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Abstract

Motivated by the problem of sampling from ill-conditioned log-concave distribu-
tions, we give a clean non-asymptotic convergence analysis of mirror-Langevin
diffusions as introduced in [Zha+20]. As a special case of this framework, we
propose a class of diffusions called Newton-Langevin diffusions and prove that they
converge to stationarity exponentially fast with a rate which not only is dimension-
free, but also has no dependence on the target distribution. We give an application
of this result to the problem of sampling from the uniform distribution on a convex
body using a strategy inspired by interior-point methods. Our general approach fol-
lows the recent trend of linking sampling and optimization and highlights the role
of the chi-squared divergence. In particular, it yields new results on the convergence
of the vanilla Langevin diffusion in Wasserstein distance.

1 Introduction

Sampling from a target distribution is a central task in statistics and machine learning with applications
ranging from Bayesian inference [RC04; DM+19] to deep generative models [Goo+14]. Owing
to a firm mathematical grounding in the theory of Markov processes [MT09], as well as its great
versatility, Markov Chain Monte Carlo (MCMC) has emerged as a fundamental sampling paradigm.
While traditional theoretical analyses are anchored in the asymptotic framework of ergodic theory,
this work focuses on finite-time results that better witness the practical performance of MCMC for
high-dimensional problems arising in machine learning.

This perspective parallels an earlier phenomenon in the much better understood field of optimiza-
tion where convexity has played a preponderant role for both theoretical and methodological ad-
vances [Nes04; Bub15]. In fact, sampling and optimization share deep conceptual connections
that have contributed to a renewed understanding of the theoretical properties of sampling algo-
rithms [Dall7a; Wib18] building on the seminal work of Jordan, Kinderlehrer and Otto [JKO98].

We consider the following canonical sampling problem. Let 7 be a log-concave probability measure
over R? so that 7 has density equal to e~"", where the potential V : R? — R is convex. Throughout
this paper, we also assume that V' is twice continuously differentiable for convenience, though many
of our results hold under weaker conditions.

Most MCMC algorithms designed for this problem are based on the Langevin diffusion (LD), that is
the solution (X ), to the stochastic differential equation (SDE)

dX, = —-VV(X,)dt + V2dB,, (LD)
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with (By),~ a standard Brownian motion in R, Indeed, 7 is the unique invariant distribution of (LD)
and suitable discretizations result in algorithms that can be implemented when V' is known only up to
an additive constant, which is crucial for applications in Bayesian statistics and machine learning.

A first connection between sampling from log-concave measures and optimizing convex functions is
easily seen from (LD): omitting the Brownian motion term yields the gradient flow ©; = —VV (z;),
which results in the celebrated gradient descent algorithm when discretized in time [Dall7a; Dall7b].
There is, however, a much deeper connection involving the distribution of X, rather than X, itself,
and this latter connection has been substantially more fruitful: the marginal distribution of a Langevin
diffusion process (X¢),., evolves according to a gradient flow, over the Wasserstein space of proba-

bility measures, that minimizes the Kullback-Leibler (KL) divergence Dky,(- || 7) [JKO98; AGS08;
Vil09]. This point of view has led not only to a better theoretical understanding of the Langevin
diffusion [Ber18; CB18; Wib18; DMM19; VW 19] but it has also inspired new sampling algorithms
based on classical optimization algorithms, such as proximal/splitting methods [Ber18; Wib18;
Wib19; SKL20], mirror descent [Hsi+18; Zha+20], Nesterov’s accelerated gradient descent [Che+18;
Ma+19; DR20], and Newton methods [Mar+12; Sim+16; WL20].

Our contributions. This paper further exploits the optimization perspective on sampling by es-
tablishing a theoretical framework for a large class of stochastic processes called mirror-Langevin
diffusions (MLD) introduced in [Zha+20]. These processes correspond to alternative optimization
schemes that minimize the KL divergence over the Wasserstein space by changing its geometry. They
show better dependence in key parameters such as the condition number and the dimension.

