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Stealthy DGoS Attack:

DeGrading of Service

Under the Watch of Network Tomography

Cho-Chun Chiu

Abstract— Network tomography is a powerful tool to monitor
the internal state of a closed network that cannot be mea-
sured directly, with broad applications in the Internet, overlay
networks, and all-optical networks. However, existing network
tomography solutions all assume that the measurements are trust-
worthy, leaving open how effective they are in an adversarial
environment with possibly manipulated measurements. To under-
stand the fundamental limit of network tomography in such a set-
ting, we formulate and analyze a novel type of attack that aims at
maximally degrading the performance of targeted paths without
being localized by network tomography. By analyzing properties
of the optimal attack strategy, we formulate novel combinatorial
optimizations to design the optimal attack strategy, which are
then linked to well-known NP-hard problems and approxima-
tion algorithms. As a byproduct, our algorithms also identify
approximations of the most vulnerable set of links that once
manipulated, can inflict the maximum performance degradation.
Our evaluations on real topologies demonstrate the large poten-
tial damage of such attacks, signaling the need of new defenses.

Index Terms— Network tomography, denial of service attack,
combinatorial optimization, approximation algorithm.

I. INTRODUCTION

IMELY and accurate knowledge of network internal state

(e.g., link delays/jitters/loss rates/bandwidths) is essential
for many network management functions such as traffic engi-
neering, load balancing, and service placement, which actively
adapt control parameters such as the routes, the rates, and even
the destinations (e.g., via service placement) according to the
current network state.

Traditionally, network administrators obtain the network
state by directly measuring internal network elements through
local support (e.g., SNMP agents) or special diagnostic tools
(e.g., traceroute). This approach has the limitation that it
requires the support of internal network devices, e.g., to run
SNMP agent or respond to ICMP probes, which has severe
limitations in networks where such support is unreliable
[2]-[4] or unavailable [5], [6].

Network tomography [7] provides a powerful approach for
monitoring the internal state of closed networks. Instead of
directly measuring the internal elements, network tomography
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Fig. 1. (a) network tomography in benign setting; (b) network tomography
in adversarial setting.

infers the states of these elements (e.g., link delays) from
end-to-end measurements (e.g., path delays) between special
nodes participating in monitoring, referred to as monitors.
As network tomography only requires the cooperation from
monitors, it has broad applications in monitoring networks
where only a subset of nodes cooperate, e.g. the Internet
[2]-[4], overlay networks [8], and all-optical networks [5], [6].
Despite substantial research on network tomography, most
existing solutions hinge on a fundamental assumption: the
measurements correctly reflect the performance of measure-
ment paths. Consider the canonical application of inferring
additive link metrics (e.g., delays, jitters, log-success rates)
from the sum metrics on measurement paths. As illustrated
in Fig. 1 (a), normally the measured path metrics will equal
the sum of link metrics on each path, yielding a linear
observation model: Rx = y, where x = (xj)lje 1, 1s the
column vector of unknown link metrics (L: set of links),
¥ = (¥i)p,ep is the column vector of measured path metrics
(P: set of measurement paths), and R = (ri;)p,epier is
the measurement matrix with r;; € {0, 1} indicating whether
path p; traverses link /;. Network tomography infers the link
metrics by “inverting” the observation model, i.e., solving for
X that satisfies RX = y (the solution may not be unique).
However, if some links are controlled by an attacker
(referred to as compromised links) as illustrated in Fig. 1 (b),
then the attacker can manipulate the measurements on paths
traversing these links, e.g., by introducing additional delays,
jitters, or losses. This yields a modified observation model:
Rx+z =1y, where y’ is the vector of observed path metrics
under the attack, and z = (2;)p,cp is the vector of manipula-
tions controlled by the attacker. For example, the attacker can
be a malicious Internet Service Provider (ISP) [9] that tries to
attack a targeted content provider, whose paths to clients are
modeled by P, from a set of links it controls in the public
Internet. Another example is a hacker that launches an attack
on a targeted institutional network by remotely controlling
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its backdoor-infected routers [10]. Note that the modified
observation model is different from R(x + z) = y’, as the
attacker can manipulate packets on different paths differently
at the same link, e.g., delaying packets belonging to one
path but not delaying packets belonging to another path.
An unsuspecting network tomography algorithm will try to
explain the measurements according to the original observation
model by trying to find X satisfying RX = y’. This can
cause many issues, such as lack of feasible solutions [11] and
incorrect fault diagnosis [12].

