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Abstract

Message passing Graph Neural Networks (GNNs) provide
a powerful modeling framework for relational data. How-
ever, the expressive power of existing GNNs is upper-bounded
by the 1-Weisfeiler-Lehman (1-WL) graph isomorphism test,
which means GNNs that are not able to predict node clustering
coefficients and shortest path distances, and cannot differen-
tiate between different d-regular graphs. Here we develop a
class of message passing GNNs, named Identity-aware Graph
Neural Networks (ID-GNNs), with greater expressive power
than the 1-WL test. ID-GNN offers a minimal but powerful
solution to limitations of existing GNNs. ID-GNN extends
existing GNN architectures by inductively considering nodes’
identities during message passing. To embed a given node, ID-
GNN first extracts the ego network centered at the node, then
conducts rounds of heterogeneous message passing, where
different sets of parameters are applied to the center node than
to other surrounding nodes in the ego network. We further
propose a simplified but faster version of ID-GNN that injects
node identity information as augmented node features. Alto-
gether, both versions of ID-GNN represent general extensions
of message passing GNNs, where experiments show that trans-
forming existing GNNs to ID-GNNs yields on average 40%
accuracy improvement on challenging node, edge, and graph
property prediction tasks; 3% accuracy improvement on node
and graph classification benchmarks; and 15% ROC AUC im-
provement on real-world link prediction tasks. Additionally,
ID-GNNs demonstrate improved or comparable performance
over other task-specific graph networks.

Introduction
Graph Neural Networks (GNNs) represent a powerful learn-
ing paradigm that have achieved great success (Scarselli et al.
2008; Li et al. 2016; Kipf and Welling 2017; Hamilton, Ying,
and Leskovec 2017; Velickovic et al. 2018; Xu et al. 2019;
You, Ying, and Leskovec 2020). Among these models, mes-
saging passing GNNs, such as GCN (Kipf and Welling 2017),
GraphSAGE (Hamilton, Ying, and Leskovec 2017), and GAT
(Velickovic et al. 2018), are dominantly used today due to
their simplicity, efficiency and strong performance in real-
world applications (Zitnik and Leskovec 2017; Ying et al.
2018; You et al. 2018a, 2019b, 2020a,b). The central idea
behind message passing GNNs is to learn node embeddings
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via the repeated aggregation of information from local node
neighborhoods using non-linear transformations (Battaglia
et al. 2018).

Although GNNs represent a powerful learning paradigm, it
has been shown that the expressive power of existing GNNs is
upper-bounded by the 1-Weisfeiler-Lehman (1-WL) test (Xu
et al. 2019). Concretely, a fundamental limitation of existing
GNNs is that two nodes with different neighborhood struc-
ture can have the same computational graph, thus appearing
indistinguishable. Here, a computational graph specifies the
procedure to produce a node’s embedding. Such failure cases
are abundant (Figure 1): in node classification tasks, exist-
ing GNNs fail to distinguish nodes that reside in d-regular
graphs of different sizes; in link prediction tasks, they cannot
differentiate node candidates with the same neighborhood
structures but different shortest path distance to the source
node; and in graph classification tasks, they cannot differ-
entiate d-regular graphs (Chen et al. 2019; Murphy et al.
2019). While task-specific feature augmentation can be used
to mitigate these failure modes, the process of discovering
meaningful features for different tasks is not generic and can,
for example, hamper the inductive power of GNNs.

Several recent methods aim to overcome these limitations
in existing GNNs. For graph classification tasks, a collection
of works propose novel architectures more expressive than
the 1-WL test (Chen et al. 2019; Maron et al. 2019a; Murphy
et al. 2019). For link level tasks, P-GNNs are proposed to
overcome the limitation of existing GNNs (You, Ying, and
Leskovec 2019). While these methods have a rich theoretical
grounding, they are often task specific (either graph or link
level) and often suffer from increased complexity in compu-
tation or implementation. In contrast, message passing GNNs
have a track record of high predictive performance across
node, link, and graph level tasks, while being simple and
efficient to implement. Therefore, extending message passing
GNNs beyond the expressiveness of 1-WL test, to overcome
current GNN limitations, is a problem of high importance.
Present work. Here we propose Identity-aware Graph Neu-
ral Networks (ID-GNNs), a class of message passing GNNs
with expressive power beyond the 1-WL test1. ID-GNN pro-
vides a universal extension and makes any existing message
passing GNN more expressive. ID-GNN embeds each node

1Project website with code: http://snap.stanford.edu/idgnn

http://snap.stanford.edu/idgnn
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Figure 1: An overview of the proposed ID-GNN model. We consider node, edge and graph level tasks, and assume nodes do not
have discriminative features. Across all examples, the task requires an embedding that allows for the differentiation of nodes
labeled A vs. B in their respective graphs. However, across all tasks, existing GNNs, regardless of their depth, will always
assign the same embedding to both nodes A and B, because for all tasks the computational graphs are identical (middle row). In
contrast, the colored computational graphs provided by ID-GNN allow for clear differentiation between the nodes of label A and
label B, as the colored computational graphs are no longer identical across the tasks.

by inductively taking into account its identity during mes-
sage passing. The approach is different from labeling each
node with a one-hot encoding, which is transductive (can-
not generalize to unseen graphs). As shown in Figure 1, we
use an inductive identity coloring technique to distinguish a
node itself (the root node in the computational graph) from
other nodes in its local neighborhood, within its respective
computational graph. This added identity information allows
ID-GNN to distinguish what would be identical computa-
tional graphs across node, edge and graph level tasks, and
this way overcome the previously discussed limitations.

