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Abstract— In this work, we systematically examine the ap-
plication of spatio-temporal splitting heuristics to the Multi-
Robot Motion Planning (MRMP) problem in a graph-theoretic
setting: a problem known to be NP-hard to optimally solve.
Following the divide-and-conquer principle, we design multiple
spatial and temporal splitting schemes that can be applied to
any existing MRMP algorithm, including integer programming
solvers and Enhanced Conflict Based Search, in an orthogonal
manner. The combination of a good baseline MRMP algorithm
with a proper splitting heuristic proves highly effective, allowing
the resolution of problems 10+ times than what is possible
previously, as corroborated by extensive numerical evaluations.
Notably, spatial partition of problem fusing with the temporal
splitting heuristic and the enhanced conflict based search
(ECBS) algorithm increases the scalability of ECBS on large
and challenging DAO maps by 5–15 folds with negligible impact
on solution optimality.

I. INTRODUCTION

We study the labeled Multi-Robot Motion Planning prob-
lem (MRMP) under a graph-theoretic setting, also known as
Multi-Agent Path Finding (MAPF). The basic objective of
MRMP is to find a set of collision-free paths to route multiple
robots from a start configuration to a goal configuration.
In practice, solution optimality is also of key importance;
yet optimally solving MRMP is generally NP-hard [1]–
[3]. As one can readily imagine, given the ubiquity of the
problem setting, effective algorithms find many important
large-scale applications, e.g., warehouse automation [4],
[5]. Other application scenarios include formation [6], [7],
agriculture [8], object transportation [9], swarm robotics [10],
to list a few. Due to the wide range of impactful applications,
even though MRMP had been studied since the 1980s in
the robotics domain [11]–[14], it remains an active research
topic. Many effective algorithms, for example [15]–[17], have
been proposed recently that balance fairly well between
computational efficiency and solution optimality.

Nevertheless, there persists the practical need to contin-
uously improve the efficiency and scalability of MRMP
solutions, since a few percentage of computation time or path
quality difference on path planning and motion execution
could significantly affect the efficiency and throughput
of these multi-robot systems. Such needs motivate us to
carefully examine three key factors in MRMP that impact
the performance of related algorithms: the number of robots n,
the size and complexity of the environment S, and the planning
horizon T . The overall complexity of a given problem can be
measured as a function of these three factors, i.e., f(n, S, T ).
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A simple but reasonable approximation is the product
f(n, S, T ) ∝ nST . The measure is rough as the factors
are interrelated. For example, as n/S approaches its upper
limit for a given S (i.e., the robot density hitting extremes),
the complexity can grow exponentially in n. Most existing
methods for optimally solving MRMP work with one or more
of these factors. The most popular decoupling approach [12],
[18]–[20] essentially treats each robot individually, handling
interactions on an ad-hoc basis. Spatial and temporal domains
have also been exploited, though rather sparsely. In [15], a
rudimentary divide-and-conquer approach is applied to split
the planning horizon to 2m slices, decoupling a problem over
the time domain. Combined spatial-temporal approach has
also been exploited, e.g., in [21], where a space-time window
is used to reduce the computational effort.

In this work, we made a first attempt to systematically
exploit the application of divide-and-conquer over spatial and
temporal domains, at the global level. Careful spatial and/or
temporal division can be applied to most existing MRMP
algorithms in an orthogonal manner, often bringing significant
performance boosts. Specifically, our main contributions are:
(i) We exploit multiple schemes for decoupling an MRMP
instance over the temporal domain. Combined with effective
solvers such as ILP [15] or ECBS [22], problems with many
folds more robots can be readily solved, often with minimal
impact on the solution optimality. (ii) We devise schemes for
decoupling an MRMP instance over the spatial domain that
is also compatible with temporal decoupling schemes. Spatial
division heuristics allow much larger MRMP instances to be
solved without significant impacts on the solution optimality.