In this work, we aim to understand the fundamental limit
of a stealthy attacker in maximally degrading the performance
of end-to-end communications without being localized by net-
work tomography. Such understanding will not only quantify
the limitation of existing network tomography algorithms but
also provide insights for the design of defense mechanisms.

A. Related Work

Since introduced by Vardi [13], network tomography has
expanded to a rich family of network monitoring tech-
niques that infer network internal characteristics from external
measurements [7], [14]. Early works focused on best-effort
solutions, which tried to find the most likely network state
from given measurements, obtained by unicast [15]-[18],
multicast [19]-[24], and their variations (e.g., bicast [25],
flexicast [26], and back-to-back unicast [24], [27], [28]). After
observing that an arbitrary set of measurements is frequen-
tly insufficient for identifying all the link metrics [8], [16],
[29]-[31], later works aimed at either reducing ambiguity
by imposing a tie breaker (e.g., [17], [18], [32]) or relaxing
the objective (e.g., [8], [33], [34]), or ensuring identifiability
by carefully designing the monitor locations and the paths
to measure [6], [35]-[43]. All these works assume a benign
setting, where the links behave consistently.

In contrast, very few works have considered network tomog-
raphy in an adversarial setting, where links can behave
inconsistently for different paths. In [11], the problem is
tackled in the context of a non-neutral network, where some
links can discriminate packets sent on different paths. In [12],
the problem is tackled in the context of an attacker that can
manipulate the measurements traversing malicious nodes, with
a primary goal of scapegoating certain benign links as the
cause of poor performance. While our problem setting is
similar to [12], our results differ significantly as explained
in Section II-C.

B. Summary of Contributions

The main contributions of this work are:

1) We formulate a novel attack, called stealthy DeGrading of
Service (DGoS) attack, that aims at maximally degrading the
performances of end-to-end communications by manipulating
the performances of compromised links, without letting these
links localized by network tomography.

2) To understand the fundamental limit of this attack,
we develop algorithms to explicitly design which links to
compromise and how to manipulate the performances of these
links. We show that selecting which links to compromise is
a novel combinatorial optimization problem that is NP-hard.
By linking this problem to known NP-hard problems, we lever-
age existing algorithms to achieve guaranteed approximation.
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3) We further consider a budget constraint on the cost of com-
promising links. We show that the constrained link selection
problem is another novel combinatorial optimization problem
that is also NP-hard. By relaxing the objective function,
we again link this problem to a known NP-hard problem that
allows us to leverage an existing approximation algorithm.
4) Our evaluations on real topologies show that the proposed
attack can significantly degrade the communication perfor-
mance (by injecting 4-30 seconds of delay per path) without
exposing the compromised links to network tomography.

Roadmap. Section II formulates our problem. Section III
designs the attack in the unconstrained case, which is evaluated
in Section IV. Section V addresses the constrained case.
Finally, Section VI concludes the paper.

II. PROBLEM FORMULATION

A. Network Model

We model the network monitored by network tomography
as an undirected graph G = (N, L), where N is the set of
nodes and L the set of links. Each link /; € L is associated
with an unknown metric x; that describes its performance
(e.g., average link delay). We assume that these link metrics
are additive, i.e., the metric of a path equals the sum of
its link metrics, which is a canonical model representing
important performance metrics including delays, jitters, log-
success rates, and many other statistics.

