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Abstract

We propose a new method for smoothly inter-
polating probability measures using the ge-
ometry of optimal transport. To that end,
we reduce this problem to the classical Eu-
clidean setting, allowing us to directly lever-
age the extensive toolbox of spline interpola-
tion. Unlike previous approaches to measure-
valued splines, our interpolated curves (i)
have a clear interpretation as governing par-
ticle flows, which is natural for applications,
and (ii) come with the first approximation
guarantees on Wasserstein space. Finally, we
demonstrate the broad applicability of our in-
terpolation methodology by fitting surfaces
of measures using thin-plate splines.

1 INTRODUCTION

Smooth interpolation is a fundamental tool in numer-
ical analysis that plays a central role in data science.
While this task is traditionally studied on the flat Eu-
clidean space Rd, recent applications have called for
interpolation of points living on curved spaces such
as smooth manifolds (Noakes, Heinzinger, and Paden,
1989) and, more recently, the Wasserstein space of
probability measures. An important application arises
in single-cell genomic data analysis where the measure
µ?t represents a population of cells at time t of a bio-
logical process such as differentiation, and the cells of
an organism specialize over the course of early devel-
opment. In this context, two main questions arise: 1)
to infer the profile of the population at unobserved
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Figure 1: Piecewise linear and cubic spline interpolation
of four Gaussians. The interpolation knots are shown in
red and the interpolated Gaussians are shown in orange.
See Appendix E.1.

times; and more importantly 2) to reconstruct the
trajectories of individual cells in gene space, that is:
given a cell at time t, determine its (likely) history
and fate. Regev et al. (2017) argue that cellular trajec-
tory reconstruction is crucial to unlocking the promises
of single-cell genomics. A breakthrough in this di-
rection was recently achieved using optimal transport
by Schiebinger et al. (2019), but their work does not
produce smooth trajectories. To illustrate, we display
in Figure 1 a comparison of their approach with the
smooth interpolation methodology developed in the
present work. Although we are mainly motivated by
cell trajectory reconstruction, we are confident that
the flexibility and efficiency of the method will allow
it to find applications beyond this scope.

While the first question above is a natural extension
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of interpolation to the space of probability measures,
the second question calls for a specific type of inter-
polation: one that also reconstructs the (smooth) tra-
jectories of individual particles. Mathematically, the
trajectory of a particle (e.g., a cell) is a stochastic pro-
cess (X?

t )t∈[0,1] with smooth sample paths. This leads
us to the following problem of trajectory-aware inter-
polation over the space of probability measures.

The problem. Let (X?
t )t∈[0,1] be a stochastic process

on Rd with C2 sample paths and marginal laws X?
t ∼

µ?t , t ∈ [0, 1]. Given µ?t0 , µ
?
t1 , . . . , µ

?
tN at times 0 = t0 <

t1 < · · · < tN = 1, construct a stochastic process
(Xt)t∈[0,1] such that Xt has C2 sample paths and the
distribution µt of Xt interpolates the given measures,
meaning µti = µ?ti for i = 0, 1, . . . , N .

Throughout, we assume all given measures to be abso-
lutely continuous with finite second moment, and (as
advocated in Schiebinger et al. (2019)) we equip this
space with the 2-Wasserstein metric W2 and seek an
interpolation that reflects this geometry.

Prior work. This work is at the intersection of inter-
polation and optimal transport. On the one hand, in-
terpolation in Rd is very well-developed, with fast and
accurate methods ranging from interpolating polyno-
mials and splines to more exotic non-parametric ap-
proaches (Wahba, 1990), and with renewed interest
due to recent theoretical results (Belkin et al., 2019).
Our methodology can accommodate all of these op-
tions, but we focus on cubic spline interpolations due
to their simplicity, theoretical guarantees, and their
curvature-minimizing property (see Section 3). On
the other hand, optimal transport has become a use-
ful tool in the analysis of observations represented in
the form of probability measures. Recent computa-
tional advances (Cuturi, 2013; Altschuler, Weed, and
Rigollet, 2017; Peyré and Cuturi, 2019) have led to
the development of many methods in statistical op-
timal transport, from barycenters to geodesic PCA.
The present work extends this toolbox by developing
a method for smooth interpolation over the Wasser-
stein space of probability measures.

