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Abstract

Machine learning with missing data has been approached in two different ways,
including feature imputation where missing feature values are estimated based on
observed values and label prediction where downstream labels are learned directly
from incomplete data. However, existing imputation models tend to have strong
prior assumptions and cannot learn from downstream tasks, while models targeting
label prediction often involve heuristics and can encounter scalability issues. Here
we propose GRAPE, a graph-based framework for feature imputation as well as label
prediction. GRAPE tackles the missing data problem using a graph representation,
where the observations and features are viewed as two types of nodes in a bipartite
graph, and the observed feature values as edges. Under the GRAPE framework,
the feature imputation is formulated as an edge-level prediction task and the label
prediction as a node-level prediction task. These tasks are then solved with Graph
Neural Networks. Experimental results on nine benchmark datasets show that
GRAPE yields 20% lower mean absolute error for imputation tasks and 10% lower
for label prediction tasks, compared with existing state-of-the-art methods.

1 Introduction

Issues with learning from incomplete data arise in many domains including computational biology,
clinical studies, survey research, finance, and economics [6, 32, 46, 47, 53]. The missing data problem
has previously been approached in two different ways: feature imputation and label prediction.
Feature imputation involves estimating missing feature values based on observed values [8, 9, 11,
14, 15, 17, 22, 34, 44, 45, 47-50, 56], and label prediction aims to directly accomplish a downstream
task, such as classification or regression, with the missing values present in the input data [2, 5, 10,
15, 16, 23, 37, 40, 42, 52, 54].

Statistical methods for feature imputation often provide useful theoretical properties but exhibit
notable shortcomings: (1) they tend to make strong assumptions about the data distribution; (2)
they lack the flexibility for handling mixed data types that include both continuous and categorical
variables; (3) matrix completion based approaches cannot generalize to unseen samples and require
retraining when the model encounters new data samples [8, 9, 22, 34, 44, 47]. When it comes to
models for label prediction, existing approaches such as tree-based methods rely on heuristics [5]
and tend to have scalability issues. For instance, one of the most popular procedures called surrogate
splitting does not scale well, because each time an original splitting variable is missing for some
observation it needs to rank all other variables as surrogate candidates and select the best alternative.

Recent advances in deep learning have enabled new approaches to handle missing data. Existing
imputation approaches often use deep generative models, such as Generative Adversarial Networks
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Figure 1: In the GRAPE framework, we construct a bipartite graph from the data matrix with missing
feature values, where the entries of the matrix in red indicate the missing values (Top Left). To
construct the graph, the observations O and features F' are considered as two types of nodes and the
observed values in the data matrix are viewed as weighted/attributed edges between the observation
and feature nodes (Bottom Left). With the constructed graph, we formulate the feature imputation
problem and the label prediction problem as edge-level (Top right) and node-level (Bottom right)
prediction tasks, respectively. The tasks can then be solved with our GRAPE GNN model that learns
node and edge embeddings through rounds of message passing.

(GANSs) [56] or autoencoders [17, 50], to reconstruct missing values. While these models are flexible,
they have several limitations: (1) when imputing missing feature values for a given observation, these
models fail to make full use of feature values from other observations; (2) they tend to make biased
assumptions about the missing values by initializing them with special default values.

Here, we propose GRAPE', a general framework for feature imputation and label prediction in the
presence of missing data. Our key innovation is to formulate the problem using a graph representation,
where we construct a bipartite graph with observations and features as two types of nodes, and the
observed feature values as attributed edges between the observation and feature nodes (Figure 1).
Under this graph representation, the feature imputation can then be naturally formulated as an
edge-level prediction task, and the label prediction as a node-level prediction task.

GRAPE solves both tasks via Graph Neural Networks (GNNs). Specifically, GRAPE adopts a GNN
architecture inspired by the GraphSAGE model [20], while having three innovations in its design:
(1) since the edges in the graph are constructed based on the data matrix and have rich attribute
information, we introduce edge embeddings during message passing and incorporate both discrete
and continuous edge features in the message computation; (2) we design augmented node features to
initialize observation and feature nodes, which provides greater representation power and maintains
inductive learning capabilities; (3) to overcome the common issue of overfitting in the missing data
problem, we employ an edge dropout technique that greatly boosts the performance of GRAPE.

