
Optimization of Ride Sharing Systems
Using Event-driven Receding Horizon

Control ?

Rui Chen ∗ Christos G. Cassandras ∗

∗ Division of Systems Engineering and Center for Information and
Systems Engineering, Boston University, Brookline, MA, USA,

(e-mail: ruic@bu.edu, cgc@bu.edu).

Abstract: We develop an event-driven Receding Horizon Control (RHC) scheme for a Ride
Sharing System (RSS) where vehicles are shared to pick up and drop off passengers so as
to minimize a weighted sum of passenger waiting and traveling times. The RSS is modeled
as a discrete event system and the event-driven nature of the controller significantly reduces
the complexity of the vehicle assignment problem, thus enabling its real-time implementation.
Simulation results using actual city maps and real traffic data illustrate the effectiveness of the
RH controller in terms of online implementation and performance relative to known heuristics.

Keywords: Transportation system; Ride sharing system; Event-driven receding horizon control;
Applications; Discrete approaches for hybrid systems; Performance evaluation, optimization;

1. INTRODUCTION

It has been abundantly documented that the state of
transportation systems worldwide is at a critical level. Dis-
ruptive technologies that aim at dramatically altering the
transportation landscape include vehicle connectivity and
automation as well as shared personalized transportation
through emerging mobility-on-demand systems. Focusing
on the latter, the main idea of a Ride Sharing System
(RSS) is to assign vehicles in a given fleet so as to serve
multiple passengers, thus effectively reducing the total
number of vehicles on a road network, hence also con-
gestion, energy consumption, and adverse environmental
effects.

The main objectives of a RSS are to minimize the total
Vehicle-Miles-Traveled (VMT) over a given time period
(equivalently, minimize total travel costs), to minimize
the average waiting and traveling times experienced by
passengers, and to maximize the number of satisfied RSS
participants (both drivers and passengers) (Agatz et al.
[2012]). When efficiently managed, a RSS has the po-
tential to reduce the total number of private vehicles in
a transportation network, hence also decreasing overall
energy consumption and traffic congestion. From a pas-
senger standpoint, a RSS is able to offer door-to-door
transportation with minimal delays which makes traveling
more convenient. From an operator’s standpoint a RSS
provides a considerable revenue stream. A RSS also pro-
vides an alternative to public transportation or can work
in conjunction with it to reduce possible low utilization of
vehicles and long passenger delays.

In this paper, we concentrate on designing dynamic vehicle
assignment strategies in a RSS aiming to minimize the
system-wide waiting and traveling times of passengers.
The main challenge in obtaining optimal vehicle assign-
ments is the complexity of the optimization problem in-
volved in conjunction with uncertainties such as random
passenger service request times, origins, and destinations,
? Supported in part by NSF under grants ECCS-1931600, DMS-
1664644, CNS-1645681, by AFOSR under grant FA9550-19-1-0158,
by ARPA-E’s NEXTCAR program under grant DE-AR0000796 and
by the MathWorks.

as well as unpredictable traffic conditions which determine
the times to pick up and drop off passengers. Algorithms
used in RSS are limited by the NP-complete nature of the
underlying traveling salesman problem (Chen et al. [2017])
which is a special case of the much more complex problems
encountered in RSS optimization. Therefore, a global op-
timal solution for such problems is generally intractable,
even in the absence of the aforementioned uncertainties.
Moreover, a critical requirement in such algorithms is a
guarantee that they can be implemented in a real-time
context.

Several methods have been proposed to solve the RSS
problem addressing the waiting and traveling times of pas-
sengers (Agatz et al. [2011], Santi et al. [2014], Berbeglia
et al. [2010], Berbeglia et al. [2010], Alonso-Mora et al.
[2017], Chen et al. [2017], Calafiore et al. [2017], Tsao
et al. [2018], Salazar et al. [2018]). In this paper, we
adopt an event-driven Receding Horizon Control (RHC)
approach. The basic idea of event-driven RHC introduced
in Li and Cassandras [2006] and extended in Khazaeni
and Cassandras [2018] is to solve an optimization problem
over a given planning horizon when an event is observed
in a way which allows vehicles to cooperate; the resulting
control is then executed over a generally shorter action
horizon defined by the occurrence of the next event of
interest to the controller. Compared to methods such as
Santi et al. [2014] and Alonso-Mora et al. [2017], the RHC
scheme is not constrained by vehicle seating capacities and
is specifically designed to dynamically re-allocate waiting
passengers to vehicles at any time. Moreover, compared to
the time-driven strategy in Chen et al. [2017], the event-
driven RHC scheme refrains from unnecessary calculations
when no event in the RSS occurs. Finally, in contrast to
models used in Tsao et al. [2018] and Salazar et al. [2018],
we maintain control of every vehicle and passenger in a
RSS at a microscopic level while ensuring that real-time
optimal (over each receding horizon) vehicle assignments
can be made.

