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Abstract

Robust optimization has been widely used in
nowadays data science, especially in adversarial
training. However, little research has been done
to quantify how robust optimization changes the
optimizers and the prediction losses comparing
to standard training. In this paper, inspired by
the influence function in robust statistics, we in-
troduce the Adversarial Influence Function (AIF)
as a tool to investigate the solution produced by
robust optimization. The proposed AIF enjoys a
closed-form and can be calculated efficiently. To
illustrate the usage of AIF, we apply it to study
model sensitivity — a quantity defined to cap-
ture the change of prediction losses on the natural
data after implementing robust optimization. We
use AIF to analyze how model complexity and
randomized smoothing affect the model sensitiv-
ity with respect to specific models. We further
derive AIF for kernel regressions, with a partic-
ular application to neural tangent kernels, and
experimentally demonstrate the effectiveness of
the proposed AIF. Lastly, the theories of AIF will
be extended to distributional robust optimization.

1. Introduction

Robust optimization is a classic field of optimization theory
that seeks to achieve a certain measure of robustness against
uncertainty in the parameters or inputs involved (Ben-Tal
et al., 2009; Beyer & Sendhoff, 2007). Recently, it has been
used to address a concern in deep neural networks — the
deep neural networks are vulnerable to adversarial perturba-
tions (Goodfellow et al., 2014; Szegedy et al., 2013).

In supervised learning, given input x, output y and a certain
loss function l, adversarial training through robust optimiza-
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tion for a model M is formulated as

min
✓M2⇥

Ex,y max
�2R(x)

l(✓M, x+ �, y,M), (1)

where R(x) is some constrained set, which is usually taken
as a small neighborhood of x in robust optimization. For ex-
ample, in image recognition (He et al., 2016), an adversarial
attack should be small so that it is visually imperceptible.

Although adversarial training through robust optimization
has achieved great success in defending against adversarial
attacks (Madry et al., 2017), the influence of such adver-
sarial training on predictions is under-explored, even for
a simple model M. In particular, let us define the regular
optimizer and the robust optimizer respectively:

✓Mmin := argmin
✓M2⇥

Ex,yl(✓
M, x, y,M),

✓M
",min := argmin

✓M2⇥
Ex,y max

�2R(x,")
l(✓M, x+ �, y,M). (2)

It is unclear how Ex,yl(✓M",min, x, y,M) — the predic-
tion loss on the original data with robust optimizer—
performs compared to the optimal prediction loss
Ex,yl(✓Mmin, x, y,M). The difficulty for studying this ques-
tions is the underlying NP-hardness of solving robust opti-
mization. Even for the simple models, say quadratic models,
the robust optimization problem is NP-hard if the constraint
set is polyhedral (Minoux, 2010).

To address this problem, drawing inspiration from the idea
of influence function in robust statistics (Croux & Haes-
broeck, 1999; Hampel; 1974; Huber & Ronchetti, 2009),
which characterizes how the prediction loss changes when
a small fraction of data points being contaminated, we pro-
pose the Adversarial Influence Function (AIF) to investigate
the influence of robust optimization on prediction loss. Tak-
ing advantage of small perturbations, AIF has a closed-form
expression and can be calculated efficiently. Moreover, AIF
enables us to analyze the prediction error without imple-
menting the robust optimization, which typically takes long
time due to the computational burden of searching adver-
saries.

The rest of the paper is organized as follows. Section 2
lays out the setup and notation. Section 3 defines model
sensitivity, which is used to understand how robust optimiza-
tion affects the predictions. To efficiently approximate the
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model sensitivity, Section 4 introduces the AIF. Further, in
Section 5, we show several case studies, by applying the pro-
posed AIF to theoretically analyze the relationship between
model sensitivity and model complexity and randomized
smoothing. In Section 6, we extend the AIF theory to kernel
regressions and distributional robust optimization.

1.1. Related work

Adversarial training and robust optimization Since
(Goodfellow et al., 2014) proposed adversarial training,
many innovative methods have been invented to improve the
performance of adversarial training, such as (Agarwal et al.,
2018; Liu & Hsieh, 2019; Shafahi et al., 2019; Yin et al.,
2018). Earlier work only added adversarial examples in a
few rounds during training, and many of them have been
evaded by new attacks (Athalye et al., 2018). In (Madry
et al., 2017), the authors proposed to use projected gradi-
ent ascent and obtain the state-of-art result. They further
pointed out that the adversarial training can be formulated
through the lens of robust optimization. Nevertheless, robust
optimization has a very deep root in engineering (Taguchi &
Phadke, 1989) , but many robust optimization problems are
NP- hard(Minoux, 2010), and solving such problems heav-
ily relies on high-speed computers and their exponentially
increasing FLOPS-rates (Park et al., 2006). Our adversarial
influence function may bridge the gap between theoretical
analysis and engineering implementation of robust optimiza-
tion to a certain degree, and improve our understanding of
robust optimization.

