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Abstract

Motivated by problems in controlled experiments, we study the discrepancy of random matrices with contin-
uous entries where the number of columns 7 is much larger than the number of rows m. Our first result shows
that if w(1) = m = o(n), a matrix with i.i.d. standard Gaussian entries has discrepancy ©(,/n 2~™/™) with
high probability. This provides sharp guarantees for Gaussian discrepancy in a regime that had not been
considered before in the existing literature. Our results also apply to a more general family of random ma-
trices with continuous i.i.d entries, assuming that m = O(n/logn). The proof is non-constructive and is an
application of the second moment method. Our second result is algorithmic and applies to random matrices
whose entries are i.i.d. and have a Lipschitz density. We present a randomized polynomial-time algorithm
that achieves discrepancy e~ Uog®(n)/m) ith high probability, provided that m = O(y/logn). In the one-
dimensional case, this matches the best known algorithmic guarantees due to Karmarkar—Karp. For higher
dimensions 2 < m = O(y/log n), this establishes the first efficient algorithm achieving discrepancy smaller
than O(y/m).

Keywords: Controlled experiments, covariate balance, discrepancy, random matrix, second moment method,
number partitioning, greedy algorithm

1. Introduction

Randomized controlled experiments are often dubbed the “gold standard” for estimating treatment effects
because of their ability to create a treatment and a control group that have the same features on average.
Indeed, pure randomization, i.e., assigning each observation uniformly at random between the treatment
and control group, leads to two groups with approximately the same size, the same average age, the same
average height, etc. Unfortunately, because of random fluctuations, this approach may not lead to the best
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balance between the attributes of the control group and those of the treatment group. Yet, near perfect bal-
ance is highly desirable since it often leads to a more accurate estimator of the treatment effect. This quest
for balance was initiated at the dawn of controlled experiments. Indeed, W.S. Gosset, a.k.a Student (of ¢-test
fame) already questioned the use of pure randomization when it leads to unbalanced covariates (Student,
1938), and R.A. Fisher proposed randomized block designs as a better solution in certain cases (Fisher,
1935). One traditional approach to overcome this limitation is to simply rerandomize the allocation until the
generated assignment is deemed balanced enough (Morgan and Rubin, 2012; Li et al., 2018). Rerandom-
ization is effectively a primitive form of optimization that consists in keeping the best of several random
solutions. However, it was not until recently that covariate balancing was recognized for the combinatorial
optimization problem that it really is. With this motivation, Bertsimas et al. (2015); Kallus (2018) proposed
algorithms based on mixed integer programming that, while flexible, did not come with theoretical guaran-
tees. More recently, Harshaw et al. (2019) used new algorithms from Bansal et al. (2018) with theoretical
guarantees to generate experimental designs with a tunable degree of randomization versus covariate balance
and characterized the resulting trade-off between model robustness and efficiency for a specific treatment
effect estimator computed on data collected in such experiments.

In this work, we investigate both the theoretical and algorithmic aspects associated to this question by
framing it in the broader scope of vector balancing. In particular, this question bears strong theoretical
footing in discrepancy theory.!

Let X1,..., X, € R™ denote a collection of vectors and let X denote the m X n matrix whose column
iis X;. The discrepancy D(X1, ..., X,,) of this collection is defined as follows.?

D, :=D(X1,...,Xn) :ger?jlclll}" ZGZ il = min |Xo| (1.1)

Discrepancy theory is a rich and well-studied area with applications to combinatorics, optimization,
geometry, and statistics, among many others (see the comprehensive texts Matousek, 1999; Chazelle, 2000).
A fundamental result in the area due to Spencer (1985) states that if max; | X;|oc < 1 and m = n, then
D,, < 64/n. Spencer’s proof is nonconstructive and relies on a technique known as partial coloring. In
the last decade, starting with the breakthrough work of Bansal (2010), several algorithmic versions of the
partial coloring method have been introduced to efficiently find a signing o that approximately attains the
minimum in (1.1). These include approaches based on random walks (Bansal, 2010; Lovett and Meka,
2012), random projections (Rothvoss, 2017), and multiplicative weights (Levy et al., 2017). In the regime
where m > n, these algorithms can be used to compute a signing (or allocation) ¢ € {—1,1}" with
objective value O(y/nlog(2m/n) ). Moreover, this guarantee is tight in the sense that examples are known
with discrepancy matching this bound.

The aforementioned results make minimal structural assumptions on the vectors X, ..., X, and treat
the input as worst-case. However, in the context of controlled experiments, it is natural to assume that
Xi,...,X, are, in fact, independent copies of a random vector X € IR™. While more general results
are possible, the reader should keep in mind the canonical example where X ~ N, (0, I,,,) is a standard
Gaussian vector, and in particular where the entries of X are of order 1. We dub the study of D,, in this
context average-case discrepancy.

It was first shown in Karmarkar et al. (1986) via a nonconstructive application of the second moment
method that when m = 1, the average-case discrepancy is D,, = O(y/n2~") with high probability, assum-

1. The recent work Harshaw et al. (2019) takes a similar point of view, though here our purpose is to focus purely on optimal
covariate balance.

2. In the interest of clarity, we free ourselves from important considerations in the practical design of controlled experiments such
as having two groups of exactly the same size.
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ing that the underlying distribution has a sufficiently regular density. This result was extended to specific
multidimensional regimes. First, Costello (2009) showed that D,, = ©(y/n 27/ ") in the constant dimen-
sion regime m = O(1). The optimal discrepancy is also known in the super-linear regime m > 2n where
it was shown that D,, = O(y/nlog(2m/n)).> In particular, there is a striking gap between this bench-
mark and the discrepancy [Xo"™|,, = ©(y/nlogm) achieved by a random signing ¢"™, especially in
the sub-linear regime. Motivated by applications to controlled experiments, Krieger et al. (2019) studied the
average-case discrepancy problem with the aim to improve on this gap. The authors devised a simple and ef-
ficient greedy scheme that, in the univariate case, outputs an allocation 08" satisfying |Xo®&"¢| = O(n~2).
In addition, Krieger et al. (2019) argue that |Xo®"¢| = O(n~%/™) for any constant dimension m.
This state of the art leaves three important questions open:

1. Can a sub-polynomial discrepancy be achieved in polynomial time even in dimension 1?
2. What is the optimal discrepancy in the intermediate regime where w(1) = m = o(n)?

3. Do there exist efficient allocations that perform better than the random allocation in super-constant
dimension?

The answer to the first question is well known. Indeed, the best known algorithm for number partitioning
is due to Karmarkar and Karp (1982) and yields o € {—1,1}" such that |Xo | = e~20g”n) with high
probability (see also Boettcher and Mertens, 2008). While this result provides a super-polynomial improve-
ment over algorithms built for the worst case, a significant gap remains between the information-theoretic
bounds and the algorithmic ones despite extensive work on the subject (Boettcher and Mertens, 2008; Borgs
et al., 2001; Hoberg et al., 2017). This suggests the possibility of a statistical-to-computational gap sim-
ilar to those that have been observed starting with sparse PCA (Berthet and Rigollet, 2013a,b) and more
recently in other planted problems (Brennan et al., 2018; Bandeira et al., 2018). Moreover, while the greedy
algorithm of Krieger et al. (2019) is loosely based on ideas from this algorithm, no multivariate extension
of this algorithm is known even for the case m = 2. Note that in the super-linear regime m > 2n, the
work of Chandrasekaran and Vempala (2014) also proposes a polynomial-time algorithm based on Lovett
and Meka (2012) showing an absence of substantial statistical-to-computational gaps.

In this paper, we provide answers to the remaining two questions raised above. First, we show that
the discrepancy of standard Gaussian vectors is ©(y/n 2~"/™) with high probability for the remaining
regime w(1l) = m = o(n). Moreover, we complement this existential result by giving the first random-
ized polynomial-time algorithm that achieves discrepancy e~ 2(1°8”()/m) when 2 < m = O(y/logn). Note
that while this remains an intrinsically low-dimensional result, it covers already super-constant dimension.
This first algorithmic result paves the way for potential algorithmic advances in a wider range of high-
dimensional problems. In particular, our existential result sets an information-theoretic benchmark against
which future algorithmic results can be compared as well as a baseline to establish potential statistical-to-
computational gaps in high dimensions. These improved discrepancy bounds also have direct applications
to randomized control trials. For example, in the case of an additive linear response with all covariates
observed, the discrepancy attained by the allocation controls the fluctuations of the difference-in-means
treatment effect estimator (Krieger et al., 2019).

Besides discrepancy, another point of view on balancing covariates in randomized trails is that of pair-
wise matching. In this setup, the experimenter first divides the sample into two equal-sized groups and then
pairs up individuals who have similar covariates. The quality of the optimal matching is naturally measured
by the Wasserstein-1 distance between the two groups of covariates. For the unidimensional case, Greevy

3. The upper bound established in Chandrasekaran and Vempala (2014) presents additional polylogarithmic terms that are negli-
gible for most of the range m > 2n. This is also the regime considered by Harshaw et al. (2019).
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et al. (2004) proposed a scheme that consists of performing a minimum cost bipartite matching, and this can
be implemented in near-linear time using modern tools from computational optimal transport (Altschuler
etal., 2017, 2019). In addition, recent results from optimal transport (Ledoux and Zhu, 2019) study the case
of i.i.d Gaussian covariates in constant dimension m and derive sharp asymptotic bounds on the Wasserstein-
1 distance of the form n~'/™. This perspective deserves further study and provides another promising
approach for improving the quality of inference in randomized control trials.

