. For a fixed num-
ber of objects, the density level

can be increased by either increasing the object sizes or
decreasing the workspace area. Fig. 4 shows the relationship
between the probability of generating (or failing to generate)
a monotone and non-monotone instance with 10 objects

for different density levels. An attempt will fail when the
environment has no more space for a valid start/goal place-
ment. According to Fig. 4, the density level of the monotone
and non-monotone problem should be chosen in the ranges
[0, 0.2] and [0.125, 0.425] respectively.

A. Evaluation on Monotone Problems

For monotone problems, DFSDP is compared against several
leading monotone solvers in the same field.
1) mRS (monotone rearrangement solver) - A backtracking

method which searches over all possible orders with
which the objects can be moved [8].

2) fmRS (fast-mRS) - Compute the sequence of moving
objects via topological sorting on a constraint graph [12]
constructed by assigning a transfer path per object.

3) IP-Solver - An integer programming (IP) solver which
selects a path per object among all path options such that
the corresponding dependency graph is acyclic.
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Fig. 5. [Top] Success rate (left) and computation time in seconds (right)
with density level 0.1. [Bottom] The same evaluation with density level 0.2.
Number of objects are shown on the x-axis.

The experiments are conducted in a square environment
with density level 0.1 and 0.2 and the number of objects
ranges between 10 and 30. For each setup, 20 instances are
generated. A planning attempt is considered a failure if the
method cannot determine monotonicity within 500 seconds
or return a negative response. The success rate (left) and
average running time (right) is plotted in Fig. 5.

The IP-solver has to pre-compute all the region graph
paths for each pair of start and goal object positions, from
which to make a choice, thus making it unscalable beyond 10
objects. mRS considers all possible moving orders (time com-
plexity of O(n!)) while the proposed DFSDP keeps solving
subproblems without considering the ordering of the solved
subproblems (O(2n)). Therefore, DFSDP significantly outper-
forms mRS both in higher success rate and lower computation
time as the number of objects increases. The fmRS greedily
assigns one path to each object with the minimum constraints
violated, which indicates incompleteness compared to the
complete DFSDP. As a result, it is fast but tends not to find
valid solutions in monotone instances.

B. Evaluation on Non-monotone Problems

For non-monotone problems, the focus is on cases where
the optimal solution requires one or two buffers and can be
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Fig. 6. Experimental results on one-buffer (top row) and two-buffer (bottom row) instances evaluating (1) success rate on finding a solution (left column)
(2) additional actions needed to solve the problem (middle column) and (3) computation time (right column).

computed with an expensive, exhaustive brute force search
approach. The density level is set to 0.225. The following
comparison points are considered:
1) RRT(mRS) - Searches the arrangement space in an (RRT)-

like fashion [31] and uses mRS as a local planner.
2) RRT(fmRS) - Same as above but fmRS as the local planner.
3) RRT(DFSDP) - Same but DFSDP as the local planner.
4) Super-Node-RRT(EDFSDP) - Select the roots of super

nodes for expansion and uses EDFSDP as the local planner.
5) Informed-Search(EDFSDP) - Same as above but uses

heuristics to order super nodes, objects, and buffers.
Fig. 6 demonstrates the results for 1 and 2 buffer cases

respectively in terms of success rate in finding a feasible
solution in 300 seconds, number of buffers used and compu-
tation time. The two baselines RRT(DFSDP) and Super-Node-
RRT(EDFSDP) search the arrangement space using an RRT-like
process for sampling and therefore focus on finding feasible
solutions, instead of high-quality ones. The total number of
buffers is much higher than the final informed search pipeline
(middle column) as the proposed informed search prioritizes
super nodes with fewer number of perturbation to expand.
In addition, the success rate starts to drop (left column) and
the computation time starts to increase (right column) for
the baselines as the number of objects increases, since the
arrangement space increases exponentially and random per-
turbation node selection performance suffers. The improved
baseline Super-Node-RRT(EDFSDP) outperforms RRT(DFSDP)
by always selecting the root of super nodes and utilizing the
benefits of EDFSDP as a local planner. The proposed informed
framework focuses the search to the most promising part
of arrangement space and explores it more systematically.
Therefore, it finds near-optimal solutions (middle column:
1.07 in one-buffer cases, 2.09 in two-buffer cases) with 100%
success rate even in harder instances (left column: 18, 20
objects with 2 buffers). The computation time is lower than
other methods in one-buffer cases and remains competitive
in two-buffer cases.

The comparison results with RRT(mRS) and RRT(fmRS) are
consistent with the observation made in monotone evaluation.
The solution quality of RRT(fmRS) is worse than the baseline
version RRT(DFSDP) of the proposed search framework due to
the incompleteness of the local solver. In addition, RRT(mRS)
is not as scalable in non-monotone instances due to the
weakness in quickly identifying non-monotonicity.

VIII. CONCLUSION AND FUTURE WORK

This work tackles uniform object rearrangement with the
goal of minimizing the total number of object movements.
A region graph is introduced to decompose the configura-
tion space and classify all continuous paths, upon which a
complete and efficient monotone solver and then an effective
informed search framework for non-monotone problems are
proposed. The framework achieves high-quality solutions
with high success rate and reduced computation time relative
to alternatives.

The current study motivates future work for these effi-
cient tools, including the extension to object-robot inter-
actions and generalizations to non-uniform object geome-
tries. Furthermore, the region graph can also be exploited
to dynamically generate buffers, which adapts to specific
arrangement environments to improve performance. It would
be interesting to show (or disprove) that it is sufficient to
consider a finite set of buffers for guaranteeing a complete
approach. Machine learning methods can also be used to
learn heuristics and object dependencies given access to
solutions by this planning approach. This can lead to even
more scalable solutions. Perception should also be taken into
account to reason about pose hypotheses per object, which
could affect the arrangement ordering, such as moving an
object to make another more discernible. Different types
of manipulation primitives can also be considered, such
as non-prehensile actions (e.g., pushing, flipping) to enrich
rearrangement strategies, which can be generalized to more
sophisticated environments.
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