Robust Staistics Robust statistics has been recently ap-
plied to machine learning and achieves impressive successes.
(Koh & Liang, 2017) used the influence function to under-
stand the prediction of a black-box model. (Debruyne et al.,
2008; Liu et al., 2014) and (Christmann & Steinwart, 2004)
used the influence function for model selections and cross-
validations in kernel methods. Recently, (Bayaktar & Lai,
2018) extended the influence function to the adversarial
setting, and investigated the adversarial robustness of multi-
variate M-Estimators. We remark here that their adversarial
influence function is different from ours, where they focused
on the influence on parameter inference, while ours focus
on the influence of robust optimization on the prediction.

2. Setup and Notation

n this paper, we consider the task of mapping m-
dimensional input x 2 X ✓ Rm to a scalar output
y 2 Y , with joint distribution (x, y) ⇠ Px,y and marginal
distributions x ⇠ Px, y ⇠ Py . We have training
dataset (Xt, Y t) = {(xt

1, y
t
1), · · · , (xt

nt
, yt

nt
)} and evalu-

ation dataset (Xe, Y e) = {(xe
1, y

e
1), · · · , (xe

ne
, ye

ne
)}. For

a given model architecture M, the loss function is denoted
as l(✓M, x, y,M) with parameter ✓M 2 ⇥ ✓ Rd (we will

omit M in l sometimes if not causing confusions). For
robust optimization, we focus on studying the constraint set
R(x, ") = {! 2 X : k! � xkp  " · Ex⇠Pxkxkp} with

small ", where k · kp is the lp norm. Such type of constraint
set is also called lp-attack in adversarial learning, which
implies the adversaries are allowed to observe the whole
dataset and are able to contaminate each data point xi a little
bit. This is commonly used in adversarial training for image
classifications in machine learning and the constant factor
Ex⇠Pxkxkp is for scale consideration.1

Further, we denote the empirical version of the minimizers
for regular optimization and robust optimizers in Eq. (2):

✓̂Mmin := argmin
✓M2⇥

1

nt

ntX

i=1

l(✓M, xt

i
, yt

i
,M),

✓̂M
",min := argmin

✓M2⇥

1

nt

ntX

i=1

max
�i2R̂(xt

i,")
l(✓M, xt

i
+ �i, y

t

i
,M),

where R̂(xt

i
, ") = {u 2 X : ku � xt

i
kp  "Êxtkxkp},

with Êxt being the expectation with respect to the empirical
probability distribution of xt.

We use sgn(x) to denote the sign function: sgn(x) = 1 if
x > 0, sgn(x) = 0 if x = 0, and �1 otherwise. We also
use [n] to denote the set {1, 2 · · · , n}. Further, we use the
notion op and Op, where for a sequence of random variables
Xn, Xn = op(an) means Xn/an ! 0 in probability, and
Xn = Op(bn) means that for any " > 0, there is a constant
K, such that P(|Xn|  K · bn) � 1� ".

3. Model Sensitivity

In order to quantify how robust optimization affects predic-
tions, we first define the model sensitivity with respect to
the robust optimization.
Definition 3.1 ("-sensitivity/adversarial cost). For a given

model M, the "-sensitivity/adversarial cost is defined as

S"(M) := Ex,yl(✓
M
",min, x, y,M)�Ex,yl(✓

M
min, x, y,M).

The "-sensitivity/adversarial cost quantifies how robust op-
timization increases the expected loss, and this loss also
indicates the additional cost of being adversarially robust.
Besides this straightforward interpretation, one can also in-
terpret S"(M) as a trade-off between the prediction loss
and robustness for model architecture M — the optimizer
✓M
",min is more adversarially robust but inflates the predic-

tion loss comparing to ✓Mmin. For fixed ", an architecture
M with small "-sensitivity implies that such an architecture

1For standard MNIST, the average l2 norm of x is 9.21 with
dimension m = 28 ⇥ 28. The attack size does not have to be
small, but ", as the ratio of the magnitude of adversarial attacks
and average magnitude of images, is small.
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can achieve adversarial robustness by robust optimization
without sacrificing the performance on the original data
too much. We also say an architecture M with smaller
"-sensitivity is more stable.

Since ✓Mmin is the minimizer of Ex,yl(✓M, x, y,M) over
✓M, if we further have ✓Mmin 2 ⇥�, where ⇥� denotes the in-
terior of ⇥ and l is twice differentiable, by Taylor expansion,
we would have

S"(M) =
1

2
(�✓M

",min)
TEx,yr2l(✓Mmin, x, y,M)�✓M

",min

+ o(k�✓M
",mink22),

where �✓M
",min = ✓M

",min � ✓Mmin, and the remainder is negli-
gible if " is small enough. Given the training set (Xt, Y t)
and the evaluation set (Xe, Y e), we define the empirical
"-sensitivity:

Ŝ"(M) ⇡ 1

2
(�✓̂M

",min)
TEP̂xe,ye

r2l(✓̂Mmin, x, y,M)�✓̂M
",min,

(3)
by omitting the remainder o(k�✓̂M

",mink22), where
�✓̂M

",min = ✓̂M
",min � ✓̂Mmin. Notice that Eq. (3) involves

�✓̂M
",min, the solution of robust optimization, which, even

for simple models with loss functions (such as linear
regression with quadratic loss), does not have a closed-form
expression and is computationally heavy to obtain. In
the following sections, we will address this problem
by introducing AIF, which provides an efficient way
to approximate and analyze S"(M). For simplicity of
illustration, we remove the superscripts t, e and use generic
notation (X,Y ) = {(x1, y1), · · · , (xn, yn)} for general
dataset in the following sections when there is no ambiguity.