Splines in Wasserstein space were considered con-
currently and independently by Chen, Conforti, and
Georgiou (2018) and Benamou, Gallouët, and Vialard
(2019). Both papers converge to the same notion
of splines, which we call P-splines. Though moti-
vated by particle dynamics, P-splines solve an optimal
transport problem that is not guaranteed to have a
Monge solution. Instead, it outputs stochastic pro-
cesses (Xt)t∈[0,1] for which Xt is not a determinis-
tic function of X0. In other words, given an initial
position, there is no unique particle trajectory ema-
nating from this position but rather a superposition

of such trajectories; see Figure 2 and the discussion
in Section 3. We show that this is not an isolated
phenomenon arising from pathological data but ap-
plies even to the canonical example of one-dimensional
Gaussian distributions. This limitation, together with
a relatively heavy computational cost, severely hin-
ders the deployment of P-splines in applications, ours
included, especially where interpretation is a priority.

We review these prior works and their motivations in
Section 3. We remark however that the algorithm we
ultimately propose requires considerably less technical
machinery to describe compared to these prior works,
and we recommend that readers who simply wish to
understand our method skip directly to Section 4.1.

Our contributions. To overcome the aforemen-
tioned issues, we propose in Section 4.1 a new method
for constructing measure-valued splines. Our method
outputs Monge solutions, and moreover enjoys signif-
icant computational advantages: it only requires N
evaluations of Monge maps and standard Euclidean
cubic spline fitting to output trajectories. In the case
where all of the measures are Gaussian, our approach
is more interpretable and scalable than the SDP-based
approach of Chen, Conforti, and Georgiou (2018).

In particular, for Gaussian measures, our method only
requires one d×dmatrix inversion and O(1) multiplica-
tions per sample point µ?ti . In comparison, the method
of Chen, Conforti, and Georgiou (2018) solves an SDP
with N coupled 4d×4dmatrix variables. In the general
case we still only need to perform N pairwise OT com-
putations, which can be done efficiently (Altschuler,
Weed, and Rigollet, 2017), while the competing al-
gorithms in Benamou, Gallouët, and Vialard (2019)
require time exponential in either N or d.

Our new method comes with a theoretical study of its
approximation error. In the Gaussian setting, we in-
troduce new techniques for studying quantitative ap-
proximation of transport maps and vector fields. In
turn, it yields an approximation guarantee analogous
to the classical setting (Theorem 2), but adapted to
the geometry of the space. This paves the way for
a principled theory of approximation on Wasserstein
space that mirrors classical Euclidean results. In a
forthcoming work, we build upon these ideas to de-
velop higher-order approximation schemes.

A key feature of our approach is its flexibility, which
allows us to easily extend our method to fitting thin-
plate splines for measures indexed by high-dimensional
covariates. We study the case of two-dimensional spa-
tial covariates in Section 6.

Notation. For a curve such as (µt)t∈[0,1] or (Xt)t∈[0,1],

defined over [0, 1], we use the concise notations (µt)
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Figure 2: A comparison of 50 trajectories sampled from P-
splines and transport splines for the Gaussian interpolation
problem in Proposition 1 (see Appendix A.1 for a detailed
discussion). The first figure shows trajectories drawn from
the P-spline interpolation, while the second shows trajec-
tories from our method.

and (Xt) respectively, where the time variable t is al-
ways understood to range over the interval [0, 1].

2 BACKGROUND ON OPTIMAL
TRANSPORT

In this section, we recall useful notions from optimal
transport and provide some of the key theory used for
Wasserstein splines. We refer readers to the standard
textbooks Villani (2003), Villani (2009), and Santam-
brogio (2015) for introductory treatments.

Given two probability measures µ0, µ1 on Rd with fi-
nite second moment, the 2-Wasserstein distance W2 is
defined as

W 2
2 (µ0, µ1) := inf

π∈Π(µ0,µ1)

∫
‖x− y‖2 dπ(x, y), (1)

where Π(µ0, µ1) is the set of all joint distributions with
marginals µ0 and µ1. This indeed defines a distance on
probability measures with finite second moment, and
we denote the resulting metric space by P2(Rd). If µ0

has a density with respect to Lebesgue measure, then
the solution of (1) is unique, and it is supported on
the graph of a function T : Rd → Rd, called the Monge
map. Moreover, it is characterized as the unique map-
ping such that (i) the pushforward of µ0 via T is µ1

and (ii) there exists a convex function φ : Rd → R∪∞
such that T = ∇φ. That is, if X0 ∼ µ0, the solution
of (1) is the law of (X0,∇φ(X0)). For the rest of the
paper, without further comment, we work exclusively
with probability measures that admit a density and
have a finite second moment.