In Section 2, we present a discrete event system model
of a RSS and formulate an optimization problem aimed
at minimizing a weighted sum of passenger waiting and
traveling times. Section 3 reviews the basic RHC scheme

previously used and identifies how it is limited in the
context of a RSS. This motivates the new RHC approach
described in Section 4, specifically designed for a RSS.
Simulation results are given in Section 5 based on real
traffic data and we conclude with Section 6.

2. PROBLEM FORMULATION

We consider a Ride Sharing System (RSS) in a traffic
network consisting of N nodes N = {1, ..., N} where each
node corresponds to an intersection. Nodes are connected
by arcs (i.e., road segments). Thus, we view the traffic
network as a directed graph G which is embedded in a
two-dimensional Euclidean space and includes all points
contained in every arc, i.e., G ⊂ R2. In this model, a
node n ∈ N is associated with a point νn ∈ G, the
actual location of this intersection in the underlying two-
dimensional space. The set of vehicles present in the RSS
at time t is A(t), where the index j ∈ A(t) will be used
to uniquely denote a vehicle, and let A(t) = |A(t)|. The
set of passengers is P(t), where the index i will be used to
uniquely denote a passenger, and let P (t) = |P(t)|. Note
that A(t) and P(t) are time-varying.

There are two points in G associated with each passenger
i, denoted by oi, ri ∈ G: oi is the origin where the
passenger issues a service request (pickup point) and ri
is the passenger’s destination (drop-off point). Let O(t) =
{o1, ..., oP } be the set of all passenger origins and R(t) =
{r1, ..., rP } the corresponding destination set. Vehicles
pick up passengers and deliver them to their destinations
according to some policy. We assume that the times when
vehicles join the RSS are not known in advance, but they
become known as a vehicle joins the system. Similarly, the
times when passenger service requests occur are random
and their destinations become known only upon being
picked up.

State Space: In addition to A(t) and P(t) describing the
state of the RSS, let xj(t) ∈ G and Nj(t) ∈ {0, 1, ..., Cj} be
the position and number of passengers of vehicle j at time
t where Cj is the capacity of j. The state of passenger
i is denoted by si(t) where si(t) = 0 if passenger i is
waiting to be picked up and si(t) = j ∈ A(t), where j > 0,
when the passenger is in vehicle j after being picked up.
Finally, we associate with passenger i a left-continuous
clock value zi(t) ∈ R whose dynamics are defined as
follows: when the passenger joins the system and is added
to P(t), the initial value of zi(t) is 0 and we set żi(t) = 1.
Thus, zi(t) may be used to measure the waiting time of
passenger i. When i is picked up by some vehicle j at
time ρi,j , zi(t) is reset to zero and thereafter measures the
traveling time until the passenger’s destination is reached
at time σi,j . In summary, the state of the RSS is X(t) =
{A(t), x1(t), . . . , xA(t), N1(t), . . . , NA(t),P(t), s1(t), . . . ,
sP (t), z1(t), . . . , zP (t)}.
Events: All state transitions in the RSS are event-driven
with the exception of the passenger clock states zi(t),
i ∈ P(t), in which case it is the reset conditions that
are event-driven. As we will see, all control actions (to be
defined) affecting the state X(t) are taken only when an
event takes place. Therefore, regarding a vehicle location
xj(t), j ∈ A(t), for control purposes we are interested in
its value only when events occur, even though we assume
that xj(t) is available to the RSS for all t based on an
underlying localization system.

We define next the set E of all events whose occurrence
causes a state transition. We set E = EU ∪ EC to
differentiate between uncontrollable events in EU and

controllable events in EC . There are six possible event
types: (1) αi ∈ EU : a service request is issued by passenger
i. (2) βj ∈ EU : vehicle j joins the RSS. (3) γj ∈ EU :
vehicle j leaves the RSS. (4) πi,j ∈ EC : vehicle j picks up
passenger i (at oi ∈ G). (5) δi,j ∈ EC : vehicle j drops off
passenger i (at ri ∈ G). (6) ζm,j ∈ EC : vehicle j arrives at
intersection (node) m ∈ N .

Note that events αi, βj are uncontrollable exogenous
events. Event γj is also uncontrollable, however it may not
occur unless the “guard condition” Nj(t) = 0 is satisfied,
i.e., vehicle j is empty when it leaves the system. The
remaining three events are controllable. First, πi,j depends
on the control policy (to be defined) through which a
vehicle is assigned to a passenger and is feasible only when
si(t) = 0 and Nj(t) < Cj . Second, δi,j is feasible only when
si(t) = j ∈ A(t). Finally, ζm,j depends on the policy (to
be defined) and occurs when the route taken by vehicle j
involves intersection m ∈ N .

