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Abstract—Tor (The Onion Router) ensures network anonymity
by encrypting contents through multiple relay nodes. Recent
studies on website fingerprinting (WF) showed that websites
can be identified with high accuracy by analyzing traffic data.
However, websites are changing over time by updating contents,
which can significantly reduce the accuracy of WF attacks. This
study analyzes the performance over time by using ensemble
models with excellent WF attack performance. The experiment
are conducted in two cases with the initial model. The not updated
analyzes the accuracy of models made from initial data over time,
whereas the updated adds data that has changed over time to
update the model to analyzes the accuracy. The average accuracy
of the initial ensemble models is over 90.0% and the Rotation
Forest algorithm shows high performance of 93.5%. Comparing
the models trained after 30 days with the initial model, the
classification performance dropped in both cases; the not updated
dropped by more than 30.0% and the updated dropped by about
10.0%. The experimental results suggest that WF using machine
learning may require model learning on a regular basis.

Index Terms—Tor network, fingerprinting, packet based fea-
ture, decision tree, tree ensemble

I. INTRODUCTION

The Tor (The Onion Router)! is a Firefox-based anony-
mous network web service, with more than 1 million users
worldwide. The Tor network ensures client anonymity by
applying TLS (Transport Layer Security) between the user
(Tor browser) and each relay node with 3 relay nodes—guard,
middle, and exit nodes [1].

However, an anonymous network vulnerability has been
reported through website fingerprinting (WF) techniques using
traffic data analysis [2]-[4]. The WF attack aims to identify the
website visited by clients without analyzing or changing the
packet content of the network traffic, and the adversary uses
the traffic data generated when the client uses the Internet.
Practical examples include government surveillance, stalkers,
local area network (LAN) managers, attackers attacking Tor
network entry nodes, attacks advertising ISPs, etc.
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The adversary first trains a classification model by collecting
data set within a period of time. The trained classifier is
used to predict whether the target website is accessed. It has
been discovered that time affects the classification accuracy of
WF attacks. There is a problem that the performance of the
trained model deteriorates over time and this reason appears
in changes in the structure and content of the website [5], [6].
For example, news websites keep changing their content (e.g.,
images and texts) dynamically. As a result, traffic patterns
change over time depending on the contents and characteristics
of the websites. The classification models may have difficulty
classifying updated websites.

The purpose of this study is to assess the accuracy of
WF over time in the popular websites based on the Alexa
categories’. The experiment is conducted in two cases: (1)
Not updated: Initially, data is collected and trained to make a
model, and the WF is performed only with the model using
initial data (fixed); and (2) Updated: WF is performed by
collecting and training the initially created data to create a
model, and collecting the data over time to update the model.
The contributions of this study is three-fold. First, this study
proposes features for classification methods on Tor network
based on network traffic and cell sequence information, and
then shows selecting important features contributes to improv-
ing performance. Second, this study evaluates the performance
of tree-based ensemble models for category classification.
Third, this study analyzes accuracy of the models over time
in two cases (Not updated and Updated).

The paper is organized as follows. Section II illustrates
related works. Section III describes the method of data collec-
tion, and suggests the problems and features of website fin-
gerprinting using tree ensemble models. Section IV evaluates
the performance of the models, and analyzes the accuracy of
category classification over time. Finally, Section V concludes

Zhttps://www.alexa.com/topsites/category


https://www.torproject.org/

this paper with future research directions.

II. RELATED WORK

Previous research deals with contents classification for
website fingerprintings under closed [2], [7]-[12] and open [2],
[12]-[14] world models. The closed-world problem solves the
multi-classification for websites accessed by clients through
previously learned website information. On the other hand, the
open-world problem performs a binary classification according
to whether a client has access to a set of monitored sites.