2. Main results

In this section, we give an overview of our main results. Detailed computations and proofs are postponed to
subsequent sections.

2.1. Existential result

Our first main result shows that when X, ..., X, i N(0, I;,) and w(1) = m = o(n), then the discrepancy
is asymptotically /75" 2~"/™ with high probability. As in the one-dimensional case (Karmarkar et al.,
1986), this result highlights that drastic cancellations are possible, with high probability, when the number

of vectors grows asymptotically faster than the dimension.

Theorem 1 Fix an absolute constant v > 1 and suppose that w(1) = m = o(n). Let X1,..., X, i
N (0, I,,,) be independent standard Gaussian random vectors. Then
lim IP[D(Xl, LX) <y /@2—"/’”} —1. (2.2)
n—o0 2
Ify < 1, then
lim P [D(Xl, o Xn) > /MQ—"/W] =1. (2.3)
n—00 2

The work of Costello (2009) handles the case m = O(1), and shows that the limiting probability in (2.2)
is exactly 1 — exp(—2~""). We also note that the series of papers by Borgs et al. (2001, 2008a,b) provides
an even more complete description of the unidimensional case.

Our results are not limited specifically to Gaussian distributions. A mild extension of our techniques al-
lows us to derive a similar result for a more general family of distributions, assuming that m = O(n/logn).

Remark 2 Let C' > 0 denote a sufficiently small absolute constant, and suppose that m < Cn/logn.
Let X denote an m x n random matrix whose entries are i.i.d random variables having a common density
f R — R such that

/f(x)2dx < 00, /1:4f(:1:)d33 <oo, and f(x)=f(—x),VzelR.
Then there exist absolute positive constants ¢ < ¢’ such that

lim P [c\/ﬁrn/m <D(Xy,...,Xn) < c/\/ﬁ2_”/m] ~ 1

n—oo

We omit the proof of the above remark and focus on the Gaussian case for simplicity and because for
Gaussian vectors, our analysis covers the whole range m = o(n).
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The proof of the upper bound in Theorem 1 is a nonconstructive application of the second moment
method, in a similar spirit to the analysis of Karmarkar et al. (1986) on the one-dimensional case as well as
Achlioptas—Moore’s analysis of the threshold for random k-SAT (Achiloptas and Moore, 2002). Recall that
the second moment method states that for a nonnegative random variable S, we have

&=

Ell

P[S > 0] > E[SY’

2.4)

As described in more detail in Section 3, our strategy is to let .S count the number of signings with discrep-
ancy at most 27 m S /2 and show that the right-hand-side of (2.4) tends to 1 asymptotically. We also
note that the lower bound in Theorem 1 is a straightforward consequence of the Markov inequality (first
moment method) applied to .S (see Proposition 7).

In addition to our result for m = o(n), using similar techniques we also provide a precise characteriza-
tion of Gaussian discrepancy in the linear regime m < dn, where ¢ is a sufficiently small absolute constant.
In Appendix B, we show that the discrepancy is ©(,/n2~1/%) with probability at least 99%, asymptotically
as n — oo. This provides further evidence of a conjecture of Aubin et al. (2019) that the discrepancy
when m = dn is asymptotically c¢(§)/n with high probability for an explicit function c(§).* In particular,
our result combined with those of Chandrasekaran and Vempala (2014) confirms that the discrepancy is
©(c(d)+/n) with asymptotic probability at least 99% when m = én for all § > 0.

Complementary to our work, we discuss recent existential results on average-case discrepancy in the
discrete case when X1, ..., X, arei.i.d vectors in {0, 1}". Extending prior work of Ezra and Lovett (2016),
Franks and Saks (2018) and Hoberg and Rothvoss (2018) use a nonconstructive Fourier-analytic argument to
show, for two different models of random sparse binary vectors, that the discrepancy is O(1) if n = Q(m?)
(Franks and Saks, 2018) and n = Q(mQ) (Hoberg and Rothvoss, 2018). In addition, for the continuous case,
Franks and Saks (2018) show that the discrepancy of random unit vectors is O(exp(—+/n/m3)). Potukuchi
(2018) uses the second moment method to show the discrepancy is O(1) if n = Q(mlogm) in the specific
case where the entries of X are uniform on {0, 1}. In other recent work, Bansal and Meka (2019) establish
an average-case version of the Beck—Fiala conjecture, giving an algorithmic proof that the discrepancy
of uniformly random ¢-sparse binary vectors is at most O(+/t) for the entire range of parameters m,n if
t = Q(loglogm). It is an open question as to whether there exists a polynomial-time algorithm achieving
O(1) discrepancy for random {—1, +1} vectors or sparse {0, 1} vectors with n = poly(m) (Hoberg and
Rothvoss, 2018; Franks and Saks, 2018).

2.2. Algorithmic result

Our second main result is algorithmic and applies to a large family of continuous distributions. We con-
struct a randomized polynomial-time algorithm called Generalized Karmarkar—Karp (GKK) that achieves
discrepancy exp(—$(log®(n)/m)) with high probability, assuming m = O(y/Iogn). This establishes the
first such efficient algorithm achieving quasi-polynomially-small discrepancy for this regime. Our algorithm
and analysis extend those of Karmarkar and Karp (1982) in the one-dimensional case to higher dimensions.’

4. See Appendix B for a more precise description of their results.

5. Karmarkar and Karp (1982) give two algorithms for number partitioning. The first one is a simple greedy heuristic, but its
analysis was only performed for the uniform distribution over a decade later by Yakir (1996). Our algorithm presented here
generalizes the second one which was rigorously analyzed in the original paper of Karmarkar and Karp (1982).
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Theorem 3 Let X denote a random m x n matrix with iid entries having a common density p : [—A, A] —
R which is L-Lipschitz and bounded above by some constant D > 0. Suppose that

logn
< - =2 @@
= C\/ max(1,log A)’

for some sufficiently small absolute constant C = C(D,L) > 0. Then the algorithm GKK outputs, in
polynomial time, a signing o € {—1,+1}" such that

clog®n
|Xo|,, <exp <— - ) ,

with probability at least 1 — exp(—cnl/ 4) for some absolute constant ¢ > 0.

This result easily extends to distributions with unbounded support. For example, if X has i.i.d stan-
dard Gaussian entries, then setting A = O(+y/logn) and conditioning on the (high probability) event
{|X;;| < A Vi, ;}, we can apply Theorem 3 to show that GKK yields discrepancy exp(—clog?(n)/m) for
the Gaussian matrix X.

It is an open question as to whether or not the guarantee of Theorem 3 can be improved to achieve sub-
quasi-polynomial discrepancy efficiently, even in dimension one. Note that for m = 1, Hoberg et al. (2017)
provide evidence of hardness of a O(Qﬁ)—approximation to the optimal discrepancy in worst case via a
reduction from the Minkowski problem and the shortest vector problem. We leave the following question.

Question 1 Suppose that m = n" for some v € (0,1). Let X denote a random m x n matrix with
independent standard Gaussian entries. What is the smallest possible value of | Xo|~ that can be achieved
algorithmically in polynomial time?

In particular, it is an open problem as to whether the partial coloring method can be used to guarantee
subconstant discrepancy for standard Gaussians when m = n”. We suspect that the answer is negative. It
seems that even attaining discrepancy o(y/m) serves as a natural bottleneck for such an approach.

3. Gaussian discrepancy in sub-linear dimension

The main goal of this section is to prove the following proposition. Throughout, we adopt the shorthand
notation u,, <, vy, for u, < v, (14 o(1)) and u,, ~, v, for u,, = v, (1 + o(1)).

Proposition4 Fixy > 1, w(1) = m = o(n), and let X1, ..., X, u N(0, I,,,) be independent standard
Gaussian random vectors. Then

lim P|D(Xy,...,X,) < 7\/%2"/7”} —1.
n—00 2

We first outline our proof strategy based on the second moment method. Sete = &(n) = y2n/my Srn /2
and define S, the number of low discrepancy solutions, to be

S= > (> aXi] <e). (3.5)
1=1

oe{£1}n
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Our goal is to show that IE[S?]/IE[S]? = 1 + o(1). By the second moment method (2.4), this implies the
desired result.

The next lemma gives a useful form for the first and second moments of S and follows from a straight-
forward calculation. Its proof is postponed to Appendix A.

Lemma 5 The random variable S defined as in (3.5) has its first two moments given by

n € \m
E[S] = 2"P(|Z] < ﬁ) (3.6)
where Z ~ N (0, 1), and

n

s =2 () (Vx| <<

k=0

VY| <e)™ . (3.7)

Here py, = 1 — 2k /n and B, denotes the joint distribution of (X,Y") with X, Y ~ N(0, 1) having correla-
tion py.

n=1000, m = [VI000], ¢ =1/n

Given this representation, we proceed in two steps to prove
an upper bound on the second moment IE[S?]:

o (i) We first apply a truncation argument to show that the
- contribution from the k¥ < n/4 and k > 3n/4 terms in
“° the summand of (3.7) is negligible. See Lemma 14 and
its proof in Appendix A for details.