State Dynamics: The events defined above determine
the state dynamics as follows.

(1) Event αi adds an element to the passenger set P(t) and
increases its cardinality, i.e., P (t+) = P (t) + 1 where t is
the occurrence time of this event. In addition, it initializes
the passenger state and associated clock: si(t

+) = 0,
żi(t

+) = 1 with zi(t) = 0 and generates the origin
information oi ∈ G.

(2) Event βj adds an element to the vehicle set A(t) and
increases its cardinality, i.e., A(t+) = A(t) + 1. It also
initializes xj(t) to the location of vehicle j at time t.

(3) Event γj removes vehicle j from A(t) and decreases its
cardinality, i.e., A(t+) = A(t)− 1.

(4) Event πi,j occurs when xj(t) = oi and it generates the
destination of this passenger ri ∈ G. This event affects the
states of both vehicle j and passenger i: Nj(t

+) = Nj(t) +
1, si(t

+) = j and, since the passenger was just picked
up, the associated clock is reset to 0 and starts measuring
traveling time towards the destination ri: zi(t

+) = 0,
żi(t

+) = 1.

(5) Event δi,j occurs when xj(t) = ri and it causes
a removal of passenger i from P(t) and decreases its
cardinality, i.e., P (t+) = P (t) − 1. In addition, it affects
the state of vehicle j: Nj(t

+) = Nj(t)− 1.

(6) Event ζm,j occurs when xj(t) = νm. This event triggers
a potential change in the control associated with vehicle j
as described next.

Control: The control we exert is denoted by uj(t) ∈ G
and sets the destination of vehicle j in the RSS. We note
that the destination uj(t) may change while vehicle j is en
route to it based on new information received as various
events may take place. The control is initialized when
event βj occurs at some point xj(t) by setting uj(t) = νm
where m ∈ N is the intersection closest to xj(t) in the
direction vehicle j is headed. Subsequently, the vector
u(t) = {u1(t), . . . , uA(t)} is updated according to a given
policy whenever an event from the set E occurs (we assume
that all events are observable by the RSS controller).
Our control policy is designed to optimize the objective
function described next.

Objective Function: Our objective is to minimize the
combined waiting and traveling times of passengers in
the RSS over a given finite time interval [0, T]. In order

to incorporate all passengers who have received service
over [0, T], we define PT = ∪t∈[0,T]P(t) to include all
i ∈ P(t) for any t ∈ [0, T]. In simple terms, PT records
all passengers who are either currently active in the RSS
at t = T or were active and departed at some t < T when
the associated δi,j event occurred for some j ∈ A(t).

We define wi to be the waiting time of passenger i and note
that wi = zi(t) where t is the time when event πi,j occurs.
Similarly, letting yi be the total traveling time of passenger
i, we have yi = zi(t) where t is the time when event δi,j
occurs. We then formulate the following problem, given an
initial state X0 of the RSS:

min
u(t)

E

[∑
i∈PT

[µwwi + µyyi]

]
(1)

where µw, µy are weight coefficients defined so that µw =
ω

Wmax
and µy = 1−ω

Ymax
, ω ∈ [0, 1], and Wmax and Ymax

are upper bounds of the waiting and traveling time of
passengers respectively. The values of Wmax and Ymax are
selected to capture the worst case tolerated for waiting
and traveling times respectively. This construction ensures
that wi and yi are properly normalized so that (1) is well-
defined.

The expectation in (1) is taken over all random event
times in the RSS defined in an appropriate underlying
probability space. Clearly, modeling the random event
processes so as to analytically evaluate this expectation
is a difficult task. This motivates viewing the RSS as
evolving over time and adopting a control policy based on
observed actual events and on estimated future events that
affect the RSS state. Assuming for the moment that the
system is deterministic, let tk denote the occurrence time
of the kth event over [0, T]. A control action u(tk) may
be taken at tk and, for simplicity, is henceforth denoted
by uk. Along the same lines, we denote the state X(tk)
by Xk. Letting KT be the number of events observed over
[0, T], we have the optimal value of the objective function
when the initial state is X0. Next, we convert this into
a maximization problem by considering [−µwwi − µyyi]
for each i ∈ PT . Moreover, observing that both wi and
yi are upper-bounded by T , we consider the non-negative
rewards T − wi and T − wi and rewrite J(X0) as

J(X0) = max
u0,···uKT

[∑
i∈PT

[µw(T − wi) + µy(T − yi)]

]
(2)

Then, determining an optimal policy amounts to solving
the following Dynamic Programming (DP) equation:

J(Xk) = max
uk∈G

[C(Xk,uk)+Jk+1(Xk+1)], k = 0, 1, . . . ,KT

where C(Xk,uk) is the immediate reward at state Xk
when control uk is applied and Jk+1(Xk+1) is the future
reward at the next state Xk+1. Our ability to solve this
equation is limited by the well-known “curse of dimension-
ality” even if our assumption that the RSS is fully deter-
ministic were to be valid. This further motivates adopting
a Receding Horizon Control (RHC) approach as in similar
problems encountered in Li and Cassandras [2006] and
Khazaeni and Cassandras [2018]. This is in the same spirit
as Model Predictive Control (MPC) techniques (Camacho
and Alba [2013]) with the added feature of exploiting the
event-driven nature of the control process, hence avoiding
unnecessary calculations and can significantly improve the
efficiency of the RH controller by reacting to random
events as they occur in real time. In particular, a control
action taken when the kth event is observed is selected to
maximize an immediate reward defined over a planning

Fig. 1. Event-Driven receding horizon control.

horizon Hk, denoted by C(Xk,uk, Hk), followed by an

estimated future reward Ĵk+1(X(tk +Hk)) when the state
is X(tk +Hk). The optimal control action u∗k is, therefore,

u∗k = arg max
uk∈G

[C(Xk,uk, Hk) + Ĵk+1(X(tk +Hk))] (3)

The control action u∗k is subsequently executed only over
a generally shorter action horizon hk ≤ Hk so that tk+1 =
tk + hk (see Fig. 1). The selection of Hk and hk will be
discussed in the next section.

3. RECEDING HORIZON CONTROL (RHC)

The basic RHC scheme in Li and Cassandras [2006]
considers a set of cooperating “agents” and a set of
“targets” in a Euclidean space. The purpose of agents is
to visit targets and collect a certain time-varying reward
associated with each target. The key steps of the scheme
are as follows: (1) Determine a planning horizon Hk at
the current time tk. (2) Solve an optimization problem
to minimize an objective function defined over the time
interval [tk, tk + Hk]. (3) Determine an action horizon hk
and execute the optimal solution over [tk, tk + hk]. (4) Set
tk+1 = tk + hk and return to step (1).

Letting A(t) be the agent set and P(t) the target set, we
define di,j(t) for any i ∈ P(t), j ∈ A(t) to be the Euclidean
distance between target i and agent j at time t. In Li
and Cassandras [2006], the planning horizon Hk is defined
as the earliest time that any agent can visit any target.
The action horizon hk is defined to be the earliest time in
[tk, tk+Hk] when an event in the system occurs (e.g., a new
target appears) or through hk = εHk for some ε ∈ (0, 1] so
as to ensure that hk ≤ Hk.

The concept of neighborhood for a target is defined in Li
and Cassandras [2006] to allow the RHC to avoid early
commitments of agents to target visits, since changes in
the system state may provide a better opportunity for an
agent to improve the overall system performance.

Using a relative responsibility function, the optimization
problem solved by the RHC at each control action point
assigns an agent to a point which minimizes a given
objective function and which is not necessarily a target
point. Details of how this problem is set up and solved and
the properties of the original RHC scheme may be found
in Li and Cassandras [2006]. In what follows, we define
the distance between any two points x, y ∈ R2 expressed
as d(x, y)

Limitations of the original RHC scheme: There
are three main limitations of the original RHC scheme:
(1) Agent trajectory instabilities may arise. (2) Future
cost estimation inaccuracies : this future cost is estimated
through its lower bound, thus resulting in an overly “opti-
mistic” outlook. (3) Algorithm complexity: the optimiza-
tion problem at each algorithm iteration involves the se-
lection of each agent’s heading over [0, 2π] as defined by
the set of feasible reachable points Fj(tk, Hk) = {w :
d(w, xj(tk)) = vHk}. The complexity of this problem

is O(GA(t)) where G is a given discretization level over
[0, 2π].

The modified RCH scheme in Khazaeni and Cassandras
[2018] deals with issues (1) and (3) above by defining a
set of active targets Sj(tk, Hk) for agent j at each iteration
time tk. Its purpose is to limit the feasible reachable set
Fj(tk, Hk) defined by all agent headings over [0, 2π] so that
it is reduced to a finite set of points. We omit details here
which may be found in Chen and Cassandras [2019].

4. THE NEW RHC SCHEME

Although Khazaeni and Cassandras [2018] resolves some
of the limitations of the original RHC scheme, it is still
not suitable for a RSS, starting with the fact that the
latter operates in a graph, rather than Euclidean, topology.
Thus, we begin by introducing some variables used in the
new RHC scheme as follows.