4. Adversarial Influence Function

Unless explicitly stated, we mainly consider the case where
the empirical risk

P
n

i=1 l(✓
M, xt

i
, yt

i
;M) is twice differ-

entiable and strongly convex in this paper. A relaxation
of such conditions will be discussed in Section 4.1. In order
to approximate ✓̂M

",min � ✓̂Mmin, for small ", we use

✓̂M",min�✓̂Mmin ⇡ "↵·
d(✓̂M",min � ✓̂Mmin)

d"↵
|"=0+ = "↵·

d✓̂M",min

d"↵
��
"=0+

for approximation, where ↵ > 0 is the smallest positive real
number such that the limit lim"!0+ (✓̂M

",min � ✓̂Mmin)/"
↵ is

nonzero. Throughout this section, all the cases we consider
later have ↵ = 1, while more general cases will be discussed
in Section 6.2. Formally, we define the adversarial influence
function as follows.
Definition 4.1 (Adversarial Influence Function). For a

given model M, the adversarial influence function (AIF) is

defined as

I(M) :=
d✓M

",min

d"

��
"=0

. (4)

The AIF measures the changing trend of the optimizer under
robust optimization in the limiting sense. With the help of
AIF, we then approximate S"(M) by

S"(M) ⇡ 1

2
"2I(M)TEx,yr2l(✓Mmin, x, y,M)I(M)

��
"=0

when " is small.

Next we provide a specific characterization of the empir-
ical adversarial influence functions. We denote Î(M) =
d✓̂M

",min/d"|"=0 as the empirical version of AIF. Besides,
we denote the perturbation vector as � = (�T1 , · · · , �Tn )T .
Further, for given (X,Y ) and M, we define g(✓M,�) =
1/n

P
n

i=1 l(✓
M, xi+�i, yi;M) when we only consider the

optimization over (✓M,�).
Theorem 4.1. Suppose X , Y and ⇥ are compact spaces, the

loss function l(✓, x, y) is three times continuously differen-

tiable on (✓, x) 2 ⇥⇥X for any given y 2 Y , and the empir-

ical Hessian matrix Ĥ
✓̂M
min

= 1/n
P

n

i=1 r2
✓
l(✓̂Mmin, xi, yi)

is positive definite. Further, we assume the empirical

risk
P

n

i=1 l(✓
M, xt

i
, yt

i
;M) is twice differentiable and

strongly convex and g(·,�) is differentiable for every �,

r✓g(✓M,�) is continuous on ⇥ ⇥ X , ✓̂Mmin lies in the in-

terior of ⇥, and rxl(✓̂Mmin, xi, yi,M) 6= 0 for all i 2 [n],
then we have

Î(M) = �Ĥ�1
✓̂M
min

�, (5)

where � = 1/n
P

n

i=1 rx,✓l(✓̂Mmin, xi, yi)Ex⇠P̂x
kxkp�i

and �i = ( 1,  2, · · · ,  m)T , with

 k =
bq�1
k

(
P

m

k=1 b
q

k
)

1
p

sgn

⇣ @

@x·,k
l(✓̂Mmin, xi, yi,M)

⌘
.

Here, we have bk =
�� @

@x·,k
l(✓̂Mmin, xi, yi,M)

��, x·,k is

the k-th coordinate of vector x, for instance, xj =
(xj,1, xj,2, · · · , xj,m)T ; p � 0 and q � 0 are conjugate

such that 1/p+ 1/q = 1.

Remark 1. The compactness condition is easy to satisfy.

Since for any distributions D and integer n, we can take

a sufficiently large constant R > 0, which is allowed to

depend on n, such that all n samples are contained in the

ball B(0, R) with high probability. Besides, if the input x is

of high dimension, the computational bottleneck is mainly on

inverting the empirical Hessian. We can use techniques such

as conjugate gradients and stochastic estimation suggested

in (Koh & Liang, 2017) to reduce the computational cost.

The above theorem provides a closed-form expression for
the first order AIF, and therefore a closed-form approxima-
tion of the model sensitivity S"(M). One nice property of
such an approximation is that it does not depend on opti-
mization algorithms, but only depends on the model M and
the distribution of (x, y). This attribute makes model sensi-
tivity an inherent property of model M and data distribution,
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making it a potential new rule for model selection. Model
sensitivity can help us pick those models whose prediction
result will not be greatly affected after robust optimization.