It has been understood since the seminal work of Otto
that P2(Rd) exhibits many of the properties of a Rie-
mannian manifold, a fact which has been instrumental
to applications of optimal transport to partial differen-
tial equations (Jordan, Kinderlehrer, and Otto, 1998;
Carrillo and Vaes, 2019), sampling (Bernton, 2018;
Durmus, Majewski, and Miasojedow, 2019; Y. Lu, J.
Lu, and Nolen, 2019; Chewi et al., 2020a; Chewi et
al., 2020c), and barycenters (Backhoff-Veraguas et al.,
2018; Zemel and Panaretos, 2019; Chewi et al., 2020b).
Specifically, given a regular curve (µt), there is a well-
defined notion of a “tangent vector” vt to the curve at
time t. This is a vector field of instantaneous parti-
cle velocities, where µt is interpreted as the law of the
particles at time t. The field vt arises from optimally
coupling the curve at nearby times, and we have the
limiting result

vt = lim
h→0

Tµt→µt+h
− id

h
in L2(µt) (2)

where Tµt→µt+h
is the Monge map between µt and

µt+h. For a proof see Ambrosio, Gigli, and Savaré
(2008, Proposition 8.4.6).
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This differential structure has been especially useful in
fluid dynamics, by connecting the equivalent Eulerian
and Lagrangian perspectives on particle flows. The
former keeps track of the density µt and velocity vt
of particles passing through any given time and spa-
tial position. In contrast, the Lagrangian perspective
tracks the trajectories of individual particles, which
can be obtained as integral curves of the velocity fields;
that is, we solve the ODE

Ẋt = vt(Xt), X0 ∼ µ0.

Chosing the vector fields vt to be the tangent vec-
tors above precisely yields that Xt ∼ µt. Thus, the
Lagrangian perspective associates a natural stochas-
tic process, (Xt), with the curve of measures (µt); we
therefore refer to the process (Xt) as the Lagrangian
coupling. See Villani (2003, §5.4) for further details.

3 SPLINES ON EUCLIDEAN
SPACE, MANIFOLDS, AND
WASSERSTEIN SPACE

We recall the definition of natural cubic splines. Given
points (x0, x1, . . . , xN ) ⊂ Rd to interpolate at a se-
quence of times 0 = t0 < t1 < · · · < tN = 1, consider
the variational problem

min
(γt)

∫ 1

0

‖γ̈t‖2 dt s.t. γti = xi for all i. (3)

The solution to this minimization problem is a piece-
wise cubic polynomial that is globally C2 and has zero
acceleration at times t0 = 0 and tN = 1.

Based on this energy-minimizing property, there is
a natural generalization of cubic splines to Rieman-
nian manifolds: in (3) the acceleration γ̈ is replaced
with its Riemannian analogue, the covariant deriva-
tive ∇γ̇ γ̇ of the velocity, and the norm ‖·‖ is given by
the Riemannian metric. However, unlike its Euclidean
counterpart, there is no general algorithm to fit Rie-
mannian cubic splines, leading to alternative propos-
als (Gousenbourger, Massart, and Absil, 2019).

In addition to a first-order differentiable structure (the
tangent space), Gigli (2012) has developed a second-
order calculus on P2(Rd), including a covariant deriva-
tive ∇. Thus, in analogy with the Riemannian setting,
we can define energy splines (E-splines in short) via

inf
(µt,vt)

∫ 1

0

‖∇vtvt‖2L2(µt)
dt s.t. µti = µ?ti for all i (4)

where the minimization is taken over all curves (µt)
and their tangent vectors (vt) (see Section 2). The
solution to this problem naturally yields a stochastic

process (Xt) with marginal laws (µt), namely: we draw
X0 ∼ µ0, and conditioned on X0 the rest of the tra-
jectory is determined by the ODE Ẋt = vt(Xt).

E-splines were introduced concurrently by Chen, Con-
forti, and Georgiou (2018) and Benamou, Gallouët,
and Vialard (2019). Since E-splines are intractable,
these authors proposed a relaxation which we call path
splines (P-splines in short):

inf
(Xt)

∫ 1

0

E[‖Ẍt‖2] dt, (5)

where the infimum is taken over stochastic processes
(Xt) with values in Rd and such that Xti ∼ µ?ti for all
i = 0, 1, . . . , N . (This is indeed a relaxation in a formal
sense detailed in the papers referenced above.) The
name derives from the fact that this is an optimiza-
tion over measures in path space, and the problem (5)
can be reduced to a multimarginal optimal transport
problem with quadratic cost.