Our theoretical analysis is streamlined by a technical device which is unexpected at first glance, yet
proves to be elegant and effective: we track the progress of these schemes not by measuring the
objective function itself, the KL divergence, but rather by measuring the chi-squared divergence to
the target distribution 7 as a surrogate. This perspective highlights the central role of mirror Poincaré
inequalities (MP) as sufficient conditions for exponentially fast convergence of the mirror-Langevin
diffusion to stationarity in chi-squared divergence, which readily yields convergence in other well-
known information divergences, such as the Kullback-Leibler divergence, the Hellinger distance, and

the total variation distance [Tsy09, §2.4]. 3
We also specialize our results to the case when the mirror map 2
equals the potential V. This can be understood as the sam-

pling analogue of Newton’s method, and we therefore call it 1
the Newton-Langevin diffusion (NLD). In this case, the mirror

Poincaré inequality translates into the Brascamp-Lieb inequal- op
ity which automatically holds when V' is twice-differentiable &

and strictly convex. In turn, it readily implies exponential con-
vergence of the Newton-Langevin diffusion (Corollary 1) and
can be used for approximate sampling even when the second

derivative of V' vanishes (Corollary 2). Strikingly, the rate of _3
convergence has no dependence on w or on the dimension d o0
and, in particular, is robust to cases where V2V is arbitrarily -4 :

. ; . 0 2 4 6
close to zero. This scale-invariant convergence parallels that of 0,
Newton’s method in convex optimization and is the first result Figure 1: Samples from the poste-
of this kind for sampling. rior distribution of a 2D Bayesian

This invariance property is useful for approximately sam- l0gistic regression model using

pling from the uniform distribution over a convex body ¢, the Newton-Langevin Algorithm
which has been well-studied in the computer science litera- (NLA), the Unadjusted Langevin
ture [FKP94; KLS95; LV07]. By taking the target distribution Algorithm (ULA), and the Tamed
7 o< exp(—BV), where V is any strictly convex barrier func- Unadjusted Langevin Algorithm
tion, and f3, the inverse temperature parameter, is taken to (1 ULA) [Bro+19]. For details, see
be small (depending on the target accuracy), we can use the Section E.2.

Newton-Langevin diffusion, much in the spirit of interior point methods (as promoted by [LTV20]),
to output a sample which is approximately uniformly distributed on C; see Corollary 3.

Throughout this paper, we work exclusively in the setting of continuous-time diffusions such as (LD).
We refer to the works [DM15; Dall7a; Dall7b; RRT17; CB18; Wib18; DK19; DMM19; DRK19;
Mou+19; VW 19] for discretization error bounds, and leave this question open for future works.



Related work. The discretized Langevin algorithm, and the Metropolis-Hastings adjusted version,
have been well-studied when used to sample from strongly log-concave distributions, or distributions
satisfying a log-Sobolev inequality [Dall7b; DM17; CB18; Che+19; DK19; DM+19; Dwi+19;
Mou+19; VW19]. Moreover, various ways of adapting Langevin diffusion to sample from bounded
domains have been proposed [BEL18; Hsi+18; Zha+20]; in particular, [Zha+20] studied the dis-
cretized mirror-Langevin diffusion. Finally, we note that while our analysis and methods are inspired
by the optimization perspective on sampling, it connects to a more traditional analysis based on
coupling stochastic processes. Quantitative analysis of the continuous Langevin diffusion process
associated to SDE (LD) has been performed with Poincaré and log-Sobolev inequalities [BGG12;
BGL14; VW19], and with couplings of stochastic processes [CL89; Ebel6].

Notation. The Euclidean norm over R? is denoted by || - |. Throughout, we simply write [ g to denote
the integral with respect to the Lebesgue measure: [ g(x) dz. When the integral is with respect to a
different measure 11, we explicitly write [ g dyu. The expectation and variance of g(X) when X ~

are respectively denoted E, g = [gdp and var, g := [(g —E, g)2 dp. When clear from context,
we sometimes abuse notation by identifying a measure p with its Lebesgue density.

2 Mirror-Langevin diffusions

Before introducing mirror-Langevin diffusions, our main objects of interest, we provide some intuition
for their construction by drawing a parallel with convex optimization.

2.1 Gradient flows, mirror flows, and Newton’s method

We briefly recall some background on gradient flows and mirror flows; we refer readers to the
monograph [Bub15] for the convergence analysis of the corresponding discrete-time algorithms.

Suppose we want to minimize a differentiable function f : R? — R. The gradient flow of f is the
curve (z¢)¢>0 on RY solving #; = —V f(x;). A suitable time discretization of this curve yields the
well-known gradient descent (GD).

