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Abstract— In this paper, we identify a new security issue,
called the malicious energy attack, in sustainable wireless com-
munication networks (SWCNs). We show that by providing
extra energy to specific nodes, a malicious energy source (MES)
can intentionally manipulate the routing path of SWCNs. The
efficiency of energy attack depends on which nodes to be attacked.
To enhance the efficiency of energy attack, a reinforcement
learning technique, Q-Learning, is used to develop an intelligent
energy attack (Q-IEA) policy for MES. Through interacting with
the network environment, the Q-IEA can intelligently take attack
actions without having to know the details of the routing method
at the network layer. This function can greatly enhance the
adaptability of MES to different routing protocols and network
topologies. Simulation results verify that Q-IEA can significantly
manipulate the routing path of the targeted traffic on demand.

Index Terms—Sustainable wireless communication networks,
security, malicious energy attack, Q-Learning

I. INTRODUCTION

The rapid development of the Internet of things (IoT), body
area network (BAN), and smart infrastructures involves an
ever increasing number of sensors and actuators. Powering the
large number of low power devices in these applications is a
great challenge, as battery replacement is time consuming and
cost inefficient. This encourages us to utilize the renewable
energy to meet the clean and self-sustainable requirements
of the coming green revolution [1], [2]. Through scavenging
energy such as sunlight, wind, electromagnetic waves, and
biothermal energy from surrounding environment, an energy
harvesting node (EHN) in sustainable wireless communication
networks (SWCNs) can run semi-perpetually without any
battery replacement [3].

In this work, we focus on radio frequency (RF) energy
harvesting as RF energy radiated from cellular base stations,
TV towers, and Wi-Fi access points is widely available in
both indoor and outdoor environments. The energy harvesting
ability greatly extends the sustainability and scalability of
SWCNs; nevertheless, it causes some new security issues. The
information disclosure problem in simultaneous information
and power transfer [4] and the unauthorized commands attack
in a body energy driven implantable medical device [5] have
been investigated in the literature. Although extensive research
has been conducted on protecting the wireless sensor network
security [6], there is no research about using energy as a tool
of attack to threat the information security in SWCNs.

In this paper, we propose a new attack method, called the
malicious energy attack, that utilizes the energy-aware feature
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Figure 1. An example of malicious energy attack. (a) An ordinary SWCN
without energy attack chose a shorter path from Source to Destination. (b) An
SWCN attacked by the MES chose a path through the Compromised node.

of the routing protocols in SWCNs [7]. Energy-aware routing
protocols have been widely adopted in power-constrained net-
works to extend the lifespan of wireless networks with limited
energy supply. In the energy attack method, the malicious
energy source (MES) manipulates routing paths in the network
layer by consciously charging specific EHNs [8]. The infected
nodes that receive extra energy from the energy attacker will
become more active than ordinary nodes to work as data
forwarders or information aggregators. As shown in Fig. 1,
if the MES is able to select the infected nodes properly, it
can manipulate the routing path and “encourage” most of the
data traffic into passing through a compromised node who was
originally deviated from the source and the destination.

Although the MES cannot directly profit from the energy
attack, it can collaborate with other network attack meth-
ods such as eavesdropping and create opportunities for an
eavesdropper to sniff confidential data from any target node.
Since energy attack is an indirect attack method that disrupts
the network traffic through energy, a “harmless” or even
“beneficial” resource in the environment. It’s immune to many
security mechanisms that will greatly threaten the security of
SWCNs and not been fully studied.

The amount of traffic that can be “lured” to the com-
promised node heavily depends on the energy distribution
of EHNs with the energy-aware routing. To optimize the
efficiency of malicious energy attack, MES needs to make a
wise decision on which nodes in an SWCN should be attacked.



This question may not be difficult to answer if we know the
global network status of SWCN (i.e., network topology, energy
harvesting rate and instant remaining energy of each node,
traffic rate on each node, and etc.) and the parameters of the
routing protocol in path selection. The optimal energy attack
can be formulated as a deterministic optimization problem [9].
Unfortunately, in practice, an attacker is very likely to face
an unknown network environment. For this reason, we need
to develop some strategies for the energy attacker to make
intelligent charing decisions without knowing network and
routing configurations.