We show the effectiveness of approximation by AIF in Fig-
ure 1. We plot two error curves for �Î(n, ") := k(✓̂M

",min �
✓̂Mmin)/" � Î(M)k2 and �Ŝ(n, ") := kŜ"(M)/"2 �
(Î(M))TEP̂xe,ye

r2l(✓̂Mmin, x, y,M)Î(M)k2, where the

sample size is n. Theoretically, we expect �Î(n, ") and
�Ŝ(n, ") go to 0 as " goes to 0. In all the experiments in

the paper, we use projected gradient descent (PGD) for

robust optimization to obtain ✓̂M
",min. In Figure 1, we can

see that as " become smaller, �Î(n, ") and �Ŝ(n, ") gradu-
ally go to 0. We remark here that we do not let " be exactly
0 in our experiments, since PGD cannot obtain the exact
optimal solutions for ✓̂Mmin and ✓̂M

",min. The existing system
error will become dominating if " is too small and return ab-
normally large value after divided by ". This also motivates
us to introduce the AIF to have an accurate approximation.
The model we use is a linear regression model with 500
inputs drawn from a two-dimensional standard Gaussian,
i.e. x ⇠ N (0, I). We fit y with y = 2x1 � 3.4x2 + ⌘ and
⌘ ⇠ 0.1 · N (0, I).

0.04 0.06 0.08 0.1 0.12
0

0.2

0.4

0.6

0.8

1

Figure 1. Effectiveness of AIF and model sensitivity for linear
regression model. From the monotonicity relationship between "
and �Î(n, "), �Ŝ(n, "), we verify the effectiveness of AIF and
model sensitivity. Here, the sample size n = 500.

Remark 2. It is straightforward to derive asymptotic

normality for AIF by central limit theorem(Durrett,

2019), which can be used to construct confidence

intervals for I(M). Specifically, if we denote

⇣i := �H�1
✓̂M
min

r✓,xl(✓̂Mmin, xi, yi)Ex⇠P̂X
kxkp�i, µ̂n :=

1/n
P

n

i=1 ⇣i, and ⌃̂n := 1/n
P

n

i=1(⇣i � µ̂n)(⇣i � µ̂n)T ,
then by classic statistical theory, we obtain

p
n⌃̂�1/2

n
(Î(M)� µ̂n)

D! N (0, Id),

as n goes to infinity, where N (0, I) denotes standard multi-

variate normal distribution and
D! denotes convergence in

distribution.

4.1. Non-convex, non-convergence cases

In the previous discussions, we talked about the case where
the empirical loss is strongly convex. Now we briefly dis-
cuss about non-convex and non-convergence cases.

Well-separated condition. In the proof of Theorem 4.1,
actually we only need ✓̂Mmin to be the global minimum and at
the point ✓̂Mmin, the empirical Hessian matrix is positive defi-
nite and the landscape are allowed to have many local mini-
mums. The uniqueness assumption can also be formulated
in a more elementary way: if we assume the smoothness of
loss function l over X ⇥⇥, compactness of ⇥ and we only
have one global minimum for E(x,y)⇠Px,y

l(✓M, x, y,M)
which lies in the interior of ⇥, with positive definite Hessian
matrix, and it is well-separated, which means that 8! > 0,
there exists  > 0, such that 8✓M , if k✓M � ✓Mmink > !,
we have

|Ex,yl(✓
M, x, y,M)� Ex,yl(✓

M
min, x, y,M)| > .

By classic statistical theory, ✓̂Mmin will be a global minimum
if sample size is large enough.

The well-separated condition relaxes the convexity condi-
tion in Theorem 4.1. However, the validity of Theorem
4.1 still requires the condition that ✓̂Mmin is the global mini-
mum of the empirical risk, which in practice, is hard to find.
Another alternative relaxation is to use a surrogate loss.

Surrogate losses. In practice, we may obtain ✓̃Mmin by run-
ning SGD with early stopping or on non-convex objectives,
and get a solution ✓̂Mmin which is different from ✓̃Mmin. As
in (Koh & Liang, 2017), we can form a convex quadratic
approximation of the loss around ✓̃Mmin, i.e.,

l̃(✓M, x, y) = l(✓̃Mmin, x, y) +r✓l(✓̃
M
min, x, y)(✓

M � ✓̃Mmin)

+
1

2
(✓M � ✓̃Mmin)

T

⇣
r2

✓
l(✓̃Mmin, x, y) + �I

⌘
(✓M � ✓̃Mmin),

where � is a damping term to remove the negative eigenval-
ues of the Hessian. One can show the results of Theorem
4.1 hold with this surrogate loss.

5. Case studies of Adversarial Influence

Functions

To illustrate the usage of adversarial influence functions, we
use it to explore the relationship between model complexity,
randomized smoothing and model sensitivity.