(i1)) Then we show that the dominant contribution in the
summation (3.7) is asymptotically bounded by E[S]?

Figure 1: o — ¢n(a) for n = 1000, m = and comes from an interval of length ©(y/n) around
[V1000], and € = 1/n. k ~ n/2. This part is somewhat delicate and we ap-

ply the Laplace method to obtain sharp bounds.

By step (i), it suffices to control the leading term

3n/4

=2 3 () (Vx| <,

k=n/4

ViY| <e)™. (338)

To that end, approximate the above binomial coefficient using Lemma C.2 in Berthet et al. (2018): For any
1 €(0,1/2], a € (1,1 — 1) such that na is an integer, it holds

exp ( _ ﬁ) < \/mexp(—nh(a)) <ann> < exp (%) s

where h(a) = —alog a — (1 — a) log(1 — «v) denotes the binary entropy with h(0) = h(1) = 0. Therefore,
it holds that

3n/4

D exp(n(an)) (3.9)

k=n/4

2n
\V2m™n

L <,
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where oy, = k/n and

on(a) = nh(a) + mlog(lP1_oq H\/ﬁX’ <e,

VnY | ge])—%loga(l—a). (3.10)

Moreover, as justified in Lemma 15 (see Appendix A), for n sufficiently large, ¢, («) is a strictly concave
function on [0.25,0.75] with a unique maximum at & = 0.5. See Figure 1 for the graph of ¢, («) for a
specific setting of the parameters. Thus we can make the Riemann sum approximation

n 3n/4 n r3/4
L<, E " < Yo W (a))da. 3.11
SV kn/4exp(¢ () < or i exp(¢n(a))da (3.11)

Our goal now is to employ the Laplace method (see, e.g., Murray, 1984), a well-known technique from
asymptotic analysis, to compute explicitly the asymptotic growth of the right-hand-side above. It consists
in performing a second-order Taylor expansion of ¢,, in order to reduce the problem to the computation of
a Gaussian integral.

Lemma 6 Suppose that m = o(n) and set ¢ = v2~™/"™ /nx /2. Recall the definition of S from (3.5). Then
L <, E[S]2. (3.12)

Proof We apply the Laplace method to the integral in (3.11). Let n € (0,1) be arbitrary, and define
gn(a) = ¢p(a)/n. Since h”’ () is continuous, Lemma 15 implies that there exists § = d(n) and N = N(n)
such that

1

~[én(e) —¢n(1/2)[ <n, Vae(1/2-6,1/244),n>N. (3.13)
The above inequality follows by writing g// () = h”(a)) + 1, (), where r,, (<) is a remainder term that goes
to 0 uniformly in « € (0.25,0.75) as n — oo, using Lemma 15. Using that the remainder term is small and

h" () is continuous at aw = 1/2, we arrive at (3.13).
By (3.13) and Taylor’s theorem,

I () — n(1/2) < %( "(1/2) + mm) (o — 1/2)%, Va e (1/2—6,1/2+6), n > N. (3.14)

Moreover,
Z(1/2)+77n<0 (3.15)

for n sufficiently large because € (0,1) and ¢!'(1/2) ~, —4n by Lemma 15. Therefore, since ¢,, is
increasing on (0.25, 0.75) for n sufficiently large,

n 1/2-6
expwfwm /1/4 exp(dn(a)) da Sn 10v/nexp(dn(1/2 — 8) — ¢u(1/2)) (3.16)

S 10viep ((6101/2) + m)d?) = of1),

where we applied (3.14) and (3.15). By symmetry of ¢,,(«) about a = 1/2, the integral as in (3.16) from
1/2 4 ¢ to 3/4 is negligible. Moreover, by (3.14),

1/246 1/246 o
/1 exp(om(a)) da <n / exp <¢n(1/2) +5@001/2) (a1 /2)2> do (317

/2= 1/2—6

2m n m 2m
S el g ]~ m



BALANCING GAUSSIAN VECTORS

where

fo=Po(|VnX| <e,|VnY]| <e).

Since n € (0, 1) was arbitrary, we conclude by (3.6), (3.9), (3.11), (3.16), (3.16), and the definition of f,
that

2n
L <
~"2mn

3/4
e [ explon(a) da S, 2 = EISP
1/4

Proof [Proof of Proposition 4] We see that E[S?]/E[S]? <,, 1 as n — oo applying Lemma 5, Lemma 14,
(3.8), (3.9), and Lemma 6. Proposition 4 follows by the second moment method. |

We complement Proposition 4 with a near-matching lower bound.
Proposition 7 Let w(1) = m = o(n), fixy < 1, and let X1, ..., X, d N(0, I,,) be independent standard
Gaussian random vectors. Then

lim IP [D(Xl, L Xn) < /mzn/m} — 0.
n—o00 2

Proof Recall the definition of .S as in (3.5), which counts the number of signings with discrepancy ¢ =
72_”/ ™y/mn/2. By the Markov inequality, (A.20), and (3.6),

m
P[S > 1] < E[S] = 2"PP [|Z! < /”2”2“/7”] <p ™ =0
because w(1) = m = o(n) and v < 1. This completes the proof. [

Our first main result, Theorem 1, is a direct consequence of Propositions 4 and 7.

4. Algorithmic discrepancy minimization in low dimension

Now we describe our approach for proving Theorem 3. In this section we introduce the generalized
Karmarkar—Karp algorithm GKK. Recall that the goal is to find algorithmically o € {£1}" such that
|Xo|., is small. As in Karmarkar and Karp (1982), our algorithm is a differencing method, which means
that throughout the algorithm, we maintain a set of vectors S, and our basic operations consist of removing
two vectors, say = and y, from S and then adding the difference to S : S < SU{z—y}\{z,y}. We perform
a sequence of these differencing operations in a judicious way until there is a single vector v remaining in
S. Note that at any given time, the elements of S correspond to (disjoint) partial signed sums of the original
vectors X1, ..., X,. Hence, the final vector v € S is indeed a signed sum of the original vectors. It is
possible to keep track of the final signing by tracking the differences, though we do not do so explicitly.
Next, we informally describe the GKK differencing method in detail. For simplicity, we assume that
A = 1 in this description. The algorithm GKK is a recursive procedure that consists of ©(logn) phases.
For the first phase of the recursion, given a collection of n vectors lying in [—1, 1], we partition this cube
into sub-cubes of side length o = n~*1/™)_ The idea is that with sub-cubes of this size, we are likely to
have multiple points in each sub-cube, and these points would be very close to each other. We then randomly
difference the vectors in each sub-cube until there is at most one point left in each sub-cube. Next, we enter
a clean-up step to deal with the leftover vectors. First we combine the leftover vectors (at most one per each
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sub-cube) via a standard differencing algorithm that we call REDUCE into a single ‘bad’ vector v(*) and
let G’ C [—a, o)™ denote the vectors formed from random differencing. Next we make the entries of the
bad vector small by adding signed combinations of a few vectors from G’. Namely, we draw at random
points from G’ and greedily difference them against v©) until the resulting vector is sufficiently small in the
Euclidean norm. Specially, our update procedure for this clean-up step is

k)

v = =D 4 g*u, (4.18)

a* = argmin [v*Y + quy,
ac{£1}
where u j, is drawn at random from the remaining vectors is G’.

Once we have v(¥) € [~O,,(a), O (a)]™, we stop drawing random vectors from G’, and this ends
the first phase of recursion. The remaining vectors form the input to the second phase, which applies the
same procedure as above on the smaller cube [—a, a]™. Moreover, subsequent phases follow the same
pattern: partition, difference, and clean-up. After each phase, the input cube shrinks by a factor of

—Q(1/m) Hence, after a logarithmic number of phases, the remaining vectors lie in a cube of side length
n~n/m) — —Qlog”n/m) \We then apply REDUCE to combine the remaining vectors into a single vector
with discrepancy as in Theorem 3.

We remark that our algorithm also features a resampling step that happens immediately after partition-
ing. In each phase, this resampling procedure labels points as ‘good’ or ‘bad’ so that the good points are
independent and have independent coordinates that have a nice distribution. This same resampling trick
was also used in Karmarkar and Karp (1982) and is essential for (most of) the remaining random vectors at
the end of each phase to have a nice distribution facilitating a recursive analysis. Moreover, the partition
and difference steps of our algorithm are also similar to those used in Karmarkar and Karp (1982) for the
one-dimensional case.

In summary, the algorithm GKK consists of several phases of a subroutine PRDC, which stands for
partition, resample, difference, clean-up, that we now define explicitly. In the first part of the clean-up
phase, we remark that the aforementioned algorithm REDUCE is applied. However, we defer the explicit
description of this algorithm, which uses standard techniques, to Appendix C, instead stating its key property
of use.

Lemma8 Given X1,..., Xy € R™, the algorithm REDUCE is polynomial-time and outputs o € {+1}V

such that
N

ZUiXi
9]

=1

max Z |X; (4.19)

CINL|S|=m

In the explicit description of PRDC below, v > 0 denotes a fixed absolute constant to be set later (see
Appendix E).

