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Abstract

We study first order methods to compute the barycenter of a probability distribution P over the
space of probability measures with finite second moment. We develop a framework to derive
global rates of convergence for both gradient descent and stochastic gradient descent despite the
fact that the barycenter functional is not geodesically convex. Our analysis overcomes this tech-
nical hurdle by employing a Polyak-Lojasiewicz (PL) inequality and relies on tools from optimal
transport and metric geometry. In turn, we establish a PL inequality when P is supported on the
Bures-Wasserstein manifold of Gaussian probability measures. It leads to the first global rates of
convergence for first order methods in this context.

Keywords: geodesic optimization, optimal transport, Wasserstein barycenters

1. Introduction

We consider the following statistical problem. We observe n independent copies fi1, ..., i, of a
random probability measure 1 over R”. Assume furthermore that ;i ~ P, where P is an unknown
distribution over probability measures. We wish to output a single probability measure on R?,
[in, Which represents the average measure under P in a suitable sense. For example, the measures
wi, - - -, Uy May arise as representations of images, in which case the average of the measures with
respect to the natural linear structure on the space of signed measures is unsuitable for many applica-
tions (Cuturi and Doucet, 2014). Instead, we study the Wasserstein barycenter (Agueh and Carlier,
2011) which has been proposed in the literature as a more desirable notion of average because it
incorporates the geometry of the underlying space. Wasserstein barycenters have been applied in
many areas, e.g. graphics, neuroscience, statistics, economics, and algorithmic fairness (Carlier and
Ekeland, 2010; Rabin et al., 2011; Rabin and Papadakis, 2015; Solomon et al., 2015; Gramfort et al.,
2015; Bonneel et al., 2016; Srivastava et al., 2018; Le Gouic and Loubes, 2020).

To formally set up the situation, let Po(R”) be the set of all (Borel) probability measures on
RP with finite second moment, and let Py ..(R”) be the subset of those measures in P2(R?)
that are absolutely continuous with respect to the Lebesgue measure on R” and thus admit a den-
sity. When endowed with the 2-Wasserstein metric, Ws, this set forms a geodesic metric space
(7327%(]1%[) ), W5). We denote by P, the empirical distribution of the sample fi1, . . ., fin.
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A barycenter of P, denoted b*, is defined to be a minimizer of the functional
F(b) = fPWz / W3 (b

A natural estimator of b* is the empirical barycenter bn, defined as a minimizer of

Ep(b) := 5P W2(b ZW2 (b, ).

Statistical consistency of the empirical barycenter in a general context was first established
in (Le Gouic and Loubes, 2017) and further work has focused on providing effective rates of con-
vergence for the quantity WQZ(IA)H, b*). A first step towards this goal was made in (Ahidar-Coutrix
et al., 2020) by deriving nonparametric rates of the form W2 (bp, b*) <1/ when D > 3. More-
over, in the same paper (Ahidar-Coutrix et al., 2020), the authors establish parametric rates of the
form W3 (13”, b*) < n~! when P is supported on a space of finite doubling dimension.

An important example with this property arises when P is supported on centered non-degenerate
Gaussian measures, first studied by Knott and Smith in 1994 (Knott and Smith, 1994). In this
case, Gaussians can be identified with their covariance matrices, and the Wasserstein metric induces
a metric on the space of positive definite matrices. This metric, known as the Bures or Bures-
Wasserstein metric is the distance function for a Riemannian metric on the manifold of positive
definite matrices, known as the Bures manifold (Modin, 2017; Bhatia et al., 2019). The name of the
Bures manifold originates from quantum physics and quantum information theory, where it is used
to model the space of density matrices (Bures, 1969). In the Bures case of the barycenter problem,
more precise statistical results, including central limit theorems, are known (Martial and Carlier,
2017; Kroshnin et al., 2019).

It is worth noting that parametric rates are also achievable in the infinite-dimensional case under
additional conditions. First, it is not surprising that such rates are achievable over (P2(R), W5)
since this space can be isometrically embedded in a Hilbert space (Panaretos and Zemel, 2016;
Bigot et al., 2018). Moreover, it was shown that, under additional geometric conditions, such rates
are achievable for much more general infinite-dimensional spaces (Le Gouic et al., 2019), including
(P2,ac(RP), Wy) for any D > 2.

While these results are satisfying from a statistical perspective, they do not provide guidelines
for the computation of the empirical barycenter by. In practice, Wasserstein barycenters are esti-
mated using iterative, first order algorithms (Cuturi and Doucet, 2014; Alvarez Esteban et al., 2016;
Backhoff-Veraguas et al., 2018; Claici et al., 2018; Zemel and Panaretos, 2019) but often lack the-
oretical guarantees. Recently, this line of work has provided rates of convergence for first order
algorithms employed to compute the Wasserstein barycenter of distributions with a common dis-
crete support (Guminov et al., 2019; Kroshnin et al., 2019; Dvinskikh, 2020; Lin et al., 2020). In
this framework, the computation of Wasserstein barycenters is a convex optimization problem with
additional structure. However, first order methods can also be envisioned beyond this traditional
framework by adopting a non-Euclidean perspective on optimization. This approach is supported
by the influential work of Otto (Otto, 2001) who established that Wasserstein space bears resem-
blance to a Riemannian manifold. In particular, one can define the Wasserstein gradient of the
functional F', so it does indeed make sense to consider an intrinsic gradient descent-based approach
towards estimating b*. However, the convergence guarantees for such first order methods are largely
unexplored.
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When the distribution P is supported on the Bures-Wasserstein manifold of Gaussian proba-
bility measures, gradient descent takes the form of a concrete and tractable update equation on the
mean and covariance matrix of the candidate barycenter. In the population setting (where the dis-
tribution P is known), such an algorithm was proposed in Alvarez-Esteban et al. (Alvarez Esteban
et al., 2016), where it is described as a fixed-point algorithm. Alvarez-Esteban et al. prove that
the fixed-point algorithm converges to the true barycenter as the number of iterations goes to in-
finity. The consistency results were further generalized in (Backhoff-Veraguas et al., 2018; Zemel
and Panaretos, 2019) and extended to the non-population and stochastic gradient case. However,
the literature currently does not provide any rates of convergence for these first order methods. In
fact, Alvarez-Esteban et al. empirically observed a linear rate of convergence for the gradient de-
scent algorithm in the Gaussian setting and left open the theoretical study of this phenomenon for
future study. One contribution of this paper is to establish this rate of convergence (Theorem 1), and
we also provide multiple extensions including the first rate of convergence for stochastic gradient
descent in this context.

On our way to proving rates of convergence in the Bures-Wasserstein case, we also establish
results that apply to the more general setting where P may not be supported on Gaussian probability
measures. In particular, we establish an integrated Polyak-t.ojasiewicz inequality (Lemma 8) and a
new variance inequality (Theorem 6) that are of independent interest.

NOTATION. We denote the set of positive definite matrices by SE 1, and the set of positive
semidefinite matrices by S?. We denote by A\i(X),...,Ap(X) > 0 the eigenvalues of a matrix
PSS SE . The Gaussian measure on R” with mean m € RP and covariance matrix ¥ € SE
is denoted ,, ;. We reserve the notation log for the inverse of the Riemannian exponential map
(which we review in 3.1) and use instead In(-) to denote the natural logarithm. The (convex analysis)
indicator function ¢¢ of a set C is defined by ¢¢c(x) = 0 if z € C and ¢(z) = +00 otherwise. We
denote by id the identity map of R”.

2. Main results

—
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In this paper, we develop a general machinery to study
first order methods for optimizing the barycenter func-
tional on Wasserstein space. Establishing fast conver-
gence of first order methods is usually intimately related 0.0 02 04 06 08 10
to convexity. Since our setting is on the curved Wasser-
stein space, we talk about geodesic convexity rather than
the usual notion convexity employed in flat, Euclidean
spaces. Geodesic convexity has been used to study statis-
tical efficiency in manifold constrained estimation (Aud-
erset et al., 2005; Wiesel, 2012) and, more recently, in optimization (Bonnabel, 2013; Bacak, 2014;
Zhang and Sra, 2016).