We compare GRAPE with the state-of-the-art feature imputation and label prediction algorithms on 9
benchmark datasets from the UCI Machine Learning Repository [1]. In particular, GRAPE yields 20%
lower mean absolute error (MAE) for the imputation tasks and 10% lower MAE for the prediction
tasks at the 30% data missing rate. Finally, we demonstrate GRAPE’s strong generalization ability by
showing its superior performance on unseen observations without the need for retraining.

1Project website with data and code: http://snap.stanford.edu/grape
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Overall, our approach has several important benefits: (1) by creating a bipartite graph structure
we create connections between different features (via observations) and similarly between the
observations (via features); (2) GNN elegantly harnesses this structure by learning to propagate and
borrow information from other features/observations in a graph localized way; (3) GNN allows us to
model both feature imputation as well as label prediction in an end-to-end fashion, which as we show
in experiments leads to strong performance improvements.

2 Related Work

Feature imputation. Successful statistical approaches for imputation include joint modeling with
Expectation-Maximization [11, 14, 15, 25], multivariate imputation by chained equations (MICE)
[7, 38, 45, 48, 49], k-nearest neighbors (KNN) [27, 47], and matrix completion [8, 9, 22, 34, 44, 47].
However, joint modeling tends to make assumptions about the data distribution through a parametric
density function; joint modeling and matrix completion lack the flexibility to handle data of mixed
modalities; MICE and KNN cannot accomplish imputation while adapting to downstream tasks.

Recently, deep learning models have also been used to tackle the feature imputation problem [17, 43,
50, 56]. However, these models have important limitations. Denoising autoencoder (DAE) models
[17, 50] and GAIN [56] only use a single observation as input to impute the missing features. In
contrast, GRAPE explicitly captures the complex interactions between multiple observations and
features. GNN-based approaches have also been proposed in the context of matrix completion
[3, 21, 35, 62, 63]. However, they often make the assumption of finite, known-range values in their
model design, which limits their applicability to imputation problems with continuous values. In
contrast, GRAPE can handle both continuous and discrete feature values.

Label prediction with the presence of missing data. Various models have been adapted for label
prediction with the presence of missing data, including tree-based approaches [5, 54], probabilistic
modeling [15], logistic regression [52], support vector machines [10, 37], deep learning-based models
[2, 18, 42], and many others [16, 23, 30, 40]. Specifically, decision tree is a classical statistical
approach that can handle missing values for the label prediction task [5]. With the surrogate splitting
procedure, decision tree uses a single surrogate variable to replace the original splitting variable with
missing values, which is effective but inefficient, and has been shown to be inferior to the “impute
and then predict” procedure [13]. Random forests further suffer from the scalability issues as they
consist of multiple decision trees [31, 54]. In contrast, GRAPE handles the missing feature entries
naturally with the graph representation without any additional heuristics. The computation of GRAPE
is efficient and easily parallelizable with modern deep learning frameworks.

Overall discussion. In GRAPE implementation, we adopt several successful GNN design principles.
Concretely, our core architecture is inspired by GraphSAGE [20]; we apply GraphSAGE to bipartite
graphs following G2SAT [59]; we use edge dropout in [39]; we use one-hot auxiliary node features
which has been used in [36, 60]; we follow the GNN design guidelines in [61] to select hyperparam-
eters. Moreover, matrix completion tasks have been formulated as bipartite graphs and solved via
GNNs in [3, 62]; however, they only consider the feature imputation task with discrete feature values.
We emphasize that our main contribution is not the particular GNN model but the graph-based
[framework for the general missing data problem. GRAPE is the first graph-based solution to both
feature imputation and label prediction aspects of the missing data problem.