Although the gradient flow typically works well for optimization over Euclidean spaces, it may suffer
from poor dimension scaling in more general cases such as Banach space optimization; a notable
example is the case when f is defined over the probability simplex equipped with the ¢; norm. This
observation led Nemirovskii and Yudin [NJ79] to introduce the mirror flow, which is defined as
follows. Let ¢ : R? — R U {00} be a mirror map, that is a strictly convex twice continuously
differentiable function of Legendre type'. The mirror flow (z4):>0 satisfies ; Ve (xy) = —V f(z4),

or equivalently, &; = f[VQQS(xt)]_lV f(z¢). The corresponding discrete-time algorithms, called
mirror descent (MD) algorithms, have been successfully employed in varied tasks of machine
learning [Bub15] and online optimization [BC12] where the entropic mirror map plays an important
role. In this work, we are primarily concerned with the following choices for the mirror map:

1. When ¢ = || - ||?/2, then the mirror flow reduces to the gradient flow.

2. Taking ¢ = f and the discretization x4 = x — hi [VQf(xk)]_1Vf(:rk) yields another
popular optimization algorithm known as (damped) Newton’s method. Newton’s method
has the important property of being invariant under affine transformations of the problem,
and its local convergence is known to be much faster than that of GD; see [Bub15, §5.3].

2.2 Mirror-Langevin diffusions

We now introduce the mirror-Langevin diffusion (MLD) of [Zha+20]. Just as LD corresponds to the
gradient flow, the MLD is the sampling analogue of the mirror flow. To describe it, let ¢ : R — R
be a mirror map as in the previous section. Then, the mirror-Langevin diffusion satisfies the SDE

1/2

X, = V¢* (Y2), dY, = —=VV(X,) dt + V2[V?p(X,)] " dBy, (MLD)

!'This ensures that V¢ is invertible, c.f. [Roc97, §26].



where ¢* denotes the convex conjugate of ¢ [BL06, §3.3]. In particular, if we choose the mirror map
¢ to equal the potential V/, then we arrive at a sampling analogue of Newton’s method, which we call
the Newton-Langevin diffusion (NLD),

1/2

X, = VV*(Yy), dY; = -VV(X,)dt + V2 [V?V(X,)] '~ dB,. (NLD)

From our intuition gained from optimization, we expect that NLD has special properties, such as
affine invariance and faster convergence. We validate this intuition in Corollary 1 below by showing
that, provided 7 is strictly log-concave, the NLD converges to stationarity exponentially fast, with no
dependence on 7. This should be contrasted with the vanilla Langevin diffusion (LD), for which the
convergence rate depends on the Poincaré constant of 7, as we discuss in the next section.

We end this section by comparing MLD and NLD with similar sampling algorithms proposed in the
literature inspired by mirror descent and Newton’s method.

Mirrored Langevin dynamics. A variant of MLD, called “mirrored Langevin dynamics”, was in-
troduced in [Hsi+18]. The mirrored Langevin dynamics is motivated by constrained sampling and
corresponds to the vanilla Langevin algorithm applied to the new target measure (V¢) »m. In contrast,
MLD can be understood as a Riemannian diffusion w.r.t. the Riemannian metric induced by the
mirror map ¢. Thus, the motivations and properties of the two algorithms are different, and we refer
to [Zha+20] for further comparison of the two algorithms.

An earlier draft of [Hsi+18] also introduced MLD, along with a continuous-time analysis of the
diffusion. Their convergence analysis is based on the classical Bakry-Emery criterion (see [BGL14]),
which is generally harder to check than the mirror Poincaré inequality (MP) that we introduce below;
in particular, when ¢ = V, we show that the mirror Poincaré inequality holds automatically.

Quasi-Newton diffusion. The paper [Sim+16] proposes a quasi-Newton sampling algorithm, based on
L-BFGS, which is partly motivated by the desire to avoid computation of the third derivative V3V
while implementing the Newton-Langevin diffusion. We remark, however, that the form of NLD
employed above, which treats V' as a mirror map, does not in fact require the computation of V3V,
and thus can be implemented practically; see Section 5. Moreover, since we analyze the full NLD,
rather than a quasi-Newton implementation, we are able to give a clean convergence result.