PRDC:
Input: A number oy > 0. A set of vectors Sy C [—ay, oy|™. A single vector vy C ym[—ay, ay]™. A
pdf g¢ : [, ay]™ — R. Define N; = 2™ HStll/(‘lm)]m
1. Partition: Define a1 = oy/[|S;|"/*"™)7. Divide the cube [—ay, y]™ into N; disjoint sub-cubes
C1,...,Cy, that are of the form o412 + [0, az41]™ for some integer vector z € Z™.

2. Resample: Independently for every vector x in Sy, if x € C}, then label x as ‘good’ with probability
(minyec; g¢(y))/ge(w). Otherwise, label z to be ‘bad.” Let G denote the set of good points and B;
denote the set of bad points.
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3. Difference: For every sub-cube C}, pick uniformly at random two points in G N C}, include their
difference in G}, and remove them from G;. Continue this until G; N C; has at most 1 good point for
every j. Let By be the union of By, vy, and the leftover good points.

4. Clean-up:
(a) Apply REDUCE to the vectors in By to obtain o. Define vgo) =D e Bl oib;.
(b) Fork=0,1,2,...
if [oF)| > : iforml d i G}. Define v\* ) = o{¥) 4 g*
£ |, 2 YMe+1: remove uniformly at random a point € Gj. Define v, =v,  +a'z
where a* = argmin, ¢ 1) |U§k) + axly. Define G} + Gj\{z}.
Else: v41 := v\"). BREAK
Output: St+1 = G;, Vi1, Q41 1= Oét/HSt|1/(4m)-|

Now we explicitly describe our main algorithm GKK in terms of the subroutine PRDC. Recall that p is
the density corresponding to a particular entry of X. First we need the following definition.

Definition 9 (Triangular distribution) A random vectory € R follows a triangular distribution on the
cube [—R, R)™ if the distribution of y is given by u — v, where u and v are independent and uniformly
distributed on [0, R)™. Notationally, we write'y ~ Tri[—R, R]™.

GKK:
Input: An m x n matrix X. A probability density function p : [-A,A] — R. Let T = [C*logn]
where C* := (210g(10/3)) L.

1. Set S1 = col(X), a1 = A, v1 = 0, and g1 = p®™.
2. Fort=1,2,...,T:

(a) Run PRDC on the input data S, v, i, g¢ to output Syy1, ve11, and gy 1.
(b) Setgiy1(x) =

3. Apply REDUCE to the vectors in S7 U {vr} to obtain 0. Let v = zsiESTU{UT} 0iS;.

f(x/ayy1), where f(x) is the triangular density on [—1, 1]™.

1
Q41

Output: |v|s

We remark that the first three steps of PRDC are similar to those in the corresponding subroutine in Kar-
markar and Karp (1982) for the one-dimensional case. The clean-up step and its analysis on the other hand
are quite different. In particular, we use REDUCE to combine the ‘bad’ vectors left over from resampling
into a single bad vector v(*). This subroutine is quite similar to the algorithm used by Beck—Fiala to show
that ¢-sparse vectors have discrepancy at most 2¢t — 1 (Beck and Fiala, 1981). In contrast, Karmarkar and
Karp (1982) use a greedy iterative algorithm for dealing with bad points in dimension 1, but it is not clear
how to generalize their algorithm to also work in higher dimensions. In the next part of the clean-up step, we
must bring the bad vector v(?) into a smaller range. Karmarkar and Karp (1982) do this by randomly sam-
pling points from G’ and greedily differencing them against v©) until the resulting number is small. Here
we use the same approach, but since we are working in higher dimensions, we measure the resulting vector
in the Euclidean norm. In this part of the clean-up step, the key difference between our work and Karmarkar
and Karp (1982) lies in our analysis, which includes elements of the analysis of stochastic gradient descent,
as well as martingale concentration and the Khintchine inequality (see Appendix E).
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We also comment on the reason for the bound m = O(y/logn) in Theorem 3. First observe that by
our choice of o = n~/™) for the side-lengths of the sub-cubes at the first phase, it is necessary that
m = O(logn); otherwise the sub-cubes are not smaller than the original cube. The reason we require the
stronger condition m = O(y/logn) is so that not too many points are labeled ‘bad’ in the resampling step
of our algorithm. We direct the reader to Appendix D for the analysis and further discussion.

4.1. Analysis of GKK

The proof of Theorem 3 follows from a sequence of inductive assumptions. Recall that S; denotes the points
input to the ¢ phase of PRDC, excluding the single ‘bad’ vector v; € ym[—ay, 4™, where  is a fixed
absolute constant to be determined. Recall that C* = (2log(10/3))~1, as set in the definition of GKK, and
that A > 0 is the side length of the cube containing the initial set of vectors 5.

Proposition 10 Ler X, ..., X, be iid random vectors, each having a joint density g : [—A, A]™ — R.
Consider the output Sy, vy, oy that results after the (t — 1)-th phase of PRDC in step 2 of GKK. Then
conditioned on |Sj| = nj for 1 < j <'t, we have

e the n, points in Sy are iid and follow a triangular distribution on [—ay, oy)™, and

o the random vector vy is independent of the vectors in S;.

Proposition 10 ensures that the distribution of the output of each phase of recursion is preserved, allow-
ing us to apply induction. At the heart of this result is the following marginal calculation which implies that
the good points have a uniform distribution on their respective sub-cubes. Conditioning on X; € C1, if L
denotes the label of X as ‘good’ or ‘bad’, then (X, L) has a mixed joint density p(x, £) where x € C; and
¢ € {‘good’, ‘bad’}, which by Bayes’ rule satisfies

, minyecy 9(y)
px, ‘good) 9@ g 1
P[L = ‘good’] fcl p(y, ‘good’)dy  Vol(Cy)’

plz|L = “good’) =

for all x € (.

The proofs of Propositions 11 and 12 below are postponed to Appendices D and E, respectively. The
former relies on showing that a large fraction of the points input to the t** phase are labeled ‘good’ in the
resample step, and the latter requires us to show that few of the random differences created in step 3 of
PRDC are lost in the clean-up step.

Proposition 11  Suppose that 1 < t < C*logn and m < C./(logn)/max(1,logA), where C is a
sufficiently small absolute constant. Then for some fixed 0, conditioned on the events |S;| > 67=1n for all
1 < j <t, it holds that the set G, of random differences created in step 2 of the t*" phase of PRDC satisfies
|G} > B|St| for some fixed  with probability at least 1 — exp(—c1\/n), where ¢1 > 0 is an absolute
constant. In particular, we may set 0 = 0.3 and = 0.4.

Proposition 12 Suppose that 1 < t < C*logn and m < C+/log n, where C is a sufficiently small absolute
constant. Then conditioned on the events |G}| > B|S;| and |S;| > 67~In for 1 < j < t, it holds that the
set Sy+1 ( the input to the (t + 1)-th iteration of PRDC) satisfies |Siy1| > 0|S¢| with probability at least
1 —exp(—Cin/ 4), where co > 0 is an absolute constant. In particular, we may choose 5 = 0.4 and 6 = 0.3.

The proof of Theorem 3 follows easily from the previous two propositions and is found in Appendix F.
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Appendix A. Proofs from Section 3

First, we calculate the first and second moments of S as defined in (3.5).
Proof [Proof of Lemma 5] Let X i(j ) denote the jth element of the vector X;. Since these elements are
independent, we get

= > HIP Zo—z D <e) —2”IP(\Z|<%)

ce{x1}n j=1 i=1

where Z ~ N(0,1). This completes the proof of (3.6).
To prove (3.7), let d(T,0) denotes the Hamming distance between o and 7. Observe that if 7 and o

satisfy d(7,0) = k, then X : f S oiX ( ) and Y - f S TlX( 7 are pi-correlated standard
Gaussians random variables. Thus

E[S?] = Z ]P!ZJZX‘ <e, |ZTZX‘ <e)

aTG{il}"

S Y Bu(vax| <. Vav| <o)

0 k=0 r:d(1,0)=k

zznzn:(’;)Bk(\ﬁX}sE,

k=0

<e)™,

which proves the lemma. |

The following small-ball probability estimates are required for the proof of the truncation argument,
Lemma 14.

Lemma 13 Ler Z denote a standard Gaussian random variable, and let XY denote p-correlated standard
Gaussian random variables with p € (—0.5,0.5). Then for 0 < z < 1, we have for some absolute constant
¢ > 0 that

2
—c? < ]PUZ] < z] — \/>z <0, (A.20)
™
and for all z € (0, 00), we have
2 2
P,IX| <2, |Y|<2] < ————2 (A21)
/1 — p?
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Proof Observe that z — IP[|Z] < z] is a concave function for z > 0. Hence, it lies below the tangent
line to this curve at z = 0, which is precisely the function z +— /2/7z. This proves the right-hand-side of
(A.20). To prove the left-hand-side, we apply Taylor expansion and observe that for |z| < 1, it holds that

P[|Z] < 2] = \/52 - (13\/523 +0(2°) > \/52 —c2?
T s i

for some absolute constant ¢ > 0.
To prove (A.21), note that the joint density 1, (z, y) of a pair of standard normal p-correlated Gaussians
satisfies
2 — 2pzy + 2 < 1

1
27r\/1—erxp( 2—2p? )_27r\/1—p2'

The upper bound follows by positive-semidefiniteness of the covariance matrix. Hence, integrating over the
rectangle |z| < z,|y| < z and applying the above upper bound yields the desired result.