Unfortunately, though solvable in principle, the for-
mulation (5) remains difficult to compute and its solu-
tion is not necessarily induced by a deterministic map;
that is, there is no guarantee of a deterministic func-
tion φt : Rd → Rd such that Xt = φt(X0). This point
is particularly problematic for inference of trajectories
as illustrated in Figure 2.

Given the various definitions of splines, some natu-
ral questions arise. Specifically, the papers above left
open the question of whether E-splines coincide with
P-splines, and whether the solution to the P-spline
problem is necessarily induced by Monge maps. We
conclude this section by resolving these questions in
the negative.

Proposition 1 (informal). There exist Gaussian data
µ?t0 , µ

?
t1 , . . . , µ

?
tN such that there is a unique jointly

Gaussian solution to the P-spline problem (5) and it
is not induced by a deterministic map.

Proposition 2 (informal). There exist Gaussian data
µ?t0 , µ

?
t1 , . . . , µ

?
tN for which the E-spline (4) and P-

spline (5) interpolations do not coincide.

Investigation of these questions requires some care,
since there are many subtleties regarding the defini-
tions. We give a careful discussion and proofs in Ap-
pendix A.

4 TRANSPORT SPLINES

4.1 The Algorithm

To address the difficulties discussed in the previous
section, we propose a new method for measure interpo-
lation, which we call transport splines. Our framework
decouples the interpolation problem into two steps:
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1. Couple the given measures, that is, construct a
random vector (Xt0 , Xt1 , . . . , XtN ) with marginal
laws µ?t0 , µ

?
t1 , . . . , µ

?
tN .

2. Apply a Euclidean interpolation algorithm to the
points Xt0 , Xt1 , . . . , XtN .

A convenient choice for the second step is to use cubic
splines, but our framework works equally well with
other standard Euclidean methods and can be adapted
to the application at hand. We illustrate this point in
Section 6, where we construct surfaces interpolating
one-dimensional measures using thin-plate splines.

A simple and practical choice for the first step, which
we explore in the present paper, is to couple the
random variables Xt0 , Xt1 , . . . , XtN successively us-
ing the Monge maps between them. That is, we
draw Xt0 ∼ µ?t0 , and for each i = 1, . . . , N we set
Xti = Ti(Xti−1

), where Ti is the Monge map from
µ?ti−1

to µ?ti . The second step then reduces to interpo-
lating Xt0 , T1(Xt0), . . . , TN ◦ · · · ◦T1(Xt0) in Euclidean
space. The interpolation property of transport splines
follows readily from the definition of Monge maps since
Ti ◦ · · · ◦ T1(Xt0) ∼ µ?ti .

For the task of outputting sample trajectories from
the transport spline, we summarize our method in Al-
gorithm 1, and we display an application to the re-
construction of trajectories in a many-body physical
system in Figure 3. In the next section, we provide
detailed motivation for the first step of the algorithm
which builds on background from Sections 2 and 3.

Algorithm 1 Sample Transport Spline Trajectories

1: procedure interpolate((ti)
N
i=0, (µ?ti)

N

i=0
)

2: Draw Xt0 ∼ µ?t0
3: for i = 1, . . . , N do
4: Set Xti = Ti(Xti−1), where Ti is the Monge

map from µ?ti−1
to µ?ti

5: end for
6: Interpolate the points Xt0 , Xt1 , . . . , XtN to ob-

tain a curve (Xt)
7: output (Xt)
8: end procedure

4.2 Motivation

The choice of coupling in the first step of our method
is motivated by the geometry of P2(Rd). If the obser-
vations µ?t0 , . . . , µ

?
tN sit along a curve of measures (µ?t ),

then (as discussed in Section 2) there is an associated
Lagrangian coupling (X?

t ) satisfying Ẋ?
t = v?t (X?

t ).
Thus if δ = t1− t0, then X?

t1 = X?
t0 + δv?t0(X?

t0) + o(δ).
On the other hand, from (2) the Monge map T1 gives a

Figure 3: Reconstruction of trajectories in a physical sys-
tem. See Appendix E.2.

first-order approximation to v?t0 : T1 − id = δv?t0 + o(δ)
(see Ambrosio, Gigli, and Savaré (2008, Proposi-
tion 8.4.6)). Combining these approximations we get
T1(X?

0 ) = X?
t1 + o(δ). From this heuristic discussion,

one expects that as the mesh size maxi∈[N ](ti − ti−1)
tends to zero, the coupling Xt0 , Xt1 , . . . , XtN obtained
via successive Monge maps is a good approximation to
the Lagrangian coupling (X?

t0 , X
?
t1 , . . . , X

?
tN ).