Related Work. Whereas the feasibility question has been
answered for MRMP [11], due to the hardness [1]–[3],
many attempts have been made at optimally solving MRMP
[12], [18]–[20], [23]–[26]. Among these, combinatorial-search
based solvers have been demonstrated to be effective. One
of the earliest work is Local Repair A∗ (LRA∗) [23], which
employs a basic form of decoupled search assisted with
local repairs. The decoupling idea was also explored in [12].
Subsequently, a windowed approach [24] was shown to pro-
vide additional efficiency gain through restricting the spatio-
temporal search domain. Specific heuristics were later devel-
oped, including independence detection [18], sub-dimensional
expansion [19], conflict-based search [20], increasing-cost-
tree search [25], to list a few. It is also possible to solve
the problem through reducing MRMP to other problems,
e.g., SAT [27], answer set programming [28], integer linear
programming (ILP) [15]. Though these converted problems
are also hard, they in fact facilitate the optimal resolution
of the original MRMP problem due to the availability of
specialized solver. As optimal solvers can be time con-



suming to run, sub-optimal solutions to MRMP have also
be extensively studied. Solvers like push and swap [29],
push and rotate [30], windowed hierarchical cooperative
A∗, developed as part of [21], all return feasible solutions
quickly. Balancing efficiency and optimality is one of the
most attractive topics; some algorithms emphasize scalability
without sacrificing much optimality, e.g., enhanced conflict
based search (ECBS) [22], DDM [31].

Relating to our work, divide and conquer techniques had
been applied to tackle optimally solving MRMP. Similar to
approaches explored in this work, sub-goals and sub-plans
are stitched together to construct a global plan for multi-
agent planning in [32], which reduces the branching factor,
leading to reductions in computation time. The k-way-split
ILP [15] divides a problem into equal sized sub-problems by
finding intermediate goals in the middle of individual paths.
It effectively reduces the computation time of the ILP solver.
The time domain split heuristic in this work builds on these
earlier ideas and renders them more general.

Organization. In Section II, we formally define the multi-
robot motion planning problem and provide preliminaries for
ILP and ECBS. In Section III and Section IV we describe
the time split heuristic and space heuristic respectively. In
Section V, we provide evaluation results of these heuristics
combined with MRMP solvers. We conclude in Section VI.

II. PRELIMINARIES

The Multi-Robot Motion Planning problem (MRMP) is
defined on an undirected graph G = (V,E). We assume
that G is a grid graph by default. That is, given integers w
and h as the graph’s width and height, the vertex set can
be represented as V ⊆ {(i, j) | 1 ≤ i ≤ w, 1 ≤ j ≤ h, i ∈
Z, j ∈ Z}. The graph is 4-way connected, i.e., for a vertex
v = (i, j), the set of its neighboring vertices are defined as
N(v) = {(i+1, j), (i− 1, j), (i, j+1), (i, j− 1)}

⋂︁
V . The

problem involves n robots r1, . . . , rn, where each robot ri has
a unique start state si ∈ V and a unique goal state gi ∈ V . We
denote the joint start configuration as XS = {s1, . . . , sn} and
the goal configuration as XG = {g1, . . . , gn}. The objective
of MRMP is to find a set of feasible path for all robots.
Here, a path for robot ri is defined as a sequence of T + 1
vertices Pi = (p0i , . . . , p

T
i ) that satisfies: (i) p0i = si; (ii)

pTi = gi; (iii) ∀1 ≤ t ≤ T, pt−1
i ∈ N(pti). Apart from the

feasibility of each individual path, for P to be collision-free,
∀1 ≤ t ≤ T, 1 ≤ i < j ≤ n, Pi, Pj must satisfy (i) pti ̸= ptj
(no collisions on vertices); (ii) (pt−1

i , pti) ̸= (ptj , p
t−1
j ) (no

head-to-head collisions on edges).
In this work, we consider two optimization objectives. The

first objective is to minimize the makespan, which is the
time for all robots to reach the goal vertices. Following our
problem definition, the makespan objective is interpreted as
minT . The second objective is to minimize the sum-of-costs,
a cumulative cost function that sums over all robots of the
number of time steps required to reach the goals. For each
robot, denoting ti such that ∀ti ≤ t ≤ T, pti = gi, the sum-
of-costs objective is calculated as min

∑︁
1≤i≤n ti. We point

out that this later objective is also often a good proxy to the
total travel distance objective.

The problems studied in this work are as follows.
Problem 1. Min-Makespan MRMP. Given (G,XS , XG),
find a conflict-free path set P that routes the robots from XS

to XG and minimizes makespan T .
Problem 2. Min-Sum-of-Costs MRMP. Given (G,XS ,
XG), find a conflict-free path set P that routes the robots
from XS to XG and minimizes sum of costs

∑︁
1≤i≤n ti.