Panchenko ef al. collected closed-world data from 775
websites and 4,000 URLs from the web statistics service Alexa
as open world dataset for the training data [2]. They removed
the data that had only header information of the packet, and
conducted website fingerprinting based on traffic information.
By applying SVM (Support Vector Machine) algorithm [15],
the two anonymous network services—JAP and Tor—showed
the detection rate of 80% and 55% for closed-world. They
also conducted a WF attack in an open world environment
and achieved a true positive rate of 73%.

Pancheko et al. collected 300,000 website data and proposed
CUMUL feature vectors for real-world website fingerprinting
over the Tor network [7]. In the experiment, CUMUL showed
higher website fingerprinting performance as the size of train-
ing data increased. The closed world scenario compared the
classification performance with the Wang et al. data set [16],
showing 91.3% performance. On the other hand, in the open
world scenario, experiments were conducted while increasing
the number of websites accessible to clients, reporting a
classification performance of 80.0%.

Rimmer et al. [10] showed an adversary can automate the
feature engineering process with their novel method based on
deep learning on a closed-world problem. They collected data
over time and used CUMUL, k-NN [15], and k-FP for classi-
fication models. Their results showed CUMUL outperformed
the two other methods—k%-NN and k-FP. The performance of
the first collected training data showed an accuracy of 95.0%,
and after 56 days, the classification performance of the training
data of the same website showed an accuracy of about 66%.

The existing website fingerprinting attack assumed that the
distribution of training and test data was the same. However,
in realistic network traffic analysis, data distribution changes
frequently [5]. Liberatore and Levine showed that the longer
delay between training and test sets of traffic instances results
in lower accuracy [17]. Pattern differences among training
and testing instances are due to non-deterministic packet
fragmentation, web page updates, various performance of Tor
circuits, dynamic content, etc [5]. The content of the website
may change dynamically over time, and may have dynamic
content such as frequent replacement of pictures or videos [1].
It may take hundreds of hours or more to train a classifier for
website fingerprinting, and an attacker may not have the latest
version of the page visited by the client. Therefore, an attacker
cannot keep up with the dynamic and changing content of a
website.

III. RESEARCH APPROACH

The effectiveness of WF attacks depends heavily on the
characterization of traffic features used to construct WF. Thus,
the appropriate features should be selected for the learning
classification. The steps for performing WF consist of data col-
lection, data preprocessing, feature extraction, model learning,
and model evaluation.

A. Threat Model

An adversary can observe the network traffic from a client to
the entry Tor router (entry guard) and the traffic from the exit
Tor router to a destination client to de-anonymize the connec-
tion. Examples of adversaries may be a Tor router owner, ISP
(Internet Service Provider), or local network administrator. In
this paper, we assume that an adversary monitors the network
traffic in the broadcast domain which is between the client and
the first router as in Figure 1. The adversary has abundance
of training data for websites that a user is accessing.

Fig. 1: The system architecture for Tor data collection

B. Data collection

Data were collected from 5 categories out of 17 ones. Data
collected using Wireshark [18] consists of traffic data that is
captured between a client and the entry node [5]. The content
of the website is modified or updated, but the frequency of
the correction or update of the content is not constant. For
example, a website that represents news contents changes its
contents on a daily basis. Thus, even if the information on
the website changes, data were collected at regular intervals
for 30 days in order to build a robust website fingerprinting
model.

To collect data from network traffic similar to Tor environ-
ment, data were collected through various circuits after recon-
necting. This method is used to collect various data because
the Tor browser periodically (every 10 mins) reconfigures the
circuit, and the data received from different circuits is different
due to the influence of the middle relay node [5]. 150 instances
from the top 20 websites in each category were collected and
the collection time was set to 200 seconds to fully load the
websites.