4.3 Relationship with E-Splines in One
Dimension

Although E-splines are in general intractable, in the
one-dimensional case it turns out that there are many
situations of interest in which E-splines coincide with
transport splines. Indeed, suppose that the measures
µ?t0 , µ

?
t1 , . . . , µ

?
tN are all one-dimensional, and for a

measure µ let F †µ denote its quantile function.1 Let
(Gt) be the natural cubic spline in L2[0, 1] interpolat-

ing the quantile functions F †µ?
t0

, F †µ?
t1

, . . . , F †µ?
tN

. Then:

Theorem 1. Suppose that for all t, Gt is a valid2

quantile function. Then the transport spline and the
E-spline (4) both coincide with the curve (µt) where µt
has quantile function Gt. Furthermore, if (Xt) is the
stochastic process associated with the transport spline
and (X?

t ) is the Lagrangian coupling for the E-spline,
then (Xt) and (X?

t ) have the same distribution as the
law of (Gt(U)), where U is a uniform random variable
on [0, 1].

We emphasize that, in light of the counterexamples
described at the end of Section 3, the P-spline and E-

1Under our assumption that the measures are abso-
lutely continuous, the quantile function F †µ simply coin-

cides with the inverse CDF F−1
µ , but we use the quan-

tile function notation here to reflect the general embedding
P2(R) ↪→ L2[0, 1].

2A valid quantile function Gt : [0, 1] → R ∪ {±∞} is
increasing and right-continuous.
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spline are likely to differ generically and, in fact, they
differ in the Gaussian case, which is covered by the
above theorem (see Appendix A.2). Therefore, it ap-
pears that the transport spline is more suitable as a
relaxation of the E-spline when interpolating univari-
ate distributions. We also emphasize that these results
do not affect the applicability of our method in dimen-
sions higher than one.

We give the proof of Theorem 1 in Appendix B.

5 THE GAUSSIAN CASE

We now focus on the Gaussian case and we assume
that we employ natural cubic splines in Step 2 of our
algorithm. For simplicity, we can assume that the mea-
sures are centered.3 A centered non-degenerate Gaus-
sian can be identified with its covariance matrix, and
the Wasserstein distance induces a Riemannian metric
on the space of positive definite matrices. The result-
ing manifold is called the Bures-Wasserstein space (af-
ter Bures, 1969); see Bhatia, Jain, and Lim (2019) for
a comprehensive survey.

5.1 Gaussian Transport Splines

It is known that the Monge map from Gaussian
N (0,Σ1) to N (0,Σ2) is the linear map T given by

T (X) = Σ
−1/2
1

(
Σ

1/2
1 Σ2Σ

1/2
1

)1/2
Σ
−1/2
1 X (6)

Cubic splines have the property that the interpolation
evaluated at time t is a linear function of the interpo-
lated points (xti)

N
i=0. That is, there is a linear map

St (indexed by time) such that t 7→ St(xt0 , . . . , xtN ) is
the cubic spline interpolating the data.4

This fact follows from the discussion in Appendix D
and it has important consequences for our algorithm:

1. It implies that our algorithm outputs a pro-
cess (Xt) such that Xt is a linear function of
Xt0 , Xt1 , . . . , XtN . On the other hand, each Xti

is a linear function of Xt0 , which follows from the
description of Step 1 of our algorithm and the
fact that Monge maps between Gaussians are lin-
ear (6).

3The discussion here extends easily to incorporate non-
centered measures. Indeed, the entire measure trajectory
can be shifted by the Euclidean spline through the means
µti to decouple the mean behavior; the property of mean-
equivariance is shared by P-splines and transport splines,
and likely with E-splines as well.

4Note that the matrix St is independent of (xti)
N
i=0, but

depends on the time grid (ti)
N
i=0.

Since a linear function of a Gaussian is also Gaus-
sian, we conclude that the transport spline inter-
polating Gaussian measures only passes through
Gaussian measures.

2. From the previous point, it is clear that the covari-
ance matrix of Xt can be computed in terms of St,
Σt0 , and the Monge maps (which have the closed-
form expression (6)). We conclude that in this
setting, not only can we output sample trajecto-
ries as in Algorithm 1, but we can also efficiently
output the covariance matrices of the interpolated
measures.

Furthermore, this discussion extends to any other in-
terpolation method with this linearity property, such
as higher-order splines, polynomial interpolation, and
thin-plate splines.