Information Newton’s flow. Inspired by the perspective of [JKO98], which views the Langevin
diffusion as a gradient flow in the Wasserstein space of probability measures, the paper [WL20]
proposes an approach termed “information Newton’s flow” that applies Newton’s method directly
on the space of probability measures equipped with either the Fisher-Rao or the Wasserstein metric.
However, unlike LD and NLD that both operate at the level of particles, information Newton’s flow
faces significant challenges at the level of both implementation and analysis.

3 Convergence analysis

3.1 Convergence of gradient flows and mirror flows

We provide a brief reminder about the convergence analysis of gradient flows and mirror flows defined
in Section 2.1 to provide intuition for the next section. Throughout, let f be a differentiable function
with minimizer x*.

Consider first the gradient flow for f: 2, = —V f(z;). We get 9;[f(x1) — f(x*)] = — ||V f(x)|?
from a straightforward computation. From this identity, it is natural to assume a Polyak-Lojasiewicz
(PL) inequality, which is well-known in the optimization literature [KNS16] and can be employed
even when f is not convex [Che+20]. Indeed, if there exists a constant Cp| > 0 with

f@) - fa?) < S IVS@IP Ve erd, PL)

then O[f(x) — f(2*)] < _CLPL [f(z¢) — f(z*)]. Together with Gronwall’s inequality, it readily

yields exponentially fast convergence in objective value: f(z;) < f(xg)e ™2/,

A similar analysis may be carried out for the mirror flow. Fix a mirror map ¢ and consider the mirror
. -1 . _
flow: @y = —[V2¢(x¢)] Vf(x¢). Itholds d;[f (x¢) — f(x*)] = —(V f(x¢), [V2(¢)] IVf(zt».



Therefore, the analogue of (PL) which guarantees exponential decay in the objective value is the
following inequality, which we call a mirror PL inequality:

flz) — flz*) < C“;PL (Vf(2),[V26(2)] 'Vf(z)) VzeR% (MPL)

Next, we describe analogues of (PL) and (MPL) that guarantee convergence of LD and MLD.

3.2 Convergence of mirror-Langevin diffusions

The above analysis employs the objective function f to measure the progress of both the gradient
and mirror flows. While this is the most natural choice, our approach below crucially relies on
measuring progress via a different functional F. What should we use as F'? To answer this question,
we first consider the simpler case of the vanilla Langevin diffusion (LD), which is a special case
of MLD when the mirror map is ¢ = ||-|| /2. We keep this discussion informal and postpone rigorous
arguments to Appendix A.

Since the work of [JKO98], it has been known that the marginal distribution p; at time ¢ > 0 of
LD evolves according to the gradient flow of the KL divergence Dxy,(- || m) with respect to the
2-Wasserstein distance Ws; we refer readers to [San17] for an overview of this work, and to [AGSO08;
Vil09] for comprehensive treatments. Therefore, the most natural choice for F' is, as in Section 3.1,
the objective function Dk, (- || 7) itself. Following this approach, one can compute [Vil03, §9.1.5]

d d
O D e[| ) = /HVI ”tlldt——zx/uv S d.

In this setup, the role of the PL inequality (PL) is played by a log-Sobolev inequality of the form

ent,(g?) := /92 In(g%)dr — (/92 dr) ln(/g2 dr) < 2CLS|/||VgH2d7T. (LShH

When g = /du/dm, (LSI) reads Dxr, (s || 7) < 2C1si [ ||v,/dm/d7r||2d7r, which implies
exponentially fast convergence: Dy, (p¢ || 7) < Dxw (o || 7) e~ 2t/Cs by Gronwall’s inequality.

A disadvantage of this approach, however, is that the log-Sobolev inequality (LSI) does not hold
for any log-concave measure 7, or it may hold with a poor constant Cy s;. For example, it is known
that the log-Sobolev constant of an isotropic log-concave distribution must in general depend on the
diameter of its support [LV18]. In contrast, we work below with a Poincaré inequality, which is
conjecturally satisfied by such distributions with a universal constant [KLS95].