Instead of developing full algorithms, this work focuses on
heuristics for dividing an MRMP instance into sub-problems.
These are solved using existing algorithms, in parallel when
possible. The two classes of heuristics divide the original
problem in time or space domain. After the split, we make
sure that the solution for one sub-problem does not affect
computing solutions for the others, thus maintaining the
completeness guarantee of the existing MRMP algorithms.

III. SPLITTING OVER THE TIME DOMAIN

Our time-division heuristic has its roots in a split heuristic
from [15]. We first provide a brief introduction of that heuris-
tic, and continue to describe our significant generalizations.

Given an MRMP instance, the original k-way (k as a
power of 2) split heuristic [15] divides a problem into k equal
sized sub-problems. Denoting the original start configuration
as XS and goal configuration as XG, in the first iteration,
the heuristic finds an intermediate configuration XIM , and
generates one sub-problem that routes robots from XS to
XIM , and another sub-problem that routes robots from XIM

to XG. Here, for each robot, its intermediate configuration
in XIM is a vertex that is roughly the same distance to
the robot’s start and goal vertices. Such a process is then
recursively applied to the two sub-problems for another k/2−
1 times each. After all sub-problems are created and solved
individually, a solution to the original problem is found by
concatenating solutions for the sub-problems. An example of
such a time division is provided in Fig. 1.
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Fig. 1. An example of the time-split heuristic. (a) The original problem in
a 6× 4 grid with 3 robots. The start and goal configurations are visualized
using red and green disks. The dashed lines show one set of possible solution
paths. (b) With the time-split heuristic, the problem can be solved in two
phases. The robots are first moved to an intermediate configuration (yellow
disks), and then to the goals.

A. Arbitrary Splitting over the Time Domain

The original k-way split limits k to be powers of 2 and
force each sub-problem to have roughly equal underestimated
makespan (i.e. the minimum possible makespan when ignor-
ing robot collisions). We remove these limitations, allowing



splitting the original problem into arbitrary number of sub-
problems with different underestimated makespan.

Given an MRMP instance (G,XS , XG) and k ∈ Z,
our time-split heuristic (Algorithm 1) first computes a
shortest path Pi for every robot i. Each time the instance is
split, conflict-free intermediate states are located. For each
intermediate state xij

IM , the intermediate state for robot i in
the j-th sub-problem, we consider all robots in a descending
order of the shortest path length. Then for each robot i, we
find a series of candidate intermediate goal states Xi

IM .
The intermediate state xij

IM is picked from the vertices
that are about dij = j · dist(xi

S , x
i
G)/k from the start vertex

and |Pi| − dij from the goal vertex while avoiding conflicts,
where dist(u, v) is denoted as the shortest distance between
two vertices u and v. If no conflict-free intermediate state is
found, vertices whose distance form start vertex are dij±1 are
considered. When all intermediate goal states are decided, a
polynomial time algorithm (i.e. [33], [34]) CheckSolvable()
can check if the resulting sub-problems are solvable. This
procedure is repeated until a feasible intermediate goal state
is found. The final feasible intermediate states denoted as
XIM := {xij

IM ; 1 ≤ j ≤ k − 1, 1 ≤ i ≤ n} will be
returned. In this way, the initial instance is split into k
sub-problems, P1(G,XS , X

1
IM ), ..., Pk(G,Xk−1

IM , XG). Any
MRMP solvers may be applied to solve the resulting sub-
problems. Since there is no interaction between the individual
sub-problems, once we obtain the solution for each sub-
instance the final path can be obtained by concatenating
them together. The final makespan is obtained by adding
all the makespan of each sub-problem together, which is
T =

∑︁
j Tj . In practice, the simple heuristic dramatically

improves algorithm performance without heavy negative
impact on path optimality in terms of makespan; we observe
a consistent speedup in computational experiments.

As a further generalization, our time-split also allows
splitting the problem into instances with arbitrary ratio.
For arbitrary ratio λj with

∑︁
j λj = 1, we just let dij =

(
∑︁ℓ=j

ℓ=1 λℓ)dist(x
i
S , x

i
G). For min-makespan MRMP, if we

decide to split original problem into k sub-problems, we
observe that even splits are generally better than uneven splits.
Empirically, the computational time of MRMP solvers is
largely determined by the time span. Since the computational
time of time-split MRMP is decided by the maximum running
time to solve each sub-problem, even splits lead to the
smallest expected maximum time span of sub-problems, and
consequently make the parallelization more efficient.