5.1. Model Complexity and Model Sensitivity

Throughout this paper, we use the term “model complexity”
as a general term referring to 1) the number of features
included in the predictive model, and 2) the model capacity,
such as whether the model being linear, non-linear, and so
on.
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As observed in the prior literature (Fawzi et al., 2018; Ku-
rakin et al., 2017; Madry et al., 2017), model complexity
is closely related to adversarial robustness, that is, when
the model capacity increases, the "-sensitivity/adversarial
cost will increase first and then decrease. However, such
a phenomenon is only emporical and lack of theoretical
justification. In this subsection, we will theoretically ex-
plore how the model complexity model affect the model
sensitivity/adversarial cost by studying specific models with
different model capacity and different number of features
included in the predictive model.

5.1.1. MODEL CAPACITY AND MODEL SENSITIVITY

We start with the relationship between model capacity and
model sensitivity via two simple and commonly used mod-
els, with the dimension of inputs being fixed.

Linear regression models (L) and quadratic models (Q)

We consider the class of linear models L = {f�(x) =
�Tx : x, � 2 Rm} and the class of quadratic models Q =
{f�,A(x) = �Tx+ xTAx, x, � 2 Rm, A 2 Rm⇥m}.

Apparently, the class of quadratic models has a larger model
capacity and is more flexible than that of linear models.
In the following theorem, we will show that larger model
capacity does not necessarily lead to smaller sensitivity.

Theorem 5.1. We fit the data (xi, yi) by L and Q. For the

simplicity of presentation, assume the sample sizes of both

the training and testing sample are n. Suppose the under-

lying true generating process is y = xT�⇤
1 + (�⇤T

2 x)2 + ⇠,

where x ⇠ N (0, �2
x
Im) 2 Rm

, ⇠ ⇠ N (0, �2
⇠
) and indepen-

dent with x. For l2 or l1 attack,

I. when(k�⇤
2k22�2

x
�

q
2
⇡
�⇠)2 > 1+2m�

2
x

max{�2
x,1}

· 2
⇡
�2
⇠
, we

have

Ŝ"(L) > Ŝ"(Q) +Op("
2

r
m2

n
);

II. when (k�⇤
2k22�2

x
+
q

2
⇡
�⇠)2 < 1

min{1, 34�2
x}
(1+m�2

x
�

2�2
x
· logm) · 3

2⇡�
2
"
, then

Ŝ"(L) < Ŝ"(Q) +Op("
2

r
m2

n
).

From Theorem 5.1, unlike adversarial robustness, we can
see that the model sensitivity does not have monotonic re-
lationship with the model capacity. Such a monotonic re-
lationship only holds when the model has high complexity
(when k�⇤

2k is large). Therefore, when n is sufficiently
large, the result implies that a larger model capacity does
not necessarily lead to a model with smaller sensitivity.

5.1.2. NUMBER OF FEATURES AND MODEL SENSITIVITY

Another important aspect of model complexity is the num-
ber of features included in the predictive model. There have
been many model selection techniques, such as LASSO,
AIC and BIC, developed over years. Given the newly intro-
duced concept of model sensitivity, it is interesting to take
model sensitivity into consideration during model selection.
For example, if for a specific model, including more fea-
tures results in a smaller model sensitivity, then for the sake
of adversarial robustness, we should include more features
even if it leads to feature redundancy.

For instance, the following results study when xi follows
some structures such as Cov(xi) = �2

x
Im for some constant

�x, the relationship between model sensitivity and number
of features included in linear models.
Theorem 5.2. Suppose that the data (xi, yi)’s are i.i.d. sam-

ples drawn from a joint distribution Px,y . Denote the sample

sizes of the training and testing sample by ntrain and ntest

respectively. Let m be the dimension of input x, and

�L
min = argmin

�

EPx,y (y � �Tx)2.

Define ⌘L
i
= yi � �L>

minxi, and assume E[xi · sgn(⌘Li )] = 0
and Cov(xi) = �2

x
Im, then for `2 attack

Ŝ"(L) ="2(Ex⇠P̂x
kxk2)2 · (E|⌘Li |)2 · ��2

x

+Op("
2 ·

r
1

ntrain

+
m

ntest

).

Given this theorem, we now consider a specific case where
we apply this result to random effect model.
Corollary 5.1. Consider the random effect model y =

�>x + ⇠, where x 2 RM
, �1, ..., �M

i.i.d.⇠ N (0, 1), and

⇠ ⇠ N (0, �2
⇠
). Further, we assume x is a random design

with distribution x1, ..., xn

i.i.d.⇠ N (0, �2
x
IM ). Then when

we only include m features in the linear predictive model,

the resulting model sensitivity is

Ŝ"(L) =
4"2

⇡�2
x

�2(m+1
2 )

�2(m2 )
· ((M �m)�2

x
+ �2

⇠
)

+Op("
2 ·

r
1

ntrain

+
m

ntest

),

where �(·) is the Gamma function such that �(x) =R1
0 tx�1e�t dt.