Motivated by [BCG08; CG09], we instead consider the chi-squared divergence

dp dp .
2 — au _
F(w) = ) mvar, = [ (E) an-1. itucr,

and F'(p1) = oo otherwise. It is well-known that the law (1), of LD satisfies the Fokker-Planck
equation in the weak sense [KS91, §5.7]: -

Oy = div(,ut Vin %)

Using this, we can compute the derivative of the chi-squared divergence:

1
SOF (ur) = /ﬂ Dypiy = /ﬁ div(peVIn 22) = /(vm Bovt /Hv“t 1> 7
™ ™ 0
and exponential convergence of the chi-squared divergence follows if 7 satisfies a Poincaré inequality:
var, g < Cp E.[||[Vg|[?]  forall locally Lipschitz g € L*(r). (P)

Thus, when using the chi-squared divergence to track progress, the role of the PL inequality is played
by a Poincaré inequality. As we discuss in Sections 4.1 and 4.3 below, the Poincaré inequality is
significantly weaker than the log-Sobolev inequality.

A similar analysis may be carried out for MLD using an appropriate variation of Poincaré inequalities.



Definition 1 (Mirror Poincaré inequality). Given a mirror map ¢, we say that the distribution 7
satisfies a mirror Poincaré inequality with constant Cyp if

vary g < Cwp E-(Vg, (V2¢) 'Vg)  forall locally Lipschitz g € L(n).  (MP)

When ¢ = || - ||?/2, (MP) is simply called a Poincaré inequality and the smallest Cyp for which the
inequality holds is the Poincaré constant of m, denoted Cp.

Using a similar argument as the one above, we show exponential convergence of MLD in x2(- || 7)
under (MP). Together with standard comparison inequalities between information divergences [Tsy09,
§2.4], it implies exponential convergence in a variety of commonly used divergences, including
the total variation (TV) distance ||- — 7|y, the Hellinger distance H (-, ), and the KL divergence
Dxu(- [ ).

Theorem 1. For eacht > 0, let ji; be the marginal distribution of MLD with target distribution 7 at
time t. Then if  satisfies the mirror Poincaré inequality (MP) with constant Cp, it holds

_ 2t
2| = wlFy, H? (e, ), Din (e | 7), X2 (e || 0) < e” e xP(uo || 7), VE>0.

We give two proofs of this result in Appendix A.

Recall that LD can be understood as a gradient flow for the KL divergence on the 2-Wasserstein space.
In light of this interpretation, the above bound for the KL divergence yields a convergence rate in
objective value, and it is natural to wonder whether a similar rate holds for the iterates themselves in
terms of 2-Wasserstein distance. From the works [Dinl5; Led18; Liu20], it is known that a Poincaré
inequality (P) implies the transportation-cost inequality

W3 (u,m) < 2Cex*(p || ), V< (1)

Initially unaware of these works, we proved that a Poincaré inequality implies a suboptimal chi-
squared transportation inequality. Since the suboptimal inequality already suffices for our purposes,
we state and prove it in Appendix B. We thank Jon Niles-Weed for bringing this to our attention.

The inequality (1) implies that if 7 has a finite Poincaré constant Cp then Theorem 1 also yields
exponential convergence in Wasserstein distance. In the rest of the paper, we write this result as

b

50 W3 () < € P (o | )

for any target measure 7 that satisfies a mirror Poincaré inequality, with the convention that Cp = oo
when 7 fails to satisfy a Poincaré inequality. In this case, the above inequality is simply vacuous.

4 Applications

We specialize Theorem 1 to the following important applications.

4.1 Newton-Langevin diffusion

For NLD, we assume that V is strictly convex and twice continuously differentiable; take ¢ = V.
In this case, the mirror Poincaré inequality (MP) reduces to the Brascamp-Lieb inequality, which
is known to hold with constant Cyyp = 1 for any strictly log-concave distribution 7 [BL76; BLOO;
Gen08]. It yields the following remarkable result where the exponential contraction rate has no
dependence on 7 nor on the dimension d.

Corollary 1. Suppose that V is strictly convex and twice continuously differentiable. Then, the law
(“t)tzo of NLD satisfies

1

5 W3 (e ) < e 2P (po || 7).

2| e — w3y H?(pes ), Diew(pee || 7), x> (e || 1),



If 7 is log-concave, then it satisfies a Poincaré in-
equality [AB15; LV17] so that the result in Wasser-
stein distance holds. In fact, contingent on the fa-
mous Kannan-Lovdsz-Simonovitz (KLS) conjecture
([KLS95]), the Poincaré constant of any log-concave
distribution 7 is upper bounded by a constant, inde-
pendent of the dimension, times the largest eigen-
value of the covariance matrix of .