B. Special Considerations for Min-Sum-of-Cost Objective

Apart from requiring k to be a power of 2, the original
k-way split heuristic performs poorly in solving min-sum-
of-costs MRMP. Since the heuristic generates intermediate
configurations by equally splitting the shortest paths, robots
often cannot reach the goal configurations until the last sub-
problem. Thus, a robot does not reach the goal vertex as fast
as possible, even though it might be very close to the goal
in the beginning. As an example, suppose that a 2-way split
is carried out with each sub-problem having a time horizon

Algorithm 1: k-time-split for min-makespan MRMP
Input: Start and goal configurations XS , XG, graph G

1 Call A* to find an individual path Pi for each robot i;
2 Sort paths Pi according to path length in descent order;
3 for j = 1 to k − 1 do
4 while true do
5 Hused ← ∅;
6 for i = 1 to n do
7 S1 ← ∅, S2 ← ∅, dij ← j · dist(xi

S , x
i
G)/k;

8 smin = smax = dij ,
gmin = gmax = |Pi| − dij ;

9 while true do
10 Find the vertices whose distance is in

[smin, smax] from xi
S , add them to S1;

11 Find the vertices whose distance is in
[gmin, gmax] from xi

G, add them to S2;
12 V ← (S1 ∩ S2)−Hused;
13 if V ̸= ∅ then
14 Choose random xij

IM ∈ V , add it to
Hused;

15 break;

16 else
17 smin ← smin − 1, smax ← smax + 1;
18 gmin ← gmin − 1, gmax ← gmax + 1;

19 if CheckSolvable(Xj
IM ) then break;

20 return XIM ;

of T/2. If a robot ri does not move in the solution to the
second sub-problem (i.e., T/2 ≤ t ≤ T ), it contributes 0 to
the total distance. However, if ri moves even a single step in
the solution to the first sub-problem (i.e., 0 ≤ t ≤ T/2), then
ri will contribute at least T/2 to the total sum of costs. Thus,
the final sum of costs obtained would be highly sub-optimal
as pure an artifact of the heuristic.

We modify the min-makespan version of time-split, making
it applicable to min-sum-of-costs MRMP. Take 2-way split
as an example, suppose that the makespan lower bound
of original MRMP is T , we still break it into two sub-
problems with time horizon of T/2 each. Instead of choosing
intermediate states at the middle of each individual path, for
robot ri the vertex whose distance is di = min(T/2, |Pi|)
from start vertex while |Pi| − di from goal vertex would be
chosen, where |Pi| is the path length of robot ri found by
A* ignoring conflicts with other robots. By setting T/2 as
the threshold time-span, robots can reach their goal as fast
as possible and the resulting sum of costs lower bound of
the two sub-problems are additive.
Lemma III.1. If the original problem is feasible, the time-
split heuristic always generates feasible sub-problems.

Proof. Assume original problem P (G,XS , XG) is solvable,
then there must be an optimal solution Π = (Π0, . . . ,ΠT ),
with corresponding makespan T . Consider a configuration
Πj = (Π1j ,Π2j . . .Πnj) where Πij is denoted as the path ver-
tex of robot i at time step j, the sub-problems P (G,XS ,Πj)
and P (G,Πj , XG) are solvable. That is, a feasible problem
indicates that feasible intermediate configurations always exist.
Algorithm 1 iterates over all of the possible configurations
in the second outer loop and terminates in finite steps when



a feasible configuration is found.

Proposition III.1. The time-split heuristic maintains the
completeness of the existing MRMP algorithms.

Remark. Theoretically, time-split is complete on any graph.
In the worst case, finding a feasible intermediate configuration
takes O(|V |n) time. However, in our experimental evaluation,
when robot density is not extremely high, nearly every
intermediate configuration found leads to solvable instances.
Therefore, checking whether a sub-problem is solvable is
unnecessary when robot density is not extremely high.