Barring a direct approach to establishing quantitative convergence guarantees, the barycenter
functional is actually not geodesically convex on Wasserstein space. In fact, the barycenter func-
tional may even be concave along geodesics; see Figure 1. As such, it does not lend itself to the
general techniques of geodesically convex optimization. This non-convexity is a manifestation of
the non-negative curvature of (Po(RP), W3) (cf. subsection 3.1) (Sturm, 2003).
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Figure 1: Example of the non-geodesic
convexity of W2. Details are
given in Appendix B.2.
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Fortunately, the optimization literature describes conditions for global convergence of first order
algorithms even for non-convex objectives. In this work, we employ a Polyak-t.ojasiewicz (PL)
inequality of the form (6), which is known to yield linear convergence for a variety of gradient
methods on flat spaces even in absence of convexity (Karimi et al., 2016).

In this paper, we study the barycenter functional

Gb) = QW3 / W2(b,-)dQ, M

for some generic distribution () with barycenter b. This notation allows us to treat simultaneously
the cases where () = P and Q = P, which are the situations of interest for statisticians. The
case when () is an arbitrary discrete distribution supported on Gaussians has also been studied in
the geodesic optimization literature (Agueh and Carlier, 2011; Alvarez Esteban et al., 2016; Weber
and Sra, 2017; Bhatia et al., 2019; Weber and Sra, 2019; Zemel and Panaretos, 2019). Our main
theorems, for gradient descent and stochastic gradient descent respectively, are stated below.

Theorem 1 Fix ¢ € (0,1] and let Q be a distribution supported on mean-zero Gaussians whose
covariance matrices ¥ satisfy ||2||op < 1 and det X > (. Then, Q) has a unique barycenter b, and
Gradient Descent (Algorithm 1) initialized at by € supp(Q)) yields a sequence (br)p, such that

2, A\ :
W2(bp, b) < <(1 - Z) [G(bo) — G(B)] .

The above theorem establishes a linear rate of convergence for gradient descent and answers a
question left open in (Alvarez Esteban et al., 2016). Moreover, when Q = P,, combined with the
existing results of (Kroshnin et al., 2019; Ahidar-Coutrix et al., 2020), it yields a procedure to esti-
mate Wasserstein barycenters at the parametric rate after a number of iterations that is logarithmic
in the sample size n.

Still in the Gaussian case, we also show that a stochastic gradient descent (SGD) algorithm
converges to the true barycenter at a parametric rate.

Theorem 2 Fix ¢ € (0,1] and let Q be a distribution supported on mean-zero Gaussian measures
whose covariance matrices ¥ satisfy | X||op < 1 and det X > (. Then, Q) has a unique barycenter
b, and Stochastic Gradient Descent (Algorithm 2) run on a sample of size n + 1 from Q returns a
Gaussian measure b, such that

96 var(Q)
n¢d
When applied to ) = P, Theorem 2 shows that SGD yields an estimator b,, different from the
empirical barycenter b, that also converges at the parametric rate to b*. When applied to QQ = P,
this leads an alternative to gradient descent to estimate the empirical barycenter by that exhibits a

slower convergence but that has much cheaper iterations and lends itself better to parallelization.
As far as we are aware, these results provide the first non-asymptotic rates of convergence for
first order methods on the Bures-Wasserstein manifold.

EW2(b,,b) < ,  where var(Q) :/WQQ(-,B) d@

Remark 3 A natural sufficient condition of det X > ( to be satisfied is when all the eigenvalues of
the covariance matrix 3 are lower bounded by a constant Ay, > 0. In this case, the parameter
> )\ﬁin can be exponentially small in the dimension. Note however that, in this case, the Gaussian
measure is quite degenerate in the sense that the density of o . is exponentially large at 0.
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Figure 2: Left. Convergence of SGD on Bures manifold for n = 1000, d = 3, and and b* = g y,.
Right: linear convergence of GD on the same problem.

In Figure 2, we present the results an experiment confirming these two results; see Appendix B
for more details and further numerical results.

3. Gradient descent on Wasserstein Space

In this section, we first review some background on optimal transport and describe first order algo-
rithms on Wasserstein space. Then, we derive rates of convergence assuming a Polyak-t.ojasiewicz
(PL) inequality. Theorems 4 and 5 below are proved using modifications of the usual proofs in the
optimization literature. Their proofs make critical use of the non-negative curvature of the Wasser-
stein space and are deferred to Appendix C.

3.1. Notation and background on optimal transport

In this section, we give a quick overview of the background and notation for optimal transport that
is relevant for the paper. We provide a more thorough review of Riemannian geometry and the
geometry of Wasserstein space in Appendix A. For each topic below, we also provide a reference to
a useful presentation.

Wasserstein distance. (Villani, 2003, Chapter 1). Given a Polish space (F, d), we denote by Py (E)
the collection of all (Borel) probability measures ;¢ on E such that Ex ., [d(X, y)?] < oo for some
y € E. For two measures u,v € Po(E), let IT,, , be the set of couplings between p and v, that is,
the collection of probability measures 7 on E x E such thatif (X,Y) ~ m,then X ~ pandY ~ v.
The 2-Wasserstein distance between w and v is then defined as

W3 (p,v) == inf Eixy)erld(X,Y)?]. )

WGHP,,V

We are primarily interested in the cases £ = R equipped with the standard Euclidean metric,
and E = Po(RP) equipped with the Wasserstein metric. Thus, P2(R”) denotes the space of
probability measures on R” with finite second moment, and P5(P5(R?)) denotes the space of
measures P on Po(R?) such that E,. pW23 (110, v) < oo for some, and therefore any, g € Po(RP).
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If 1 € P2(RP) is absolutely continuous w.r.t. the Lebesgue measure, we write 11 € Pa c(R”), and
we similarly define the space Pa(Pa ac(RP)).
Transport map. (Villani, 2003, Chapter 2). Given a measure x and a map 7: R? — RP| the

pushforward Ty is the law of 7'(X) when X ~ pu. For pi,v € P ,.(RP), Brenier’s theorem
tells us that there exists a unique optimal coupling 7 € 11, ,, that achieves the minimum in (2) and
furthermore that it is induced by a mapping 7},_,,, in the sense that if X ~ p then (X, 7T}, (X)) ~
7*. Moreover, T},_,, is the (u-a.e. unique) gradient of a convex function ¢,,_,,, such that

(VSO,u—w)#/i =v.

Kantorovich potential. (Villani, 2003, Chapter 2). The ¢, : RP — R specified in this way is
called the Kantorovich potential for the optimal transport from p to v. For o, 3 > 0, if ¢, is
a-strongly convex and 3-smooth, in the sense that for all z, y € RP,

a B
Sy = 2l* < uow () = usn (@) = (Veoun(@),y — 2) < Slly = 2lf?, 3)

then we say that the potential ,,_,, is (o, B)-regular.

Geodesics. (Villani, 2003, Section 5.1). The space ngaC(RD ) space is a geodesic space, where
the geodesics are given by McCann’s interpolation. Defining s = ((1 — s)id 48T },0—p, )# 4o,
then (5) s€(0,1] is a constant-speed geodesic in Wasserstein space which connects pg to p1. For any
v € Paac(RP), define the generalized geodesic with base v and connecting 4 to i1 by (%) 5€[0,1]
where 11 := [(1 = 8) Ty g + 5Ty ] 4.

Tangent bundle. (Ambrosio et al., 2008, Chapter 8). For b € ngac(]RD ) define the “tangent space”
at b by

TyP2.ac(RP) := {A(Vp —id): A > 0, p € O (RD), ¢ convex}Lz(b).

For v € TyPaac(RP) we write ||v||, := ]l £2(v)- Moreover, for any b,b" € P2.ac(RP), define the
map logy, : P2.ac(RP) — TyPaac(RP) by log, (V') := T}, — id. Reciprocally, we define the map
expy : ThP2.ac(RP) = Paac(RP) by exp,(v) = (id + v)4b.