Recent development of the reinforcement learning (RL)
technique provides a promising solution to tackle the above
challenges [10]. Inspired by the powerful ability of RL
interacting with an unknown environment, we propose an
RL-enabled intelligent energy attack strategy in this paper.
The Q-learning algorithm is implemented on the MES to
help the attacker find the optimal attack strategy in order
to maximize the amount of traffic that can be lured to the
compromised node. The malicious energy attacker will train
itself intelligently to improve its attack pattern by interacting
with the SWCNs.

The main contributions of this paper are two folds. First,
we identify a new attack method, called malicious energy
attack, in energy-aware SWCNs. The malicious energy attack
manipulates the routing path at the network layer by intention-
ally charging specific EHNs. As an emerging attack method,
the malicious energy attack is immune to many security
mechanisms since it is an indirect attack method that disrupts
the network protocols through energy. Secondly, we study how
to enhance the efficiency of malicious energy attack via the RL
technique. Through applying the Q-Learning method, the MES
can attack the network intelligently without knowing the global
network settings or the routing protocols. The Q-learning
enabled intelligent energy attack significantly outperforms the
energy attack methods without learning ability.

II. BACKGROUND

In this section, we briefly introduce the background about
the energy-aware routing and Q-learning algorithm.

A. Energy Aware Routing

In the power-constrained wireless networks, energy aware-
ness is an essential property of routing protocols to extend
network lifespan. The shortest path may not be an optimal
route, especially if nodes on that path run low on power. The
early depletion of energy will cause serious consequences on
network connectivity. Node with low energy usually stand-by
to conserve energy. By contrast, nodes with sufficient energy
tend to be more active and more likely to be selected as data
forwarders [9] or as information aggregators [11]. In networks
with energy harvesting capabilities, the harvesting potential
is another important consideration in the route selection. To
prolong the network lifetime, the harvesting aware routing
protocols are designed to align the traffic load with the
harvesting potency at different nodes [12].

A representative routing solution to the energy harvesting
wireless networks is energy-opportunistic weighted minimum
energy (E-WME) routing [7] that is both energy and harvest
aware. The forwarding cost is formulated as an exponential
function of the nodal residual energy (i.e., λn), a linear
function of the transmit and receive energies (i.e., en), and
an inversely linear function of the harvesting rate (i.e., rn) as
shown in (1). E-WME selects the route with the lowest sum
weight for data delivery. In the simulation, we use E-WME as
the routing protocol in the tested SWCN.

Cn =
1

rn logµ
(µ1−λn − 1)en (1)

Routing security plays a critical rule crucial to protect the
data privacy and to maintain the stability of a network. In the
literature, adversary users attempt to threat the network secu-
rity through a variety of attack methods, like the blackhole,
wormhole, selective forwarding, sybil attack, and acknowl-
edgement spoofing. There have been extensive research on the
design of secure routing for SWCNs to protect the network
security at the information plane [13]–[15].

In conventional Network layer attack methods, the attacker
usually needs to gain a full control of at least one legitimate
node to insert illegal routing information to the network. The
legality of information can be verified by inserting artificial
imprints (e.g., cryptography, packet identification, and pream-
ble). In adversary energy attack, however, the routing path
is intentionally manipulated without injecting bogus routing
information or creating artificial high-quality links, but by
changing the energy level of EHNs. Cryptographic techniques
can not prevent this type of attack since energy attacker does
not modify or fabricate routing information; by contrast, the
energy attack takes place at the energy plane. In addition,
unlike the wormhole attack that tunnels the packets to a distant
node in the network and thus can be detected by measuring the
distance of a single hop, the geographic information won’t help
detect the energy attack. These features make the malicious
energy attack particularly difficult to defend against.