10 batches were iterated for data collection. At the end of
each batch, the Tor browser is restarted to form new circuits.
The date when the data was first collected was July 27, 2019.
Additional data collection was conducted on July 21 (3 days),
July 24 (7 days), July 31 (14 days) and August 16 (30 days).
The experiments were conducted based on the date when the
data was collected because the time required for data collection



TABLE I: The number of website data per category

TABLE II: Comparison of feature vectors

Category No. of data Ratio Websites Studied Type Feature No.
google.com Forwardedd ipterarriyal lime
Web search 3,049 | 142% youtube.com gla;x‘fjtrg;?r :zizrlagggl time
mai.google.com Time-based feature [9] Network traffic Active 23
espn.com Idle
Sports 6,000 28.0% cricbuzz.com Flow bytes per sec
espncricinfo.com Flow packets per sec
twitch.tv Duration
Game 2,000 9.3% roblox.com Flow direction
store.steampowered.com No. of bytes & packets
stackoverflow.com Packet length (PL)
Article 4,392 20.5% udemy.com Interarrival time (IAT)
’ : R 2 Traffic mining [13] Network traffic PL-IAT statistics 81
nim.nih.gov TCP header feature
amazon.com IP header feature
Shopping 6,000 28.0% netflix.com No. of connections
ebay.com CUMUL [7] Cell Cummulative packet length 104
Total 21,441 100.0% Network traffic | Packet general information
This study Packet interarrival time 103
Cell Burst information

was different for each website. Table 1 shows the total size,
ratio of each category, and top 3 websites in each category.

C. Feature vectors

Through the preprocessing process of collected packets, a
data set suitable for feature extraction is composed. Since the
performance, type, and location of each website server are
different, there are differences in the traffic instances generated
between the client and the server. These differences can be
found in packet information, packet time, the number of packet
size. As such, the features that indicate differences in traffic
instances are extracted.

A packet has two types of fields: header fields and a
payload field (data). A packet—a datagram in the network
layer—that does not have application data (payload) are called
zero-payload packet. The zero-payload packet has only the
header information for communication control of TCP, such as
connection, terminations, and congestion control. The general
packet includes header information and data. Usually, zero-
payload packets are used to send acknowledements—TCP
ACK packets—between sender and receiver [2]. Since the
zero-payload packet is considered as noise, zero-payload pack-
ets are removed in the preprocessing process. The features are
extracted from the packets containing the payload.

Various information can be obtained from packet headers,
such as IP address, port number, sequence number, and ack
number, and TCP flags including ACK, SYN, and FIN.
However, Tor browser encrypts such information sent to the
destination. Instead, Tor browser adds a new packet header
for the next onion router so the packet header doesn’t include
the destination information. Thus, features should be obtained
from various information based on a sequence of packets. The
network applications use different protocols which generate
different sequence of packets. The following information can
be used [9]: the arrival time between two packets, the amount
of time for active period, and flow bytes for a certain period
of time. Because the length of features is variable for each
website, statistical data is used to solve the problem of variable
length and use it for classification. The statistical information

used is a quartile (0.25, 0.5, 0.75, and 1) that can evaluate
the maximum, minimum, standard deviation, and the range
and central position of the data set. Table II compares the
features of the previous study with this study. It is worth
noting that CUMUL [7] and this study used almost the
same number of features. As indicated in Table II, the two
models—this study and CUMUL [7]—used similar numbers
of features, but they would be different in performance. In
Section IV-B, the differences in performance will be analyzed
by experimenting with features proposed in this study and
those used in CUMUL [7].

Table III shows the number of features. The detail infor-
mation for each feature as follows: Packet general includes
a packet sequence information and length of a packet. The
sequence information for packets is determined by the order
of packets generated during transmission process. The packet
length is determined by the contents of websites (objects) and
network status including routers, transport-layer parameters
such as maximum segment size. The following information
can be extracted from a packet sequence: the total transmission
size, total transmission time, number of packets of outgoing
and incoming packets, order information of packets, number
of packets per second, and packet size per second. Packet
interval time includes the time interval of the entire packets,
outgoing packets, and incoming packets [3]. The time interval
of the packet is affected by the node configuration of Tor net-
work, the server’s performance and protocol. If packets come
through nodes located in multiple countries, the time interval
of the packets may increase. Packet length includes the total
packet size, the incoming packet size, and outgoing packet
size. Each website has different information such as contents,
objects, libraries, and portlets. Thus, there is a difference in
the amount of data to receive such contents. Burst includes
the number of packets that occur continuously. The webserver
transmits packets according to a certain unit of chuck. If
the size of chuck is larger than MTU, it is divided into a
certain size in the segment of network layer. When one piece
of information is divided and transmitted, continuous packets