3 The GRAPE Framework

3.1 Problem Definition

Let D € R"*™ be a feature matrix consisting of n data points and m features. The j-th feature of
the i-th data point is denoted as D;;. In the missing data problem, certain feature values are missing,
denoted as a mask matrix M € {0, 1}™*" where the value of D;; can be observed only if M;; = 1.
Usually, datasets come with labels of a downstream task. Let Y € R™ be the label for a downstream
task and V € {0, 1}" the train/test partition, where Y; can be observed at training test only if V; = 1.
We consider two tasks: (1) feature imputation, where the goal is to predict the missing feature values
D;; at M;; = 0; (2) label prediction, where the goal is to predict test labels Y; at V; = 0.



3.2 Missing Data Problem as a Graph Prediction Task

The key insight of this paper is to represent the feature matrix with missing values as a bipartite graph.
Then the feature imputation problem and the label prediction problem can naturally be formulated as
node prediction and edge prediction tasks (Figure 1).

Feature matrix as a bipartite graph. The feature matrix D and the mask M can be represented as
an undirected bipartite graph G = (V, £), where V is the node set that consists of two types of nodes
V=VpUVpr,Vp ={u1,....,uy} and Vp = {v1,..., 0}, € is the edge set where edges only exist
between nodes in different partitions: £ = {(u;,v;,€u,v;) | ui € Vp,v; € Vi, M;; = 1}, where
the edge feature, e,,,,, takes the value of the corresponding feature e, = D;;. If Dy is a discrete
variable then it is transformed to a one-hot vector then assigned to e,,,;. To simplify the notation
€y,v;, WE Use €;; in the context of feature matrix D, and e, in the context of graph G.

Feature imputation as edge-level prediction. Using the definitions above, imputing missing fea-
tures can be represented as learning the edge value prediction mapping: D;; = &;; = f;;(G) by

minimizing the difference between D,; and D;;, VM;; = 0. When imputing discrete attributes, we
use cross entropy loss. When imputing continuous values, we use MSE loss.

Label prediction as node-level prediction. Predicting downstream node labels can be represented
as learning the mapping: Y; = ¢;(G) by minimizing the difference between Y; and Y;,VV,; = 0.

3.3 Learning with GRAPE

GRAPE adopts a GNN architecture inspired by GraphSAGE [20], which is a variant of GNNs that
has been shown to have strong inductive learning capabilities across different graphs. We extend
GraphSAGE to a bipartite graph setting by adding multiple important components that ensure its
successful application to the missing data problem.

GRAPE GNN architecture. Given that our bipartite graph G has important information on its edges,
we modify GraphSAGE architecture by introducing edge embeddings. At each GNN layer [, the

message passing function takes the concatenation of the embedding of the source node th‘” and

(1-1)

the edge embedding ey, ’ as the input:

n{) = Acg; (a(P(” -ConcaT(h{™1 e~y | vy e N(’U7gdrop))) (1)

where AGG; is the aggregation function, o is the non-linearity, P(") is the trainable weight, \ is the

O]

node neighborhood function. Node embedding hvl is then updated using:

h{) = 5(Q® - Concat(h{ ™, n)) @

where Q) is the trainable weight, we additionally update the edge embedding eSji by:

el = o(WW . concar(el' V) hl) hd)) 3)
where W) is the trainable weight. To make edge level predictions at the L-th layer:
Dyy = Ocgge(Coneat(h(D) h(D)) )
The node-level prediction is made using the imputed dataset D:
Y., = Onoue(Du) (5)

where Ocqgc and Oy, 4. are feedforward neural networks.

Augmented node features for bipartite message passing. Based on our definition, nodes in Vp
and Vg do not naturally come with features. The straightforward approach would be to augment
nodes with constant features. However, such formulation would make GRAPE hard to differentiate
messages from different feature nodes in V. In real-world applications, different features can
represent drastically different semantics or modalities. For example in the Boston Housing dataset
from UCI [1], some features are categorical such as if the house is by the Charles River, while others
are continuous such as the size of the house.