B. Q-learning Algorithm

Q-learning is a representative model-free reinforcement
learning algorithm. In the process of Q-learning algorithm,
the agent seeks an optimal action that produces the maximal
cumulative rewards via a trial-and-error manner [16]. The
agent interacts with the environment through action and the
reward from the environment. Each action is evaluated by
a reward which helps the learning agent to learn from its
past experiences. Q-learning algorithm maintains a Q table
to record the learned experience. A typical equation used to
update the Q value is depicted in (2), where st and at are the
state and action at time t, respectively. r(st, at) represents the
measured reward.

Q(st, at) = (1− α)Q(st, at) + α[r(st, at)

+ γ ∗max
a

Q(st+1, a)]
(2)



The learning rate α and discount factor γ in (2) are two
important parameters that affect learning. The learning rate
controls the aggressiveness of learning. As the learning rate
increase, the agent will rely more on the current reward and
less on knowledge learned from previous experiments. It can
cause unnecessary oscillations when a is too large. Discount
factor control agent to predict future reward, let the agent take
a longer view. In practice, γ is commonly set slightly smaller
than 1.0 to facilitate the convergence of Q value during the
learning process [17]. In Section V-B, we will investigate the
impact of learning rate and discount factor on the Q-learning
enabled intelligent energy attack.

III. SYSTEM AND ATTACK MODEL

A. System Model

Consider a typical RF energy harvesting powered SWCN,
as shown in Fig. 1. EHNs harvest ambient RF energy from
air and store the harvested energy for future computation
and communications. Since the ambient RF energy density
is very thin, the EHNs usually maintain low energy level. We
assume E-WME routing is implemented in the Network layer
to prolong the lifetime of this energy-constrained network. The
EHNs with higher harvest rate and more energy will have
a lower forwarding cost; the path with least accumulative
forwarding cost will be selected for the traffic transmission
from source to destination. When there is no external energy
sources (i.e., energy attackers), all EHNs in the network have
comparable energy harvest rate and the path with fewer hops
and shorter distance tends to be selected as the preferred
forwarding route.

B. Attack Model

Different from the conventional Network layer attack meth-
ods, the MES has no information exchange with the targeted
SWCN. Generally, the MES is not interested in collecting the
information either. The role of MES is, through intentionally
charging specific EHNs, to encourage the network traffic to
the compromised nodes in assisting with other attack methods
such as eavesdropping or blackhole attacks. We assume that
there are some observer nodes and one compromised node
scattered in the SWCN deployed area. These nodes can
communicate with the MES. For malicious charging without
location information, we evenly divide the SWCN area into
many small cells which contain approximate 0-2 EHNs. At
present, we assume that the cell division is optimal that each
cell contains one EHN. The MES equipped with beamforming
antennas can directional charge each cell. In the current stage,
our attack model is on-off attack; in other words, the battery
will be charged to nearly full when the nodes are under energy
attack1. The reinforcement learning algorithm is implemented
on MES to select the best nodes to attack in order to maximize
the amount of traffic lured to the compromised node, which
is discussed in the next section.

1Due to the nonlinear charging feature of the battery, it will take infinite
time to charge the EHN to full battery. In this paper, we assume the EHN
can be charged to 99% under energy attack.

IV. INTELLIGENT ENERGY ATTACK POLICY

In light of the unknown network and routing information,
there are two main challenges in the design of an optimal
energy attack strategy.

First of all, without knowing the network state information
(e.g., traffic distribution, routing protocols and energy level of
EHNs), it is difficult to mathematically model the relationship
between the network states and the amount of traffic traveling
through a compromised node. Secondly, the network environ-
ment is highly dynamic. If the MES attacks the SWCN based
on an instantaneous status of the network, the solution may be
only optimal for a snapshot of the network. Therefore, how to
adjust the attack pattern to accommodate the dynamics of the
SWCN is challenging.

In order to tackle the above challenges, we propose a Q-
learning enabled intelligent energy attack method (Q-IEA).
The Q-IEA is a model-free method that doesn’t need a
mathematical model to describe the interaction between the
attacking actions and the network environments. Instead it
directly observes the states of the network, and improves an
attack policy based on the learning experience.