We also remark that in the case where the data con-
sists of one-dimensional Gaussian distributions, then
in many cases the transport spline and the E-spline
(described in Section 3) coincide.

Proposition 3. Suppose that µ?t0 , µ
?
t1 , . . . , µ

?
tN are

one-dimensional Gaussians. Then, if the transport
spline (µt) interpolating these data is never degener-
ate, i.e., µt is a non-degenerate Gaussian for each
t ∈ [0, 1], then the conditions of Theorem 1 hold.

As discussed above, the transport spline through
Gaussians automatically remains Gaussian, so the only
hypothesis to check in this proposition is the non-
degeneracy. See Appendix B for a discussion.

5.2 Approximation Guarantees

Our method is the first to provide approximation
guarantees on Wasserstein space. In order to obtain
strong quantitative results, we focus on the Bures-
Wasserstein setting detailed in the previous section,
where all measures µ?ti are centered non-degenerate
Gaussian distributions.

The Bures-Wasserstein space has already been used in
works such as Modin (2017) and Chewi et al. (2020b)
as a prototypical setting in which to understand the
behavior of algorithms set on the general Wasserstein
space. Although the Bures-Wasserstein space is a Rie-
mannian manifold and transport splines can in princi-
ple be studied using purely Riemannian techniques, we
give proofs inspired by optimal transport so that the
analysis may be more easily extended to other settings
of interest.

We now state our main approximation result.

Theorem 2. Let (µ?t ) be a curve of measures in Bures-
Wasserstein space, and let (X?

t ) ∼ (µ?t ) be the La-
grangian coupling. Let:
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• L := supt∈[0,1] ‖Ẋ?
t ‖L2(P) be the Lipschitz constant

of the curve, and

• R := supt∈[0,1] ‖Ẍ?
t ‖L2(P) be an upper bound on

its curvature, and

• λmin be a lower bound on the eigenvalues of the
covariance matrices of µ?t0 , µ

?
t1 , . . . , µ

?
tN .

Let (µt) be the cubic transport spline interpolating
µ?t0 , . . . , µ

?
tN and assume

αδ ≤ ti − ti−1 ≤ δ, for i = 1, . . . , N , (7)

where α, δ > 0. Then, provided that δ <
√
λmin/(2L),

we have the following approximation guarantee:

sup
t∈[0,1]

W2(µt, µ
?
t ) ≤

58

α3
Rδ2.

The proof is given in Appendix C.

Some remarks:

1. The definition of L in the theorem agrees with
the Lipschitz constant of (µ?t ) in the metric sense,
as can be seen from Ambrosio, Gigli, and Savaré
(2008, Theorem 8.3.1).

2. The quantity λ−1
min can be interpreted as a bound

on the curvature of Bures-Wasserstein space at
the interpolation points; see Massart, Hendrickx,
and Absil (2019) for details.

3. The O(δ2) rate of convergence is optimal given
our assumptions: a bound R on the second co-
variant derivative of the curve (µ?t ). Indeed, this
matches classical approximation results for cubic
splines on Euclidean space (Birkhoff and de Boor,
1964). We remark that under these assumptions,
piecewise geodesic interpolation, where trajecto-
ries are piecewise linear and not differentiable,
also achieves the O(δ2) rate, and we give the proof
of this in Appendix C.5. Of course, despite achiev-
ing the optimal rate in this class of curves, such
interpolation is unsuitable for many applications
(especially ones in which interpretation and visu-
alization are a priority; see Figure 1).

4. We did not attempt to optimize the constant fac-
tor in Theorem 2 and it appears that it can, in
fact, be improved; c.f. Remark 3

5. Cubic splines achieve higher-order approximation
rates in the Euclidean setting, albeit over a re-
stricted class of curves. For approximation of
functions f ∈ Ck, k ≤ 4, cubic splines enjoy a
O(δk) approximation rate with explicit depen-
dence on ‖f (k)‖sup. It is then natural to ask

whether it is possible to obtain rates better than
O(δ2) through a variant of transport splines. This
can indeed be done by using more accurate ap-
proximations to the velocity vector fields (vt); this
study will be reported in a forthcoming work.

6 THIN-PLATE SPLINES

To demonstrate the flexibility of our method, we use
transport splines to define a class of smooth interpo-
lating surfaces on Wasserstein space. We first recall
classical thin-plate splines. For a more complete ac-
count see Wahba (1990).