We propose two versions of ID-GNN. As a general ap-
proach, identity information is incorporated by applying
rounds of heterogeneous message passing. Specifically, to
embed a given node, ID-GNN first extracts the ego network
centered at that node, then applies message passing, where
the messages from the center node (colored nodes in Figure 1)
and the rest of the nodes are computed using different sets of
parameters. This approach naturally applies to applications
involving node or edge features. We also consider a simpli-
fied version of ID-GNN, where we inject identity information
via cycle counts originating from a given node as augmented
node features. These cycle counts capture node identity in-
formation by counting the colored nodes within each layer
of the ID-GNN computational graph, and can be efficiently
computed by powers of a graph’s adjacency matrix.

We compare ID-GNNs against GNNs across 8 datasets
and 6 different tasks. First, we consider a collection of
challenging graph property prediction tasks where existing
GNNs fail, including predicting node clustering coefficient,
predicting shortest path distance, and differentiating ran-

dom d-regular graphs. Then, we further apply ID-GNNs to
real-world datasets. Results show that transforming existing
GNNs to their ID-GNN versions yields on average 40% ac-
curacy improvement on challenging node, edge, and graph
property prediction tasks; 3% accuracy improvement on node
and graph classification benchmarks; and 15% ROC AUC im-
provement on real-world link prediction tasks. Additionally,
we compare ID-GNNs against other expressive graph net-
works that are specifically designed for edge or graph-level
tasks. ID-GNNs demonstrate improved or comparable perfor-
mance over these models, further emphasizing the versatility
of ID-GNNs.

Our key contribution includes: (1) We show that message
passing GNNs can have expressive power beyond 1-WL test.
(2) We propose ID-GNNs as a general solution to the limita-
tions in existing GNNs, with rich theoretical and experimen-
tal results. (3) We present synthetic and real world tasks to
reveal the failure modes of existing GNNs and demonstrate
the superior performance of ID-GNNs over both existing
GNNs and other powerful graph networks.

Related Work
Expressive neural networks beyond 1-WL test. Recently,
many neural networks have been proposed with expressive
power beyond the 1-WL test, including (Chen et al. 2019;
Maron et al. 2019a; Murphy et al. 2019; You, Ying, and
Leskovec 2019; Li et al. 2020). However, these papers intro-
duce extra, often task/domain specific, components beyond
standard message passing GNNs. For example, P-GNN’s
embeddings are tied with random anchor-sets and, thus, are
not applicable to node/graph level tasks which require deter-



ministic node embeddings (You, Ying, and Leskovec 2019).
In this paper we emphasize the advantageous characteristics
of message passing GNNs, and show that GNNs, after in-
corporating inductive identity information, can surpass the
expressive power of the 1-WL test while maintaining benefits
of efficiency, simplicity, and broad applicability.
Graph Neural Networks with inductive coloring. Several
models color nodes with augmented features to boost exist-
ing GNNs’ performance (Xu et al. 2020; Veličković et al.
2020; Zhang and Chen 2018). However, existing coloring
techniques are problem and domain-specific (i.e. link predic-
tion, algorithm execution), and are not generally applicable
to node and graph-level tasks. In contrast, ID-GNN is a gen-
eral model that can be applied to any node, edge, and graph
level task. It further adopts a heterogeneous message passing
approach, which is fully compatible to cases where nodes or
edges have rich features.
GNNs with anisotropic message passing. We emphasize
that ID-GNNs are fundamentally different from GNNs based
on anisotropic message passing, where different attention
weights are applied to different incoming edges (Bresson and
Laurent 2017; Hamilton, Ying, and Leskovec 2017; Monti
et al. 2017; Velickovic et al. 2018). Adding anisotropic mes-
sage passing does not change the underlying computational
graph because the same message passing function is symmet-
rically applied across all nodes. Therefore, these models still
exhibit the limitations summarized in Figure 1.

Preliminaries
A graph can be represented as G = (V, E), where V =
{v1, ..., vn} is the node set and E ⊆ V × V is the edge set.
Nodes can be paired with features X = {xv|∀v ∈ V}, and
edges can have features F = {fuv|∀euv ∈ E}. As discussed
earlier, we focus on message passing GNNs throughout this
paper. We follow the definition of GNNs in (Xu et al. 2019).
The goal of a GNN is to learn meaningful node embeddings
hv based on an iterative aggregation of local network neigh-
borhoods. The k-th iteration of message passing, or the k-th
layer of a GNN, can be written as:

m(k)
u = MSG(k)(h(k−1)

u ),

h(k)
v = AGG(k)

(
{m(k)

u , u ∈ N (v)},h(k−1)
v

) (1)

where h
(k)
v is the node embedding after k iterations, h(0)

v =

xv, m(k)
v is the message embedding, and N (v) is the local

neighborhood of v. Different GNNs have varied definitions
of MSG(k)(·) and AGG(k)(·). For example, a GraphSAGE
uses the definition (W(k), U(k) are trainable weights):

m(k)
u = RELU(W(k)h(k−1)

u ), (2)

h(k)
v = U(k)CONCAT

(
MAX

(
{m(k)

u , u ∈ N (v)}
)
,h(k−1)

v

)
The node embeddings h(K)

v , ∀v ∈ V are then used for node,
edge, and graph level prediction tasks.