(1) d(u, v) is defined as the Manhattan distance (Farris
[1972]) between two points u, v ∈ G. This measures the
shortest path distance between two points on a directed
graph that includes points on an arc of this graph which
belong to G ⊂ R2.

(2) Ri,j(t) is the set of the n closest pickup locations in
the sense of the Manhattan distance defined above, where
n = Cj − Nj(t) − 1 if j picks up i at oi at time t, and
n = Cj −Nj(t) + 1 if j drops off i at ri at time t. Clearly,
the set may contain fewer than n elements if there are
insufficient pickup locations in the RSS at time t.

(3) R̂i,j(t) is the set of n drop-off locations for j, where
n = Nj(t) + 1 if j picks up i at oi, and n = Nj(t)− 1 if j
drops off i at ri.

(4) ϕi and ρi,j denote the occurrence time of events αi

(passenger i joins the RSS) and πi,j (pickup of passenger
i by vehicle j) respectively.

In the rest of this section we present the new RHC scheme
which overcomes the issues previously discussed through
four modifications: (i) We define the travel value of a
passenger to a vehicle considering the distance between
vehicles and passengers, as well as the vehicle’s residual
capacity. (ii) Based on the new travel value and the graph
topology, we introduce a new active target set for each
vehicle during [tk, tk + Hk). This allows us to reduce
the feasible solution set of the optimization problem (3)
at each iteration. (iii) We develop an improved future
reward estimation mechanism to better predict the time
that a passenger is served in the future. (iv) To address
the potential instability problem, a method to restrain
oscillations is introduced in the optimization algorithm at
each iteration.

We begin by defining the planning horizon Hk at the kth
control update consistent as

Hk = min
i∈P(tk),j∈A(tk)

{
d(xj(tk), ci)

vj(tk)

}
(4)

where

ci =

{
oi
ri

if si(t) = 0 and Nj(tk) < Cj

if si(t) = j (5)

and vj(tk) is the maximal speed of vehicle j at time tk,
assumed to be maintained over [tk, tk + Hk]. Thus, Hk is
the shortest Manhattan distance from any vehicle location
to any target (either oi or ri) at time tk. Note that ci
is undefined if si(t) = 0 and Nj(tk) = Cj . Formally, to
ensure consistency, we set d(xj(tk), ci) = ∞ if si(t) = 0
and Nj(tk) = Cj since oi is not a valid pickup point for j
in this case.

The action horizon hk ≤ Hk is defined by the occurrence
of the next event in E, i.e., hk = τk+1 − tk where τk+1
is the time of the next event to occur after tk. If no such
event occurs over [tk, tk +Hk], we set hk = Hk.

4.1 Vehicle Travel Value Function

In Khazaeni and Cassandras [2018], a travel cost function
ηi(x, t) was defined for any agent measuring the cost of
traveling from a point x at time t to a target i ∈ P(t).
In our case, we define instead a travel value measuring the
reward (rather than cost) associated with a vehicle j when
it considers any passenger i ∈ P(t). There are three cases
to consider depending on the state si(t) for any i ∈ P(t)
as follows:

Vi,j(xj(t), t) =



(1− µ) · t− ϕi

Wmax

+µ · D − d(xj(t), oi)

D
if si(t) = 0

(1− µ) · t− ρi,j
Ymax

+µ · D − d(xj(t), ri)

D
if si(t) = j

0 otherwise

(6)

Case 1: If si(t) = 0, then passenger i is waiting to be
picked up. From a vehicle j’s point of view, there are
two components to the value of picking up this passenger
at point oi: (i) The accumulated waiting time t − ϕi of
passenger i; the larger this waiting time, the higher the
value of this passenger is. (ii) The distance of j from
oi; the shorter the distance, the higher the value of this
passenger is. To ensure this value component is non-
negative, we define D to be the largest possible travel time
between any two points in the RSS (often referred to as
the diameter of the underlying graph) and consider D −
d(xj(t), oi) as this value component. In order to properly
normalize each component and ensure its associated value
is restricted to the interval [0, 1], we use the waiting time
upper bound Wmax introduced in (1) and the distance
upper bound D. Finally, µ ∈ [0, 1] is a weight coefficient
depending on the relative importance the RSS places on
passenger satisfaction (measured by waiting time) and
vehicle distance traveled.

Case 2: If si(t) = j ∈ A(t), then passenger i is already on
board with destination ri. We use similar idea as in Case
1 to define the value.