The key for the Q-IEA to handle the highly dynamic chal-
lenge is how to construct the state space. Reasonable design
of state space can greatly determine the agent’s performance.
The best state information should contain the energy level
of all nodes in the network. However, these information are
private to each EHN and wouldn’t be obtained by the attacker.
Instead, we deployed some observer nodes that cooperate with
the MES. These nodes will act as spy nodes to monitor the
local harvesting rate and traffic distribution, then provide it to
the attacker. Since harvesting rate and traffic of spied nodes is
known, we can estimate the rough battery level2 of nodes in
the local areas of the spy nodes. The estimated energy level
of spied nodes will construct the state space in Q-IEA.

In each period, the MES takes action at to select k number
of victim EHNs to charge aiming to manipulate the routing
paths and encourage the most traffic through the compromised
node. We measure the amount of targeted traffic lured through
the compromised node as the reward rt. In each period, the
reward information is reported to the MES. The agent aims
at finding the best policy mapping the state to the most
appropriate action so that the total rewards can be maximized.

In addition, a pre-train is employed to abstract essential
nodes for reducing the action space of Q-IEA. Since charging
most of the nodes that are far away from the compromised
node, Nc, will not receive any reward and leads to inefficient
and lengthy training for Q-IEA; we call these EHNs invalid
nodes. Pre-train efficiently eliminates those invalid nodes and
greatly improve the performance of Q-IEA. We will show
more details in the evaluation section.

Moreover, to pick up the key nodes that truly contributes
to the positive rewards in every state, we revised the action

2Although at the beginning, there will be errors in the estimations of battery
level due to the heterogenous initial energy among different nodes. But as
experiment goes, the error will gradually decrease, which converges to ≤5%
in our simulation.



to select a single node in the training stage. The value in the
Q-table will represent the effectiveness of attacking a node in
manipulating the traffic route at the corresponding state. In
the attack stage, the most k essential EHNs are selected3. The
single-attack training can greatly improve training efficiency
and reduce training time.

V. SIMULATION AND ANALYSIS

In this section, we evaluate the performance of the proposed
Q-IEA and compare the performance of Q-IEA with bench-
mark solutions.

A. Simulation Settings

The SWCN network is built based on the Python wsnsimpy,
a dedicated simulator for wireless sensor networks. We have
modified the package accordingly to fully support energy
harvesting and malicious energy attacks. We constructed a
large SWCN with 90 EHNs deployed in 700 meters by
700 meters area, as shown in Fig. 2. The average distance
among neighboring nodes is 70 meters, while the maximum
transmission range of each node is 100 meters. In the test,
each EHN generates data packets following Poisson process
with mean value λ = 0.2 packets per slot. We suppose
the compromised node located at the bottom left corner is
interested in the target traffic from the source at the top left
corner to the destination at the bottom right corner. The blue
arrows in the graph constitute the preferred main path in the
ordinary network when the energy attacker is not present.

Figure 2. An example of a large SWCN with 90 EHNs

The EHNs among the network have heterogenous average
energy harvest rate, rn, which follows a uniform distribution.
In average, it takes 75 slots to charge the battery (i.e., superca-
pacitor) to nearly full4. Once fully charged, it can send roughly

3It might be possible that attacking the most k essential EHNs is not be
the optimal solution. However, through simulation evaluations, we found that
compared with sequentially training multiple Q-Tables for each EHN attacked,
training a single Q-table is more efficient and effective with less training time.

4Note that, due to the nonlinearity of the battery, the actual amount of
energy that can be captured by the EHN depends on the instant residual
energy of the battery [18]. Therefore, the amount of harvested energy in each
slot will not be a constant but calculated based on Equation (6) of [18].

17 packets before battery reaches the low-energy threshold.
The EHNs in low-energy mode will stay at inactive mode and
avoid forwarding packets for neighboring nodes. Due to the
randomness of the network traffic, the battery level of EHNs
are highly dynamic, which further results in different selected
paths from the source to the destination.