Identity-aware Graph Neural Networks
ID-GNNs: GNNs beyond the 1-WL test
We design ID-GNN so that it can make any message passing
GNN more expressive. ID-GNN is built with two important

Algorithm 1 ID-GNN embedding computation algorithm
Input: Graph G(V; E), input node features {xv, ∀v ∈ V};
Number of layers K; trainable functions MSG

(k)
1 (·) for

nodes with identity coloring, MSG
(k)
0 (·) for the rest of nodes;

EGO(v, k) extracts the K-hop ego network centered at node
v, indicator function 1[s = v] = 1 if s = v else 0
Output: Node embeddings hv for all v ∈ V

1: for v ∈ V do
2: G(K)

v ← EGO(v,K), h
(0)
u ← xu, ∀u ∈ G(K)

v

3: for k = 1, . . . ,K do
4: for u ∈ G(K)

v do
5: h

(k)
u ← AGG(k)

(
{MSG

(k)
1[s=v](h

(k−1)
s ), s ∈ N (u)},h(k−1)

u

)
6: hv ← h

(K)
v

components: (1) inductive identity coloring where identity
information is injected to each node, and (2) heterogeneous
message passing where the identity information is utilized in
message passing. Algorithm 1 provides an overview.
Inductive identity coloring. To embed a given node v ∈ G
using a K-layer ID-GNN, we first extract the K-hop ego
network G(K)

v of v. We then assign a unique coloring to the
central node of the ego network G(K)

v . Altogether, nodes
in G(K)

v can be categorized into two types throughout the
embedding process: nodes with coloring and nodes without
coloring. This coloring technique is inductive because even if
nodes are permuted, the center node of the ego network can
still be differentiated from other neighboring nodes.
Heterogeneous message passing. K rounds of message
passing are then applied to all the extracted ego networks. To
embed node u ∈ G(K)

v , we extend Eq. 1 to enable heteroge-
neous message passing:

m(k)
s = MSG

(k)
1[s=v](h

(k−1)
s ),

h(k)
u = AGG(k)

(
{m(k)

s , s ∈ N (u)},h(k−1)
u

) (3)

where only h
(K)
v is used as the embedding representation for

node v after applying K rounds of Eq. 3. Different from Eq.
1, two sets of MSG(k) functions are used, where MSG

(k)
1 (·)

is applied to nodes with identity coloring, and MSG
(k)
0 (·)

is used for node without coloring. The indicator function
1[s = v] = 1 if s = v else 0 is used to index the selection of
these functions. This way, the inductive identity coloring is
encoded into the ID-GNN computational graph.

A benefit of this heterogeneous message passing approach
is that it is applicable to any message passing GNN. For
example, consider the following message passing scheme,
which extends the definition of GNNs in Eq. 3 by including
edge attributes fsu during message passing:

m(k)
su = MSG

(k)
1[s=v](h

(k−1)
s , fsu),

h(k)
u = AGG(k)

(
{m(k)

su , s ∈ N (u)},h(k−1)
u

) (4)

Algorithmic complexity. Besides adding the identity color-
ing and applying two types of message passing instead of



one, the computation of ID-GNN is almost identical to the
widely used mini-batch version of GNNs (Hamilton, Ying,
and Leskovec 2017; Ying et al. 2018). In our experiments, by
matching the number of trainable parameters, the computa-
tion FLOPS used by ID-GNNs and mini-batch GNNs can be
the same (shown in Table 4).
Extension to edge-level tasks. Here we discuss how to ex-
tend the ID-GNN framework to properly resolve existing
GNN limitations in edge-level tasks (Figure 1, middle). Sup-
pose we want to predict the edge-level label for a node pair
u, v. For ID-GNN, the prediction is made from a conditional
node embedding hu|v , which is computed by assigning node
v, rather than u, identity coloring in node u’s computation
graph, as illustrated in Figure 1. In the case where node v
does not lie within u’s K-hop ego network, no identity col-
oring is used and ID-GNNs will still suffer from existing
failure cases of GNNs. Therefore, we use deeper ID-GNNs
for edge-level prediction tasks in practice.

ID-GNNs Expressive Power: Theoretical Results
ID-GNNs are strictly more expressive than existing mes-
sage passing GNNs. It has been shown that existing message
passing GNNs have an expressive power upper bound by the
1-WL test, where the upper bound can be instantiated by the
Graph Isomophism Network (GIN) (Xu et al. 2019).
Proposition 1. ID-GNN version of GIN can differentiate
any graph that GIN can differentiate, while being able to
differentiate certain graphs that GIN fails to distinguish.

By setting MSG
(k)
0 (·) = MSG

(k)
1 (·), Eq. 3 becomes identi-

cal to Eq. 1 which trivially proves the first part. The d-regular
graph example given in Figure 1 then proves the second part.
ID-GNNs can count cycles. Proposition 1 provides an
overview of the added expressive power of ID-GNNs. Here,
we reveal one concrete aspect of this added expressive power,
i.e., ID-GNN’s capability to count cycles. We observe that the
ability of counting cycles is intuitive to understand; moreover,
it is crucial for useful tasks such as predicting node clustering
coefficient, which we elaborate in the next section.
Proposition 2. For any node v, there exists a K-layer ID-
GNN instantiation that can learn an embedding h

(K)
v where

the j-th dimension h
(K)
v [j] equals the number of length j

cycles starting and ending at node v, for j = 1, ...,K .