Remark. Time split heuristic is applicable in combination
with any MRMP solvers; ILP and ECBS are chosen as
representatives here. The performance of ILP solver is heavily
affected by the ILP problem size, i.e. number of variables.
Therefore, with smaller sub-problems to solve, time-split ILP
runs faster than non-split ILP. As for ECBS, in the worst
case, the sub-problems adopt the whole map and expand
all states, which is the same as non-split ECBS. But in
practice, the original problem is divided into sub-problems
whose starts and goals are closer and it takes less time to
find individual paths. Also, because the starts and goals are
closer, usually when the instance is not very dense it takes
less time to find solution for each sub-problem since there
would be less conflicts in each sub-problem to resolve and
thus the CT-tree needs to be searched is smaller. Besides, the
heuristics allows us to take advantage of multiple cores and
the resulting sub-problems can be solved in parallel.

IV. SPLITTING OVER THE SPATIAL DOMAIN

As another natural route to the reduction of sub-problem
sizes, a space-split heuristic is explored which splits the
original problem over the spatial domain. To stitch together
the sub-problems, buffer zones are introduced between divided
regions of the environment (Fig. 2). Essentially, buffer zones
are regions with small blocks that allow robots to migrate
from one region of the larger environment to another region
of the environment between sub-problems. After examining
multiple choices, we settled with buffer zones containing
multiple small rectangular blocks that belong to different
regions in different sub-problems.

As an illustration, for the instance in Fig. 2, two buffer
zones B1 and B2 are created. Each buffer zone contains two
disconnected rectangular areas. The buffer zones separate the
rest of the graph into two regions G1, G2 where G = G1 +
B1 +G2 +B2. Here, we define operator “+” as G(V,E) =
G1(V1, E1) + G2(V2, E2) where V = V1 ∩ V2 and E =⋂︁

v∈V {(v, u)|u ∈ N(v)}. Operator “−” is similarly defined.
Depending on their starts and goals, robots are classified

into 4 groups: (i) xS ∈ G1 +B1, xG ∈ G1 +B1; (ii). xS ∈
G2+B2, xG ∈ G2+B2; (iii). xS ∈ G1+B1, xG ∈ G2+B2;
(iv). xS ∈ G2 + B2, xG ∈ G1 + B1. Depending on the
classification, intermediate goal states are selected for each
robot. For example, a robot going from B1 to B2 may require
it to go into G1 first. The rules of choosing intermediate states
are described in Algorithms 2 and 3. Algorithm 2 shows how
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Fig. 2. Space split applied to the example in Fig. 1. Here, G1, G2, B1, B2

are colored in pink, blue, green, grey, respectively. The two sub-figures show
the two sub-problems.

to classify the robots according to their starts and goals. If
start and goal are in the same sub-graph, the intermediate
state is chosen in that sub-graph. If the goal is in another
sub-graph and the robot is in the buffer zone, it should not be
sent to the buffer zone. If the goal is in another sub-graph but
not in the buffer zone, the robot should be sent to the buffer
zone in the first phase. Lines 7-8 ensure that the algorithm
can always find a conflict-free intermediate goal even if the
buffer zone is not large enough to hold all the robots.

Algorithm 2: Determine intermediate state
Input: Start xS ; goal xG; subgraphs G1, G2; buffer zones

B1, B2; set Hused

1 if xS and xG are in the same subgraph Gi then
2 xIM ← allocate(Gi, xS , xG);

3 else if xG is in another buffer zone then
4 xIM ← allocate(Gi −Bi, xS , xG);
5 else xIM ← allocate(Bi, xS , xG) ;

6 if xIM = null then xIM ← allocate(Gi, xS , xG) ;
7 return XIM ;

Algorithm 3: Allocate intermediate state
Input: Start and goal xS , xG;Subgraph SG(V,E) ;Set

Hused

1 xIM ← null, minV ← +∞;
2 for v ∈ V do
3 f ← λ1(max(dist(v, xS), T1) + max(dist(v, xG), T2)
4 +λ2ρ(v) + dist(v, xS) + dist(v, xG);
5 if f < minV and v /∈ Hused then
6 xIM ← v;
7 minV ← f ;

8 add xIM to Hused;
9 return xIM ;

Algorithm 3 describes how intermediate states are chosen.
We define f -value as a linear combination of the maximum
makespan of two sub-problems, the local density ρ(v), and
the total distance a robot will travel. The local density ρ(v)
is defined as the number of occupied neighboring vertices of
v. The vertex in a given sub-graph with minimum f value
would be set as the intermediate goal. For 2-split we use
T1 = T2 = T/2 as the threshold to make sure that makespan
of each sub-problem not exceed T/2 so that we can fully
take the advantages of multi-core computation.