TABLE III: Extracted Features

Feature No. of features

Packet general 23
Packet interarrival time 42
Packet length 26
Burst 12

Total 103
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Fig. 2: Confusion matrix

are generated. When three continuous outgoing packets occur,
the burst value is defined as 3. The features can be obtained
from statistical information based on the number of continuous
incoming and outgoing packets.

In addition, Tor onion service websites are known to be
vulnerable to fingerprinting attacks due to their limited number
and sensitive nature [19]. We found that the Tor onion (hidden)
service websites have a certain pattern in the size and the
number of incoming and outgoing packets, and that general
websites vary in size and number of packets per website.
This indicates that features indicating a certain pattern can be
used as fingerprinting to distinguish Tor onion service websites
and regular websites, even if the contents are encrypted when
transmitted.

IV. EXPERIMENTAL RESULTS

The features were extracted from Tor browser according to
five categories. The classification was conducted through tree
ensemble models [20] such as Decision Tree (DT) [21], Adap-
tive Boosting (AdaBoost) [22], Random Forest (RanF) [23],
Extra Trees (ExtraTrees) [24], Rotation Forest (RotF) [25], and
CUMUL [7].

A. Initial Models

For the evaluation of learning model, the parameters of tree
models are set by greedy algorithm. Table IV indicates the
average of classification performance for multi-classification
according to the feature categories. The experiments were
conducted with 5-fold cross-validations. The accuracies of the
ensemble models for multiclass classification are above 90.0%.
The RotF has the highest classificaiton accuracy of 93.5%

Extra Trees Receiver Operating Characteristic
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Fig. 3: ROC curve of ExtraTrees

with a relatively long learning time. The ExtraTrees have the
2nd highest classificaion accuracy of 93.4% with the shortest
learning time. The accuracy of the models is listed in high
order: RotF, ExtraTrees, RanF, DT, and CUMUL. CUMUL
has the lowest accuracy because it uses only data transmission
and size information to conduct classification.

Figure 2 and 3 show confusion matrix and ROC curve
for Extra tree algorithm. In multi-classification problems, the
contents from shopping, games, and sports classes, which
consist of large-scale objects such as images and videos,
were higher than the other classes. If the websites have large
contents, they have high classification accuracy because the
size of the received data and the high number of packets
appear as one of characteristics. On the other hand, the website
categories—web search—that contain many characters, such
as articles and text based contents, have low classification
accuracy like web search. The reason is that even though the
contents are different, there is no difference in the size and
number of the packets if there is no difference in the size of
the file.

B. Performance comparison

Figure 4 indicates classification accuracy for each category
over time. Figure 4(a) shows accuracy for the initially collected
learning data (not updated). Overall, the accuracies have
decreased significantly over time. The root cause of poor
accuracy is that the content or format of a website changes
over time. After 30 days, the accuracies of sport and article
classes have dropped significantly. The reason is that the
update of the new content has changed a lot compared to
other categories. Figure 4(b) shows accuracy of a new learning
model with the addition of newly collected data to the learning
data initially collected (updated). The accuracies have been
reduced relatively slightly. Data collected over 30 days showed
83.2% accuracy when continuously updating the learning
model (Figure 4(b)), while 63.2% accuracy if not updated
(Figure 4(a)). In the case of the sport class where website
information is modified in a short period, the largest reduction