We prove this by showing that ID-GNNs can count paths
from any node u to the identity node v. Through induction,
we show that a 1-layer ID-GNN embedding h

(1)
u can count

length 1 paths from u to v. Then, given a K-layer ID-GNN
embedding h

(K)
u that counts paths of length 1, . . . ,K be-

tween u and v, we show the K + 1-th layer of ID-GNN
can accurately update h

(K+1)
v to account for paths of length

K + 1. Detailed proofs are provided in the Appendix.

ID-GNNs Expressive Power: Case Studies
Node-level: Predicting clustering coefficient. Here we
show that existing message passing GNNs fail to inductively
predict clustering coefficients purely from graph structure,
while ID-GNNs can. Clustering coefficient is a widely used

metric that characterizes the proportion of closed triangles
in a node’s 1-hop neighborhood (Watts and Strogatz 1998).
The node classification failure case in Figure 1 demonstrates
GNNs’ inability to predict clustering coefficients, as GNNs
fail to differentiate nodes v1 and v2 with clustering coeffi-
cient 1 and 0 respectively. By using one-hot node features,
GNNs can overcome this failure mode (Hamilton, Ying, and
Leskovec 2017). However, in this case GNNs are memoriz-
ing the clustering coefficients for each node, since one-hot
encodings prevent generalization to unseen graphs.

Based on Proposition 2, ID-GNNs can learn node em-
beddings h(K)

v , where h(K)
v [j] equals the number of length j

cycles starting and ending at node v. Given these cycle counts,
we can then calculate clustering coefficient cv of node v:

cv =
|{esu : s, u ∈ N (v), esu ∈ E}|

(dv)(dv − 1)/2

=
h
(K)
v [3]

h
(K)
v [2] ∗ (h(K)

v [2]− 1)

(5)

where dv is the degree of node v. Since cv is a continuous
function of h(K)

v , we can approximate it to an arbitrary ε
precision with an MLP due to the universal approximation
theorem (Hornik et al. 1989).
Edge-level: Predicting reachability or shortest path dis-
tance. Vanilla GNNs make edge-level predictions from pairs
of node embeddings (Hamilton, Ying, and Leskovec 2017).
However, this type of approaches fail to predict reachability
or shortest path distance (SPD) between node pairs. For ex-
ample, two nodes can have the same GNN node embedding,
independent of whether they are located in the same con-
nected component. Although (Veličković et al. 2020) shows
that proper node feature initialization allows for the predic-
tion of reachability and SPD, ID-GNNs present a general
solution to this limitation through the use of conditional
node embeddings. As discussed in “Extension to edge-level
tasks”, we re-formulate edge-level prediction as conditional
node-level prediction; consequently, a K-layer ID-GNN can
predict if node u ∈ G is reachable from v ∈ G within K hops
by using the conditional node embedding h

(K)
u|v via:

m
(k)
s|v =

{
1 if 1[s = v] = 1

h
(k−1)
s|v else

,

h
(k)
u|v = MAX

(
{m(k)

s|v , s ∈ N (u)}
) (6)

where h
(0)
u|v = 0, ∀u ∈ G, and the output h(K)

u|v = 1 if an
ID-GNN predicts u are reachable from v.
Graph-level: Differentiating random d-regular graphs.
As is illustrated in Figure 1, existing message passing GNNs
cannot differentiate random d-regular graphs purely from
graph structure, as the computation graphs for each node are
identical, regardless of the number of layers. Here, we show
that ID-GNNs can differentiate a significant proportion of
random d-regular graphs. Specifically, we generate 100 non-
isomorphic random d-regular graphs and consider 3 settings
with different graph sizes (n) and node degree (d). We use
up to length K cycle counts, which a K-layer ID-GNN can



Table 1: Percentage of random d-regular graphs that ID-
GNNs can differentiate (unique graph representations / total
graphs). Note, none of the graphs can be differentiated by
1-WL test or GNNs regardless of the number of layers.

ID-GNNs

Layer=3 Layer=4 Layer=5 Layer=6

n=64, d=4, 100 graphs 11% 64% 94% 100%
n=40, d=5, 100 graphs 14% 82% 100% 100%
n=96, d=6, 100 graphs 21% 88% 100% 100%

successfully represent (shown in Proposition 2), to calculate
the percentage of these d-regular graphs that can be differen-
tiated. Results in Table 1 confirm that the addition of identity
information can greatly help differentiate d-regular graphs.