B. Network Tomography Model

Suppose that a set of users of the above network (or their
proxy) send traffic through G along a set of paths P, and use
network tomography to monitor the received performances at
individual links. Using network tomography to monitor the
performance of individual links from path-level measurements
is a well-established technique that is particularly relevant to
the Internet [14], due to the opaque nature of the ISP networks
to the providers of host-based distributed systems and applica-
tions. In host-based distributed systems such as virtual private
networks (VPNs) and content distribution networks (CDN5s),
as well as adaptive applications such as streaming media and
multiplayer gaming, a tomography-based overlay monitoring
system can detect periods of degraded performance within
seconds, thus facilitating informed adaptation of overlay paths
and communication patterns [44].

Let R = (rij)piep,lje 1, be the matrix representation of P,
called the measurement matrix, where r;; € {0, 1} indicates
if path p; traverses link [;. Let r; = (74;);,e be the i-th row
in R. Given the measured path metrics y = (y;),,ep, network
tomography seeks to find a solution X to the link metrics that
can explain the measurements, i.e., RX =y.

We note that the solution is generally non-unique as R
may not be full-column-rank. This issue, known as the lack of
identifiability, has been widely recognized [8], [16], [29]-[31].
Instead of making a limiting assumption that R must be full-
column-rank as in [12], we allow an arbitrary I, and consider
a generic network tomography solver that can compute the set
of all feasible solutions.

C. Attack Model

1) Threat Model: Suppose that an attacker attempts
to degrade the performance of P by manipulating the
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performances of compromised links. Let L,, C L denote the
set of compromised links and L,, = L\ L,, the set of uncom-
promised links. Accordingly, the paths P,, C P traversing at
least one compromised link are called compromised paths, and
the remaining paths P,, = P\ P, are called uncompromised
paths. The attacker can only control the compromised links.

One possible attack scenario is an ISP-based attacker that
tries to degrade the Quality of Service (QoS) of a targeted
content provider as studied in the context of network neu-
trality [11], except that the ISP itself is not involved in the
attack (hence only the links compromised by the attacker
will participate). In this case, P contains all the paths within
this ISP network that are between the gateway router to
the content provider and the other gateway routers. In this
scenario, we model a more intelligent adversary than [11]
that avoids causing infeasibility of the network tomography
problem and thus evades detection by the existing detector
in [11]. Similar scenario exists when targeting a client network.

Another possible attack scenario is an attacker in a legacy
underlay network that tries to degrade the performance of
an overlay network used to implement state-of-the-art control
algorithms [45]. In this case, P contains all the paths within
the underlay network that connect the overlay nodes. In this
scenario, we model a novel type of adversarial intervention
that controls the forwarding performance, complementing the
existing model in [45] that controls the forwarding direction.

Our model implicitly assumes that all the measurement
paths monitored by network tomography are fixed and known
to the attacker. Assuming fixed measurement paths is a
standard assumption in network tomography, which underlies
nearly all tomography-based inference algorithms. Meanwhile,
while the exact set P of paths evaluated by network tomog-
raphy will not be observable to the attacker, the attacker can
construct a possibly larger set P of potential measurement
paths with basic knowledge of the attacked network G, e.g.,
topology, routing, and ingress/egress points (e.g., gateway
routers). If P C P, it is easy to see that a stealthy attack
designed for P remains stealthy for P (in the sense modeled
by (2)). However, the effectiveness of the attack can be
suboptimal due to unnecessary constraints induced by paths
in P\ P. We will evaluate this case later (see Fig. 10).

2) Artack Optimization: Let z = (z;),,ep denote the vector
of manipulations, where z; is the increment in the metric of
path p; € P caused by the attacker. It is easy to see that z
must satisfy the following constraints [12]:

1) Only the metrics of compromised paths can be manip-
ulated, i.e., z; = 0 for any p; € P,.

2) Path performances can only be degraded (not improved)
due to manipulation, i.e., z; > 0 for any p; € P,,.