TABLE IV: Classification accuracy of the initial models

Metric | DT | AdaBoost | RanF | ExtraTrees | RotF | CUMUL
TPR 0.902 £+ 0.086 | 0.916 £+ 0.084 | 0.916 £ 0.070 | 0.934 £ 0.065 | 0.935 £ 0.053 | 0.833 £ 0.095
FPR 0.024+ 0.017 | 0.020 £ 0.015 | 0.019 £ 0.015 | 0.015 + 0.011 | 0.016 &+ 0.010 | 0.038 % 0.005
Fl-score 0.90710.067 | 0.922 £ 0.063 | 0.922 + 0.063 | 0.939 £ 0.050 | 0.936 + 0.047 | 0.838 + 0.012
Avg. Time(sec) 6.13 106.59 29.84 4.45 148.61 21.77
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Fig. 4: Accuracy comparison over time

is shown at 42.0% compared to the existing classification
accuracy. On the other hand, the web search class with a
relatively long cycle of change showed the lowest decrease
of 24.0%.

Table V represents the previously studied classification
accuracy (CUMUL [7]) and the accuraies of this work using
five tree ensemble models. For comparison with the previously
studied CUMUL, 100 traffic data of the same size were
continuously trained. After 3 days, there is not much difference
in accuracy between not updated and updated of all models.
After 14 days, the difference in accuracy between not updated
and updated began to appear in all models. After 30 days on
all models, the not updated dropped by about (or more) 30.0%
and the updated dropped by about 10.0%. The ExtraTrees
has the highest classificaiton accuracy, while CUMUL has
relatively low accuracy compared to the other models. These
results indicate that the model preseneted in this paper is
excellent. As in Table II, CUMUL [7] used 104 features and
this model used 103 features. While the numbers of features
are almost the same, each model used different features to
elicit the characteristics of the websites. As such, it has led to
a difference in performance.

In the WF classification problems, time and burst infor-
mation are the important features [9], [26]. To verify the
effectiveness of the burst feature set, the feature importances
are analyzed with the result obtained from random forest
model. As shown in Table VI, the top 15 feature importances
are quantified according to the frequently used features after
learning for URLs selected when using general browsers
and Tor browsers. The concentration information (Rank 4 in
general browser) in the Table VI is the feature of incoming

TABLE V: Model accuracy over time

Model Case 3 days | 14 days | 30 days
DT Not updated 0.850 0.594 0.558
Updated 0.850 0.771 0.736

AdaBoost | Not updated 0.884 0.655 0.592
Updated 0.884 0.761 0.744

RanF Not updated 0.903 0.694 0.629
Updated 0.903 0.822 0.828

ExtraTrees | Not updated 0.904 0.724 0.624
Updated 0.904 0.812 0.833

RotF Not updated 0.915 0.698 0.619
Updated 0.915 0.773 0.819

CUMUL | Not updated 0.801 0.598 0.322
Updated 0.801 0.701 0.680

and outgoing chunks in the network [27]. In general broswers,
incoming/outgoing ordering and outgoing burst features appear
on top, similar to the previously used features. However, in the
case of Tor browsers, burst time is of high feature importance,
and the burst time interval and the incoming/outgoing burst
time features are are ranked around the top. These results
suggest that if burst-based features are included in WF, it helps
to improve performance.

V. CONCLUSION

This study analyzed the performance of tree ensemble
models for web classification using the traffic information over
Tor network. Data were collected from the popular websites
based on the Alexa categories. Features were extracted from
network traffic and cell information. The models were created
by learning the data collected initially. Decision tree-based
ensembles outperformed a single decision tree and CUMUL.
To analyze the accuracy of the models over time, the experi-
ment was conducted in two cases —not updated and updated.