ID-GNN-Fast: Injecting Identity via Augmented
Node Features
Given that: (1) mini-batch implementations of GNNs have
computational overhead when extracting ego networks,
which is required by ID-GNNs with heterogeneous message
passing, and (2) cycle count information explains an impor-
tant aspect of the added expressive power of ID-GNNs over
existing GNNs, we propose ID-GNN-Fast, where we inject
identity information by using cycle counts as augmented node
features. Similar cycle count information is also shown to
be useful in the context of graph kernels (Zhang et al. 2018).
Following the definition in Proposition 3, we use the count
of cycles with length 1, . . . ,K starting and ending at the
node v as augmented node feature x+

v ∈ RK . These addi-
tional features x+

v can be computed efficiently with sparse
matrix multiplication via x+

v [k] = Diag(Ak)[v], where A
is the adjacency matrix. We then update the input node at-
tributes for all nodes by concatenating this augmented feature
xv = CONCAT(xv,x

+
v ).

Experiments
Experimental setup
Datasets. We perform experiments over 8 different datasets.
We consider the synthetic graph datasets (1) ScaleFree
(Holme and Kim 2002) and (2) SmallWorld (Watts and
Strogatz 1998), each containing 256 graphs, with average
degree of 4 and average clustering coefficient in the range
[0, 0.5]. For real-world datasets we explore 3 protein datasets:
(3) ENZYMES (Borgwardt et al. 2005) with 600 graphs, (4)
PROTEINS (Schomburg et al. 2004) with 1113 graphs, and
(5) BZR (Sutherland, O’brien, and Weaver 2003) with 405
graphs. We also consider citation networks including (6)
Cora and (7) CiteSeer (Sen et al. 2008), and a large-
scale molecule dataset (8) ogbg-molhiv (Hu et al. 2020)
with 41K graphs.
Tasks. We evaluate ID-GNNs over two task categories. First,
we consider challenging graph property prediction tasks: (1)
classifying nodes by clustering coefficients, (2) classifying
pairs of nodes by their shortest path distances, and (3) classi-
fying random graphs by their average clustering coefficients.
We bin over continuous clustering coefficients to make task

(1) and (3) 10-way classification tasks and threshold the short-
est path distance to make task (2) a 5-way classification task.
We also consider more common tasks with real-world labels,
including (4) node classification, (5) link prediction, and (6)
graph classification. For the ogbg-molhiv dataset we use
provided splits, while for all the other tasks, we use a ran-
dom 80/20% train/val split and average results over 3 random
splits. Validation accuracy (multi-way classification) or ROC
AUC (binary classification) in the final epoch is reported.
Models. We present a standardized framework for fairly
comparing ID-GNNs with existing GNNs. We use 4 widely
adopted GNN models as base models: GAT (Velickovic et al.
2018), GCN (Kipf and Welling 2017), GIN (Xu et al. 2019),
and GraphSAGE (Hamilton, Ying, and Leskovec 2017). We
then transform each GNN model to its ID-GNN variants,
ID-GNN-Full (based on heterogeneous message passing) and
ID-GNN-Fast, holding all the other hyperparameters fixed.
To further ensure fairness, we adjust layer widths, so that
all the models match the number of trainable parameters of
a standard GCN model (i.e., match computational budget).
In summary, we run 12 models for each experimental setup,
including 4 types of GNN architectures, each with 3 versions.

We use 3-layer GNNs for node and graph level tasks, and 5-
layer GNNs for edge level tasks, where GCNs with 256-dim
hidden units are used to set the computational budget for all
12 model variants. For ID-GNNs-Full, each layer has 2 sets
of weights, thus each layer has fewer number of hidden units;
for ID-GNNs-Fast, 10-dim augmented cycle counts features
are used. We use ReLU activation and Batch Normalization
for all the models. We use Adam optimizer with learning rate
0.01. Due to the different nature of these tasks, tasks (1)(3)(6)
excluding the ogbg-molhiv dataset, are trained for 1000
epochs, while the rest are trained for 100 epochs. For node-
level tasks, GNN / ID-GNN node embeddings are directly
used for prediction; for edge-level tasks, ID-GNNs-Full make
predictions with conditional node embeddings, while GNNs
and ID-GNNs-Fast make predictions by concatenating pairs
of node embeddings and then passing the result through a
256-dim MLP; for graph-level tasks, predictions are based
on a global sum pooling over node embeddings.

Overall, these comprehensive and consistent experimental
settings reveal the general improvement of ID-GNNs com-
pared with existing GNNs.

Graph Property Prediction Tasks
Node clustering coefficient prediction. In Table 2 we ob-
serve that across all models and datasets, both ID-GNN for-
mulations perform at the level of or significantly outperform
GNN counterparts, with an average absolute performance
gain of 36.8% between the best ID-GNN and best GNN. In
each dataset, both ID-GNN methods perform with near 100%
accuracy for at least one GNN architecture. ID-GNN-Fast
shows the most consistent improvements across models with
greatest improvement in GraphSAGE. These results align
with the previous discussion of using cycle counts alone to
learn clustering coefficients. We defer discussion until later
on ID-GNN-Full sometimes showing minimal improvement,
to present a general understanding of this behavior.



Table 2: Comparing ID-GNNs with GNNs on graph property prediction tasks. For each column, all the 12 models have the
same computational budget. The best performance in each family of models is bold. Results are averaged over 3 random splits.