Convexity. (Agueh and Carlier, 2011, Section 7). We are now in a position to define two notions of
convexity in Wasserstein space. Consider any functional F : Py ,.(RP) — (—oc, 0] on Wasser-
stein space. We say that F is geodesically convex if for all pg, 1 € PQ,ac(RD ), the constant-speed
geodesic (fs)sepo,1) from fig to puy satisfies F(ps) < (1 — 5)F (po) + sF (p1) forall s € [0,1]. We
say that F is convex along generalized geodesics if for all choices v, j1g, 11 € P2 ac(RP), it holds
that F(uY) < (1 — s)F (o) + sF(u1) for all s € [0,1]. Observe that the notion of generalized
geodesic reduces to that of a geodesic when v = p, so that convexity along generalized geodesic is
a stronger notion than convexity along geodesics. We say that a set C C Pa 5¢ (RP) is convex along
geodesics (resp. generalized geodesics) if its indicator function ¢¢ is convex along geodesics (resp.
generalized geodesics). Note that a set C is convex along generalized geodesics with base b if and
only if the set log; (C) is convex in the usual sense.

Curvature. (Ambrosio et al., 2008, Theorem 7.3.2). Lastly, we often use the fact that Pa ¢ (]RD )
is non-negatively curved in the sense of Alexandrov. More specifically, we use the fact that for
o5 (1, V € P2 ac (RP), if () sc0.1] denotes the constant-speed geodesic connecting 1o to p1, then
forall s € [0, 1],

W3 (ns,v) = (1= 8)W3 (o, v) + sW3 (1, v) — s(1 = s)W3 (uo, j11)- S
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Moreover, for any pi, v, b € P o.(RP) the definition of Wasserstein distance implies
Wap, v) < | Tosw © Tysy = dll 22 u) = 1 Tosr = Tospll 2wy = lllogy (1) —logy(¥)[l5. (5)

3.2. Gradient descent algorithms over Wasserstein space
3.2.1. GRADIENT DESCENT.

Let Q be a probability distribution over (Pa o.(RP), W2). In the sequel, we focus on the cases
where QQ = P, (Q = P,, or Q) is a weighted atomic distribution, but our results apply generically to
any () that satisfy the conditions stated in the theorems below.

Using the techniques of (Ambrosio et al., 2008), the gradient of the barycenter functional G
defined in (1) may be easily computed (Zemel and Panaretos, 2019). Analogous to the Riemannian
formula (reviewed in Appendix A), the Wasserstein gradient of G'at b € Po, ac(RP) is the mapping
VG(b) : RP — RP defined by

VG() = ~Qlogy (1) =~ [ (Thoys i) dQUw).

Denote by b any minimizer of G.
The primary assumption we work with is common in the optimization literature. We say that G
satisfies a Polyak-Lojasiewicz (PL) inequality at b if

IVG(D)]|Z > 2Cp[G(b) — G(b)] for some Cpp > 0. (6)

It follows from (13) below that Cp| < 1 for any such Q.
The gradient descent (GD) iterates on GG are defined as

by € supp Q, b1 = eprt(—VG(bt)) = [id—VG(bt)]#bt fort > 1. @)

Note that this method employs a unit step size. This is in agreement with the observation made
in (Zemel and Panaretos, 2019, Lemma 2) that it leads to the best decrement in G' with respect to
the smoothness upper bound, see Theorem 7 below.

The following theorem shows that a PL inequality yields a linear rate of convergence.

Theorem 4 (Rate of convergence for gradient descent) [f G satisfies the PL inequality (6) at all
the iterates (by), . then

G(br) — G(b) < (1 — CpL)"[G(bo) — G(D)].

3.2.2. STOCHASTIC GRADIENT DESCENT.

PL inequalities are also useful in the stochastic setting where we observe n independent copies
Uiy.. ., tn of g~ @Q. In this case, we consider the natural stochastic gradient descent (SGD)
iterates defined by by := pg, and fort =0,1,...,n — 1,

be+1 = expy, (—n¢ logy, (1e+1)) = [id +n0e(To—prpy — 1d)] e (8)

where 7, € (0, 1) denotes the step size. At each iteration, SGD moves the iterate along the geodesic
between b; and p;41 for step size 1;. Under the assumption of a PL inequality, we show that SGD
achieves a parametric rate of convergence.
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In the following result, we recall that the variance of () is defined as
var(Q) = / W2(b,)dQ = 2G(b).

Theorem 5 (Rates of convergence for SGD) Assume that there exists a constant Cp. > 0 such
that the following holds: G satisfies the PL inequality (6) at all the iterates (bt)ogtgn of SGD run
with step size

2t + k) + 1 2
n PL( \/ C,%L(t+k+1)2) CrL(t+Ek+1) ©
where we takek:zQ/CFQ,L—1>O. Then,

EG(b,) — G(b) < 3"271”(@
Csn

The parameter k in (9) ensures that the step size is well-defined and less than 1.

3.3. Properties of the barycenter functional

Unlike results in generic optimization, this paper focuses on a specific function to optimize: the
barycenter functional. In fact, this is a vast family of functionals, each indexed by the distribution
@ in (1). However, some structure is shared across this family. In the rest of this section, we extract
properties that are relevant to our optimization questions: a variance inequality, smoothness, as well
as an integrated PL inequality. These properties are valid for general distributions @ over Py (R?)
and are specialized to the Bures manifold in the next section.

3.3.1. VARIANCE INEQUALITY.

Variance inequalities indicate quadratic growth of the barycenter functional around its minimum.
More specifically, we say that () satisfies a variance inequality with constant C\5, > 0 if

G0) GO > “TWED), e Pou(BD), (10)
In particular, (10) implies uniqueness of b. The importance of variance inequalities for obtaining
statistical rates of convergence for the empirical barycenter was emphasized in (Ahidar-Coutrix
et al., 2020). In (Le Gouic et al., 2019), it is shown that an assumption on the regularity of the
transport maps from the barycenter b implies a variance inequality. Specifically, suppose that all of
the Kantorovich potentials ¢j_, , for p € supp @ are («, 3)-regular in the sense of (3). Then, a
variance inequality holds with Cioy = 1 — (8 — o).

It turns out that a variance inequality holds without needing to assume smoothness of ¢j_, ,:
assuming that the potential ¢;_, , is (a(p), 00)-regular for each € supp () yields a variance
inequality with Cyar = [ o(p) dQ(p). The improvement here is critical for achieving global results
on the Bures manifold. Moreover, when combined with the work of (Ahidar-Coutrix et al., 2020)
it yields improved statistical guarantees for the empirical barycenter. To formally state this result,
we need the notion of an optimal dual solution for the barycenter problem. A discussion of this
concept, along with a proof of the following theorem, is given in Appendix C.2. We verify that
the hypotheses of the theorem hold in the case when () is supported on non-degenerate Gaussian
measures in Appendix C.5.
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Theorem 6 (Variance inequality) Fix () € PQ(PQ’aC(RD )) be a distribution with barycenter b €
7727ac(RD ). Assume that there exists an optimal dual solution o for the barycenter problem w.r.t. b
such that, for Q-a.e. j1 € P2 ac(RP), the mapping ¢,, is op)-strongly convex for some measurable
function o : Po(RP) — R, Then, Q satisfies a variance inequality (10) with constant

Crar = /O‘(H) dQ(p) -

3.3.2. SMOOTHNESS.

Recall that a convex differentiable function f : RP — R is S-smooth if

F) < F@) + (Vi@hy—a)+ Dyl oy e RO an

A consequence of S-smoothness is the following inequality, which measures how much progress
gradient descent makes in a single step (Bubeck, 2015).

flo— 8V f@) — @) < —;ﬁnwcc)n?. (12)

In fact, only the latter inequality (12) is needed for the analysis of gradient descent methods. It
was noted, first in (Alvarez Esteban et al., 2016, Proposition 3.3) and then in (Zemel and Panaretos,
2019, Lemma 2), that an analogue of (12) holds in Wasserstein space for the barycenter functional.
Below, we provide a different, more geometric proof of this fact that emphasizes the collective role
of smoothness and curvature. On the way, we also establish a smoothness inequality (13) that is
used in the proof of Theorem 4 and also ensures that Cp| < 1 for any distribution ) supported on
P2 ac(RP).

Theorem 7 Forany by, b1 € P2 ac (RP) the barycenter functional satisfies the smoothness inequal-
ity

1
G(b1) < G(bo) + (VG(bo),logy, b1)p, + 5Wg(bo, b). (13)

Moreover, for any b € Pa oc(RP) and b+ = [id —VG(b)] b, it holds.
1
G(b") = G(b) < —5[IVGO)]5- (14)

Proof Let (bs),c[o 1 be the constant-speed geodesic between arbitrary bo, by € P2.ac(RP). From
the non-negative curvature inequality (4), it holds that for any s € (0, 1],

/ W22(bs7,u) B W22(b07:u')
S

Q1) > / (W2 (by. ) — WE(bo, 1)) dQ(r) — (1 — 5)W2(bo, by).