Moreover, to stay stealthy, the attacker must preserve feasi-
bility of the network tomography problem to hide the presence
of artificial manipulations, i.e., after the manipulations, there
must exist at least one solution X that satisfies RX = Rx + z.
In addition, he must protect the compromised links from
detection. As a concrete example, we consider threshold-based
bad link detection, where the state J; (1: bad, 0: good) for link
l; is inferred as

0 ow.,

5j:{1 if x; >, 1)

Here, 7 denotes the detection threshold (e.g., the maximum
normal link delay). Threshold-based detection is widely used
in network monitoring systems (e.g., NetFlow Analyzer [46],
OpManager [47]), and threshold-based bad link detection is a
natural application for network tomography. To evade such
detection, our attack model requires that among all the feasible
solutions to X, there must be at least one solution that does not
flag any of the compromised links as bad links. In practice,
there may also be an upper bound on link metrics, denoted
bY Tmax, €.2., the maximum duration a packet can be buffered
at a network interface without being dropped. To avoid trivial
cases, we assume that x; < 7 < Tax forall [; € L.

We formulate the attacker’s goal as the following optimiza-
tion, called the stealthy DeGrading of Service (DGoS) attack:

max r;(x —x 2a
max p; (% —x) (2a)
st.r(X—x)=0, Vp; € Py, (2b)
ri(X—x)>0, Vp; € Py, (2¢)
Tmax > 25 > 0, Vi; € Ly, (2d)
T>7;>0, V€ Lp, (2e)
L, CL. (2f)

This is an optimization of L., and X, where L,, specifies
the links to compromise, and X, denoting (one of the feasible
solutions to) the inferred link metrics, is used to compute the
actual manipulations z to inject onto the paths by

z = R(X — x). (3)

Computing the manipulations by (3) automatically ensures
feasibility of the network tomography problem. Note that this
does not require the compromised links to behave consistently
across paths, as illustrated in Fig. 2.

In words, the objective (2a) is to maximize the total perfor-
mance degradation on paths in P, measured by the increase in
the sum path metric. Constraints (2b,2¢) ensure that manipula-
tions are feasible, i.e., only performed on compromised paths
to degrade the performance. Constraint (2e) ensures that the
attack cannot be localized by network tomography, as all the
compromised links perform normally according to the inferred
link metrics. Note that X only represents the link performances
perceived by network tomography, which are generally not
the same as the actual link performances. As is shown later,
an intelligent attacker can leverage this difference to inject
performance degradation on end-to-end communications at
compromised links, while causing network tomography to
blame the degradation on some uncompromised links (thus
keeping the compromised links undetected). Note that this
attack is only designed to evade threshold-based detection; for
more sophisticated detection systems (e.g., those examining
the distribution of link metrics), randomization of the upper
bounds in (2d)—(2e) will be needed to generate a plausible X.

Remark 1: The above formulation is based on an optimistic
constraint, i.e., there exists a possible solution to the link
metrics that does not flag any of the compromised links as bad
links, which ensures that the provider cannot say for sure that
any of the attacker-controlled links is the cause of poor end-
to-end performance. In the case of rank-deficient R, there will
be other solutions that possibly flag some of these links. One
way of achieving stronger stealthiness is to include additional
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constraints to ensure that the desired X will be the solution
selected by network tomography (e.g., flagging the fewest
links among all possible solutions), which requires additional
knowledge of the adopted network tomography algorithm. The
strongest stealthiness is achieved by requiring that no feasible
solution to RX = Rx + z will flag any of the compromised
links. As a first step towards understanding the potential
damage of DGoS attacks, we will focus on the formulation in
(2) and empirically evaluate its stealthiness under a practical
tomography-based detector (see Fig. 11), while leaving the
detailed study of other formulations to future work. Note that
in the case of full-column-rank R as assumed previously [12],
these formulations become the same.

Remark 2: For clarity, we will present all the results from
the perspective of an attacker. However, our results can also
be interpreted from the perspective of a network provider
that uses network tomography to validate link performances.
In this case, the optimal objective value of (2) reveals the
maximum damage that an in-network adversary can inflict
on end-to-end communications without being localized, and
the corresponding decision variables (particularly L,,) spec-
ify the most vulnerable links that can be manipulated to
inflict the maximum damage. Thus, our results can be used
to analyze network vulnerability and recommend high-value
links to protect.