Algorithm 1 GRAPE forward computation

Input: Graph G = (V; £); Number of layers L; Edge dropout rate r4;..,; Weight matrices PO for
message passing, Q) for node updating, and W for edge updating; non-linearity o; aggregation
functions AGGy; neighborhood function N : v x £ — 2V
QOutput: Node embeddings h,, corresponding to each v € V
chiY INIT(v), Vv € V
el « €y, Veyy € E
: Edrop < DROPEDGE(E, r'grop)
cforie{l,...,L}
forveV
n!’ = Acg, (a(P(” -Cconcat(h!™ el V) | vu e N(v,Edmp)))
h{? = 5(Q®W . concar(h ™, n))
for (u,v) € Egrop

el) = o(WO . concar(el, V), b h{Y)
2y < hE

@Y 2R bR 2

—

Instead, we propose to use m-dimensional one-hot node features for each node in Vi (m = |Vr|),
while using m-dimensional' constant vectors as node feature for data nodes in Vp:

. 1 v € Vp
INIT(v) = {ONEHOT v EVp ©

Such a formulation leads to a better representational power to differentiate feature nodes with different
underlying semantics or modalities. Additionally, the formulation has the capability of generalizing
the trained GRAPE to completely unseen data points in the given dataset. Furthermore, it allows us to
transfer knowledge from an external dataset with the same set of features to the dataset of interest,
which is particularly useful when the external dataset provides rich information on the interaction
between observations and features (as captured by GRAPE). For example, as a real-world application
in biomedicine, gene expression data can be used to predict disease types and frequently contain
missing values. If we aim to impute missing values in a gene expression dataset of a small cohort
of lung cancer patients, public datasets, e.g., the Cancer Genome Atlas Program (TCGA) [51] can
be first leveraged to train GRAPE, where rich interactions between patients and features are learned.
Then, the trained GRAPE can be applied to our smaller dataset of interest to accomplish imputation.

Improved model generalization with edge dropout. When doing feature imputation, a naive way

of training GRAPE is to directly feed G = (V; £) as the input. However, since all the observed edge

values are used as the input, an identity mapping lﬁij = egg) is enough to minimize the training loss;
therefore, GRAPE trained under this setting easily overfits the training set. To force the model to

generalize to unseen edge values, we randomly mask out edges £ with dropout rate 7grop:
DROPEDGE(E:, Tdrop) = {(u“ Vj, ij) | (’LLZ', Vi, eij) S g, Mdrop,ij > Tdrop} (7)

where Mg, € R™*™ is a random matrix sampled uniformly in (0, 1). This approach is similar to
DropEdge [39], but with a more direct motivation for feature imputation. At test time, we feed the
full graph G to GRAPE. Overall, the complete computation of GRAPE is summarized in Algorithm 1.

4 Experiments

4.1 Experimental Setup

Datasets. We conduct experiments on 9 datasets from the UCI Machine Learning Repository [1]. The
datasets come from different domains including civil engineering (CONCRETE, ENERGY), biology
(PROTEIN), thermal dynamics (NAVAL), etc. The smallest dataset (YACHT) has 314 observations and
6 features, while the largest dataset (PROTEIN) has over 45,000 observations and 9 features. The
datasets are fully observed; therefore, we introduce missing values by randomly removing values in
the data matrix. The attribute values are scaled to [0, 1] with a MinMax scaler [29].

"'We make data nodes and feature nodes to have the same feature dimension for the ease of implementation.
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Figure 2: Averaged MAE of feature imputation (upper) and label prediction (lower) on UCI datasets
over 5 trials at data missing level of 0.3. The result is normalized by the average performance of
Mean imputation. GRAPE yields 20% lower MAE for imputation and 10% lower MAE for prediction
compared with the best baselines (KNN for imputation and MICE for prediction).