By dominated convergence, the left-hand side converges to

d . .
/ $W22(b5, M)‘S:0+ dQ(:“’) =—2 /(Tboﬁu —id, Tyy—p, — 1d>L2(bo) dQ(:“’)
= 2(VG(bo),logy, (b1))s, ;
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where in the first identity, we used the characterization of (Ambrosio et al., 2008, Proposition 7.3.6).
Rearranging terms yields (13).

Noticing that W3 (b, b") = |-V G(b)||?, Theorem 7 is now an immediate consequence of (13)
applied to bg = band by = b™. [ |

3.3.3. AN INTEGRATED PL INEQUALITY.

The main technical hurdle of this work is to provide sufficient conditions under which the PL in-
equality holds. The following lemma, proved in Appendix C.3, is our main device to establish PL
inequalities.

Lemma 8 Let Q satisfy a variance inequality with constant C\y and let b € ’PQ@C(RD ) be
such that the barycenter b of Q is absolutely continuous w.r.t. b. Assume further the following
measurability conditions: there exists a measurable mapping ¢ : P2(RP) x RP — R U {oo},
(1, ) = @pyp(@), such that, for Q-almost every ji € Paac(RP), 0pyy, : RP — RU {oo} is a
Kantorovich potential for the optimal transport from b to u. Then,

1 2
G) = 6(0) < o= ([ I96®zz0,0s)

where (bs) s€(0,1] is the constant-speed Wo-geodesic beginning at by := b and ending at by := b.

This lemma can yield a PL inequality in quite general situations, but the crucial issue is whether
these conditions hold uniformly for each iterate in the optimization trajectory. In the next section,
we show how to turn an integrated PL inequality into a bona fide PL inequality when () is supported
on certain Gaussian measures.

4. Gradient descent on the Bures-Wasserstein manifold

Upon identifying a centered non-degenerate Gaussian with its covariance matrix, the Wasserstein
geometry induces a Riemannian structure on the space of positive definite matrices, known as
the Bures geometry. Accordingly, we now refer to the barycenter of () as the Bures-Wasserstein
barycenter.

4.1. Bures-Wasserstein gradient descent algorithms

We now specialize both GD and SGD when () is supported on mean-zero Gaussian measures. In
this case, the updates of both algorithms take a remarkably simple form. To see this, for m € RP,
¥ € SP, let 7y, x> denote the Gaussian measure on R” with mean m and covariance matrix ¥. The
set of non-degenerate Gaussians constitutes a well-behaved subset of Wasserstein space, called the
Bures-Wasserstein manifold (Bures, 1969; Bhatia et al., 2019). In particular, the optimal coupling
between 7, 5, and v, x, has the explicit form

1/2

& Ty s oy () 2= M1 + 55 2228 sd ) e R (@ — mo). (15)

Observe that T, | is affine, and thus i T3, 50—~ dQ(7) is affine.

o S0 " Tu1,S
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This means that all of the GD (or SGD) iterates are Gaussian measures, so it suffices to keep
track of the mean and covariance matrix of the current iterate. For both GD and SGD, the update
equation for the descent step decomposes into two decoupled equations: an update equation for
the mean, and an update equation for the covariance matrix. Moreover, the update equation for
the mean is trivial, corresponding to a simple GD or SGD procedure on the objective function
m +— [ |lm — m(p)||? dQ(u), which is just mean estimation in R”. Therefore, for simplicity and
without loss of generality, we consider only mean-zero Gaussians throughout this paper and we
simply have to write down the update equations for the covariance matrix >; of the iterate. The
resulting update equations are summarized in Algorithms 1 and 2 below.

Algorithm 1: Bures-Wasserstein GD Algorithm 2: Bures-Wasserstein SGD
Input: >y, Q, T Input: %, (Ut)g;p (Kt)thl
fort=1,...,Tdo fort=1,...,T do

St —

S m PRy e
Gy (1=n)Ip +mS:
Zt < C?tEt,lC‘t

end

return X

1/2 1/2,1/2
f{ztilz(ﬂ)ztil dQ(p)
DI s e M
end
return Xp

In the rest of this section, we prove the guarantees for GD and SGD on the Bures-Wasserstein
manifold given in Theorems 1 and 2.

4.2. Proof of the main results

For simplicity, we make the following reductions: we assume that the Gaussians are centered (see
previous subsection) and that the eigenvalues of the covariance matrices of the Gaussians are uni-
formly bounded above by 1. The latter assumption is justified by the observation that if there is
a uniform upper bound on the eigenvalues of the covariance matrices, then we can apply a simple
rescaling argument (Lemma 14 in the Appendix).

While the centering and scaling assumptions stated above can be made without loss of gener-
ality, our results require the following regularity condition. Note that it is equivalent to a uniform
upper bound on the densities of the Gaussians.

Definition 9 ((-regular) Fix ¢ € (0,1]. A distribution Q € P2(RP) is said to be (-regular if its
support is contained in

Se=1{1x: €SP, [Zlop <1, det T > (}. (16)

Hereafter, we always assume that () is (-regular for some ¢ > 0. Under this condition, it can be
shown that the barycenter of () exists and is unique (Proposition 15 in the Appendix).
We begin with a brief outline of the proof.

(1) If we initialize gradient descent (or stochastic gradient descent) at one of the elements of the
support of (), then all of the iterates, all of the elements of supp @, the barycenter b, and all
of elements of geodesics between these measures are non-denegerate Gaussians yp 5. € S.

11
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(ii) Using Lemma 8, we establish a PL inequality holds with a uniform constant over S¢.

(iii)) The guarantees for GD and SGD on the Bures manifold follow immediately from the PL
inequality and our general convergence results (Theorems 4, 5).

In the sequel, we use geodesic convexity as a key tool to control the iterates of the gradient
descent algorithm. We note that this discussion is not about proving some sort of geodesic convexity
for our objective, which cannot hold in general. Our main interest in geodesic convexity comes
from the following fact: if all of the elements of the support of @) lie in a geodesically convex set
S¢, and we initialize the algorithm at an element of S¢, then all of the iterates of stochastic gradient
descent are simply moving along geodesics within this set, and so remain in S¢. The same is true
for the iterates of gradient descent, provided that we replace geodesic convexity with convexity
along generalized geodesics. Refer to Section 3.1 for definitions of these terms. We begin with the
following fact.

Lemma 10 For a measure 1 € P2(RP), let M(u) = [z ® xdu(z). Then, the functional
= | M()]lop = Amax(M (1)) is convex along generalized geodesics on P2(RP).

Proof Let SP~! denote the unit sphere of R” and observe that for any e € SP~! the function z —
(z,€)? is convex on R”. By known results for geodesic convexity in Wasserstein space (see (Am-
brosio et al., 2008, Proposition 9.3.2)), the functional x — [(-,e)?>du = (e, M (u)e) is convex
along generalized geodesics in Po(IRP); hence, so is the functional y — max,cgn-1{e, M (11)e)

1M (). n

The next lemma establishes convexity along generalized geodesics of p — —Indet X(u). It
follows from specializing Lemma 18 in the Appendix to the Bures-Wasserstein manifold.

Lemma 11 The functional g s, — — Zi’il In \;(X) is convex along generalized geodesics on the
space of non-degenerate Gaussian measures.

It follows readily from Lemmas 10 and 11 that the set S is convex along generalized geodesics.
Moreover since SGD moves along geodesics and is initialized at by € supp Q C S, then all the
iterates of SGD stay in S¢. To show that the same holds for GD, observe that the set log,, (S¢) is
convex. Therefore, —VG(b;) = [(Tp,—p — id) dQ(u) € logy, (S¢) as a convex combination of
elements in this set. This is equivalent to b;y1 = exp,, (—VG(by)) € S¢. These observations yield
the following corollary.

Corollary 12 The set S; is convex along generalized geodesics and when initialized in supp @), the
iterates of both GD and SGD remain in S¢.