Since �2(m+1
2 )

�2(m
2 ) ⇣ 1

2m, there is a universal constant C, such

that Ŝ"(L) ⇣ Cm((M�m)�2
x
+�2

⇠
) = �C�2

x
m2+C(M+

�2
⇠
)m. This also implies that a larger model capacity does

not necessarily lead to a model with smaller sensitivity.
Specifically, when m is small, including more features in
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the linear model results in larger model sensitivity. In con-
trast, when m is large, i.e. in the high-complexity regime,
including more features leads to smaller model sensitivity.

Next, we consider a broader class of functions — general
regression models.

General regression models (GL) In general regression
models, suppose we use a d-dimensional basis vGL(x) =
(vGL1 (x), ..., vGL

d
(x))T 2 Rd to approximate y (d can be a

function of m), and get the coefficients by solving

✓̂GLmin = argmin
✓

1

2n

nX

i=1

(yi � ✓T vGL(xi))
2,

where the loss function is l(✓, xi, yi,GL) = 1
2 (yi �

✓T vGL(xi))2. By Theorem 4.1, it is straightforward to ob-
tain

Î(GL) = �Ĥ�1
✓̂
GL
min

� = �Cov(vGL(x))�1�+OP (

r
d

n
),

where Cov(vGL(x)) is the covariance matrix of vGL(x) and

� =
nX

i=1

h |(✓̂GLmin)
T vGL(xi)� yi|

nk(✓̂GLmin)
T @vGL(xi)

@x
k
@vGL(xi)

@x
(
@vGL(xi)

@x
)T

✓̂GLmin +
vGL(xi)

n
k(✓̂GLmin)

T
@vGL(xi)

@x
k

sgn((✓̂GLmin)
T vGL(xi)� yi)

i
.

Thus,

Ŝ"(GL) = "2 · �>Cov(v(x))�1�+OP ("
2

r
d

n
). (6)

Notice that the linear regression model is a special case
if we take v(x) = x. However, the expression of model
sensitivity for the general regression models is very complex
and hard to analyze directly most of the time. Instead of
directly studying Eq. (6), we further simplify the expression
by providing an upper bound to shed some light.
Theorem 5.3. Suppose that the data (xi, yi)’s are i.i.d. sam-

ples drawn from a joint distribution Px,y. Let m be the

dimension of input x, and

✓GLmin = argmin
✓

EPx,y (y � ✓T vGL(xi))
2.

Let ⌘GL
i

= yi � (✓GLmin)
T vGL(xi) and assume E[xi ·

sgn(⌘GL
i

)] = 0, then

Ŝ"(GL) "2(Ex⇠P̂x
kxk2)2 ·

1

�min(E[v(xi)v(xi)>])

· E[
��( @
@x

vGL(xi))
T
@

@x
vGL(xi)

��
2
] · E[|⌘GL

i
|]2

+Op("
2

r
d

n
).

The following example illustrates how our upper bound is
used to demonstrate the trend of change between model
sensitivity and number of features included.

Example 5.1. Suppose v(x) = (xT , (x2 � x

2 )
T )T . If x

consists of random features, such that each coordinate of

x is i.i.d drawn from uniform distribution on (�1, 1). y =
xT�⇤

1+�
⇤T
2

x

2�
x

2+⇠, where ⇠ ⇠ N (0, �2
⇠
) and independent

with x. As a result, the eigenvalue satisfies

�minE[vGL(xi)v
GL(xi)

>] � 1

5
;

E[
��( @
@x

vGL(xi))
T
@

@x
vGL(xi)

��
2
] = 1,

regardless of the number of features m. Besides, E|⌘GL
i

|
decreases as m increases, and thus the upper bound will

decrease as m increases.

In the experiments in Figure 2(a), we show the trend for

Ŝ"(GL) by taking sample size n = 5000, �⇠ = 0.1. We take

the average result for 1000 repetitions.

5.2. Randomized Smoothing and Model Sensitivity

As the last case study of AIF, we investigate the effect of
randomized smoothing (Cohen et al., 2019), a technique
inspired by differential privacy, in adversarial robustness.
Randomized smoothing has achieved impressive empirical
success as a defense mechanism of adversarial attacks for
l2 attack. The core techniques is adding isotropic noise
# ⇠ N (0, �2

r
I) to the inputs so that for any output range O,

P
⇣ 1

n

nX

i=1

l(✓M, xi + #i, yi,M) 2 O
⌘

is close to

P
⇣ 1

n

nX

i=1

l(✓M, xi + �i + #i, yi,M) 2 O
⌘

for constrained k�ik2.

The following theorem provides an insight into how random-
ized smoothing affects model sensitivity regarding linear
regression models.

Theorem 5.4. Use the same notation as that in Theorem 5.2.

Suppose that the data (xi, yi)’s are i.i.d. samples drawn

from a joint distribution Px,y, and E[xi · sgn(⌘Li )] = 0,

Cov(xi) = �2
x
Im, and V ar(⌘L

i
) = �⌘2 . When we fit y with

x̃ = x+ #, where # is distributed as N(0, �2
r
Im), then

Ŝ"(Lnoise)

Ŝ"(L)
=
�2
x
/�2

⇠

�2
x
+ �2

r

✓
2�2

r
�2
x

�2
x
+ �2

r

k�L
mink22 + �2

⇠

◆

+Op(

r
m

n
).
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(a) Illustration of the relationship between the feature
number and model sensitivity for the model in Example
5.1.
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(b) Effectiveness of AIF for kernel regression with NTK
on MNIST.