Node classification:
predict clustering coefficient

Edge classification:
predict shortest path distance

Graph classification:
predict clustering coefficient

ScaleFree SmallWorld ENZYMES PROTEINS ScaleFree SmallWorld ENZYMES PROTEINS ScaleFree SmallWorld

GNNs

GCN 0.679±0.01 0.589±0.04 0.596±0.02 0.540±0.00 0.522±0.00 0.558±0.02 0.557±0.02 0.722±0.01 0.270±0.06 0.433±0.03
SAGE 0.470±0.03 0.271±0.03 0.572±0.04 0.444±0.03 0.297±0.01 0.360±0.16 0.550±0.02 0.722±0.01 0.047±0.03 0.077±0.01
GAT 0.470±0.03 0.274±0.06 0.464±0.03 0.400±0.02 0.451±0.00 0.551±0.02 0.556±0.02 0.722±0.01 0.127±0.04 0.093±0.03
GIN 0.693±0.00 0.571±0.04 0.660±0.02 0.558±0.02 0.551±0.01 0.575±0.02 0.541±0.03 0.722±0.01 0.280±0.01 0.453±0.03

ID-GNNs
Fast

GCN 0.897±0.01 0.812±0.02 0.786±0.04 0.805±0.02 0.521±0.00 0.576±0.02 0.553±0.03 0.722±0.01 0.823±0.04 0.850±0.06
SAGE 0.954±0.01 0.994±0.00 0.958±0.04 0.985±0.01 0.527±0.01 0.583±0.02 0.551±0.04 0.722±0.01 0.827±0.02 0.810±0.04
GAT 0.889±0.01 0.739±0.03 0.675±0.04 0.675±0.05 0.471±0.00 0.574±0.02 0.545±0.03 0.722±0.01 0.620±0.01 0.800±0.06
GIN 0.895±0.00 0.822±0.03 0.798±0.06 0.790±0.01 0.546±0.00 0.576±0.02 0.556±0.03 0.722±0.01 0.730±0.02 0.840±0.06

ID-GNNs
Full

GCN 0.985±0.01 0.994±0.00 0.984±0.02 0.995±0.00 0.999±0.00 1.000±0.00 0.994±0.00 0.998±0.00 0.830±0.03 0.877±0.05
SAGE 0.588±0.01 0.400±0.12 0.591±0.04 0.474±0.03 1.000±0.00 1.000±0.00 1.000±0.00 1.000±0.00 0.247±0.01 0.250±0.10
GAT 0.638±0.01 0.847±0.20 0.994±0.00 0.994±0.00 0.984±0.00 0.989±0.01 0.963±0.01 0.993±0.01 0.047±0.03 0.067±0.01
GIN 0.716±0.01 0.572±0.04 0.655±0.02 0.570±0.03 1.000±0.00 0.964±0.05 1.000±0.00 1.000±0.00 0.273±0.02 0.490±0.01

Best ID-GNN over best GNN 29.3% 40.6% 33.4% 43.7% 44.9% 42.5% 44.3% 27.8% 55.0% 42.3%

Table 3: Comparing GNNs with ID-GNNs on real-world prediction tasks. For each column, all the 12 models have the same
computational budget. The best performance in each family of models is bold. Results are averaged over 3 random splits.

Node classification:
real-world labels

Edge classification:
link prediction

Graph classification:
real-world labels

Cora CiteSeer ScaleFree SmallWorld ENZYMES PROTEINS ENZYMES PROTEINS BZR ogbg-molhiv

GNNs

GCN 0.848±0.01 0.709±0.01 0.796±0.01 0.709±0.00 0.651±0.01 0.659±0.01 0.547±0.01 0.695±0.02 0.844±0.04 0.747±0.02
SAGE 0.868±0.01 0.726±0.01 0.541±0.00 0.512±0.00 0.546±0.01 0.582±0.01 0.542±0.01 0.692±0.01 0.852±0.04 0.758±0.01
GAT 0.857±0.01 0.716±0.01 0.500±0.00 0.500±0.00 0.478±0.01 0.491±0.01 0.555±0.02 0.723±0.00 0.848±0.03 0.742±0.01
GIN 0.858±0.01 0.719±0.01 0.802±0.01 0.722±0.01 0.654±0.01 0.667±0.00 0.553±0.02 0.721±0.00 0.856±0.02 0.762±0.03

ID-GNNs
Fast

GCN 0.851±0.02 0.715±0.00 0.856±0.03 0.719±0.00 0.649±0.01 0.671±0.01 0.600±0.01 0.741±0.02 0.807±0.02 0.772±0.02
SAGE 0.866±0.02 0.742±0.01 0.898±0.01 0.743±0.02 0.671±0.04 0.701±0.01 0.639±0.00 0.724±0.03 0.835±0.06 0.780±0.01
GAT 0.870±0.02 0.719±0.02 0.731±0.02 0.537±0.00 0.490±0.01 0.502±0.01 0.619±0.03 0.715±0.03 0.848±0.05 0.740±0.01
GIN 0.864±0.01 0.719±0.01 0.837±0.01 0.759±0.01 0.718±0.02 0.724±0.00 0.567±0.01 0.723±0.01 0.864±0.03 0.755±0.02

ID-GNNs
Full

GCN 0.863±0.01 0.719±0.01 0.771±0.04 0.798±0.03 0.838±0.01 0.878±0.02 0.586±0.04 0.715±0.02 0.881±0.04 0.769±0.01
SAGE 0.875±0.01 0.730±0.02 0.741±0.01 0.724±0.03 0.819±0.01 0.863±0.01 0.547±0.02 0.721±0.01 0.864±0.02 0.783±0.02
GAT 0.878±0.01 0.729±0.01 0.749±0.01 0.742±0.03 0.824±0.01 0.859±0.03 0.567±0.05 0.738±0.01 0.881±0.04 0.739±0.01
GIN 0.851±0.00 0.725±0.01 0.815±0.01 0.810±0.03 0.846±0.01 0.886±0.02 0.544±0.02 0.730±0.03 0.852±0.03 0.756±0.00