This completes the first step (i) of the proof. Moving on to step (ii), we get from Theorem 19
that G satisfies a PL inequality with constant Cp| = ¢?/4 atall b € S¢ and in particular at all the
iterates of both GD and SGD.

Combined with the general bound in Theorems 4 and the variance inequality in Theorem 17,
this completes the proof of Theorems 1 for GD. To prove Theorem 2, take k = 1/Cp| = 4/¢? so
that Theorem 5 yields
48 var(Q)

n¢t
Combining this bound with the variance inequality in Theorem 17 completes the proof of Theo-
rem 2.

EG (by) — G(b) <
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Appendix A. Geometry and Wasserstein space

In this section we give a more detailed introduction to Riemannian manifolds and discuss analogies
to Wasserstein space which are present throughout the paper. We refer readers to (do Carmo, 1992)
for a standard introduction to Riemannian geometry.

A.1. Riemannian geometry

An n-dimensional manifold M is a topological space which is Hausdorff, second countable, and
locally homeomorphic to R”. A smooth atlas is a collection of smooth charts {1/ },¢ 4 S0 that each
Yo: Uy C M — R™is a homeomorphism from an open set U, in M, M = UaE.A U., and such
that for all o, @’ € A, 94 0 1/1;,1 is smooth wherever defined. For a fixed choice of smooth atlas, we
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declare a function f: M — R to be smooth if for ! is for each o € A. The manifold together with
a smooth atlas defines a smooth n-dimensional manifold, and we shall always suppress mention of
the atlas. A map f: M — N between two smooth manifolds is said to be smooth if its composition
with smooth charts is.

Given a smooth n-dimensional manifold M and a point p € M, the tangent space 1), M is the
equivalence class of all smooth curves v: (—¢,e¢) — M such that 7(0) = p, where two such curves
Y0, y1 are equivalent if, with respect to every coordinate chart ¢ defined in a neighborhood of p,
(1 040)'(0) = (¥ 041)(0). As such, T, M is a real n-dimensional vector space for each p € M.
The cotangent space at p € M is then the dual to T}, M, which we shall denote 7,7 M. The tangent
bundle is the disjoint union 7'M := |_|pE v Lp M, and the cotangent bundle is similarly the disjoint
union T*M := |—|p6 v Iy M. The smooth structure on M induces a smooth structure on 7'M and
T* M, so each is then a 2n-dimensional smooth manifold in its own right.

A smooth vector field X : M — T'M is then a smooth map p — X, such that X, € T,M
for all p € M, and similarly for a smooth covector field a.: M — T*M. Higher-order tensors
are defined similarly: a (p, ¢)-tensor field is a smooth mapping 7': M — (T'M)? @ (T*M)?. The
differential df : M — T*M of a smooth function f on M is the smooth covector field such that
dfy: T,M — R obeys df,(v) := (f o)’(0), where ~ is any curve with tangent vector v € T,,M at
7(0) = p.

A Riemannian manifold (), g) is a smooth n-dimensional manifold M with a smooth metric
tensor g: M — T*M ® T*M; at each point of M, this is a positive definite bilinear form. The
metric tensor therefore defines a smoothly varying choice of inner product on the tangent spaces
of M. In addition to giving rise to notions of length and geodesics, the metric tensor provides a
canonical isomorphism (the Riesz isomorphism) between the tangent space and cotangent space:
for a vector v € T),M the covector o, € T,y M is defined by v, (w) = g,(v, w). For a covector
o € Ty M the vector v, € T, M is defined as the unique solution of a(w) = gp(va,w) for all
w € T, M. A smooth vector field X can be accordingly transformed into a smooth covector field
denoted X", and a smooth covector field w can be transformed into a smooth vector field w#. The
gradient of a function f: M — R is defined then as V f := (df)*: in other words, for all p € M
and v € T,M, df,(v) = g,(V f(p),v).

We typically write (-, -), instead of g, (-, -), and we write ||-|,, for the norm induced by the metric
tensor, i.e., ||[v||, := /(v,v),. In this notation, the distance between points p, ¢ € M is defined as

1
— ] /
duv.0)=_inf [ IOl
where I'(p, ¢) is the collection of all smooth (or piecewise continuous) curves ~y: [0, 1] — M such
that v(0) = p and y(1) = ¢. If M is connected, then the distance d,/ is indeed a metric. If we
additionally assume that (M, d)y) is complete as a metric space then by the Hopf-Rinow theorem
the value of the above minimization problem is attained by at least one curve v: [0,1] — M such
that ¢ +— ||7'(t)[|(#) is constant, which is said to be a constant-speed (minimizing) geodesic.

For any p € M, there always exists an ¢ > 0 such that for any vector v € T, M with ||v|, < e,
there is a unique constant-speed geodesic 7, : [0,1] — M obeying v,(0) = p and 7/,(0) = v.!
On the ball B.(0) with radius € and center 0 € T}, M (with respect to the norm ||-||,,), we can now

1. In fact, a stronger result holds: there exists a neighborhood U of p such that for any two points q, ¢’ € U, there is a
unique constant-speed minimizing geodesic v: [0,1] — U joining g to ¢’. Such a neighborhood is called a totally
normal neighborhood of p.
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define the exponential map exp,,: B:(0) — M by v € V;, = ~,(1). The exponential map is a
diffeomorphism onto its image, so we can define the inverse mapping log,: exp,(B:(0)) — T, M.
If M is complete, the domain of definition of any constant-speed geodesic 7: [0, 1] — R can be
extended to all of R such that at each time -y is locally a constant-speed minimizing geodesic; in this
case, the exponential mapping can be extended to a mapping exp,,: 17, M — M. Note, however,
that the mapping log,, is not necessarily defined everywhere.

We lastly recall that for fixed ¢ € M and p which does not belong to the cut locus of ¢ (the set
of points for which there exists more than one constant-speed minimizing geodesic from p),

[Vdis (- q)l(p) = —2log,(q).

This statement has an intuitive meaning: it simply says that outside of the cut locus of ¢, the gradient
of the squared distance points in the direction of maximum increase.’

A.2. Riemannian interpretation of Wasserstein space

In this section, we briefly explain the interpretation set out in (Otto, 2001) of the Wasserstein space
of probability measures as a Riemannian manifold. For more introductory expositions of this sub-
ject, we refer to (Villani, 2003, Chapter 8) and (Santambrogio, 2015, Chapter 5). The task of putting
this formal discussion on rigorous footing is undertaken in (Ambrosio et al., 2008, Chapter 8). We
also note that many treatments view Wasserstein space as a length space using the framework of
metric geometry; see (Burago et al., 2001) for an introduction to this approach.

Let 19 € Pa2ac(RP) and consider a family (vt)efo,1) Of smooth vector fields on RP, that is,
v i RP — RP foreach t € [0, 1]. Suppose we draw X ~ 1o and we evolve X according to the
ODE X; = vt (Xy) for t € [0, 1], that is, we seek an integral curve of (Ut)te[&l] with starting point
Xo. If we let u; denote the law of X, we may compute the evolution of (Nt)te[o,l] as follows. Take
any smooth test function ¢» on R”, and (ignoring any issues of regularity) compute

&:/wdut = OB (Xy) = EOp(Xy) = E(VY(X), ve(Xy)) = /<V¢7Ut> dpt
= —/'(/JdiV(’Ut,ut).

This suggests that the pair (Mt)te[o,l]’ (”t)te[o,l] should solve the following PDE, which is known as
the continuity equation:

atut + div(’utut) =0. 17)

This PDE can be interpreted in a suitable weak sense, e.g.: for any smooth test function ¢ with
compact support, the mapping ¢ — [ 1 dy; should be absolutely continuous and thus differentiable
at almost every ¢ € [0, 1], and its derivative should satisfy 9; [ ¢ dp: = [(Vp, ve) dpsy.