After all intermediate states are determined, the original
problem is dealt with in two phases. In the first phase, robots
are sent from starts to intermediate states and we need to solve
P11(X

(11)
S , X

(11)
IM , G1+B1), P12(X

(12)
S , X

(12)
IM , G2+B2). In

the second phase, robots are sent from intermediate states to
their goals and we need to solve P21(X

(21)
IM , X

(21)
G , G1+B2),



P22(X
(22)
IM , X

(22)
G , G2+B1). Again, ILP or any other general

MRMP solvers can be readily applied to solve the resulting
MRMP sub-problems in parallel.

In general cases, when applying space split to divide an
original graph into l ×m sub-graphs, we use a fixed buffer
zone to complete the division. We find k intermediate states
for each robot and the solution procedure breaks into k
phases. In the i-th phase, the robots are sent from its (i−1)th
intermediate state to i-th one. For each phase, there are l×m
sub-instances need to solve and thus in total l × m × k
sub-instances need to be solved. The number of phases are
determined by l,m and the longest paths robots need to travel.
Usually, k is roughly l+m. A major advantage of the space
split is that the reduced environment size simultaneously
induces a reduction in sub-problems’ makespans, allowing
the sub-problems to be easily solved. As such, scalability is
significantly boosted. The space-split can be combined with
time-split, which brings further improvement to scalability.
We denote the combination as time-space-split.

V. EXPERIMENTAL EVALUATION

In this section, we evaluate how the proposed heuristics
affect the computation time and the optimality ratio. The
computation time is the time for an algorithm to generate a
solution.The optimality ratio is measured as the solution cost
over an underestimated cost, generated by moving all robots
to the goals, ignoring collisions. For each test scenario, we
push the number of robots up to the solvers’ limit to test
the effect of the heuristics on solvers’ scalability. The start
configuration, goal configuration and environment obstacles
are uniformly randomly generated. Each result entry in this
section is an average over 25 test cases.

We choose Integer Linear Programming (ILP) [15] and
Enhanced Conflict-Based Search (ECBS) [22] as the low-
level MRMP solvers. These two algorithms are state-of-the-
art in terms of solving MRMP on graphs. For ECBS, we
set its weight parameter w = 1.5 since it is a good balance
between optimality and computational efficiency, as indicated
in the original publication and from our observation. All
experiments are executed on an Intel R⃝ CoreTM i7-9700 CPU
at 3.0GHz. Our heuristics are implemented in Java, while the
MRMP solvers are in C++.

A. Evaluation of the Time Split Heuristic

First, we evaluated k-time-split heuristic on a 32 × 32
grid with 10% obstacles. Fig. 3 shows the makespan result
using ILP. Notation ILP-kt stands for the combination of
ILP and k-time-split. We observe that the scalability of ILP
is significantly improved with minimal impact on solution
optimality. For example, with 4-time-split, problems with
150 robots can be solved around 25 times faster, while the
optimality ratio is well under 1.06.

In the second scenario, we demonstrate that by modifying
the way intermediate goals are generated, the time split
heuristic becomes much better for the min-sum-of-costs
objective (see Fig. 4 and Fig. 5). Here ”mk” stands for
makespan and ”tt” stands for sum of costs. A first observation
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Fig. 3. Result of k-time-split on min-makespan MRMP.

is that, with the same number of sub-problems, the min-sum-
of-costs version of time-split helps ILP to generate solutions
much closer to optimal, as compared to the original k-way
split heuristic. For example, the optimality ratio dropped
from 1.6 to under 1.05 when using the revised heuristic. We
also find that, similar to the previous evaluation, the time-
split heuristic reduces computation time. There is a small
difference on the heuristic’s effect on computation time when
k = 2, since using min-sum-of-costs version of time-split
heuristic makes the first sub-problem relatively harder than the
second one. This implies that for sum-of-costs time-split, the
threshold time span at the middle is not necessarily the optimal
choice, which hints further opportunities for improvements.
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Fig. 4. Comparison of makespan and sum-of-costs time-split heuristics
on min-sum-of-costs MRMP. The test graph is 32 × 32 grid with 10%
obstacles.
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Fig. 5. Comparison of makespan and sum-of-costs time-split heuristics
on min-sum-of-costs MRMP. The test graph is 128× 128 grid with 10%
obstacles.