Figure 2. a) Experimentally, the general trend for Ŝ"(GL) with respect to m is decreasing (though not strict for every m) as the upper
bound suggests. b) The monotonic trend of " is still clearly observed, though thevalues are larger than the previous example in Figure 1
due to the high dimensionality of MNIST.

Here, Lnoise denotes the linear model with randomized
smoothing by adding input noise. This theorem informs us
that when �r is large, we have Ŝ"(Lnoise)  Ŝ"(L) asymp-
totically, and Ŝ"(Lnoise) becomes smaller with larger �r. In
other words, the randomized smoothing helps reduce the
sensitivity in this case.

6. Further Extensions

In this section, we extend the theories of IFA to kernel re-
gressions and distributional robust optimization. First, we
derive the AIF for kernel regressions in Section 6.1. In
particular, we are interested in how well AIF characterizes
the change of optimizers with neural tangent kernels (NTK),
whose equivalence to infinitely wide neural networks has
been well-established in recent literatures (Du et al., 2018;
Jacot et al., 2018). In Section 6.2, we further extend our
theory to compute the AIF for distributional robust optimiza-
tion.

6.1. AIF of the kernel regressions

We consider the kernel regression model in the following
form

L̂n(✓,X, Y ) :=
1

n

nX

i=1

�
yi �

nX

j=1

K(xi, xj)✓j
�2

+ �k✓k22.

(7)
where ✓ = (✓1, · · · , ✓n)T , and � > 0. Now let us denote
g(✓,�) = L̂n(✓,X + �, Y ), and we will calculate the
empirical adversarial influence function Î(K) for kernel K.

Notice that in kernel regression, the loss function
�
yi �P

n

j=1 K(xi, xj)✓j
�2 includes all the data points in one sin-

gle term, which is different from the summation-form of
loss function in Theorem 4.1. Fortunately, the technique
of proving Theorem 4.1 can still be used here with slight
modification. We obtain the following corollary for the
adversarial influence function Î(K) in kernel regression.
Corollary 6.1. Suppose X , Y and ⇥ are compact spaces,

the kernel L̂n is three times continuously differentiable on

⇥⇥X . g(·,�) is differentiable for every � and r✓g(✓,�) s

continuous on ⇥⇥X , the minimizer ✓̂min lies in the interior

of ⇥, with non-zero rxiL̂n(✓̂min, X, Y ) for all i 2 [n], then

we have

Î(K) = �
� nX

i=1

K(xi)K(xi)
T + n�I

��1

⇣ nX

k,i=1

�
K(xi)

T ✓̂min +K(xi)✓̂
T

min � yi
�
Kxi,xk�k

⌘
.

In the above formula,

K(xi) =
�
K(xi, x1),K(xi, x2), · · · ,K(xi, xn)

�T
,

Kxi,xk =
⇣@K(xi, x1)

@xk

, · · · , @K(xi, xn)

@xk

⌘T

.

And the z-th coordinate of �k is

�k,z =
cq�1
z

(
P

m

k=1 c
q
z)

1
p

sgn

⇣
rxk L̂n(✓̂min, z)

⌘
E
x⇠P̂x

kxkp,

with cz = |rxk L̂n(✓̂min, z)|, where rxk L̂n(✓̂min, z) is

short for the z-th coordinate of rxk L̂n(✓̂min, X, Y ):

rxk L̂n(✓,X, Y ) =
2

n

nX

i=1

⇣
K(xi)

T ✓̂min�yi
⌘
KT

xi,xk
✓̂min.
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Neural tangent kernels The intimate connection be-
tween kernel regression and overparametrized two-layer
neural networks has been studied in the literature, see (Du
et al., 2018; Jacot et al., 2018). In this section, we are going
to apply Corollary 6.1 to the two-layer neural networks in
the over-parametrized setting.

Specifically, we consider a two-layer ReLU activated neural
network with b neurons in the hidden layer:

fW,a(x) =
1p
b

bX

r=1

ar�(w
T

r
x),

where x 2 Rm denotes the input, w1, ..., wb 2 Rm are
weight vectors in the first layer, a1, ..., ab 2 R are weights
in the second layer. Further we denote W = (w1, ..., wb) 2
Rm⇥b and a = (a1, ..., am)T 2 Rm.

Suppose we have n samples S = {(xi, yi)}ni=1 and assume
kxik2 = 1 for simplicity. We train the neural network
by randomly initialized gradient descent on the quadratic
loss over data S. In particular, we initialize the parameters
randomly: wr ⇠ N(0, 2I), ar ⇠ U(�1, 1), for all r 2
[m], then Jacot et al. [2018] showed that, such a resulting
network converges to the solution produced by the kernel
regression with the so called Neural Tangent Kernel (NTK)
matrix:

NTK =


x>
i
xj(⇡ � arccos(x>

i
xj))

2⇡

�

i,j2[n]

.