Baseline models. We compare our model against five commonly used imputation methods. We also
compare with a state-of-the-art deep learning based imputation model as well as a decision tree based
label prediction model. More details on the baseline models are provided in the Appendix.

e Mean imputation (Mean): The method imputes the missing D;; with the mean of all the samples
with observed values in dimension j.

o K-nearest neighbors (KNN): The method imputes the missing value D;; using the KNNs that
have observed values in dimension j with weights based on the Euclidean distance to sample .

e Multivariate imputation by chained equations (MICE): The method runs multiple regression
where each missing value is modeled conditioned on the observed non-missing values.

e Iterative SVD (SVD) [47]: The method imputes missing values based on matrix completion with
iterative low-rank SVD decomposition.

e Spectral regularization algorithm (Spectral) [34]: This matrix completion model uses the nuclear
norm as a regularizer and imputes missing values with iterative soft-thresholded SVD.

e GAIN [56], state-of-the-art deep imputation model with generative adversarial training [19].

e Decision tree (Tree) [5], a commonly used statistical method that can handle missing values for
label prediction. We consider this baseline only for the label prediction task.'

GRAPE configurations. For all experiments, we train GRAPE for 20,000 epochs using the Adam
optimizer [28] with a learning rate at 0.001. For all feature imputation tasks, we use a 3-layer GNN
with 64 hidden units and RELU activation. The AGG; is implemented as a mean pooling function
MEAN(-) and O,44e as a multi-layer perceptron (MLP) with 64 hidden units. For label prediction
tasks, we use two GNN layers with 16 hidden units. O.qq4e and Oy,4. are implemented as linear
layers. The edge dropout rate is set to 74, = 0.3. For all experiments, we run 5 trials with different
random seeds and report the mean and standard deviation of the results.

4.2 Feature Imputation

Setup. We first compare the feature imputation performance of GRAPE and all other imputation
baselines. Given a full data matrix D € R™"*™, we generate a random mask matrix M € {0, 1}"*™

'Random forest is not included due to the lack of a public implementation that can handle missing data
without imputation.
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Figure 3: Averaged MAE of feature imputation (upper) and label prediction (lower) with different
missing ratios over 5 trials. GRAPE yields 12% lower MAE on imputation and 2% lower MAE on
prediction tasks across different missing data ratios.

with P(M;; = 0) = 7,55 at a data missing level r,,,;5, = 0.3. A bipartite graph G = (V, £) is then
constructed based on D and M as described in Section 3.2. G is used as the input to GRAPE at both
the training and test time. The training loss is defined as the mean squared error (MSE) between D

and ﬁij, VM;; = 1. The test metric is defined as the mean absolute error (MAE) between D;; and
Dij: VM” =0.

Results. As shown in Figure 2, GRAPE has the lowest MAE on all datasets and its average error is
20% lower compared with the best baseline (KNN). Since there are significant differences between
the characteristics of different datasets, statistical methods often need to adjust its hyper-parameters
accordingly, such as the cluster number in KNN, the rank in SVD, and the sparsity in Spectral. On the
contrary, GRAPE is able to adjust its trainable parameters adaptively through loss backpropagation
and learn different observation-feature relations for different datasets. Compared with GAIN, which
uses an MLP as the generative model, the GNN used in GRAPE is able to explicitly model the
information propagation process for predicting missing feature values.

4.3 Label Prediction

Setup. For label prediction experiments, with the same input graph G, we have an additional label
vector Y € R™. We randomly split the labels Y into 70/30% training and test sets, Y trqin and Yiest
respectively. The training loss is defined as the MSE between the true Yy, and the predicted
thm. The test metric is calculated based on the MAE between Y,.,; and Ytest. For baselines
except decision tree, since no end-to-end approach is available, we first impute the data and then do
linear regression on the imputed data matrix for predicting Y.

Results. As is shown in Figure 2, on all datasets except NAVAL and WINE, GRAPE has the best
performance. On WINE dataset, all methods have comparable performance. The fact that the
performance of all methods are close to the Mean method indicates that the relation between the
labels and observations in WINE is relatively simple. For the dataset NAVAL, the imputation errors
of all models are very small (both relative to Mean and on absolute value). In this case, a linear
regression on the imputed data is enough for label prediction. Across all datasets, GRAPE yields 10%
lower MAE compared with best baselines. The improvement of GRAPE could be explained by two
reasons: first, the better handling of missing data with GRAPE where the known information and the
missing values are naturally embedded in the graph; and second, the end-to-end training.
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Figure 4: Averaged MAE of feature imputation on unseen data in UCI datasets over 5 trials. The
result is normalized by the average performance of Mean imputation. GRAPE yields 21% lower MAE
compared with best baselines (MICE).