In addition to this “immediate” value associated with
passenger i, there is a future value for vehicle j to consider
depending on the sets Ri,j(t) and R̂i,j(t) defined earlier.
In particular, if si(t) = 0 and vehicle j proceeds to the
pickup location oi, then the value associated with Ri,j(t) is
defined as V Ri,j(xj(t), t) = maxn∈Ri,j(t) Vn,j(oi, t) which is
the maximal travel value among all passengers in Ri,j(t) to
be collected if vehicle j selects oi as its destination at time
t. On the other hand, if si(t) = j and vehicle j proceeds to
the drop-off location ri, then Vn,j(oi, t) above is replaced
by Vn,j(ri, t). Since the value of si(t) is known to j, we
will use ci as defined in (5) and write V Ri,j(xj(t), t) =

maxn∈Ri,j(t) Vn,j(ci, t). Similarly, the value of R̂i,j(t) is

defined as V R̂i,j(xj(t), t) = maxn∈R̂i,j(t)
Vn,j(ci, t). We then

define the total travel value associated with a vehicle j
when it considers any passenger i ∈ P(t) as

Fig. 2. Example of the reachability set of vehicle j.

V̄i,j(xj(t),t) =

Vi,j(xj(t), t) + max{V Ri,j(xj(t), t), V
R̂
i,j(xj(t), t)}

(7)

4.2 Active Target Sets

The active target set defined in Khazaeni and Cassandras
[2018] cannot be used in a RSS since the topology is no
longer Euclidean and the travel cost function ηi(x, t) has
been replaced by the travel value function (7). We begin
by defining the reachability (or feasible) set Fj(tk, Hk) for
vehicle j in the RSS topology specified by G ⊂ R2. This is
now a finite set consisting of horizon points in G reachable
through some path starting from xj(tk) and assuming a
fixed speed vj(tk) as defined in (4). We can now define
the active target set of vehicle j to consist of any target
(pickup or drop-off locations of passengers) which has the
largest travel value to j for at least one horizon point
x ∈ Fj(tk, Hk).

Definition: The set of Active Targets of vehicle j is
defined as

Sj(tk, Hk) = {l : l = arg max
i∈P(t)

V̄i,j(x, tk +Hk)

for some x ∈ Fj(tk, Hk)}
(8)

Observe that Sj(tk, Hk) ⊆ P(tk) and may reduce the
number of passengers to consider as potential destinations
assigned to j when Sj(tk, Hk) ⊂ P(tk) since uj(tk) ∈
Sj(tk, Hk). In the example of Fig. 2, P(tk) contains 6
passengers where s1(tk) = s2(tk) = s4(tk) = 0 and
s3(tk) = s5(tk) = s6(tk) = j. Thus, we can immediately
see that P (tk) = 6 < |Fj(tk, Hk)| = 10. Further, observe
that r5, r6 /∈ Sj(tk, Hk) since both points are farther away
from xj(tk) than r3 and o2 respectively. Therefore, the
optimal control selection to be considered at tk is reduced
to uj(tk) ∈ Sj(tk, Hk) = {o1, o2, r3, o4}. In addition, if the
capacity Cj happens to be such that Cj = 3, then the only
feasible control would be uj(tk) = r3.

4.3 Future Reward Estimation

In order to solve the optimization problem (3) at each
RHC iteration time tk, we need to estimate the time that
a future target is visited when t > tk+Hk so as to evaluate
the term Ĵk+1(X(tk +Hk)). Let us start by specifying the
immediate reward term C(Xk,uk, Hk) in (3). In view of
(2), there are three cases: (i) As a result of uk, an event πi,j
(where si(t) = j) occurs at time tk+1 with an associated
reward C(Xk,uk, Hk) = µw(T − wi) where wi = tk+1 −

ϕi, (ii) As a result of uk, an event δi,j occurs at time
tk+1 with an associated reward C(Xk,uk, Hk) = µy(T −
yi) where yi = tk+1 − ρi,j , and (iii) Any other event
results in no immediate reward. In summary, adopting the
notation C(uk, tk+1) for the immediate reward resulting
from control uk (instead of C(Xk,uk, Hk) in (3)),we have

C(uk, tk+1) =

{
µw(T − wi) if event πi,j occurs at tk+1

µy(T − yi) if event δi,j occurs at tk+1
0 otherwise

(9)
In order to estimate future rewards at times t > tk+1, recall
that Tk,j ⊆ P(t)− {uj(tk)} is a set of targets that vehicle
j would visit in the future, after reaching uj(tk). This set
was defined in Khazaeni and Cassandras [2018] and a new
definition suitable for the RSS will be given below. Then,
for each target n ∈ Tk,j the associated reward is C(uk, τ̂n,j)
where τ̂n,j is the estimated time that vehicle j reaches
target n. If n = oi for some passenger i, then, from (9),
C(uk, τ̂n,j) = µw(T − ŵi) where ŵi = τ̂n,j −ϕi, whereas if
n = ri for some passenger i, then C(uk, τ̂n,j) = µy(T − ŷi)
where ŷi = τ̂n,j − ρi,j . Further, we include a discount
factor λn(τ̂n,j) to account for the fact that the accuracy
of our estimate τ̂n,j is monotonically decreasing with time,
hence λn(τ̂n,j) ∈ (0, 1]. Therefore, for each vehicle j the

associated term for Ĵk+1(X(tk +Hk)) is

Ĵj(X(tk +Hk)) =

|Tk,j |∑
n=1

λn(τ̂n,j)C(uk,j , τ̂n,j) (10)