¢p(x7 y) =

Lemma 14 Suppose that w(1) = m = o(n) and let ¢ = £(n) = 2~/ /7n /2 for some v > 1. Then

2" ;;o (Z)E’k (|VnX|<e, |VnY] <e)™ = o(IE[S]?). (A22)
2 - <Z>Bk ([vnX|<e, |[V/nY|<e)™ = o(E[S]?). (A.23)
k=3n/4

Proof Note that (A.23) follows from (A.22) by symmetry, so it suffices to prove (A.22). We may write
m = n/ gy, for some sequence g, such that w(1) = g,, = o(n). For notational convenience, define

Fa(p) = By(|v/nX| <, [VnY]| <e),

By Lemma 5, we have

20 S (B, (lyaX| <e, |V/aY] <e)™
E[S]2

For ¢ as above and Z ~ N (0, 1), we have by applying (A.20) that
2 \" +1\™
2"P(|Z| < e/y/n)™ > 2" < e) (1—ce?/n)™ >, (72> , (A.25)
™

where ¢ is an absolute constant. To obtain the right-hand-side, note that £//n 27 0 since m = o(n).
Thus, for n sufficiently large it holds that

1 1
1 — ce? nZ(l—i—),
/nzg S
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which yields the right-hand-side of (A.25). Now using the crude bound f,,(pr) < IP(|v/nZ| < ), (A.25),
the fact that f,,(0) = IP(]\/nZ| < )2, and the inequality

2= (5)

"/(gn)2 n m
_ ( ) fn(pk)
a= 3 5 (56)

we have

k=0
+1\ "
S (5 ear
log 1 (1 + onl
= exp _7’L OgQ( 7) + % + n O2ggn — 0(1) (A26)
dn 9n 9n

because (1/2)(1 +~) > 1, g, — o0, and n/g, — 0o as n — oo.
By (A.20) and (A.21) (noting again that f,(0) = IP(|\/nZ| < €)?), we have

A I m n/4 n m/2
— (k) fn(pk) N (kz) n2
B = k,g(:gm on ( fn(0) ) Sn () k%n)g on <k(n—l€)> (A.27)

where ¢’ is an absolute constant. By the Hoeffding bound, letting ¢’ denote another absolute constant, we
have

(A27) <, (")™gme ™8 = exp (
" ( ) In gn gn 8

log ¢ 1
ot o1 _

since g, — oc. Since A, B = o(1), we conclude by (A.24) that (A.22) holds, as desired.
|

Lemma 15 Suppose that m = o(n) and set € = 42"/ /nx /2. Then the function o — ¢, () defined
in (3.10) is asymptotically strictly concave on (0.25,0.75). More precisely,

o1 02 1
lim —

Jim — g (a) = Sal—a <4 Vae (0.25,0.75) ,

and the convergence is uniform over a € (0.25,0.75). Moreover, for n large enough, ¢, (a) has a unique
maximum over (0.25,0.75) located at o = 0.5.

Proof Because |02 loga(1l — )| = O(1) for a € (0.25,0.75), m = o(n), and

1

Wie) = Ca(l-a)

to verify the strict concavity of ¢, (), it suffices to show that

2
%log]Pl_m [|[vnX]| <e, |VnY| <e]|=0(1), ac(0.250.75). (A.28)
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For notational convenience, we write f,,(p) = IF, (|/nX| < e, |\/nY| < e). We study the logarithmic
second derivative

_falp)  fulp) 2
Tlo) =30~ ) (A.2)

by controlling each term individually.
First, recall that for any p € (—1,1), the distribution IP, admits a density with respect to the Lebesgue
measure over R? given by

1 % — 2pxy + 2
Yp(z,y) = m exp ( - 2——2p2)
It holds that
// 0pp(z,y)dady.
v
Thus since £ = o(y/n) we get,
. falp) . ff[ =l plbp(ﬂf y)dady 8p7/)p(07 0)
lim = = =0,1 0,0). A.30
nlﬁoo fn(P) nﬁlglo ff_i ) ¢p T y)dxdy T,Z)p(070) P Og(%)( ) ( )
[ vl
Similarly,
4 024,(0,0
lim Ia(p) _ 5p%(0.0) :ag log(1,)(0,0) + (aplog(wp)(o,o))Z. (A.31)

=0 fu(p)  1p(0,0)
Together with (A.29) and (A.30), the above display yields

. 1+ p2 _
Jim Ju(p) = a2~ o(1),
if p € (—0.5,0.5). Moreover, the convergence in (A.30) and(A.31) is uniform over p € (—0.5,0.5). This
is because the functions 1, 9,7, and (92"% are all C-Lipschitz on R? for some absolute constant C' > 0,
provided that we restrict p € (—0.5, 0.5) Next, changing variables via p = 1 — 2q, this verifies (A.28).
Thus we have shown that ¢,,(«) is strictly concave on (0.25,0.75) for n sufficiently large, completing the
first part of the proof.
The strict concavity verifies that ¢, («) has a unique maximum on (0.25,0.75). We show that it occurs
_ . 1 .« . . _
at a = 0.5. It is easy to check that both h(«) and o — log =) have a critical point at « = 1/2. So,
1 —2?/2

applying the change of variables p = 1 — 2«, we just need to verify that f; (0) = 0. Let ¢(x) = Norsd

denote the density of a standard Gaussian and set ¢ = £/4/n. Straightforward calculus shows that

0
2| Yela,y) = zyd()e(y).
op =0
Therefore,
0 ‘ ’
o nw=([ o) -0
This proves the second part of the lemma, so we’re done. |
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Appendix B. Gaussian discrepancy in small linear dimension

The goal of this appendix is to prove the result below, which combined with Theorem 1 and Theorem 2 of
Chandrasekaran and Vempala (2014) provides a precise characterization of asymptotic Gaussian discrep-
ancy.

Theorem 16 Let X4,...,X, i N (0, I,,,) be independent standard Gaussian random vectors. Let y > 1
denote an arbitrary absolute constant. Then there exists A = A(v) such that for m < An,

n—o0

liminf P | D(X1,. .., X,) < 7y /%zfn/m} > (.99 (B.32)

In particular, combining Theorem 16 with Theorem 2 of Chandrasekaran and Vempala (2014), we can
now estimate the discrepancy up to constant factor, with probability asymptotically larger than 99%, in the
entire linear regime m = én where § > 0. Note that our guarantee on the probability here is weaker than
that of the high-probability upper bound from Theorem 1. The constant 0.99 can be boosted to be arbitrarily
close to 1 by choosing smaller A, though our techniques do not allow us to set the right-hand-side to be 1
for any fixed A > 0.

The closely related work of Aubin et al. (2019) also considered Gaussian discrepancy in the linear
regime m = dn for fixed § > 0. Subject to a certain numerical hypothesis, the authors showed that

liminf IP [D(X1,...,X,) < c(6)vn] >0, (B.33)
n—oo
where ¢(0), as a function of 4, is the inverse of the function z — log(1/2)/IP[|Z| < z] and Z ~ N(0,1).
Their proof is an application of the second moment method, similar to ours. They also showed the following
high-probability lower bound using the first moment method:

lim P [D(Xl, ceny X)) > (e(9) — 5)\/5] =1, (B.34)
n—oo
where € > 0 is an arbitrary absolute constant. Aubin et al. (2019) conjectures, with strong evidence using
heuristics from statistical mechanics, that the event in (B.33) holds with probability tending to 1. We remark
that as & — 0, we have ¢(d) = ©(271/%) = ©(27™/™). Theorem 16 shows that with a constant factor’s
worth of ‘extra room’ in the discrepancy threshold, the asymptotic probability in (B.33) can be boosted to
be arbitrarily close to 1.

On the algorithmic side, using a mild extension of the techniques of Chandrasekaran and Vempala
(2014), in dimension m = én with & € (0,1), one can show an algorithmic bound of O(v/én) on the
discrepancy, and this is the best known result for this regime. Hence, Theorem 16 suggests the possibility
of a statistical-to-computational gap in the small linear regime m = én for § € (0, 1). Note that for § > 1,
the results of Chandrasekaran and Vempala (2014) confirm an absence of statistical-to-computational gaps
in the discrepancy.

The proof of Theorem 16 follows closely the steps from Section 3 with some modifications. We begin
with a truncation argument as in Lemma 14.

Lemma 17 Let v > 1 denote an arbitrary absolute constant. Then there exists A = A(~y) such that if
m = dnford < Aande = e(n) =~v2-Y%/7n/2, then
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n/4
2" ’;0 <Z>E’k (|vnX]| <e, [VnY] <e)™ = o(E[S]?). (B.35)
. k:%;ﬂ; <Z> I, ([VnX| <e, |VnY| <€) =o(B[S]*). (B.36)

Proof
The proof follows closely that of Lemma 14, setting g, = 1/J. We set

f5(p) = By(|VnX| < e, |VaY| <e) = B(|X| <1270 /x/2, [Y| <7270/ /2).