4.4 Robustness against Different Data Missing Levels

Setup. To examine the robustness of GRAPE with respect to the missing level of the data matrix. We
conduct the same experiments as in Sections 4.2 and 4.3 with different missing levels of 7,,;ss €
{0.1,0.3,0.5,0.7}.

Results. The curves in Figure 3 demonstrate the performance change of all methods as the missing
ratio increases. GRAPE yields -8%, 20%, 20%, and 17% lower MAE on imputation tasks, and -15%,
10%, 10%, and 4% lower MAE on prediction tasks across all datasets over missing ratios of 0.1, 0.3,
0.5, and 0.7, respectively. In missing ratio of 0.1, the only baseline that behaves better than GRAPE is
KNN. As in this case, the known information is adequate for the nearest-neighbor method to make
good predictions. As the missing ratio increases, the prediction becomes harder and the GRAPE’s
ability to coherently combine all known information becomes more important.

4.5 Generalization on New Observations

Setup. We further investigate the generalization ability of GRAPE. Concretely, we examine whether
a trained GRAPE can be successfully applied to new observations that are not in the training dataset.
A good generalization ability reduces the effort of re-training when there are new observations being
recorded after the model is trained. We randomly divide the n observations in D € R™*™ into two
sets, represented as Dy,.q;,, € R™rain*™ and Dy € R™test*™ where Dyy.qiy and Dyeq contain
70% and 30% of the observations, respectively. The missing rate r,,;ss is at 0.3. We construct two
graphs Gyrqin and Gies: based on Dyy.qi0 and Dy, respectively. We then train GRAPE with Dy,
and Gy,qin, using the same procedure as described in Section 4.2. At test time, we directly feed Gt
to the trained GRAPE and evaluate its performance on predicting the missing values in Dy.;. We
repeat the same procedure for GAIN where training is also required. For all other baselines, since
they do not need to be trained, we directly apply them to impute on Dy;.

Results. As shown in Figure 4, GRAPE yields 21% lower MAE compared with best baselines (MICE)
without being retrained, indicating that our model generalizes seamlessly to unseen observations.
Statistical methods have difficulties transferring the knowledge in the training data to new data. While
GAIN is able to encode such information in the generator network, it lacks the ability to adapt to
observations coming from a different distribution. However, by using a GNN, GRAPE is able to make
predictions conditioning on the entire new datasets, and thus capture the distributional changes.

4.6 Ablation Study

Edge dropout. We test the influence of the edge dropout on the performance of GRAPE. We repeat
the experiments in Section 4.2 for GRAPE with no edge dropout and the comparison results are
shown in Section 4.6. The edge dropout reduces the test MAE by 33% on average, which verifies our
assumption that using edge dropout could help the model learn to predict unseen edge values.

Aggregation function. We further investigate how the aggregation function (SUM(-), MAX(-),
MEAN(+)) of GNN affects GRAPE’s performance. While SUM(-) is theoretically most expressive,
in our setting the degree of a specific node is determined by the number of missing values which is



Table 1: Ablation study for GRAPE. Averaged MAE of GRAPE on UCI datasets over 5 trials. Edge
dropout (upper) reduces the average MAE by 33% on feature imputation tasks. MEAN(-) is adopted
in our implementation. End-to-End training (lower) reduces the average MAE by 19% on prediction
tasks (excluding two outliers).

concrete energy housing kin8nm naval power protein wine yacht

Without edge dropout  0.171  0.148  0.104 0.262 0.021 0.192 0.047 0.094 0.204
With edge dropout 0.090 0.136 0.075 0.249 0.008 0.102 0.027 0.063 0.151

Sum(-) 0.094 0.143 0.078 0.277 0.024 0.134 0.040 0.069 0.154
MAX(+) 0.088 0.142 0.074 0.252 0.006 0.102 0.024 0.063 0.153
MEAN(+) 0.090 0.136 0.075 0.249 0.008 0.102 0.027 0.063 0.151
Impute then predict 9.36 259 380 0.181 0.004 480 4.48 0.524 9.02
End-to-End 7.88 1.65 339 0.163 0.007 4.61 423 0535 4.72

random and unrelated to the missing data task; in contrast, the MEAN(-) and MAX(+) aggregators are
not affected by this inherent randomness of node degree, therefore they perform better.