Remark 3: Our work differs fundamentally from the existing
works [11], [12] that also considered network tomography in
an adversarial setting. Specifically, although [11] proposed an
algorithm to detect links that behave inconsistently on differ-
ent paths (i.e., non-neutral links), the algorithm only works
when the inconsistent links cause infeasibility of the network
tomography problem, and thus cannot handle our attack model
that always ensures feasibility. Moreover, although the attack
model studied in [12] is conceptually similar to ours in that the
attacker also tries to fool network tomography while degrading
path performances, their results substantially differ from ours
in that: (i) the attacker in [12] is required to mislead network
tomography to detect certain uncompromised links as bad
links, while we do not impose such constraints; (ii) [12]
assumes the measurement matrix to be full-column-rank,
which is frequently violated in practice [8], [16], [29]-[31],
while we do not make such an assumption; (iii) most impor-
tantly, [12] assumes that the set L,, of compromised links is
given, while we treat it as a decision variable, which allows us
to model a more intelligent attacker that strategically places
its attack. In fact, as is shown later, the selection of L,,
significantly impacts the capability of an attack and is thus
the focus of our work. Our solutions on optimizing L,, can
also be used to identify the most vulnerable links to protect
from a network provider’s perspective.

D. Example

Consider the example in Fig. 2 (a). Suppose that before the
attack, each link has a delay of 10 ms, 7 = 150 ms, and
Tmax = 2000 ms. Fig. 2 (b) shows the optimal manipulations
under an intuitive selection of L,,—compromising all the
links. In this case, the attack can cause 2240 ms of extra
delay in total, by injecting a delay of z; onto path p; at some
of the compromised links traversed by p;. Fig. 2 (c) shows
the optimal manipulations under another selection of L,,,
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Fig. 2. Example: (a) input, (b) optimal manipulations under one L,
(c) optimal manipulations under another L.

which, although having fewer compromised links, is able to
cause 15190 ms of extra delay, as the uncompromised links
l3 and [5 can be used to explain the large delays of paths
D1, P2, P4, P5, Pe to network tomography without exposing the
compromised links. Note that the inferred link metrics can
differ from the actual metrics, and the compromised links can
behave inconsistently across paths, e.g., in Fig. 2 (c), link /;
injects no more than 280 ms of delay onto p3 but 4120 ms
of delay onto po. This example shows that DGoS attack can
cause large damage without being localized, and the amount
of damage critically depends on the selection of L,,.

III. OPTIMAL ATTACK STRATEGY

Although (2) is a joint optimization of both L., and X,
we will show that the main challenge is in optimizing L,,,
which can be reduced to a novel variation of the minimum
cut problem.

A. Optimizing X Under Given L,

Given the set of compromised links L,,, (2) is a linear
program (LP) in X that can be solved in polynomial time
by standard LP solvers, and the result gives the optimal
manipulation vector (under the given L,,) by (3). Nevertheless,
there are several simplifications that can be used to speed up
the solution for large networks.

First, we observe that constraint (2c) has no effect on the
optimal solution, as it only imposes a lower bound on X, while
the objective (2a) tries to increase X. We can thus drop this
constraint without changing the optimal solution to X.

Furthermore, we observe that the dimension of the solution
space can be reduced. To this end, we rewrite (2) after
dropping constraint (2¢) in a vector form:

max 1p, |Rn(X—x) (4a)
s.t. R, X = R,x, (4b)
$>x2>0, (40)

where 1|p, | is the 1 x| Py, | vector of 1’s, R,,, = (r;)p,ep,, and
R, = (r;)p,ep, are the sub-measurement matrices represent-
ing all the compromised/uncompromised paths, respectively,
and ¢ := (¢;)i,er is the vector of upper bounds on Z;
in (2d,2e), i.e.,

T if l; € Ly,
bj = .
Tmax 1if [j € Lp.

The “>" in (4c) means element-wise >.

(5)
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To reduce the dimension for optimization (4), we perform
a change of variable as follows. Since z; < 7 (Vl; € L), it is
easy to see that X = x is a feasible solution to (4). Let B
be a matrix whose columns form a basis of null(R,,), the null
space of R,,. Let nullity(R,,) denote the nullity of R,,, i.e., the
dimension of null(R,). Then X = Bc + x will always satisfy
R,X = R,x for any (nullity(R,,) x 1)-vector c. Substituting
X by Bc + x, (4) is transformed into:

(6a)
(6b)

max 1p, |R,Bc
Cc
st.  —x > Bc > —x.