In Figure 2(b), we experimentally demonstrate the effective-
ness of the approximation of AIF in kernel regressions with
neural tangent kernel on MNIST. The estimation is based on
the average of randomly drawn 300 examples from MNIST
for 10 times.

6.2. Distributional adversarial influence function

Another popular way to formulate adversarial attack is
through distributional robust optimization (DRO), where
instead of perturbing x with certain distance, one perturbs
(x, y) in a distributional sense. For a model M, the cor-
responding distributional robust optimization with respect
to u-Wasserstein distance Wu for u 2 [1,1) regarding
lp-norm is formulated as:

min
✓M

OPT ("; ✓M),

where OPT ("; ✓M) is defined as

OPT ("; ✓M) := max
P̃x,y :Wu(P̃x,y,Px,y)"

EP̃x,y
l(✓M, x, y;M).

Here, Wu(D, D̃) = inf{
R
kx � yku

p
d�(x, y) : � 2

⇧(D, D̃)}1/u for two distributions D, D̃, and ⇧(D, D̃) are

couplings of D, D̃. However, it is not clear whether

✓M,DRO

",min := argmin
✓M

OPT ("EP̂x
kxkp; ✓M),

is well-defined since the optimizer may not be unique. More-
over, the corresponding sample version of the optimizer
✓M,DRO

",min is not easy to obtain via regular optimization meth-
ods if we just replace the distribution Px,y by its empirical
distribution since it is hard to get the corresponding worst
form of P̃x,y. As a result, we focus on defining empirical
distributional adversarial influence function for a special
approximation algorithm and state its limit. Interested read-
ers are refered to the following result in (Staib & Jegelka,
2017) and (Gao & Kleywegt, 2016) to properly find an
approximation for P̃x,y .
Lemma 6.1 (A variation of Corollary 2(iv) in (Gao &
Kleywegt, 2016)). Suppose for all y, l(✓M, x, y;M) is

L-Lipschitz as a function of x. Define

EMP (") := max
�1,··· ,�n

1

n

nX

i=1

l(✓M, xi + �i, yi,M),

such that (
P

n

i=1 k�ikup/n)1/u  ". Then, we have

EMP (") � OPT ("; ✓M) � LD/n where D bounds the

maximum deviation of a single point.

Lemma 6.1 provides a direction to define an algorithm

dependent empirical DAIF ÎDRO(M). For a given model
M, the corresponding empirical distributional adversarial
influence function is defined as

ÎDRO(M) :=
d✓̂M,DRO

",min

d"

��
"=0+

,

such that ✓̂M,DRO

",min 2 argmin✓M2⇥ EMP
⇣
"EP̂x

kxkp
⌘
.

We use 2 argmin here since there may not be a unique
minimizer, but the limit ÎDRO(M) is still unique and well-
defined. Similarly, we can provide a closed form of distribu-
tional adversarial influence function.
Theorem 6.1. Under the settings of Theorem 4.1,

ÎDRO(M) = �Ĥ�1
✓̂M
min

%n
1�u
u , (8)

where % = rx,✓l(✓̂Mmin, xJ , yJ)EP̂x
kxkp�J and �i is

defined as in Theorem 4.1, J is the index: J =
argmaxi krxL(✓̂Mmin, xi, yi)kq.

We remark here from Eq. 8, we can see that if u > 1, more
training data will result in a smaller norm of ÎDRO(M)
since there is a factor n(1�u)/u.

7. Conclusions and Future Work

To achieve adversarial robustness, robust optimization has
been widely used in the training of deep neural networks,
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while their theoretical aspects are under-explored. In this
work we first propose the AIF to quantify the influence of
robust optimization theoretically. The proposed AIF is then
used to efficiently approximate the model sensitivity, which
is usually NP-hard to compute in practice. We then apply
the AIF to study the relationship between model sensitiv-
ity and model complexity. Moreover, the AIF is applied to
randomized smoothing and found that adding noise to the in-
put during training would help reduce the model sensitivity.
Further, the theories are extended to the kernel regression
models and distributional robust optimization. Based on the
newly introduced tool AIF, we suggest two main directions
for future research.

First, we can study how to use AIF to select model with the
greatest adversarial robustness. Due to the computational
effectiveness of AIF, it is a natural idea to use AIF for model
selection. Such an idea can be used for tuning parameter
selection in statistical models such as high-dimensional re-
gression and factor analysis, and further extended to the
neural network depth and width selection.

Second, AIF can be extended to study more phenomena in
adversarial training. For instance, the relationship between
low-dimensional representations and adversarial robustness.
Recently, Lezama et al. (2018); Sanyal et al. (2018) empir-
ically observed that using learned low-dimensional repre-
sentations as the input in neural networks is substantially
more adversarially robust, but a theoretical exploration of
this phenomenon is still lacking.
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