We suppose the MES selects three victim EHNs to attack
and charges them to full battery in each attack. We set 20
slots as one observation period. There are three spy nodes
evenly placed around the compromised node. The spied areas
are marked by blue circles in Fig.2. At the end of each period,
the spy node will take the average of the estimated energy
on all monitored nodes as the average energy of the spied
area. In the Q-IEA implementation, we evenly discretized the
energy level, 0 to 100%, to level 0 to 9, because Q-learning
only deal with discrete states. After collected the discrete state
information from spy nodes, the attacker, which is not shown
in Fig. 2 will update Q-table based on (2) and select the top
k EHNs that achieves highest rewards for energy attack.

Since the compromised node is largely deviated from both
the source and destination, the amount of targeted information
captured by the compromised node is little in the ordinary
network without energy attack. In our simulation, we choose
random attack as the baseline. The random attack is an
inefficient but simplest attack method. In each period, it selects
random nodes to attack without any learning capability. As
discussed earlier, the optimal energy attack can be easily
solved using deterministic optimization algorithms if the rout-
ing information and the instant energy level of each EHN are
known. Although the optimal energy attack is infeasible to
implement, we consider it as the upper bound of the malicious
energy attack. In the performance evaluation, we compare Q-
IEA with baseline and upper bound performance in different
settings.

B. Performance Evaluation

In this section, we evaluate the performance of Q-IEA and
analyze the impact of training time, number of nodes attacked,
traffic rate on the effectiveness of Q-IEA.

1) Performance Comparisons and Improvements: In order
to evaluate the effectiveness of the Q-IEA, we ran the random
attack and Q-IEA with the same simulation settings and
presented their rewards that are normalized by the upper bound
in Fig. 3. Each bar plot is the average performance achieved
with ten independent tests. By comparing the performance
of Baseline and Q-IEA in Fig. 3, we observe that with the
assistance of Q-learning, the intelligent attack achieves 5 times
higher reward than the random attack, which verifies the
effectiveness of Q-IEA.

However, the performance gap between Q-IEA and the
Upper is significant; the Q-IEA only achieves 7.4% of the
UpperBound performance in average. In the UpperBound at-
tack, we assume the MES knows the global and instantaneous
network states and can choose the most appropriate three
nodes to attack. On average, it is able to lure 44% of the
total target traffic to the compromised node. In reality, only



the average energy of nodes in the local spied area is known
to the energy attacker in Q-IEA. Due to the imperfect state
information, Q-IEA only attracts about 3.3% of total traffic
by attacking three nodes, which is 7.4% of the UpperBound
performance.
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Figure 3. Q-IEA performance comparisons and improvements

Another reason that accounts for the relatively low perfor-
mance of Q-IEA is the large amount of invalid attacks in the
action space, as most of EHNs are invalid nodes. In order to
improve the attack efficiency, a pre-train is used to solve this
issue as we discussed in section III. In the pre-train phase,
the reward when each EHN is attacked is recorded. By elim-
inating the nodes with no positive rewards, the action space
is significantly reduced resulting in an improved efficiency of
the energy attack. In Fig.3, we apply the reduced action space
to both baseline random attack and the Q-IEA. The reduced
action space significantly improves the baseline attack and
makes it comparable to the original Q-IEA. However, the Q-
learning can further improve the attack efficiency as Q-IEA
can eventually converge to “most” effective actions. The Q-
IEA Reduced achieves 22.1% normalized reward, which is
three times of the Baseline Reduced attack.

2) Train Time: We plotted the training curve and demon-
strated the effectiveness of Q-IEA Reduced with training
steps in Fig. 4. The x-axis is the training time in terms of
thousands of steps and y-axis is the percentage of target
traffic traveled through the compromised node representing
the reward. We can observe that the performance grows as
the training time increases, since with longer training time,
the model is trained more sufficiently to focus on the truly
effective actions. However, the performance will not continue
improve significantly as time steps exceed 8, 000 after the
model well trained.
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Figure 4. Impact of training time on the performance of Q-IEA.