~~

1000
t (iterations)

Figure 2: Approximately sampling from 7 o<
e~ II'l by sampling from mg X ell-I=Bl-—1)1*
(8 = .0005). Algorithms are initialized at
a random Xy with || Xg|| = 1000. The plot
shows the squared distance of the running
means to 0.

1500 2000

At this point, one may wonder, under the same as-
sumptions as the Brascamp-Lieb inequality, whether
a mirror version of the log-Sobolev inequality (LSI)
holds. This question was answered negatively
in [BLOO], thus reinforcing our use of the chi-squared
divergence as a surrogate for the KL divergence.

If the potential V' is convex, but degenerate (i.e., not strictly convex) we cannot use NLD directly with
m as the target distribution. Instead, we perturb 7 slightly to a new measure 7, which is strongly
log-concave, and for which we can use NLD. Crucially, due to the scale invariance of NLD, the time
it takes for NLD to mix does not depend on /3, the parameter which governs the approximation error.

Corollary 2. Fix a target accuracy € > 0. Suppose ™ = e~V is log-concave and set T X e~ VAl
where 3 < /(2 [|| - |*dn). Then, the law (1),~, of NLD with target distribution 7z satisfies

g = wllv < & by time t = L In[2x% (o || m5)] + In(1/e).

Proof. From our assumption, it holds

2

d
Dicu (7 | 7r5):/lnd—ﬂ—dwzﬁ/ﬂ~||2d7r+1n/e_ﬁ”'”2 dwgﬁ/H-Hgdﬂg =
B

Moreover, Theorem 1 with the above choice of ¢ yields Dk, (p || m5) < €2/2. To conclude, we use
Pinsker’s inequality and the triangle inequality for || - ||y . O

Convergence guarantees for other cases where ¢ is only a proxy for V' are presented in Appendix C.

4.2 Sampling from the uniform distribution on a convex body

Next, we consider an application of NLD to the problem of sampling from the uniform distribution
7 on a convex body €. A natural method of outputting an approximate sample from 7 is to take a

strictly convex function V : R? — R U {oo} such that dom V = € and V (z) — oo as # — OC, and
to run NLD with target distribution 75 oc e~#V, where the inverse temperature 3 is taken to be small

(so that mg ~ 7). The function V is known as a barrier function.

Although we can take any choice of barrier function V', we obtain a clean
theoretical result if we assume that V' is v~ !-exp-concave, that is, the mapping
exp(—v~1V) is concave. Interestingly, this assumption further deepens the
rich analogy between sampling and optimization, since such barriers are widely Seas indats ol
studied in the optimization literature. There, the property of exp-concavity is Sl
typically paired with the property of self-concordance, and barrier functions
satisfying these two properties are a cornerstone of the theory of interior point
algorithms (see [Bubl15, §5.3] and [Nes04, §4]).

We now formulate our sampling result. In our continuous framework, it does
not require self-concordance of the barrier function.

Figure 3: Uniform

Corollary 3. Fix a target accuracy € > 0. Let 7 be the uniform distribution
over a convex body C and let Vbea v~ l-exp-concave barrier for C. Then, the
law (pi1),~( of NLD with target density Tz o e BV for B < 2/ (2v) satisfies
e — lley < e by time t = L1n[2x(po || 75)] + In(1 /).

sampling from the
set [—0.01,0.01] x
[—1,1]: PLA (blue)
vs. NLA (orange).
See Section E.3.



Proof. Lemma 1 in Appendix D ensures that Dkr, (73 || 7) < £2/2. We conclude as in the proof of
Corollary 2, by using Theorem 1, Pinsker’s inequality, and the triangle inequality for || - ||Tv. O

We demonstrate the efficacy of NLD in a simple simulation: sampling uniformly from the ill-
conditioned rectangle [—a,a] x [—1,1] with a = 0.01 (Figure 3). We compare NLA with the
Projected Langevin Algorithm (PLA) [BEL18], both with 200 iterations and h = 10~%. For NLA,

we take V() = — log(1 — 22) — log(a? — 22) and 8 = 10~ %.

4.3 Langevin diffusion under a Poincaré inequality

We conclude this section by giving some implications of Theorem 1 to the classical Langevin
diffusion (LD) when ¢ = || - ||2/2. In this case, the mirror Poincaré inequality (MP) reduces to the
classical Poincaré inequality (P) as in Section 3.2.