We now need to derive estimates τ̂n,j for each n ∈ Tk,j and
to define the set Tk,j . We omit details here which may be
found in Chen and Cassandras [2019].

4.4 Preventing Vehicle Trajectory Instabilities

This problem arises when a new passenger joins the system
and introduces a new target for one or more vehicles in its
vicinity which may have higher travel value in the sense
of (7) than current ones. As a result, a vehicle may switch
its current destination uj(tk) and this process may repeat
itself with additional future new passengers. In order to
avoid frequent such switches, we introduce a threshold
parameter denoted by Θ and react to any event αi (a
service request issued by a new passenger i). In simple
terms, the current control remains unaffected unless the
new passenger provides an incremental value relative to
this control which exceeds a given threshold.

4.5 RHC optimization scheme

The full RHC scheme detailed in Chen and Cassandras
[2019] consists of a sequence of optimization problems
solved at each event time tk, k = 1, 2, . . .with each problem
of the form

u∗k = arg max
uk,j∈Sj(tk,Hk)

j∈A(tk)

[C(uk, tk+1)

+
∑

j∈A(tk)

|Tk,j |∑
n=1

λn(τ̂n,j)C(uk,j , τ̂n,j)

(11)

where Sj(tk, Hk) is the active target of vehicle j at time
tk obtained through (8) and C(uk, tk+1) is given by (9).

Complexity of Algorithm: As seen in (11), the optimal
control for vehicle j at any iteration is selected from the
finite active target set Sj(tk, Hk). Thus, the complexity is

Table 1. Average RHC performance for differ-
ent weights ω (New York City RSS, 28 vehi-

cles)

[ω, 1 − ω] Waiting time [mins] Traveling time [mins] Vehicle occupancy

[0.05, 0.95] 4.1 8.1 2.07
[0.5, 0.5] 5.2 12.4 2.79
[0.95, 0.05] 7.0 12.6 2.83

O(
∑

j∈A(t) Sj(tk, Hk)). Observe that Sj(tk, Hk) decreases

as H(k) is reduced and as targets are visited if new ones
are not generated.

5. SIMULATION RESULTS

We use the SUMO (Simulation of Urban Mobility)
(Behrisch et al. [2011]) transportation system simulator
to evaluate our RHC for a RSS applied to two traffic
networks (in Ann Arbor, MI and in New York City, NY).
Vehicle speeds are set by the simulation and they include
random factors like different road speed limits, turns,
traffic lights, etc. The simulation results pertaining to the
Ann Arbor RSS are omitted here and may be found in
Chen and Cassandras [2019], as is the map covering an
area of 10 × 10 blocks in New York City for which we
generate passenger arrivals based on actual data from the
NYC Taxi and Limousine Commission; these provide exact
timing of arrivals and associated origins and destinations.
We pre-load in SUMO a fixed number of vehicles and the
remaining RSS system parameters are selected as follows:
Cj = 4, T = 300 min, Wmax = 47 min, Ymax = 47 min,
D = 3000 m and the threshold Θ is set as 0.3. We pre-
loaded 28 vehicles and run simulations until 160 passengers
are served (which is within T = 300 min set above) based
on actual data from a weekday of January, 2016 (the ap-
proximate passenger rate is 16 passengers/min). In order
to evaluate the performance of the RSS at steady state,
we allow a simulation to load more than 160 passengers.

Table 1 shows the associated waiting and traveling times
under different weights. As expected, emphasizing waiting
results in larger vehicle occupancy and longer average
travel times. The associated waiting and traveling time
histograms for all cases in Table 1 are shown in Chen and
Cassandras [2019].

Table 2. Average RHC performance for differ-
ent numbers of vehicles (New York City RSS,

160 passengers, ω = 0.5)

Vehicle Numbers Waiting time [mins] Traveling time [mins] Vehicle occupancy Weighted sum in (1)

28 5.2 12.4 2.79 0.187
38 3.5 10.7 2.31 0.151

Table 2 compares different vehicle numbers when the
delivered passenger number is 160 showing waiting and
traveling times, vehicle occupancy and the objective in (1).