3) Learning Rate & Discount Factor: Fig. 5 demonstrates
the impact of learning Rate (LR) and the Discount Factor
(DF) on the performance of Q-IEA with reduced action space.
We conducted independent tests with three combined settings.
Comparing the results between first and second settings, we
observe slight performance improvements with a larger DF.
The existence of DF can help the model to enhance those
actions that gained higher reward in the long term rather than
just the best action at the current time. By comparing the
results between the second and third settings, we noted that
as the LR increases, the performance becomes worse. With
a larger LR, the model will depend more on the Q-value of
current step but less on the updated Q-value. As a result, the
Q-value is more likely to oscillate rather than converge to the
optimal solution. Therefore, we choose LR=0.02 and DF=0.9
for the remaining tests in the paper.
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Figure 5. Impact of LR and DF on the performance of Q-IEA.

4) Number of nodes attacked: Intuitively speaking, the
more nodes that are attacked (i.e., a larger k), the greater im-
pact of the MES on SWCN, which can potentially bring higher
rewards. This is confirmed by the simulation results presented
in Fig. 6. With more nodes attacked, the MES gains stronger
forces to lure the targeted traffic to the compromised node.
Especially if all nodes along the source→Nc→destination
path are charged to nearly full, the most majority of the traffic
can be lured to the compromised node. However, it’s neither
practical nor efficient in reality. From the UpperBound curve
we can see that, 38% of total traffic is encouraged to the
Nc with only three nodes attacked. But it only attracts 20%
more traffic with another three nodes attacked. The Q-IEA
Reduced curve also verifies that the performance improvement
brought by charging more nodes significantly reduces when k
is large. For this reason, we suggest attacking 3 to 5 nodes with
the given SWCN setting for a balanced performance between
reward and energy efficiency. In this paper, the MES attacks 3
victim EHNs in each step. We also notice that no matter how
many nodes are attacked, the performance of Q-IEA Reduced
is always better than Baseline Reduced because of learning
capability.

5) Main Path Traffic: In this test, we investigate the impact
of traffic rate on the performance of Q-IEA. We set the default
packet generation rate as 0.5 packets per slot and changes the
traffic rate based on the default value. The upper bound of 3-
node attack and the performance of Q-IEA are presented Fig.7.
We can observe from Fig.7 that as the traffic rate increases, the
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performance of Q-IEA remains almost the same. The traffic
lured to the compromised node by the optimal 3-node attack
in upper bound, however, decreases as traffic rate grows.

As traffic rate grows, the increased packet transmissions
will drain the battery of EHNs in a faster manner. The
nodes that are not being attacked will become the bottleneck
in the energy attack. When the battery on those EHNs are
drained, the source→Nc→destination path is likely to become
disconnected and the source node tends to switch to other
routes where Nc is not involved. While other nodes along the
source→Nc→destination path become severe limitation, the
performance gap between the UpperBound and Q-IEA caused
by more “wisely” selecting three nodes to attack reduces as
traffic increases. This is a benefit from the DF parameters in
the training process as described before.
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VI. CONCLUSION

In this work, we introduced a new security issue in SWCNs
where an adversarial energy source can intentionally provide
specific nodes extra energy to manipulate the data path in
the network layer. Malicious energy attack is a brand new
attack method in SWCNs and worth more investigations in
the future. In addition, we proposed a Q-learning enabled
intelligent energy attack algorithm and some training tricks
to find an efficient attack pattern. Through simulation results,
we verify that the Q-IEA can adapt to the dynamic network
environment and select appropriate victim EHNs for good
attack performance. However, because of the little information
obtained by the attacker, the constructed states and the real
network environment is not one-to-one corresponding. Learn-
ing algorithms like Q-learning that use deterministic method
are not the best solutions in this scenario. In the future work,

we will use non-deterministic method for action selection to
revise our algorithm. In addition, the energy efficiency will be
considered to reduce the energy waste and achieve balanced
performance between attack and energy efficiency.
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[1] T. Wu, F. Wu, J.-M. Redouté, and M. R. Yuce, “An autonomous wireless
body area network implementation towards IoT connected healthcare
applications,” IEEE Access, vol. 5, pp. 11 413–11 422, 2017.