Note that the function f5 is independent of n by our choice of . As in (A.24) from Lemma 14, we let

?n (n n/4 n
o () (sl \™ _ () ([ fsloe)\™
"L <f5(0)> S B=2 <f5<0>> |

k=482n

Note that for ¢ sufficiently small (depending on ), it holds that € /y/n < 1. Therefore, similar to (A.25),
we can apply the lower bound from Lemma 13 to conclude that

9"P[|Z] < e/v/n]™ > 2" (ﬁa) (1 - ce?/n)™ > <V2+1>m (B.37)

Hence, as in (A.26) we have

" 1
A5, <7—2|_> (65_2)52" = exp (—571 log <2(1 + 7)) + 6%n + 252nlog(1/6)> . (B.38)

Hence, if 6 < A(7) for A(~) sufficiently small, then we have that A = o(1).
Similar to (A.27), we have by applying (A.20) and (A.21) that
n/4 2 m/2
B (@ 3 W (N B.3
k=d62n
By the Hoeffding bound (letting ¢”’ () denote another constant depending on ), we have
(B.39) <,, (¢ (7))™6 e 8 = exp (6nlog(c”" (7)) + dnlog(1/8) — n/8) = o(1), (B.40)

provided that § < A(+y) for A(vy) sufficiently small. Since A = o(1) as well for this setting of parameters,
the lemma follows. u

Our next lemma is a version of Lemma 15 corresponding to the linear regime. We use the log-concavity
of the function ¢,, when we apply the Laplace method to the second moment, as in the sub-linear regime.

Lemma 18 Lern > 0 and v > 1 be arbitrary constants, and let A = A(~y,n) denote a sufficiently small
absolute constant. Suppose that m = on for 6 < A, and set ¢ = 2~/ 5\/n7r/ 2. Then the function
a — ¢n () defined in (3.10) is strictly concave on (0.25,0.75). More precisely,

1 92 (o) <

ez Pnle) = Tal o TN A Va € (0.25,0.75). (B.41)

Moreover, ¢y, () has a uniqgue maximum over (0.25,0.75) located at o = 0.5.
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Proof Recall that
F5(p) = Bp(|X| <270/ /2, Y| <7270\/7)2).
As in the proof of Lemma 15, it suffices to study the logarithmic second derivative with respect to p
fé/(p) _ (fé(P) )2
fs(p)  *fs(p)

and show that |Js(p)| = O(1) for p € (—0.5,0.5). Recall that ¢/, denotes the density associated to IP,.
Since £/y/n — 0 as & — 0, we have, similar to (A.30), that

Js(p) = (B.42)

flo) _ g 90y g 0,0)
320 f5(p) 50 ff[ L Yp(x,y)dzdy ~ %,(0,0) 00 108(¥,)(0,0)- (B4
And similar to (A.31), we have
) 1" 82¢ 07 0
tny 2400 S0 02100,) 0.0) + (0, 108065 0.0) (B.44)

It follows that
14 p?

-7
for p € (—0.5,0.5). Moreover, similar to the proof of Lemma 15, the convergence in (B.43) and (B.44) is
uniform in ¢ by the Lipschitzness of v, 9,7, and 8?,"% over the interval p € (—0.5,0.5). Therefore, if we
take 4 sufficiently small with respect to v, n, then (B.41) holds.

Note that independent of €, we have that p = 0 is a critical point of ¢,,, as shown at the end of the proof
of Lemma 15. Applying this and making the change of variables p = 1 — 2« verifies the last statement of
Lemma 18. u

lim J5(p) = =0(1)

Proof [Proof of Theorem 16] Recall from the definition in (3.8) that

3n/4

Li=2" 3 (Z)ﬂ%k (Jvnx|<e,

k=n/4

<e)"

Applying Stirling’s formula and a Riemann sum approximation as in (3.9) and (3.11), respectively, we have

that
3/4
L <, 2™y / / exp(¢n(a))da. (B.45)

Since ¢, («)/n is independent of n, we can apply the Laplace method directly (see Murray, 1984) along
with Lemma 18 to see that

/3/46)( (bn(@))dar <n 1| —2 — exp(6n(1/2)) < 4| —2_gn+1 £ (0ym (B.46)
e T U [ T R A '

assuming 6 < A for A(~,n) sufficiently small.
Therefore, by Lemma 14, (B.45), (B.46), Lemma 5, the definition of fs, and assuming that § < A for
A(~,n) sufficiently small, we have

BIS%) S0 L o | 7o (PVAZ < ™) = \[ T EISP
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Setting 7 = 107>, we have by the second moment method (2.4) that

E 2
Pls > 0] > SO0 > AT > 0.99,

completing the proof of Theorem 16. |

Appendix C. The REDUCE algorithm

In this appendix we define the REDUCE algorithm, a simple procedure for combining a set of points into a
single point whose /,-norm is not too large. This algorithm REDUCE is described explicitly below, and its
main property of use is described in Lemma 8, whose proof is given below. The analysis of this algorithm
uses feasibility as in the classical proof of the Beck-Fiala theorem (Alon and Spencer, 2008).

REDUCE:
Input: m x N matrix X with columns X1,..., Xn.
N <m:
Choose s € {£1}" arbitrarily.
Else:

1. Let s = 0 € RY, and let Tj) = 0.

2. Fork=0,1,2,...
If]Tk|<N—m

(a) Find (e.g., using Gaussian elimination) a vector v # 0 € RN such that Xv = 0 and v; = 0 for
all j € T.

(b) Define s*+1) = s(k) 4 \p, where A > 0 is the smallest real number such that |s§-k) + vl =1
for some j ¢ Tj.

(c) Define Tyy1 = {j: ‘s(k+1)| =1}.
Else: s := s(*). BREAK
Output: o := sgn(s)

Proof [Proof of Lemma 8] We suppose that N > m, otherwise, an arbitrary choice of signing gives the
desired upper bound. Suppose that we are in the k-th iteration of Step 2 of REDUCE. If |T;| < N — m,
then there are at most m + |T}| < N linear constraints on the vector v € R" in step 2(a). So by dimension-
counting, there exists a nonempty subspace of feasible v. Next if s(*) [—1,1]™, then A from step 2(b)
exists and furthermore sA*+1) ¢ [—1, 1]™ by the choice of j in step 2(b). Also, we have that T, C Tj11;
if |(s));] = 1, then the j-th coordinate remains unchanged for future iterations of step 2. Finally, |T}|
increases at least by 1 in each iteration, so the loop in step 2 is guaranteed to terminate after at most N —m
iterations.

It remains to verify that o satisfies the upper bound from Lemma 8. Observe that s € [—1,1)", T :=
45 ¢ Is;l = 1}/ = N = m, and
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Therefore,

+1D (sen(si) — ) X;

T

[e.9] o0

sq% 2 1%

o0

Appendix D. Proof of Proposition 11

We need to show that at each application of resampling in GKK, a small number of points are labeled ‘bad’.
As discussed in the introduction, the restriction on the dimension m = O(y/logn) is needed in our analysis
to show that the probability of a point being labeled ‘bad’ is small.

We briefly describe the intuition for this condition by considering the first phase of the algorithm GKK.
Suppose, for example, that X1, ..., X,, are independent triangularly distributed vectors on [—1,1]™. In
step 1 of PRDC, the cube [—1, 1]™ is partitioned into sub-cubes of side length o = n~ /™M) Next, we
enter the resampling step. We show below that the probability of a point being labeled ‘bad’ is at most
O(2™ma’) = O(2™mn~1/™)). Roughly speaking, the reason for this is that there are 2™ (a/)~™ sub-
cubes, and the probability of a point in a particular sub-cube being labeled ‘bad’ is controlled by the product
of three terms: 1) the ¢;-Lipschitz constant of the density of X7, which is 1, 2) the ¢;-diameter of the sub-
cube, which is ma/, and 3) the volume of the sub-cube, which is («’)™. Hence, the probability of a point
being labeled ‘bad’ is a small constant, assuming that m = O(y/logn).

The next two lemmas present the above argument in full detail.

Lemma 19 Let p : [-A,A] — R denote a pdf that is L-Lipschitz and bounded above by some constant
D > 0. Let g = p®™ : [-A, A]™ — R denote the density of the distribution of m independent random
variables, each individually distributed according to p. Then g is L'-Lipschitz in the {1 norm:

Va,ye[-A A", |g(z) —g(y)| < L'z -y,

where
L' =LDm 1.

Proof
Define 2! = z, and for 2 < k < m, define

ok =kl ¢ er(yr — xp),

where e denotes the k-th elementary basis vector. Then we have

lg(x) —g(y)| <> ‘g(x’“) - g(x'“‘l)‘ (H g(%)) <H g(m))

i<k i>k
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Lemma20 Let S = Xi,..., X, € [-A, A]" denote a sample of iid random vectors, each having a joint
density g = p®™, where p is L-Lipschitz and bounded above by D > 0. Let B denote the bad points created
in step 2 of PRDC run on the input S,v = 0,a = A, and g. If m < C/log(s)/ max(1,log A) for a
sufficiently small constant C = C(D, L) > 0, then

IP[|B| > 0.1s] < exp(—c15),
where ¢ is an absolute constant.