End-to-end downstream regression. To show the benefits of using end-to-end training in label
prediction, we repeat the experiments in Section 4.3 by first using GRAPE to impute the missing
data and then perform linear regression on the imputed dataset for node labels (which is the same
prediction model as the linear layer used by GRAPE). The results are shown in Section 4.6. The
end-to-end training gets 19% less averaged MAE over all datasets except NAVAL and WINE. The
reason for the two exceptions is similar as described in Section 4.3.

4.7 Further Discussions

Scalability. In our paper, we use UCI datasets as they are widely-used datasets for benchmarking
imputation methods, with both discrete and continuous features. GRAPE can easily scale to datasets
with thousands of features. We provide additional results on larger-scale benchmarks, including
Flixster (2956 features), Douban (3000 features), and Yahoo (1363 features) in the Appendix. GRAPE
can be modified to scale to even larger datasets. We can use scalable GNN implementations which
have been successfully applied to graphs with billions of edges [55, 58]; when the number of features
is prohibitively large, we can use a trainable embedding matrix to replace one-hot node features.

Applicability of GRAPE. In the paper, we adopt the most common evaluation regime used in missing
data papers, i.e., features are missing completely at random. GRAPE can be easily applied to other
missing data regimes where feature are not missing at random, since GRAPE is fully data-driven.

More intuitions on why GRAPE works. When a feature matrix does not have missing values, to
make downstream label predictions, a reasonable solution will be directly feeding the feature matrix
into an MLP. As is discussed in [57], an MLP can in fact be viewed as a GNN over a complete graph,
where the message function is matrix multiplication. Under this interpretation, GRAPE extends a
simple MLP by allowing it to operate on sparse graphs (i.e., feature matrix with missing values),
enabling it for missing feature imputation tasks, and adopting a more complex message computation
as we have outlined in Algorithm 1.

5 Conclusion

In this work, we propose GRAPE, a framework to coherently understand and solve missing data
problems using graphs. By formulating the feature imputation and label prediction tasks as edge-level
and node-level predictions on the graph, we are able to train a Graph Neural Network to solve the
tasks end-to-end. We further propose to adapt existing GNN structures to handle continuous edge
values. Our model shows significant improvement in both tasks compared against state-of-the-art
imputation approaches on nine standard UCI datasets. It also generalizes robustly to unseen data
points and different data missing ratios. We hope our work will open up new directions on handling
missing data problems with graphs.



Broader Impact

The problem of missing data arises in almost all practical statistical analyses. The quality of the
imputed data influences the reliability of the dataset itself as well as the success of the downstream
tasks. Our research provides a new point of view for analysing and handling missing data problems
with graph representations. There are many benefits to using this framework. First, different from
many existing imputation methods which rely on good heuristics to ensure the performance [43],
GRAPE formulates the problem in a natural way without the need of handcrafted features and
heuristics. This makes our method ready to use for datasets coming from different domains. Second,
similar to convolutional neural networks [24, 41], GRAPE is suitable to serve as a pre-processing
module to be connected with downstream task-specific modules. GRAPE could either be pre-trained
and fixed or concurrently learned with downstream modules. Third, GRAPE is general and flexible.
There is little limitation on the architecture of the graph neural network as well as the imputation
(Ocdge) and prediction (O,,04.) module. Therefore, researchers can easily plug in domain-specific
neural architectures, e.g., BERT [12], to the design of GRAPE. Overall, we see exciting opportunities
for GRAPE to help researchers handle missing data and thus boost their research.
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A Additional Details on Baseline Implementation