Corollary 4. Suppose that 7 satisfies a Poincaré inequality (P) with constant Cp > 0. Then, the law
(11t) >0 of the Langevin diffusion (LD) satisfies

_ 2t
2l e — 7| Ty, H? (e ), Dicw(pe || 7), X7 (e || 1), szz(um) <e e x*(uo || 7).

1

P
The convergence in TV distance recovers results of [Dall7b; DM17]. Bounds for the stronger error
metric x2(- || w) have appeared explicitly in [CLL19; VW 19] and is implicit in the work of [BCGOS;
CGO09] on which the TV bound of [DM17] is based.

Moreover, it is classical that if 7 satisfies a log-Sobolev inequality (LSI) with constant C| g then it
has Poincaré constant Cp < C| ;. Thus, the choice of the chi-squared divergence as a surrogate for
the KL divergence when tracking progress indeed requires weaker assumptions on 7.

S Numerical experiments

In this section, we examine the numerical performance of the Newton-Langevin Algorithm (NLA),
which is given by the following Euler discretization of NLD:

VV (Xky1) = (1= h)VV(Xy) + V2K [V2V(XR)] &, (NLA)

where ({),cy 18 a sequence of i.i.d. N'(0, I;) variables. In cases where V'V does not have a closed-
form inverse, such as the logistic regression case of Section E.2, we invert it numerically by solving
the convex optimization problem VV*(y) = argmax, cga {(z,y) — V(x)}.

1/2

We focus here on sampling from an ill-conditioned generalized Gaussian distribution on R0 with
V(z) = (z,%7'x)7/2 for v = 3/4 to demonstrate the scale invariance of NLD established in
Corollary 1. Additional experiments, including the Gaussian case v = 1, are given in Appendix E.

| LT TP — NLA, h=0.2 200 = NLA, h=0.2
a0 | SOZEERBEIzuumi——uah=02 || Tm==lllTTeen o — ULA,h=02
-+ TULA, h=0.2 1.5 Lo T R T ——— TULA, h=0.2
NLA, h=0.05 ' NLA, h=0.05
3.5 ULA, h=0.05 ULA, h=0.05
o TULA, h=0.05 =l 1.0 TULA, h=0.05
5 0 w
23.0 ‘_9
3 g 0.5
25
0.0
2.0 05
0 500 1000 1500 2000 0 250 500 750 1000 1250 1500 1750
t (iterations) t (iterations)

Figure 4: V() = (z,% " '2)%*/2, ¥ = diag(1,2,...,100). Left: absolute squared error of the
mean 0. Right: relative squared error for the scatter matrix 2.

Figure 4 compares the performance of NLA to that of the Unadjusted Langevin Algorithm
(ULA) [DM+19] and of the Tamed Unadjusted Langevin Algorithm (TULA) [Bro+19]. We run the



algorithms 50 times and compute running estimates for the mean and scatter matrix of the family
following [ZWG13]. Convergence is measured in terms of squared distance between means and
relative squared distance between scatter matrices, ||% — 3||2/||2[|2. NLA generates samples that
rapidly approximate the true distribution and also displays stability to the choice of the step size h.

6 Open questions

We conclude this paper by discussing several intriguing directions for future research. In this paper,
we focused on giving clean convergence results for the continuous-time diffusions MLD and NLD,
and we leave open the problem of obtaining discretization error bounds. In discrete time, Newton’s
method can be unstable, and one uses methods such as damped Newton, Levenburg-Marquardt,
or cubic-regularized Newton [CGTO00; NPO6]; it is an interesting question to develop sampling
analogues of these optimization methods. In a different direction, we ask the following question: are
there appropriate variants of other popular sampling methods, such as accelerated Langevin [Ma+19]
or Hamiltonian Monte Carlo [Neal2], which also enjoy the scale invariance of NLD?

Broader impact

The sampling algorithms designed in this paper have the potential to improve a wide variety of
Bayesian methods and therefore have an indirect impact on various domains such as health and
medicine where such methods are pervasive. Sampling algorithms are also used for the generation of
automated spam messages, which have potentially negative effects on society. Since this paper is
primarily focused on theory, these questions are not addressed here.
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