Best ID-GNN over best GNN 1.0% 1.6% 9.6% 8.7% 19.2% 21.9% 8.3% 1.8% 2.5% 2.0%

Shortest path distance prediction. In the pairwise short-
est path prediction task, ID-GNNs-Full outperform GNNs
by an average of 39.9%. Table 2 reveals that ID-GNN-Full
performs with 100% or near 100% accuracy under all GNN
architectures, across all datasets. This observation, along with
the comparatively poor performance of ID-GNNs-Fast and
GNNs, confirms the previously discussed conclusion that
traditional edge-level predictions, through pairwise node em-
beddings, fail to accurately make edge-level predictions.
Average clustering coefficient prediction for random
graphs. In Table 2, we observe that adding identity infor-
mation results in a 55% and 42.3% increase in best perfor-
mance over ScaleFree and SmallWorld graphs respec-
tively. ID-GNN-Fast shows the most consistent improvement
(56.9% avg. model gain), which aligns with previous intu-
itions about the utility of cycle count information in predict-
ing clustering coefficients and differentiating random graphs.

Real-world Prediction Tasks
Node classification. In node classification we see smaller but
still significant improvements when using ID-GNNs. Table
3 shows an overall 1% and 1.6% improvement for Cora
and CiteSeer respectively. In all cases except for GIN and

GraphSAGE on Cora, adding identity information improves
performance. In regards to the relatively small improvements,
we hypothesize that the richness of node features (over 1000-
dim for both datasets) greatly dilutes the importance of graph
structure in these tasks, and thus the added expressiveness
from identity information is diminished.
Link prediction. As shown in Table 3, we observe consistent
improvement in ID-GNNs over GNNs, with 9.2% and 20.6%
ROC AUC improvement on synthetic and real-world graphs
respectively. Moreover, we observe that ID-GNN-Full nearly
always performs the best, aligning with previous edge-level
task results in Table 2 and intuitions on the importance of re-
formulating edge-level tasks as conditional node prediction
tasks. We observe that performance improves less for ran-
dom graphs, which we hypothesize is due to the randomness
within these synthetic graphs causing the distinction between
positive and negative edges to be much more vague.
Graph classification. Across each dataset, we observe that
the best ID-GNN consistently outperforms the best GNN of
the same computational budget. However, model to model
improvement is less clear. For the ENZYMES dataset, ID-
GNN-Fast shows strong improvements under each GNN ar-
chitecture, with gains as large as 10% in accuracy for the



Table 4: Runtime analysis for GCN and ID-GNN equivalents
given the same computational budget. For each model, av-
erage time (milisecond) per batch of 128 ENZYME graphs is
reported for the forward and the forward + backward pass.

GCN ID-GNN-Fast GCN (mini-batch) ID-GNN-Full

forward 4.8±0.1 4.9±0.1 28.1±0.1 24.2±4.0
forward + backward 8.9±0.7 10.0±0.6 33.3±0.9 31.1±0.8

GraphSAGE model. In PROTEIN and BZR, ID-GNN-Full
shows improvements for each GNN model (except GIN on
BZR), with greatest performance increases in GCN and GAT
(avg. 3.6% and 3.0% respectively).

Computational Cost Analysis
We compare the runtime complexity (excluding mini-batch
loading time) of ID-GNNs vs. existing GNNs, where we hold
the computational budget constant across all models. Table 4
reveals that when considering the forward and backward pass,
ID-GNN-Full runs 3.8x slower than its GNN equivalent but
has an equivalent runtime complexity to the mini-batch imple-
mentation of GNN, while ID-GNN-Fast runs with essentially
zero overhead over existing GNN implementations.

Summary of Comparisons with GNNs
Overall, ID-GNN-Full and ID-GNN-Fast demonstrate signifi-
cant improvements over their message passing GNN counter-
parts, of the same computational budget, on a variety of tasks.
In all tasks, the best ID-GNNs outperforms the best GNNs;
moreover, out of 160 model-task combinations, ID-GNNs
fail to improve accuracy in fewer than 10 cases. For the rare
cases where there is no improvement from ID-GNN-Full, we
suspect that the model underfits since we control the com-
plexity of models: given that ID-GNN-Full has two sets of
weights (heterogeneous message passing), fewer weights are
used for each message passing. For verification, if we double
the computational budget, we observe that ID-GNN versions
again outperform GNN counterparts.