Proof Leta’ = A/[sY/(4™)7. Let Cy, ..., C denote the sub-cubes of side length o/ formed by partitioning
(step 1 of PRDC), recalling that N = (2A)™(a’)~™. Since X7, ..., X, are independent, we first study the
probability that X is bad and then apply a Hoeffding bound.

(- s

/c. <9($) e g(y)) dz

1 J

IP[X is bad] =

M=

[
M) =

<.
Il

Vol(Cj) LD™ ! diamy, (C})

hE

1
2A)"LD™ tma/,

—~ .

where we measure the diameter in the ¢; norm and applied Lemma 19. Since

m < Cy/log(s)/ max(1,log A),

we have
p:= (2A)"LD™ 'ma’ < (2A)" D™ 'mAs~ V™) < 0.05

for C' = C(D, L) > 0 sufficiently small. Since the X;’s are independent, by Hoeffding’s inequality,

S

2(0. 2.2
P[|B| > 0.15] < P[|B| - ps > 0.055] < exp <—(005)3> ,

which completes the proof. |

Proof [Proof of Proposition 11] The proof is by induction on ¢. We first handle the base case t = 1. By
assumption the matrix X has independent entries, each having a pdf which is L-Lipschitz and bounded above
by D. By Lemma 20, with probability at least 1 — exp(—cn), there are at most 0.1n points labeled ‘bad’.
Since m < C/log(n)/ max(1,log A), for C sufficiently small, there are at most Ny < (2A)™a; ™ < n%6
sub-cubes created by partitioning (step 1 of PRDC). Thus, at most that many good points are leftover after
random differencing in step 3 of PRDC. We conclude that with probability at least 1 — exp(—cin), there
are at least

n—0.01n — n%6
2

> 0.4n (D.47)

points in G, the set of random differences.
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Now we show the inductive step. Let £ denote the event |S;| = n; where n; > (0.3)7"In for all
1 < 5 < t. It suffices to show that

5} <exp (—c1v/n). (D.48)

By Proposition 10 in Appendix G, conditionally on &, the distribution of the points in S; = y1,...,¥ n,
are iid and follow a triangular distribution on [—ay, ay]™. Hence, we have by Lemma 19 that the density
of oy S AT oy ly n, 18 1-Lipschitz with respect to ¢; and is bounded above by D = 1. Note that, by
an application of the chain rule, the probability o, ly ;j 18 labeled ‘good’ using the triangular density on
[—1,1]™ for g in step 2 of PRDC is the same as the probability that y ; is labeled ‘good’ using the triangular
density on [—ay, ay|™ for g in step 2 of PRDC.

Since t < [C*logn] and n; > (0.3)"'n for 1 < j < ¢, we have that n; > /n. In particular, for
C > 0 sufficiently small, s = y/n satisfies the required lower bound of Lemma 20. Therefore,

P [|Bt+1| 2 0.1nt

5] < exp(—ciny) < exp(—ci1v/n).

For C sufficiently small and m < C'v/logn, there are at most N; < antl /4 < n95 sub-cubes formed in
step 1 of PRDC. Hence, at most nY-® good points are leftover after the random differencing step of PRDC.
Halving the number of remaining points as in (D.47) of the base case, we conclude that (D.48) holds with
the desired probability in phase ¢. |

Appendix E. Proof of Proposition 12

The goal of this subsection is to prove Proposition 12. The next technical lemma implies that a negligible
fraction of points are lost in step 4(b), the clean-up step of PRDC.

Lemma2l Leta = [s"/®]~ and let U = uy,..., u; d Tri[—a, a|™ denote a sample from a
triangular distribution. Let v\9) € R™ denote a random vector independent of U satisfying "U(O) ‘2 < Rm?/?
for some absolute constant R > 0. For k = 1,2, ..., define a sequence of random vectors

o) = p*= 4 gruy,

where

a* = argmin [v#~)

+aug| .
ac{£1} 2

Let ¢* denote the absolute constant from Claim E.1. Suppose that R’ > 2/c¢* and

8R?m?2\/s
K>—— Y
- R/c*

1 — exp (— (C;ZK>

W]y < R'ma.

Then with probability at least

there exists k < K such that

26



BALANCING GAUSSIAN VECTORS

Proof By the definition of v(*), we have that
|’ _ o[ S (k) 2
o< o o0 3 (-2 ).

Consider the event £ that for all 1 < k£ < K, we have ‘v(k)|2 > R'ma. Let vF) = v(k)/ ’v(k)‘z.

Observe that |u k\g < o®m. Applying this and rearranging the inequality above, we have that the event £
implies

K
R2m? + o®>mK
E (k) ‘ < ) E.4
prt ‘<V Up1)| < 2R'mao (E.49)

For 0 < 57 < K, define a sequence of random variables

J
M; = Z (‘(V(k),ukﬂ)‘ — c*a) :

k=0

For convenience, we also define M_; = 0. Note that M is measurable with respect to the sigma-field €2,
generated by the random variables v(9), v .. v+ Therefore, Q_; C Qo C ... defines a filtration for

the sequence of random variables {/; };j>_.

Claim E.1 There exists an absolute constant c¢* > 0 such that {M;};>_1 is a submartingale with respect
to the filtration {€2;};>_1.

Proof Since v(©) is independent of ¢/ and U/ is an independent sample, it follows that u 1 is independent
of v(). Observe that the coordinates of u k+1 are subGaussian. By the Khintchine inequality for the ¢;
norm (see Exercises 2.6.5 and 2.6.6 of Vershynin, 2018), we have

E |:‘<V(k),Uk+1>‘

,U(k)] —E |:‘<I/(k),uk+1>‘

V(k):| > ac*

l/(k)’ =ac* >0
2

for an absolute constant ¢* > 0. [ |

Let ¢* > 0 denote the absolute constant from Claim E.1, and set R’ > 2/c*. Next, note the equivalence
between the following inequalities:
cfaK  R*m3 + a?mK
*aK > E.50
e T 2 T (E-50)
R*m? 9
S famt
=R —1/R)"

K

assuming that ¢* — 1/R’ > 0. Setting R’ > 2/c*, it follows that if
8R?*m?\/s
Rlex 7’
then (E.50) holds. Next, note by Cauchy-Schwarz that the submartingale M; has increments bounded by

a+/m. Since (E.50) holds, we may apply the Hoeffding—Azuma inequality to conclude that for such choice
of K and R’ that

K>

* *\2
PlE] <P MKs—c*aK] SIP[MKS—“;‘K} SeXp<—(08)K>,
m
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as desired.

Proof [Proof of Proposition 12]

Let ¢ > 1 denote the current phase. Let £ denote the event that |.S;| = n; forall 1 < j < tand |G| = g;
where n; > (0.3)7"n forall 1 < j < tand g, > (0.4)n:. By Proposition 10 and Lemma 27 in Appendix
G, conditionally on &, the points z 1, . ..,z g € G/, are distributed as Tri[—ay41, ay4+1]™, and the leftover

vector vlgo) obtained in step 4(a) of PRDC is independent of this sample. Moreover, by Lemma 8 and the

fact that |v;| < |vg]y < ymay, it follows that
’vgo)’ < (v + 1)moy.
[ee)
Hence, the Cauchy—Schwarz inequality yields that

‘UIEO)‘Q <(v+ 1)m3/2at-

Next, apply Lemma 21 with i = o%z Lyves o%zgé’ v = a%vgo), R=~+1,R =~,and K = (g})%/*
where v > 2/c*. Recall that by assumption g, > (0.4)n; > (0.4)(0.3)*"1n. Since t < [C* log n], we have
that g; > \/n. So for C sufficiently small in the bound m < C'v/log n, we have that the lower bound

8(v +1)*m*\/g,
K =(g)** = P

holds, and so indeed Lemma 21 applies. Therefore, conditioned on £, with probability at least

1 —exp (—W> >1—exp (—(c*)2n1/4)

8m

there exists k < K = (g})%/* with
‘ (k)

(oA ‘2 < Ymagy .

By the lower bounds n. > e(1/€)™* and g/ > \/n, for C sufficiently small, it follows that (g})3/* < (0.01)gL.
Hence, conditioned on &, with probability at least 1 — exp (—(c*)in/ ) we have [Sy41| > g) — (gh)3/* >
(0.3)n, as desired. [

Appendix F. Proof of Theorem 3

Our main theorem is a direct consequence of Propositions 11 and 12.
Proof [Proof of Theorem 3] Recall that T = [C*logn] where C* = (2log(10/3))~!, and set § = 0.3.
By the union bound over the T" phases of PRDC in GKK, induction, and Propositions 11 and 12, we have
that |S;| > 6'1n for all 1 < ¢t < T with probability at least 1 — exp(—czn'/*), for some absolute constant
c3 > 0. Since a1 = ay/[|S¢|'/(¥™)], this implies by induction that

* 2
or < max(1, A)§~7/Gmn=T/Em) < max(1, A) exp <—Clogn>

8m

with probability at least 1 — exp(—c3zn!/4).
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Moreover, by the stopping criterion from step 4(b) of PRDC, |vr| < |vr|, < ymar. Applying
REDUCE to St U {vr}, we see by Lemma 8 that the output |v|_ of GKK satisfies

*] 2 1 2
[v],, < max(1,A)(ym +m — 1) exp <_Cogn> < exp (_c og n)

8m m

for an absolute constant ¢ > 0. Note that the right-hand-side follows if we take C' > 0 sufficiently small in
the bound m < C'/log(n)/ max(1,log A). [ |

Appendix G. Distributional properties

Our analysis of GKK relies heavily on the fact that the operations in the algorithm preserve important
features of the original distribution such as independence. Though not carefully proven in Karmarkar and
Karp (1982), these features are crucial to our analysis, so we provide explicit justification of these properties
below for completeness.