Since the vector fields (v¢),c( 1) govern the evolution of the curve (u¢),¢(o 1) € Pa2ac (RP), we
would like to equip Pa ac(RP) with the structure of a Riemannian manifold such that (Ut)te[(]’l]
is interpreted as the tangent vectors to the curve (:“t)te[o,l]- However, a problem arises: given a

2. When there are multiple constant-speed minimizing geodesics joining p to g, then the following fact is still true: the
squared distance function d3, (-, ¢) is superdifferentiable at p. Moreover, for any constant-speed minimizing geodesic
v:[0,1] — M joining p to ¢, the vector —2+’(0) € T,, M is a supergradient of d3; (-, q) at p.
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curve (4¢),eq0,1) in Wasserstein space, there are many choices for the vector fields (v¢);c(y 1 which
solve (17) together with (4),¢(o1)- Indeed, if we fix any pair (Ht)te[o 1> (Vt)yeqo,1) solving (17),
then we obtain another solution by replacing v; with v; + w¢, where wy is any vector field satisfying
div(wepe) = 0. So, what should we take as the tangent vectors to (fit) [ 1)?

We can take a hint from optimal transport. Specifically, Brenier’s theorem asserts that in the
optimal transport problem of transporting a measure 1 to another measure v, the optimal transport
plan is induced by a transport map, which is the gradient of a convex function . In other words, if
we interpret 1 as a collection of particles, then each particle initially moves along the vector field
Vi —id. In particular, taking v = g and v; = p,. for a small € > 0, we expect the tangent vector
of <Mt)te[0,1] at time 0 to be of the form V¢ — id for a convex function ¢.

This motivates the definition of the tangent space to Ps ».(R”) at a measure b, given in (Am-
brosio et al., 2008, Chapter 8) as

L2(b

TyP2.ac(RP) := {A (Vo —id): A > 0, ¢ € C=(RP), ¢ convex}

where the closure is with respect to the L%(b) distance. We equip TpP2 oc(RP) with the L?(b)
metric, that is, for vector fields v, w € TyP2 c(RP) we define (v, w)y, := (v, w) 2y = [ (v, w)db.
The metric induced by this Riemannian structure recovers the Wasserstein distance, in the sense that

1
WQ(,LLOvl,Ll) = 1nf{/0 ||thMt dt ‘ (“t)te[o,l]’ (Ut)tE[O,l] solves (17)}

Given two measures fig, 41 € P2 ac (RP), there is a unique constant-speed minimizing geodesic
joining po to p1. It is given by py = [(1 —t)id + tT] o, where T is the optimal transport
mapping from g to p1; this is known as McCann'’s interpolation. It satisfies

Wa (o, pit) = tWa(po, 1)Vt € [0,1]. (18)

Moreover, it can be shown that any constant-speed geodesic in PQ’aC(RD ), that is, any curve
(Ht)tepa) © Pa.ac(RP) satisfying (18), is necessarily of the form p; = [(1 —t)id + tT'  po-
The tangent vector to (fi¢) (o 1] at time 0 is the vector field 7' — id.

Given 1 € Py ac (RP) and v € THPZaC(RD ), we may now define the exponential map to be
exp, v 1= (id 4+ v)4p. Given any other v € Pa.ac(RP), we also define the logarithmic map to be
log,, v :=T),—, — id, where T}, ,, is the optimal transport map from r to v. Observe that log,, v is
well-defined for any pair p1, v € P uc (RD).

Appendix B. Experiments

In this section, we demonstrate the linear convergence of GD, the fast rate of estimation for SGD,
and some potential advantages of averaging stochastic gradient by way of numerical experiments.
In evaluating SGD, we also include a variant that involves sampling with replacement from the
empirical distribution.

B.1. Simulations for the Bures manifold

First, we begin by illustrating how SGD indeed achieves the fast rate of convergence to the true
barycenter on the Bures manifold, as indicated by Theorem 2.
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To generate distributions with a known barycenter, we use the following fact. If the mean of the
distribution (logy«) 4P is 0, then b* is a barycenter of P. This fact follows from our PL inequality
(Theorem 19) or also from general arguments in (Zemel and Panaretos, 2019, Theorem 2). We
also use the fact that the tangent space of the Bures manifold is given by the set of all symmetric
matrices (Bhatia et al., 2019).

Figure 2 shows convergence of SGD for distributions on the Bures manifold. To generate a
sample, we let A; be a matrix with i.i.d. 7, ,2 entries. Our random sample on the Bures manifold is
then given by .
M)’ (19)
2
which has population barycenter b* = g 1,,. An explicit form of this exponential map is derived
in (Malago et al., 2018). We run two versions of SGD. The first variant uses each sample only once,
and passes over the data once. The second variant samples from X1, ..., %, with replacement at
each iteration and takes the stochastic gradient step towards the selected matrix. For the resulting
sequences, we also show the results of averaging the iterates. Specifically, if (b;),cy is the sequence

X = eXp’Yo,ID (

generated by SGD, then the averaged sequence is given by by = by and

1 -
1 e #bt'

Dis1 = [L id -+
On Riemannian manifolds, averaged SGD is known to attain optimal statistical rates under smooth-
ness and geodesic convexity assumptions (Tripuraneni et al., 2018).

Here, we generate 100 datasets of size n = 1000 in the way specified above and set 0 = 0.25.
In this experiment, the SGD step size is chosen to be n, = 2/[0.7 - (¢ + 2/0.7 4 1)]. The results
from these 100 datasets are then averaged for each algorithm, and we also display 95% confidence
bands for the resulting sequences. As is clear from the log-log plot in Figure 3, SGD achieves the
fast O(n 1) statistical rate on this dataset.

The right of Figure 2 shows convergence of GD to the empirical barycenter and true barycenter.
We generate samples in the same way as before. This linear convergence was observed previously
by (Alvarez Esteban et al., 2016).

In Figure 4, we repeat the same experiment, except this time the barycenter has covariance
matrix

20 0 0
s*=[0 1 0],
0 01

and the entries of A; are drawn i.i.d. from ~yg ;. In this situation, the condition numbers of the ma-
trices generated according to this distribution are typically much larger than those centered around
Y0,15- To account for a potentially smaller PL constant, we chose 7, = 2/[0.1 - (¢ + 2/0.1 + 1)].
It is again clear from the right pane in Figure 4 that SGD achieves the fast O(n~!) statistical rate
on this dataset. To account for the slow convergence initially, we only fit this line to the last 500
iterations. We also note that averaging yields drastically better performance in this case, which we
are currently unable to theoretically justify.