TABLE VI: Feature importance

Rank General Browser Score Tor Browser Score
1 outgoing ordering 6.07 incoming ordering 17.92
2 first 30 outgoing time interval 5.90 burst time 11.11
3 incoming ordering 5.65 concentration 8.53
4 concentration 5.61 outgoing ordering 8.09
5 first 30 incoming burst 4.73 outgoing burst 5.35
6 first 30 incoming time interval 4.66 first 30 time interval 4.95
7 outgoing time interval 4.30 unique packet length 4.02
8 first 30 time interval 4.25 incoming burst 3.76
9 first 30 total burst 4.09 | incoming time interval 3.21
10 outgoing burst 3.92 total packet length 3.14
11 incoming burst 3.88 total time interval 2.82
12 incoming time interval 3.62 total burst 2.82
13 total time interval 3.25 | outgoing interval time 2.40
14 first 30 outgoing burst 3.00 outgoing burst time 237
15 total burst 2.21 incoming burst time 2.32

The accuracies decreased over time in both cases. As such,
in order to improve accuracy, it is necessary to construct a
training set suitable for website fingerprinting through periodic
data collection. For the sustainable Tor website fingerprintings,
it is necessary to study the feature selection using additional
traffic in cooperation with learning models.

ACKNOWLEDGMENT

This study was conducted as a result of the study of the
copyright technology development project of the Ministry of
Culture, Sports and Tourism and the Copyright Commissionof
Korea in 2020 (No: 2018-real_name-9500).

[1]

[2]

[7

—

[8]
[9]

[10]

REFERENCES

T. Wang and I. Goldberg, “Improved website fingerprinting on tor,” in
Proceedings of the 12th ACM workshop on Workshop on privacy in the
electronic society, 2013, pp. 201-212.

A. Panchenko, L. Niessen, A. Zinnen, and T. Engel, “Website
fingerprinting in onion routing based anonymization networks,” in
Proceedings of the 10th Annual ACM Workshop on Privacy in the
Electronic Society, ser. WPES "11. New York, NY, USA: Association
for Computing Machinery, 2011, p. 103-114. [Online]. Available:
https://doi.org/10.1145/2046556.2046570

T. Wang and I. Goldberg, “Comparing website fingerprinting attacks and
defenses,” Technical Report 2013-30, CACR, Tech. Rep., 2014.

P. Winter, A. Edmundson, L. M. Roberts, A. Dutkowska-Zuk, M. Chetty,
and N. Feamster, “How do tor users interact with onion services?” in
Proceedings of the 27th USENIX Conference on Security Symposium,
ser. SEC’18. USA: USENIX Association, 2018, p. 411-428.

M. Juarez, S. Afroz, G. Acar, C. Diaz, and R. Greenstadt, “A critical
evaluation of website fingerprinting attacks,” in Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communications Security,
2014, pp. 263-274.

R. Attarian, L. Abdi, and S. Hashemi, “Adawfpa: Adaptive online
website fingerprinting attack for tor anonymous network: A stream-
wise paradigm,” Computer Communications, vol. 148, pp. 74 — 85,
2019. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0140366419300763

A. Panchenko, F. Lanze, J. Pennekamp, T. Engel, A. Zinnen, M. Henze,
and K. Wehrle, “Website fingerprinting at internet scale.” in NDSS, 2016.
Wang, Tao, “Website fingerprinting: Attacks and defenses,” 2016.
[Online]. Available: http://hdl.handle.net/10012/10123

A. H. Lashkari, G. Draper-Gil, M. S. I. Mamun, and A. A. Ghorbani,
“Characterization of tor traffic using time based features.” in ICISSP,
2017, pp. 253-262.

V. Rimmer, D. Preuveneers, M. Juarez, T. Van Goethem, and W. Joosen,
“Automated website fingerprinting through deep learning,” arXiv
preprint arXiv:1708.06376, 2017.

(1]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]
[22]

(23]

[24]

[25]

[26]

[27]

Z. Zhuo, Y. Zhang, Z.-1. Zhang, X. Zhang, and J. Zhang, “Website
fingerprinting attack on anonymity networks based on profile hidden
markov model,” Trans. Info. For. Sec., vol. 13, no. 5, p. 1081-1095, May
2018. [Online]. Available: https://doi.org/10.1109/TIFS.2017.2762825
S. Li, H. Guo, and N. Hopper, “Measuring information leakage in
website fingerprinting attacks and defenses,” in Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications Security,
2018, pp. 1977-1992.