First we introduce some notation. Given « > 0, a fixed collection of vectors z 1, ...,z C [—a,a]™,
and a density g : [—a, a]™, divide the cube [—a, )™ into N := 2™([sY/(4™)])™ sub-cubes C, . .., Cy of
side length o/ [s'/(4)7 as in step 1 of PRDC. Label the points z1, . ..,z as in step (2) of PRDC using
the density g. Define a random collection of ordered pairs 75 o4 C ([IN] x {0,1})° so that for 1 <i < s,

(Ts.ag)i = (3, 1)

if and only if z; € C; and if z; is labeled ‘good’, and

(Ts.ag)i = (3,0)

if and only if z; € C; and z; is labeled as ‘bad’.

Usually s, « and g are clear from context, in which case we write 7 for 7 o 4. Observe that 7 keeps
track of which sub-cube v; lands in and also whether it was labeled good or bad. We refer to 7 as the
configuration vector corresponding to the input of PRDC.

We proceed by proving some preliminary lemmas, the first of which states roughly that given random
vectors z 1, . . ., z s with a nice conditional distribution, the good points in each sub-cube C; have a uniform
distribution.

Lemma 22 Suppose that conditioned on an event F,

o the random vectors S = 7.1, ...,z s € R™ are iid, and each vector has the conditional joint density

g:[-A A = R
e S U{v} is a collection of independent random vectors.

Run the first two steps of PRDC with input S = z1,...,2¢v, @« = A, and density g. Let G denote the
good points, and let B denote the bad points. Then conditioned on Ts A 4 and F,

o the random vectors in B U G are mutually independent.

e for1 < j < N, a given good point in C; has a uniform distribution on Cj.
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Proof The first statement follows because (1) GU B = z1, ...,z is an independent sample, conditioned
on F, and (2) the ordered pair (7 A 4); is generated independently for each ¢ € [s]. Thus it suffices to show,
by symmetry and passing to conditional densities, that

1
VOI(C]‘ )

9(z|z1 € Cj,z1 good) =

for all z € Cj. By Bayes’ rule,
Pz good|z1 = 2,21 € Cj, Flg(z|z1 € Cj)
Pz good|z € C}, F]

(55" mtam) /(e )

9(z|z1 € Cj,z1 good) =

1
~ Vol(C;)’

where the last line follows because

Pz good,z1 € C}| F] = / Pz good|z1 = z, Flg(z) dz = Vol(C}) mgl g(x).
j el

Lemma 23 Consider the set-up of Lemma 22, and let o/ = a/[s'/*™)]. Let G' denote the set of random
differences constructed after step 3. of PRDC applied to S, v, o« = A, and g. Then conditioned on the
events F and T = T, the points in G’ are iid and have a triangular distribution on [—o/, o/]™.

Proof Observe that T determines the number of points in G’. The points in G’ are independent by Lemma
22 and the fact that the points in G are randomly differenced in step 3. of PRDC. Since () is a translation
of the sub-cube [—o/, o/]™, the difference of two independent, uniformly sampled points from C; have a
triangular distribution on [—o/, /]™. [ |

Lemma 24 Consider the set-up of Lemma 23, and let { € Z>q. Let the random variable L denote the
number of points removed from G’ in step 4(b) of PRDC applied to S, v, o« = A, and g. Let S’ and v/
denote the vectors output by PRDC. Let g’ = |G'|. Then conditioned on the events F, T =T, and L = ¢,

e The g’ — { points in S’ are iid and follow a triangular distribution on [—a/, o/]™.
e The random vector v' is independent of the vectors in S’.

Proof Recall that |G'| = ¢’ is determined by T. Label the points in G’ independently at random to be
G'=y1,...,¥ 4. The points in G’ are independent and triangularly distributed on [—¢/, &/]"* by Lemma
23, conditionally on F and 7 = T. Recall the single vector v that was input initially to PRDC. In step
4(a), this is combined with vectors in B’ to construct a single vector v(?). By Lemma 22, we have that (%)
is independent of G, conditionally on 7 = T and F.

Now in step 4(b) of PRDC, let us remove points from G’ in the order y ¢/, y ¢/—1,...,¥ ¢—¢+1. By the
stopping criterion for step 4(b), we have

{L=1} = {"U(k)‘Q >yma’ V1<k</(-1,

U(E)L < vmo/} .
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Since vF) = p(k—1) +y g'—k+1 for 1 < k < £, the random vector v®) is independent of y 1, ...,y g'—0-
Therefore, the sample S’ =y 1,...,y o is independent of the event £ = ¢. Hence, further conditioning
on £ = ¢ does not affect the distribution of S’, as desired. |

Summarizing the content of Lemmas 22, 23, and 24, we have the following proposition.

Proposition 25 Suppose that conditioned on an event F,

e the random vectors S = z 1, ...,z s € R are iid, and each vector has the conditional joint density
g:[-A A" = R

o S U{v} is a collection of independent random vectors.

Let S',v' denote the vectors output by PRDC applied to S, v, « = A, and g. Let ' € Z>p and o/ =
o/ [s'/ 4™ Then conditioned on F, T =T, and |S'| = 5/,

e the s’ points in S’ are iid and follow a triangular distribution on [—d', o/|™.

e The random vector v' is independent of the vectors in S’.

Observe that Proposition 25 and induction imply the next lemma, which guarantees that we have a nice
distribution after every phase of PRDC, conditionally on the data 77 at each step.

Lemma 26 Let X1,...,X,, be iid random vectors, each having a joint density g : [—A,A]"™ — R,
conditioned on some event F. Consider the output S, vy, oy that results after the (t — 1)-th phase of PRDC
in step 2 of GKK. For1 < j <t —1, let TU) denote the configuration vector resulting from step 2 of the
j-th phase of PRDC. Then conditioned on TU) = T for1 < j <t —1and |Sj| =njforl < j <t we
have

e the n, points in Sy are iid and follow a triangular distribution on [—ay, o)™

o The random vector v, is independent of the vectors in S.

Next, marginalizing over all possible configuration vectors yields Proposition 10.
Proof [Proof of Proposition 10] We induct on the phase ¢. Consider the base case t = 2. Letz,...,2Zp,
denote the vectors in Sz, and let I; denote a measurable subset of [—aa, ap]™ for 1 < i < ng. Recall that
T determines the number of differences in G4, and |S2| determines the amount of points lost in step 4(b)
of PRDC. Then we have, marginalizing over all possible choices of T1) compatible with |Ss| = no,

P|:ZiEIiV1§i§n2

|Sa| = n2}

—ZIP[ZiEIiV1Si§TLQ
T

70 Z 1), 5] = W} P [Tm _ )

|S2| = 712}
By Lemma 26,

IPI:ZiGIiVIgiSHQ

T(l) = T(l), ‘SQ‘ = ’I”LQ:| = ]P[ui € IZ'VI S 7 S 77,2]
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did o .
where uq,...,u,, ~ Tri[—ag, as|™. Hence,

Plz, e [V1<i<ng

|Sa| :n2] =IPlu; € ;V1 <i < nyl,

which confirms the first bullet point of Proposition 10 for the base case ¢ = 2. Following a similar marginal-
ization procedure, this also implies by Lemma 26 that v, the single vector output by PRDC, is independent
of So conditionally on |Ss|.

Now we handle the inductive step. Let Sy =y 1, ...,y n, and v; denote the vectors output by the (t— 1)th
phase of PRDC. Suppose that conditionally on F := {|Sa| = na, ..., |S;| = n:} that S; is an iid sample of
triangularly distributed vectors on [—ay, a|™, and v; is independent of S;. By Proposition 25, conditionally
on F, |Sy41| = nsy1, and the configuration vector 7*) = T®), the sample S;; is an iid collection of
triangularly distributed vectors on [—ayt1, ay11]™. Hence, conditioning on F U {|Si11| = n41} and
applying the same marginalization over the configuration vector T® as in the base case yields the first
bullet point of Proposition 10 for the inductive step. The second bullet point follows similarly. |

The next lemma is used in Appendix E. We omit its proof because it is similar to that of Proposition 10.

Lemma 27 Let X1, ..., X, be iid random vectors, each having a joint density g : [—A, A]™ — R. Apply
GKK to the matrix X with columns X1, ..., X, and consider the good points G} created from random

differencing in step 3 of the t'" phase of PRDC. Also consider the random vector Ugo) formed in step 4(a)
of PRDC. Then conditioned on |S;| = n; for 1 < j < tand |G}| = g;,

e the random vectors in G, form an independent sample of size g, from Tri[—oyy1, api1|™.

o The random vector vio) is independent of the vectors in G,.
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