Comparisons with Expressive Graph Networks
We provide additional experimental comparisons against
other expressive graph networks in both edge and graph-
level tasks. For edge-level task, we further compare with
P-GNN (You, Ying, and Leskovec 2019) over the ENZYMES
and PROTEINS datasets using the protocol introduced previ-
ously. For graph-level comparison, we include experimental
results over 3 datasets: MUTAG with 182 graphs (Debnath
et al. 1991), PTC with 344 graphs (Helma and Kramer 2003),
and PROTEINS. We follow PPGN’s (Maron et al. 2019a)
10-fold 90/10 data splits and compare against 5 other expres-
sive graph networks. We report numbers in the corresponding
papers, and report the best ID-GNNs out of the 4 variants.
Link prediction. We compare against P-GNNs on 2 link
prediction datasets. As shown in the Table 5, we observe
significant improvements using ID-GNNs compared to both
its GNN counterpart and P-GNNs. These results both demon-
strate ID-GNNs’ competitive performance as a general graph
learning method against a task-specific model, while also

Table 5: Comparisons with P-GNN on link prediction task.

Edge classification: link prediction

ENZYMES PROTEINS

Best GNN 0.654±0.015 0.667±0.002
P-GNN (You, Ying, and Leskovec 2019) 0.715±0.024 0.810±0.013

Best ID-GNN-Fast 0.718±0.010 0.724±0.015
Best ID-GNN-Full 0.846±0.010 0.886±0.015

Table 6: Comparisons with other expressive graph networks
on graph classification tasks. We use evaluation setup from
(Maron et al. 2019a), and the reported numbers in correspond-
ing papers are shown.

Graph classification: real-world labels

MUTAG PTC PROTEINS

Best GNN 0.905±0.057 0.617±0.046 0.773±0.037
PPGN (Maron et al. 2019a) 0.906±0.087 0.662±0.065 0.772±0.047
CCN (Kondor et al. 2018) 0.916±0.072 0.706 ±0.07 NA

1-2-3 GNN (Morris et al. 2019) 0.861 0.609 0.755
Invariant GNs (Maron et al. 2019b) 0.846±0.10 0.595 ± 0.073 0.752 ± 0.043

GSN (Bouritsas et al. 2020) 0.922 ± 0.075 0.682 ± 0.072 0.766 ± 0.050

Best ID-GNN-Fast 0.965±0.032 0.619±0.054 0.780±0.035
Best ID-GNN-Full 0.930±0.056 0.625±0.053 0.779±0.024

highlighting ID-GNN’s improved ability to incorporate node-
features compared with P-GNNs.
Graph classification. We compare ID-GNNs against several
other more powerful graph networks in the task of graph
classification. Table 6 demonstrates the strong performance
of ID-GNNs. ID-GNNs outperform other graph networks on
the MUTAG and PROTEINS datasets; Although ID-GNNs
performance then drops on the PTC dataset, they are still
comparable to two out of the four powerful graph models.
These strong results further demonstrate the ability of ID-
GNN to outperform not only message passing GNNs, but
also other powerful, task specific graph networks across a
range of tasks.

Conclusion
We have proposed ID-GNNs as a general and powerful exten-
sion to existing GNNs with rich theoretical and experimental
results. Specifically, ID-GNNs have expressive power beyond
the 1-WL test. When runtime efficiency is the primary con-
cern, we also present a feature augmented version of ID-GNN
that maintains theoretical guarantees and empirical success
of heterogeneous message passing, while only requiring one-
time feature pre-processing. We recommend that this cycle-
count feature augmentation be the new go-to node feature
initialization when additional node attributes are not avail-
able. Additionally, as direct extensions to message passing
GNNs, ID-GNNs can be easily implemented and extended
via existing code platform. Overall, ID-GNNs outperform
corresponding message passing GNNs, while both maintain-
ing the attractive proprieties of message passing GNNs and
demonstrating competitive performance compared with other
powerful/expressive graph networks. We hope ID-GNNs’
added expressive power and proven practical applicability
can enable exciting new applications and further development
of message passing GNNs.



Ethics Statement
GNNs represent a promising family of models for analyzing
and understanding relational data. A broad range of appli-
cation domains, such as network fraud detection (Akoglu,
Chandy, and Faloutsos 2013; Kumar, Cheng, and Leskovec
2017; Akoglu and Faloutsos 2013), molecular drug structure
discovery (You et al. 2018a,b; Jin, Barzilay, and Jaakkola
2018), recommender systems (Ying et al. 2018; You et al.
2019a), and network analysis (Kumar, Cheng, and Leskovec
2017; Morris et al. 2019; Fan et al. 2019; Ying et al. 2019)
stand to be greatly impacted by the use and development
of GNNs. As a direct extension of existing message passing
GNNs, ID-GNNs represent a simple but powerful transforma-
tion to GNNs that re-frames the discussion on GNN expres-
sive power and thus their performance in impactful problem
domains. In comparison to other models that have expressive
power beyond 1-WL tests, ID-GNNs are easy to implement
with existing graph learning packages; therefore, ID-GNNs
can be easily used as extensions of existing GNN models for
tackling important real-world tasks, as well as themselves
extended and further explored in the research space.

The simplicity of ID-GNNs presents great promise for
further exploration into the expressiveness of GNNs. In par-
ticular, we believe that our work motivates further research
into heterogeneous message passing and coloring schemes,
as well as generic, but powerful forms of feature augmen-
tation. By further increasing the expressiveness of message
passing GNNs, we hopefully enable new, important tasks
to be solved across a wide range of disciplines or signifi-
cant improvement on previously defined and widely adopted
GNN models. Through ease of use and strong preliminary
results, we believe that our work opens the doors for new
explorations into the study of graphs and graph based tasks,
with the potential for great improvement in existing GNN
models.
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