For imputation baselines including Mean, KNN, MICE, SVD, and Spectral, we use the implementa-
tion provided in the fancyimpute package'. For KNN, we use 50 nearest neighbors. For SVD, we
set the rank equal to m — 1, where m is the number of features. For MICE, we set the maximum
iteration number to 3. For Spectral, we found the default heuristic for shrinkage value works the best.
For a detailed explanation of the meaning of the parameters, we refer readers to the documentation of
fancyimpute package. The hyper-parameter values are chosen by comparing the average imputation
performance over all datasets. For GAIN, we use the source code released by the authors. All
the hyper-parameters are the same as in the source code’. We use the rpart R package for the
implementation of the decision tree method.

B Running Time Comparison

Here we report the running clock time for feature imputation of different methods at test time. For
Mean, KNN, MICE, SAC, and Spectral, this means the running time of one function call for imputing
the entire dataset. For GAIN and GRAPE, this means one forward pass of the network. Appendix B
shows the averaged running time over 5 different trials with the same setting as described in Section
4.2.

Table 2: Running clock time (second) for feature imputation of different methods at test time.

concrete energy housing kin8nm naval power protein wine yacht

Mean  0.000806 0.000922 0.000942 0.00242 0.00596 0.00147 0.0127 0.00121 0.00064
KNN 0.225 0.134 0.0913 9.95 30.1 114 656  0.504 0.0268
MICE 0.0294 0.0311  0.0499 0.0749 0.256 0.0249 0.271 0.0531 0.027
SVD 0.0659  0.0192 0.0359 0.162 0.0612 0.142 0.593 0.0564 0.0412
Spectral  0.0718  0.0565  0.0541 0.268 0.405 0.199 1.63 0.0978 0.0311
GAIN 0.0119  0.0125 0.0131  0.017 0.0298 0.0146 0.0457 0.0131 0.0116
GRAPE  0.0263 0.011 0.0115 0.0874 0.259 0.0488 0.568 0.0199 0.00438

C Comparisons with Additional Baselines

We additionally provide the comparison results of our method with two other state-of-the-art baselines:
missMDA [26], a statistical multiple imputation approach, and MIWAE[33], a deep generative model.
We adapt the same setting as in Section 4.1 and the results are shown in Appendix C. GRAPE yields
the smallest imputation error on all datasets compared with the two other baselines.

Table 3: Averaged MAE of feature imputation on UCI datasets at data missing level of 0.3.

concrete energy housing kin8nm naval power protein wine yacht

missMDA  0.190 0.225 0.142 0.285 0.038 0.215 0.068 0.090 0.226
MIWAE 0.156 0.153 0.098 0.262  0.020 0.117 0.042 0.087 0.224
GRAPE 0.090 0.136 0.075 0.249 0.008 0.102 0.027 0.063 0.151

D Experiments on Larger Datasets

To test the scalability of GRAPE, we perform additional feature imputation tests on the Flixter,
Douban, and YahooMusic detests with preprocessed subsets and splits provided by [35]. The Flixster
dataset has 2341 observations and 2956 features. The Douban dataset has 3000 observations and
3000 features. The YahooMusic dataset has 1357 observations and 1363 features. These datasets

'nttps://github.com/iskandr/fancyimpute
https://github.com/jsyoon0823/GAIN
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only have discrete values. We compare GRAPE with two GNN-based approaches, GC-MC [4] and
IGMC [62]. The results are shown in Table 4, where the results of GC-MC and IGMC are provided
by [62]. On all datasets, GRAPE shows a reasonable performance which is better than GC-MC and
close to IGMC. Notice that the two baselines are specially designed for discrete matrix completion,
where GRAPE is applicable to both continuous and discrete feature values and is general for both
feature imputation and label prediction tasks.

Table 4: RMSE test results on Flixster, Douban, and YahooMusic.

Flixster Douban Yahoo

GC-MC 0917 0.734 20.5
IGMC 0.872 0.721 19.1
Ours 0.899 0.733 19.4
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