[2] F. Akhtar and M. H. Rehmani, “Energy harvesting for self-sustainable
wireless body area networks,” IT Professional, vol. 19, no. 2, pp. 32–40,
2017.

[3] D. Niyato, D. I. Kim, M. Maso, and Z. Han, “Wireless powered com-
munication networks: research directions and technological approaches,”
IEEE Wireless Communications, vol. 24, no. 6, pp. 88–97, 2017.

[4] X. Chen, D. W. K. Ng, and H.-H. Chen, “Secrecy wireless informa-
tion and power transfer: challenges and opportunities,” IEEE Wireless
Communications, vol. 23, no. 2, pp. 54–61, 2016.

[5] S. Gollakota, H. Hassanieh, B. Ransford, D. Katabi, and K. Fu, “They
can hear your heartbeats: non-invasive security for implantable medical
devices,” in ACM SIGCOMM Computer Communication Review, vol. 41,
no. 4. ACM, 2011, pp. 2–13.

[6] H. Modares, R. Salleh, and A. Moravejosharieh, “Overview of security
issues in wireless sensor networks,” in 2011 Third International Con-
ference on Computational Intelligence, Modelling Simulation, 2011, pp.
308–311.

[7] L. Lin, N. B. Shroff, and R. Srikant, “Asymptotically optimal energy-
aware routing for multihop wireless networks with renewable energy
sources,” IEEE/ACM Transactions on Networking (TON), vol. 15, no. 5,
pp. 1021–1034, 2007.

[8] J. Guo, X. Zhou, and S. Durrani, “Wireless power transfer via mmwave
power beacons with directional beamforming,” IEEE Wireless Commu-
nications Letters, vol. 8, no. 1, pp. 17–20, 2019.

[9] G. Han, Y. Dong, H. Guo, L. Shu, and D. Wu, “Cross-layer optimized
routing in wireless sensor networks with duty cycle and energy harvest-
ing,” Wireless communications and mobile computing, vol. 15, no. 16,
pp. 1957–1981, 2015.

[10] Y. Li, “Deep reinforcement learning: an overview,” arXiv preprint
arXiv:1701.07274, 2017.

[11] Y. Dong, J. Wang, B. Shim, and D. I. Kim, “DEARER: a distance-
and-energy-aware routing with energy reservation for energy harvesting
wireless sensor networks,” IEEE Journal on Selected Areas in Commu-
nications, vol. 34, no. 12, pp. 3798–3813, 2016.

[12] A. Kansal, J. Hsu, M. Srivastava, and V. Raghunathan, “Harvesting
aware power management for sensor networks,” in Proceedings of the
43rd annual Design Automation Conference. ACM, 2006, pp. 651–656.

[13] J. Tang, A. Liu, J. Zhang, N. N. Xiong, Z. Zeng, and T. Wang, “A trust-
based secure routing scheme using the traceback approach for energy-
harvesting wireless sensor networks,” Sensors, vol. 18, no. 3, p. 751,
2018.

[14] N. A. Alrajeh, S. Khan, J. Lloret, and J. Loo, “Secure routing protocol
using cross-layer design and energy harvesting in wireless sensor net-
works,” International Journal of Distributed Sensor Networks, vol. 9,
no. 1, p. 374796, 2013.

[15] T. Zhu, S. Xiao, Y. Ping, D. Towsley, and W. Gong, “A secure energy
routing mechanism for sharing renewable energy in smart microgrid,”
in Proceedings of International Conference on Smart Grid Communica-
tions (SmartGridComm). IEEE, 2011, pp. 143–148.

[16] J. Yan, H. He, X. Zhong, and Y. Tang, “Q-learning-based vulnerabil-
ity analysis of smart grid against sequential topology attacks,” IEEE
Transactions on Information Forensics and Security, vol. 12, no. 1, pp.
200–210, 2016.

[17] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[18] Y. Luo, L. Pu, Y. Zhao, W. Wang, and Q. Yang, “A nonlinear recursive
model based optimal transmission scheduling in rf energy harvesting
wireless communications,” IEEE Transactions on Wireless Communica-
tions, 2020.