A. Montieri, D. Ciuonzo, G. Aceto, and A. Pescapé, “Anonymity
services tor, i2p, jondonym: Classifying in the dark (web),” IEEE
Transactions on Dependable and Secure Computing, vol. 17, no. 3, pp.
662-675, 2020.

S. Bhat, D. Lu, A. Kwon, and S. Devadas, ‘“Var-cnn: A data-efficient
website fingerprinting attack based on deep learning,” Proceedings on
Privacy Enhancing Technologies, vol. 2019, no. 4, pp. 292-310, 2019.
C. Bishop and N. Nasrabadi, Pattern recognition and machine learning.
springer New York, 2006, vol. 1.

T. Wang, X. Cai, R. Nithyanand, R. Johnson, and I. Goldberg, “Effective
attacks and provable defenses for website fingerprinting,” in 23rd
{USENIX} Security Symposium ({USENIX} Security 14), 2014, pp.
143-157.

M. Liberatore and B. N. Levine, “Inferring the source of encrypted
http connections,” in Proceedings of the 13th ACM Conference on
Computer and Communications Security, ser. CCS ’06. New York,
NY, USA: Association for Computing Machinery, 2006, p. 255-263.
[Online]. Available: https://doi.org/10.1145/1180405.1180437

A. Orebaugh, G. Ramirez, and J. Beale, Wireshark & Ethereal network
protocol analyzer toolkit. Elsevier, 2006.

R. Overdorf, M. Juarez, G. Acar, R. Greenstadt, and C. Diaz, “How
unique is your. onion? an analysis of the fingerprintability of tor onion
services,” in Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, 2017, pp. 2021-2036.

S. Euh, H. Lee, D. Kim, and D. Hwang, “Comparative analysis of low-
dimensional features and tree-based ensembles for malware detection
systems,” IEEE Access, vol. 8, pp. 76 796-76 808, 2020.

J. R. Quinlan, C4.5: programs for machine learning. Morgan Kaufmann
Publishers Inc., 1993.

R. E. Schapire and Y. Freund, Boosting: Foundations and Algorithms.
The MIT Press, 2012.

L. Breiman, “Manual on setting up, using, and understanding random
forests v3. 1,” Statistics Department University of California Berkeley,
CA, USA, 2002.

P. Geurts, D. Ernst, and L. Wehenkel, “Extremely randomized trees,”
Machine Learning, vol. 63, pp. 3-42, 2006.

R. Blaser and P. Fryzlewicz, “Random rotation ensembles,” Journal of
Machine Learning Research, vol. 17, no. 4, pp. 1-26, 2016. [Online].
Available: http://jmlr.org/papers/v17/blaserl6a.html

X. Li, Y. Wang, S. Basu, K. Kumbier, and B. Yu, “A debiased mdi
feature importance measure for random forests,” 2019.

J. Hayes and G. Danezis, “k-fingerprinting: A robust scalable web-
site fingerprinting technique,” in 25th {USENIX} Security Symposium
({USENIX} Security 16), 2016, pp. 1187-1203.


https://doi.org/10.1145/2046556.2046570
http://www.sciencedirect.com/science/article/pii/S0140366419300763
http://www.sciencedirect.com/science/article/pii/S0140366419300763
http://hdl.handle.net/10012/10123
https://doi.org/10.1109/TIFS.2017.2762825
https://doi.org/10.1145/1180405.1180437
http://jmlr.org/papers/v17/blaser16a.html

	Introduction
	Related Work
	Research Approach
	Threat Model
	Data collection
	Feature vectors

	Experimental Results
	Initial Models
	Performance comparison

	Conclusion
	References