Finally, we tested a relatively longer RSS operation with 38
vehicles based on the same actual passenger data as before
which generates 1000 passengers over approximately 1.2
real operation hours. Simulations will not end until 900
passengers are delivered. In Table 3, we compare our RHC
method with a greedy heuristic (GH) algorithm (similar to
Agatz et al. [2011]). As seen in Table 3 with ω = 0.5, the

Table 3. Average waiting and traveling time
comparisons under RHC and GH (New York

City RSS, 38 vehicles, ω = 0.5)

Method Waiting time [mins] Traveling time [mins] Weighted sum in (1)

RHC 19.1 13.7 0.349
GH 61.4 19.0 0.855

RHC algorithm achieves a substantially better weighted
sum performance (approximately by a factor of 2).

6. CONCLUSIONS AND FUTURE WORK

An event-driven RHC scheme is developed for a RSS mod-
eled as a discrete event system where vehicles are shared
to pick up and drop off passengers so as to minimize a
weighted sum of passenger waiting and traveling times.
This event-driven nature reduces the complexity of the
vehicle assignment problem. In our ongoing work, we are
considering the load balancing problem for idle vehicles
(Swaszek and Cassandras [2019]), including where to op-
timally position them so that they are best used upon
receiving future calls. We will also study the case where
destination information is known in advance.

REFERENCES

Agatz, N., Erera, A., Savelsbergh, M., and Wang, X. (2012). Opti-
mization for dynamic ride-sharing: A review. European Journal
of Operational Research, 223(2), 295–303.

Agatz, N.A., Erera, A.L., Savelsbergh, M.W., and Wang, X. (2011).
Dynamic ride-sharing: A simulation study in metro atlanta.
Transportation Research Part B: Methodological, 45(9), 1450–
1464.

Alonso-Mora, J., Samaranayake, S., Wallar, A., Frazzoli, E., and Rus,
D. (2017). On-demand high-capacity ride-sharing via dynamic
trip-vehicle assignment. Proceedings of the National Academy of
Sciences, 114(3), 462–467.

Behrisch, M., Bieker, L., Erdmann, J., and Krajzewicz, D. (2011).
Sumo–simulation of urban mobility. In The Third International
Conference on Advances in System Simulation (SIMUL 2011),
Barcelona, Spain, volume 42.

Berbeglia, G., Cordeau, J.F., and Laporte, G. (2010). Dynamic
pickup and delivery problems. European journal of operational
research, 202(1), 8–15.

Calafiore, G.C., Novara, C., Portigliotti, F., and Rizzo, A. (2017).
A flow optimization approach for the rebalancing of mobility on
demand systems. In Decision and Control (CDC), 2017 IEEE
56th Annual Conference on, 5684–5689. IEEE.

Camacho, E.F. and Alba, C.B. (2013). Model predictive control.
Springer Science & Business Media.

Chen, R. and Cassandras, C.G. (2019). Optimization of ride
sharing systems using event-driven receding horizon control. arXiv
preprint arXiv:1901.01919v2.

Chen, X., Miao, F., Pappas, G.J., and Preciado, V. (2017). Hierarchi-
cal data-driven vehicle dispatch and ride-sharing. In Decision and
Control (CDC), 2017 IEEE 56th Annual Conference on, 4458–
4463. IEEE.

Farris, J.S. (1972). Estimating phylogenetic trees from distance
matrices. The American Naturalist, 106(951), 645–668.

Khazaeni, Y. and Cassandras, C.G. (2018). Event-driven cooperative
receding horizon control for multi-agent systems in uncertain en-
vironments. IEEE Transactions on Control of Network Systems,
5(1), 409–422.

Li, W. and Cassandras, C.G. (2006). A cooperative receding
horizon controller for multivehicle uncertain environments. IEEE
Transactions on Automatic Control, 51(2), 242–257.

Salazar, M., Rossi, F., Schiffer, M., Onder, C.H., and Pavone,
M. (2018). On the interaction between autonomous mobility-
on-demand and public transportation systems. arXiv preprint
arXiv:1804.11278.

Santi, P., Resta, G., Szell, M., Sobolevsky, S., Strogatz, S.H., and
Ratti, C. (2014). Quantifying the benefits of vehicle pooling with
shareability networks. Proceedings of the National Academy of
Sciences, 111(37), 13290–13294.

Swaszek, R. and Cassandras, C. (2019). Load balancing in mobility-
on-demand systems: Reallocation via parametric control using
concurrent estimation. Proc. of 22nd IEEE Intl. Conference on
Intelligent Transportation Systems, 2148–2153.

Tsao, M., Iglesias, R., and Pavone, M. (2018). Stochastic model
predictive control for autonomous mobility on demand. arXiv
preprint arXiv:1804.11074.