Figure 5 shows convergence of SGD with replacement to the empirical barycenter. We generate
n = 500 samples in the same way as in Figure 2, where the true barycenter is I3 and o2 = 0.25.
We calculate the error obtained by the empirical barycenter by running GD on this dataset until
convergence, which is displayed with the green line. We also calculate the error obtained by a
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—— SGD
~~~~~~ linear fit

slope: -1.014 + 0.004

0.0 0.5 1.0 1.5 2.0 2.5 3.0
logio(iteration)

Figure 3: Log-log plot of convergence for SGD on Bures manifold for » = 1000, d = 3, and and
b* = 70,1,. This corresponds to the experiment on the left in Figure 2

0.5
— SGD 1.04 — sGD
0.0 —— SGD (averaged) B e R linear fit
—— SGD with replacement 0.5 -
—-0.5 —— SGD with replacement (averaged) )
;’2 —— empirical barycenter *:
o —-1.0 s 0.0
) 3
(\g\, -1.5 Ngj. -0.5
2 -2.0 =S
5 5 —1.0
ks g
-25 15 slope: -1.05 * 0.031
-3.0
-2.0
-3.5
0 200 400 600 800 1000 0.0 0.5 1.0 1.5 2.0 2.5 3.0
iteration log(iteration)

Figure 4: Convergence of SGD on Bures manifold. Here, n = 1000, d = 3, and barycenter given
by diag(20, 1, 1). The result displays the average over 100 randomly generated datasets.

single pass of SGD, which is given by the blue line. SGD with replacement is then run for 5000
iterations, and we observe that it does indeed achieve better error than single pass SGD if run for
long enough. SGD with replacement converges to the empirical barycenter, albeit at a slow rate.

B.2. Details of the non-convexity example

We consider the example of the Wasserstein metric restricted to centered Gaussian measures, which
induces the Bures metric on positive definite matrices. Even restricted to such Gaussian measures,
the Wasserstein barycenter objective is geodesically non-convex, despite the fact that it is Euclidean
convex (Weber and Sra, 2019). Figure 1 gives a simulated example of this fact. This figure plots
the Bures distance squared between a positive definite matrix C' and points along some geodesic 7,
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—— SGD with replacement
-1.0 — GD
= SGD single pass
=2 -15
z
Q
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=
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-3.0 ]
0 1000 2000 3000 4000 5000

iteration

Figure 5: Convergence of SGD on Bures manifold. Here, n = 500, d = 3, and the distribution is
given by (19) with ¥* = I3 and 0? = 0.25. The result displays the average over 100
randomly generated datasets.

which runs between two matrices A and B. The matrices used in this example are

0.8 —-04 0.3 -0.5 0.5 0.5
A= <—0.4 0.3 > ’ B= <—0.5 1.0 > ’ ¢= <0.5 0.6> ’
and (t), t € [0, 1], is taken to be the Bures or Euclidean geodesic from A to B (the Euclidean
geodesic is given by ¢t — (1 — t)A + tB). This function is clearly non-convex, and therefore we

cannot assume that there is some underlying strong convexity (although the Bures distance is in fact
strongly geodesically convex for sufficiently small balls (Huang et al., 2015)).

Appendix C. Omitted proofs
C.1. Convergence bounds for GD and SGD under a PL inequality

This subsection gives proofs of the general convergence theorems for GD and SGD in the present
paper. Both of these proofs use the non-negative curvature inequality (5). We note that the proof
of Theorem 4 uses the non-negative curvature implicitly by invoking smoothness, while the use of
non-negative curvature is explicit within the proof of Theorem 5.

C.1.1. PROOF OF THEOREM 4 FOR GD.
Using the smoothness (14) and the PL inequality (6), it holds that
G(ber1) — G(be) < —CpL[G(b) — G(b)]-
It yields G(byy1) — G(b) < (1 — Cpp)[G(b;) — G(b)], which gives the result.

C.1.2. PROOF OF THEOREM 5 FOR SGD.

Recall the SGD iterations on n + 1 observations:

bo = 10, bir1 :=[(1 —m)id +ntht—)Ht+1]#bt fort=0,...,n,
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where the step size is given by

mszL(l—\/l 2t + k) +1 )< 2

2 (t+k+1)?) T CeLt+ R+ 1)

for some k such that C3, (k + 1)? > 2k + 1. We note that the step size 7; is chosen to solve the

equation
t+k )2

1—2CpLm +0f = (m

Using the non-negative curvature (5), we get

W3 (begr, 1) < ||logy, be1 — logy, pllz, = [ logy, pe1 — logy, ull7,

= |logy, pllz, + 7 oy, tet1llz, — 2m(logy, 1, 108y, ti+1)p, -

Taking the expectation with respect to (j, i4+1) ~ Q®? (conditioning appropriately on the increas-

ing sequence of o-fields), we have
EG (be+1) < E[(1+07)G () = el VG (be)l| 725,

Using the PL inequality (6),

EG(bi11) < E[(1+ n7)G(b) — 2CpLm[G(be) — G(D)]].

Subtracting G (b) and rearranging,

2

EG(bi41) — G(B) < (1= 2Cpum + ) [EG(b) — GB)] + & var(Q),

where we recall that var(Q) = 2G/(b). With the chosen step size, we find

A t+k 2 - 2 var(Q)
BG(ta) = 6) < () [BOG) - GO+ o m
Or equivalently,
2 7 2 oy, 2var(Q)
(t+k+1)7[EG(bir1) — Gb)] < (t+ k)7 [EG(b) — G(b)] + —r
PL
Unrolling overt = 0,1,...,n — 1 yields
(0 + KYEG () - GB) < K(EG() — G(B) + @),
PL
or, equivalently,
- k2 - 2
BG(n) ~ G(h) < (o lBG) GO + o o s
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To conclude the proof, recall that from (13), we have

_ 1 _
G(bo) = G(b) < 5 W (bo, ).
Taking the expectation over by ~ () we find
- - 1
EG(b) — G(b) < G(b) = 5 var(Q),

as claimed. Together with (20), it yields

- var(Q) k? 2 var(Q) (k+1 2
EG(bn) = G(b) < n+k (2(n+k:)+C§L> S n ( 2 +CI%L).

Plugging-in the value of k£ completes the proof.

C.2. Variance inequality: Theorem 6

We begin this section with a review of Kantorovich duality, which we use to discuss the dual of the
barycenter problem. Then, we present the proof of Theorem 6.

Given two measures y, v € Po(RP) and maps f € L'(p), g € L' (v) such that f(z) + g(y) >
(z,y) for p-ae. v € RP and v-ae. y € RP, it is easy to see that

i3> (1 =D [(1 o)

Kantorovich duality (see e.g. (Villani, 2003)) says that equality holds for some pair f = ¢, g = ©*
where ¢ is a proper LSC convex function and ¢* denotes its convex conjugate, i.e.,

L2 ) = /(W AP /<r-||2 )

2 2\ 2 2 '

The map ¢ is called a Kantorovich potential for (4, v). B
Accordingly, given b € Py(RP), we call a measurable mapping ¢ : Paac(RP) — L1(b),

P = @u, an optimal dual solution for the barycenter problem if the following two conditions are
met: (1) for Q-a.e. i, the mapping ¢,, is a Kantorovich potential for (b, ); (2) it holds that

/ (”Zl'z — o) dQ(w) = 0. @1

It is easily seen that these conditions imply that b is the barycenter of Q:

=1 o aas [ (s [ )l
= [[(5F - o) awae = 5 [ 36,00 = 6o,

The existence of an optimal dual solution for the barycenter problem is known in the finitely sup-
ported case (Agueh and Carlier, 2011), and existence can be shown for the general case under mild
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conditions (Le Gouic, 2020). For completeness, we give a self-contained proof of the existence of
an optimal dual solution in the case where () is supported on Gaussian measures in Appendix C.5.
Proof [Proof of Theorem 6] By the strong convexity assumption, it holds for Q-a.e. u € ’Pg,aC(RD )
and a.e. z € RP,

a(p)

(@) + eu(y) = (,y) + = lly = Vep @),
which can be rearranged into
. [ Iy 11
lz = yl* = a(wlly = Ve (@)I* > 75 = eil@) + 75 = euly)-

Integrating this w.r.t. the optimal transport plan ~y,, between 1 and b € Po(RP), yields

S (300~ at) [imms - 1op1?aw) > (W - p)aws (1 g

Observe also that (5) implies [|7},, — T}, Sill2e () = W2(b,b). Integrating these inequalities with
respect to () yields

60— 3 ([ea@)wzen > [[[(E ) aus [(HE- ) ar] aqu
= [[ ("~ 1) anaqun = oo

where in the last two identities, we used (21). It implies the variance inequality. |

C.3. Integrated PL inequality

The following lemma appears in (Lott and Villani, 2009, Lemma A.1) in the case of Lipschitz
functions. A minor modification of their proof allows to handle locally Lipschitz rather than only