Thin-plate splines are the surface analog of cubic
splines, and are useful in spatial problems where mea-
surements are taken on a plane. Here, the times ti are
replaced with points xi ∈ R2 at which we observe real
values zi. To account for this additional dimension the
energy functional

∫ 1

0
‖γ̈t‖2 dt that appears in the vari-

ational definition (3) of cubic splines is replaced by its
bivariate counterpart. Thin-plate splines are defined
as parametrized surfaces f that solve

inf
f

∫
R2

‖∇2f‖2F s.t.

{
f : R2 → R
f(xi) = zi, i = 0, . . . , N

(8)

where ∇2f is the Hessian of f , ‖·‖F denotes the Frobe-
nius norm, and the interpolation data (xi, zi) ∈ R2×R
is given. (Just as before, f is constrained to be C2.) It
can be shown that (8) has a unique solution given by

f(x) = c0 + c1x
(1) + c2x

(2) +

N∑
i=0

αiφ(‖x− xi‖)

where we use x(i) to denote coordinates, and

φ(r) = r2 log r.

This leads to a closed form for the coefficients as fol-
lows. Let K = (φ(‖xi − xj‖))Ni,j=0 be the “kernel ma-

trix” of the data, and define P ∈ R(N+1)×3 to have ith

row (1, x
(1)
i , x

(2)
i ).5 Then let L ∈ R(N+4)×(N+4) be

L =

[
K P
P> 03×3

]
.

Letting b = (z0, . . . , zN , 0, 0, 0) be the padded data and
w = (α0, . . . , αN , c0, c1, c2) the coefficients from (6),
these solve Lw = b. This can be inverted explicitly
using the Schur complement, and in particular the re-
sulting coefficients are linear in the data (zi)

N
i=0.

5The function φ plays the role of a kernel for the repro-
ducing kernel Hilbert space of twice-differentiable, finite-
curvature surfaces, but it is not a kernel because it is not
positive definite.
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We now consider the measure-valued analog of the in-
terpolation problem, namely, at each point xi we ob-
serve a measure µ?xi

and our goal is to find a smooth
interpolating surface x 7→ µx of measures.

As in the definition of E-splines, (8) can be general-
ized to Wasserstein space, but it is intractable for the
same reasons. In contrast, applying Algorithm 1 is
straightforward. Step 2 simply requires the fitting of
a Euclidean thin-plate spline. For Step 1 we need only
produce couplings between the observed measures µ?xi

.

One possiblity is to mimic the sequential coupling tech-
nique described in Section 4.1, namely we fix the order-
ing x0, x1, . . . , xN and use the system of Monge maps
Ti−1,i taking µ?xi−1

to µ?xi
. As before, we can draw

Xx0
∼ µ?x0

and then successively compute the random
variables Xxi

= Ti−1,i(Xxi−1
) ∼ µ?xi

for all i. Sequen-
tial coupling is unsuitable here, however, because it
distorts the geometry of the plane. To circumvent this
issue, we next turn towards the special case when the
measures µx?

i
are defined over R, which is already in-

teresting enough to capture a breadth of applications.

The study of P2(R) is greatly simplified by the fact
that it is isometric to a convex subset of a Hilbert space
and is therefore flat. Indeed, the special structure of
P2(R) has already been used fruitfully in many prior
applications of optimal transport, such as curve reg-
istration (Panaretos and Zemel, 2016), geodesic prin-
cipal components (Bigot et al., 2017), estimation of
barycenters (Bigot et al., 2018), and uncoupled iso-
tonic regression (Rigollet and Weed, 2019).

For our purposes, we will use the following key prop-
erty of P2(R): there is a unique coupling of all of
the measures µ?x0

, µ?x1
, . . . , µ?xN

which is simultane-
ously optimal for every pair of measures. In other
words, there exist random variables Xx0 , Xx1 , . . . , XxN

such that for any i, j = 0, 1, . . . , N , we have Xxj
=

Ti,j(Xxi
), where Ti,j is the Monge map from µ?xi

to
µ?xj

. Sampling from this coupling can be done using
either of the of the following equivalent procedures:

1. Draw Xx0
∼ µ?x0

, and for each i ∈ [N ] let
Xxi = T0,i(Xx0) (the choice of x0 does not affect
the coupling).

2. Draw a uniform random variable U on [0, 1], and
for i = 0, 1, . . . , N set Xxi

= F−1
µ?
xi

(U), where Fµ

denotes the CDF of µ.

See Appendix F.1 or Santambrogio (2015, §2.1-2.2).