Apart from the ILP solver, the proposed time-split heuristic
also applies to other solvers such as ECBS. We evaluate the
heuristic with ECBS on both grid graphs and the Dragon
Age Origins (DAO) maps [35] (see Fig. 6), optimizing the
makespan objective. Here, the test cases are imported from
public MRMP benchmark instances that comes along with the
maps, instead of randomly generated by ourselves. The results
are shown in Fig. 7-9. Here, time-split allows problems with
10× more robots to be solved in the same amount of time
while the solution optimality is just above 1.06. This further
confirms that the time-split heuristic significantly extends the
scalability of existing MRMP solvers while sacrificing little
optimality.



Fig. 6. The DAO maps: ost003d, den520d, brc202d.
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Fig. 7. Performance of time-split ECBS on ost003d.
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Fig. 8. Performance of time-split ECBS on den520d.
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Fig. 9. Performance of time-split ECBS on brc202d.

B. Evaluation of the Space Split Heuristic
For space split, we mainly focus on the makespan objective

and evaluated over many types of large grid graphs. In
Fig. 10, we test space-split ILP on a 128 × 128 grid and
compare it with time-split. With the same split level k, 2-
space and 4-space splits run faster than 2-time and 4-time
splits, respectively. 4-time split runs out memory when there
are 40 robots while 4-space split can handle 60-70 robots
without out of memory error. Due to the fact that 8-space
split needs to solve much more sub-problems but the number
of CPUs is limited, 8-space split scales better but in some
cases not faster than 8-time split.

20 40 60 80 100
Number of Robots (n)

0

20

40

60

80

100

C
om

pu
ta

tio
n

Ti
m

e
(s

)

ILP-2t
ILP-2s
ILP-4t
ILP-4s
ILP-8t
ILP-8s

20 40 60 80 100
Number of Robots (n)

1.00

1.05

1.10

1.15

1.20

1.25

O
pt

im
al

ity
R

at
io

Fig. 10. Time-split vs space-split ILP on 128× 128 grid.

C. Combined time-space split heuristics
As a last evaluation, we combine the two heuristics. Shown

by the test result (Fig. 11) on a 128 × 128 grid with 5%
obstacles, the combination of the two heuristics further
extends existing algorithms’ scalability. Method ”xsyt” means
that y-time-split is applied after a x-space split. While 16-time
split has out of memory error when n ≥ 300, time-space-split
can handle instances with n > 1000. The ILP solver can
now be used to solve problems in large environments with a
large number of robots, while maintaining 1.x optimality.

We also attempted different size of buffer zones to see how
it would affect the performance of time-space-split (Fig. 12).
As it shows, using smaller buffer zones (e.g., 4× 2) benefits
both of computation time and optimality.
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Fig. 11. Performance of time-space-split ILP on a 128× 128 graph with
5% obstacles.
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Fig. 12. Performance of space-split ILP using different size of buffer
zones on 128× 128 grid.

VI. CONCLUSION

In this work, temporal and spatial division heuristics are
developed for improving the performance of MRMP solvers.
These heuristics are shown to increase the computational
speed while maintaining solution quality. These heuristics can
be applied in combination with most MRMP algorithms. We
note that (as proved) time split is complete and applicable to
any graph; magnitudes of performance gains were consistently
observed. On the other hand, space split is not complete. But
space split enables ILP to provide solutions of good quality
for some challenging MRMP problems that are otherwise
not solvable previously.

In future work, we intend to make these heuristics more
data-driven. That is, we will determine how to perform
the temporal and spatial division based on the problem
input dynamically. For example, the k in k-time-split can be
selected based on f(n, S, T ) mentioned in the introduction.
Furthermore, we plan to explore how to dynamically choose
the buffer zone in the space split heuristic to improve its
performance. Dynamic buffer zones are desirable when we
work with irregular graphs and graphs with high obstacle
density (e.g. ≥ 25%). Machine learning techniques may be
also be applied.
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