Lipschitz functions. We include the modified proof for completeness.

Lemma 13 Let (bs) (o 1) be a Wasserstein geodesic in P (RP). Let Q@ C RP be a convex open
subset for which by(2) = b1 (Q) = 1. Then, for any function f : RP — R which is locally Lipschitz
on Q, it holds that

1
‘/fdbo —/fdb1’ < W2(b07bl)/ IV £l 20, ds.
0

Proof According to (Villani, 2009, Corollary 7.22), there exists a probability measure II on the
space of constant-speed geodesics in R” such that y ~ II and b, is the law of ~(s). In particular, it
yields

/ £ dby — / fdby = / [£(1(0)) — £ ((1))] dTT().
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We can cover the geodesic (7(3))s€[071] by finitely many open neighborhoods contained in €2 so that
f is Lipschitz on each such neighborhood; thus, the mapping ¢t — f(v(s)) is Lipschitz and we may
apply the fundamental theorem of calculus, the Fubini-Tonelli theorem, and Cauchy-Schwarz:

/f%m—/fﬁpi//<Vf (5)) ds dII(7)
//length )|V F(7(s)) || dIL(v) ds
<LA (/ﬂmgﬂm )2 dII(y ”zt/HVf ())||* dTI(7))"/* ds
= Walon, 1) [ 195120 0

It yields the result. n

Proof [Proof of Lemma 8] By Kantorovich duality (Villani, 2003),

L2, ) — w _ w _
s W3 (b, p) = Pu—b ) dp+ Py ) db,
2 2 ~

,WQ (b, p) > /<|| || @u—>b) d,qu/(HH _ <,0b—>u> db.

This yields the inequality
. I-11? -
G(b) — G(b) < /(2 - /‘Pbau dQ(M)) d(b—0).

Let  := [ p, dQ(u); this is a proper LSC convex function R” — R U {oo}. We apply
Lemma 13 with 2 = int dom @. Since ¢ is locally Lipschitz on the interior of its domain ((Rock-

afellar, 1997, Theorem 10.4) or (Borwein and Lewis, 2006, Theorem 4.1.3)) and b < b, then
b(Q) = b(Q2) = 1, whence

_ N 2[G(b) — G(b)] [~ .
G0) - GO) < Walb.D) [ 19 = idlay ds < 2= [ g i a.
var

Square and rearrange to yield

_ 1 2
6 -6 < o ([ Ive—idlzg) s

Recognizing that VG(b) = id — V@ yields the result. [ |

var

C.4. Rescaling lemma

Lemma 14 For any a > 0 and pu € Po(RP), let pi,, be the law of a X, where X ~ 1. Let p ~ Q
be a random measure drawn from Q), and let Qo be the law of pio. Then, b is a barycenter of Q if
and only if b, is a barycenter of Q).
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Proof It is an easy calculation to see that for any p, v € Pa(RP),

Wa(ptas va) = aWa(p, v)

(see, for instance, (Villani, 2003, Proposition 7.16)). Let

=5 [ WE5) dQu(n).

By the previous reasoning, G (bs) = o?G(b). In particular, the mapping b — b, is a one-to-one
correspondence between the minimizers of these two functionals. |

C.5. Properties of the Bures-Wasserstein barycenter

Existence and uniqueness of the barycenter in the case where () is finitely supported follows from
the seminal work of Agueh and Carlier (Agueh and Carlier, 2011). We extend this result to the case
where () is not finitely supported.

Proposition 15 (Gaussian barycenter) Fix 0 < Apin < Amax < 00. Let Q € Pa(P2ac (RP)) be
such that for all p € supp Q, {1t = Vp(u),5(n) S @ Gaussian with AminIp =< 3(p1) = AmaxIp. Let
V.5 be the Gaussian measure with mean m := = ['m(p)dQ(u) and covariance matrix ¥ which is

a fixed point of the mapping S — G(S) := [ (8125 (u )81/2)1/2 dQ(p). Then, 7y, 5 is the unique
barycenter of Q.

Proof To show that there exists a fixed point for the mapping G, apply Brouwer’s fixed-point
theorem as in (Agueh and Carlier, 2011, Theorem 6.1). To see that Vi, is indeed a barycenter,
observe the mapping

0 (1) o ou(e) = (o m() + (o —m, SIS0 ()8 S 2 w — m)

satisfies the characterization (21) (so that ¢ is an optimal dual solution for the barycenter problem
W.L.t. 77, ) using the explicit form of the transport map (15), so0 v, 5: is a barycenter of ). Unique-
ness follows from the variance inequality (Theorem 6) once we establish regularity of the optimal
transport maps in Lemma 16. |

Lemma 16 Suppose there exist constants 0 < Apin < Amax < 00 such that all of the eigenvalues
of ©,Y € S Y are bounded between Ayin and Amax and define k = Amax /Amin. Then, the
transport map from o s to Yo sy is (K1, k)-regular.

Proof The transport map from o5 to vy is the map = 2_1/2(21/22’21/2)1/22_1/233.
Throughout this proof, we write || - || = || - ||op for simplicity. We have the trivial bound

D e e R SRR [T
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Moreover | S71| < AL and | 21/250/21/2) € so that the smoothness is bounded by

max’
)\min

We can take advantage of the fact that 3, ¥’ are interchangeable and infer that the strong convexity
parameter of the transport map from X to Y is the inverse of the smoothness parameter of the
transport map from Y’ to X. In other words,

min s (271/2(21/22/21/2)1/2271/2) > )\min.
ISP Amax

This concludes the proof. |

Theorem 6 readily yields the following variance inequality.

Theorem 17 Fix ( > 0 and assume that Q is -regular. Then Q has a unique barycenter b and it
satisfes a variance inequality with constant C\ar = , that is, for any b € Pa ».(RP),

G(b) — G(b) > gwg(b, b).
C.6. Generalized geodesic convexity of In || - || 1~

Lemma 18 Identify measures p € P o.(RP) with their densities, and let the ||-|| .~ norm denote
the L>®-norm (essential supremum) w.r.t. the Lebesgue measure on RP. Then, for any b, pg, ji1 €
Pa.ac(RP), any s € [0,1], and almost every x € RP, it holds that

In MI; (V‘Pb—mg (x)) <(1—s)lnug (v‘Pbﬁ,uo (:L‘)) + sln (v@bem ('T))
In particular, taking the essential supremum over x on both sides, we deduce that the functional

P2.ac(RP) — (=00, 0] given by p +— In ||p|| L= is convex along generalized geodesics.

Proof Let p := [(1 — )Ty, + sT1] b be a point on the generalized geodesic with base b
connecting i to v. Let oy, ©p—s, be the convex potentials whose gradients are Ty, and Tp,,
respectively. Then, for almost all 2 € R”, the Monge-Ampére equation applied to the pairs (b, 1),
(b,v), and (b, p) respectively, yields

7 Vgobﬁu ) det DAQOb%;A ™)

b(x) = ¢ v(Vy,(z)) det DR o ()
p((1 = 8)Vippp(@) + 5Vpp(2)) det (1 — ) DR Py () + sDR s (7).
Here, Di(p denotes the Hessian of ¢ in the Alexandrov sense; see (Villani, 2003, Theorem 4.8).

Fix x such that b(x) > 0. On the one hand, applying log-concavity of the determinant, it follows
from the third Monge-Ampere equation that

Inb(z) = In p((1 = 5)Vgp () + sVippp(z)) + Indet (1 — 5) DX pppu(x) + D3 0p-50 ()
> lnp((l — 8)Vpsu(r) + 3v¢b—>u($))
+ (1 — s) Indet DX ¢p,(x) + slndet D3 pps, ().
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On the other hand, it follows from the first two Monge-Ampere equations that

Inb(z) = (1—s)Inpu(Versu(2)) + slnv(Vep,(z))
+ (1 — s)Indet DX ¢ps,(z) + sIndet D3 py (7).

The above two displays yield
In p((1 = 8)Vopsp(@) + 5Veppn (@) < (1= 8) Inp(Vppu(x)) + slnv (Ve (z))

It yields the result. |

C.7. A PL inequality on the Bures-Wasserstein manifold

Theorem 19
Fix ¢ € (0, 1], and let Q) be a (-regular distribution. Then, the barycenter functional G satisfies
the PL inequality with constant Cp| = (% /4 uniformly at all b € Se:

G(b) - G(b) < éuvab)nz.

Proof For any v, € S, the eigenvalues of X are in [(, 1]. Let (bs)¢[o,1) be the constant-speed

geodesic between bo :=b:= Yo, and by :=b:= Yo,5- Combining Lemma 8 (with an additional
use of the Cauchy-Schwarz inequality) and Theorem 17, we get

_ 9 1l -
G(b) — G(b) < ¢ / / VG ()||3 dbs ds. (22)
0
Define a random variable X ~ l;s and observe that
- - - 1/2
/ IVG(b)[|3 dbs = E[|(M — Ip)X[[3, where M = / 512(5125512) 5712 40 (y0,).

Moreover, recall that X, = s X + (1 — s) X where X ~ by and X ~ b; are optimally coupled.
Therefore, by Jensen’s inequality, we have for all s € [0, 1],

E[[(M — Ip)X;|3 < sE|(M — Ip)X1[3 + (1 — )E||(M — Ip)Xol3 < EEII(M ~ Ip)Xoll3,
where in the second inequality, we used the fact that
E[|(M — Ip) X1} = Te(S(M = Ip)?) < 155 lop Tr(S(M — Ip)”) < éEII(M — Ip)Xoll3.
Together with (22), it yields

2 - 2
G(b) = G(b) < ?EH(M —Ip)Xol3 = ?HVG(b)H%-
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