In Figure 4 we display an application of thin-plate
transport splines to temperature data. In the left-hand
column we plot the quantiles of the interpolated mea-
sures. This is especially convenient when all of the

Figure 4: Thin-plate splines for California temperature
data (in ◦F); in the left column are the quantiles, while in
the right are the means of the interpolated measures for an
increasing sample of observations. See Appendix F.3.

measures are Gaussian, in which case there is a simple
and efficient algorithm for computing these quantiles
(see Appendix F.2). The details for the experiment
are given in Appendix F.3.

We conclude this section with a few remarks about
the case of higher-dimensional measures, in which case
there is no simultaneous optimal coupling of the mea-
sures. If we wish to use Monge map couplings as
in Algorithm 1, one possibility is to first construct
a tree graph whose vertices are the data µ?xi

, and
use Monge map couplings along the edges of the tree.
Here, the tree should be chosen to adequately capture
the two-dimensional geometry of the spatial covari-
ates. This consideration becomes especially relevant
when the spatial covariates are sampled from a mani-
fold, and it is of interest to combine our methodology
with existing results on approximation of manifolds via
graphs (Singer, 2006).

7 OPEN QUESTIONS

We conclude by discussing some interesting directions
left open in this work. A natural question is to de-
velop a computationally tractable notion of smooth-
ing splines, and to investigate its statistical proper-
ties in the context of Wasserstein regression where the
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µ?ti are observed with noise. As a second question,
we remark that an approximation guarantee such as
Theorem 2 can be compared with quantitative stabil-
ity results for Monge maps (Gigli, 2011; Hütter and
Rigollet, 2019) and extending such results to general
Wasserstein space will likely require new techniques.

Acknowledgements

Sinho Chewi and Austin J. Stromme were sup-
ported by the Department of Defense (DoD) through
the National Defense Science & Engineering Grad-
uate Fellowship (NDSEG) Program. Julien Clancy
and George Stepaniants were supported by the NSF
GRFP. This material is based upon work supported
by the National Science Foundation Graduate Re-
search Fellowship under Grant No. 1745302. Thibaut
Le Gouic was supported by ONR grant N00014-17-
1-2147 and NSF IIS-1838071. Philippe Rigollet was
supported by NSF awards IIS-1838071, DMS-1712596,
DMS-T1740751, and DMS-2022448.

References

Altschuler, Jason, Weed, Jonathan, and Rigollet,
Philippe (2017). “Near-linear time approximation
algorithms for optimal transport via Sinkhorn itera-
tion”. In: Advances in Neural Information Process-
ing Systems 30: Annual Conference on Neural In-
formation Processing Systems 2017, 4-9 December
2017, Long Beach, CA, USA, pp. 1961–1971.

Ambrosio, Luigi, Gigli, Nicola, and Savaré, Giuseppe
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with composite Bézier-like curves and blended cubic



Fast and Smooth Interpolation on Wasserstein Space

splines”. In: J. Math. Imaging Vision 61.5, pp. 645–
671.

Hütter, Jan-Christian and Rigollet, Philippe (2019).
“Minimax rates of estimation for smooth optimal
transport maps”. In: Ann. Statist. (to appear).

Jordan, Richard, Kinderlehrer, David, and Otto, Felix
(1998). “The variational formulation of the Fokker-
Planck equation”. In: SIAM J. Math. Anal. 29.1,
pp. 1–17.

Lu, Yulong, Lu, Jianfeng, and Nolen, James (2019).
“Accelerating Langevin sampling with birth-death”.
In: arXiv e-prints, arXiv:1905.09863.

Massart, Estelle, Hendrickx, Julien M., and Absil,
P.-A. (2019). “Curvature of the manifold of fixed-
rank positive-semidefinite matrices endowed with
the Bures-Wasserstein metric”. In: Geometric sci-
ence of information. Vol. 11712. Lecture Notes in
Comput. Sci. Springer, Cham, pp. 739–748.

Modin, Klas (2017). “Geometry of matrix decomposi-
tions seen through optimal transport and informa-
tion geometry”. In: J. Geom. Mech. 9.3, pp. 335–
390.

Noakes, Lyle, Heinzinger, Greg, and Paden, Brad
(1989). “Cubic splines on curved spaces”. In: IMA
Journal of Mathematical Control and Information
6.4, pp. 465–473.

Panaretos, Victor M. and Zemel, Yoav (2016). “Am-
plitude and phase variation of point processes”. In:
Ann. Statist. 44.2, pp. 771–812.
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