Compared to (4), the number of decision variables in (6)
is reduced from the number of links to the nullity of R,.
By the rank-nullity theorem, rank(R,,) + nullity(R,,) = |L|,
and hence the reduction will be significant when rank(R,,) is
large, i.e., the number of linearly independent uncompromised
paths is large.

B. Property of the Optimal L,

To facilitate the optimization of L,,,, we first investigate the
property of the optimal solution. As is shown in Section II-
D, simply compromising all the links is generally suboptimal,
as the attacker will have to make all the link metrics appear
normal (i.e., Ej < 7 for all [; € L), which limits the amount
of performance degradation he can inject on each path.

Generally, compromising a link /; can have two contradict-
ing effects:

1) previously uncompromised paths that traverse [; can
now be controlled by the attacker, which removes some
constraints of the type (2b) and hence may increase the
objective value;

2) instead of constraint (2d), [; will be subject to a tighter
constraint (2e), which may decrease the objective value.

Due to these contradicting effects, it is not obvious what is
the optimal set of links to compromise.

Our main result is a closed-form characterization of the
optimal set of compromised links. To present this result,
we introduce the following definitions.

Definition 1: Given a set of paths P, we define:

1) the traversal number of link [, denoted by w;, as the

number of paths in P that traverse link /;

2) a cut C of P as a subset of links such that every p € P
traverses at least one link in C;

3) the minimum-traversal cut C* of P as the cut of P with
the minimum total traversal number, i.e., >, . w; <
> icc wy for any cut C.

Theorem 1: The optimal set of compromised links L},
(i.e., the optimal solution to L,, in (2)) is the minimum-
traversal cut of P.

We will prove this theorem in two steps. Step 1 is to show
that Ly, must be a cut of P, as otherwise the attacker will
be able to improve his objective value by compromising one
more link.

Lemma 1: Suppose that for the initial set of compromised
links L§3 ), there is at least one uncompromised path p;+. Then
there must exist an uncompromised link [;« € p;«, such that
compromising ;- increases the total performance degradation,
ie., F(Lﬁg) U{l+}) > F(Lﬁg)), where T'(L’) is the optimal
objective value of (2) when L,,, = L'.

Proof:  Let ng) (LS) )) be the initial set of compro-
mised (uncompromised) links, P,(,? ) (Pr(lo)) be the initial set of
compromised (uncompromised) paths, and X(*) be the optimal
solution to X when L,,, = Lﬁg). By assumption, p;- € Py(LU).

First, we observe that there must exist a link /;« € p;« for
which £§9> < 7, as otherwise (i.e., /x\go) > 7 for all [; € p;-),
is the hop
= r;»x according

we will have r;»x(© > |pix|T > ri+x, Where |p;-
count on p;-. This contradicts with r;-x©
to constraint (2b).

Next, for the above link /-, adding a constraint /x\j* <rT
to (2) will not change the optimal solution when L,, = L(mo).
That is, X(°) remains an optimal solution to the following
optimization in X

max Z r;(X — x) (7a)
pi€PY)
st.r;(xX—x)=0, Vp; € Py(LU), (7b)
Tmax > T; >0, Vlj € LN\ {l;+}, (7c)
T>7;>0, VI € LY U{l}. (7d)

Note that we can omit constraint (2c) as explained in
Section III-A.

Moreover, after compromising link ;- i.e., for L, = ng) U
{l;+}, the optimization (2) becomes

> onE-x)+

Pi ep®

>

pi€ PP

max
X

r;(X —x) (8a)

st.ri(X—x)=0, Vpe PV, (8b)
Tmax > T; >0, Vl; € LY, (8c)
T>%; >0, V€LY, (8d)

where LS}J (Lﬁ,,l)) is the new set of compromised (uncom-
promised) links, and Pr(n1 ) (Py(Ll)) is the new set of compro-
mised (uncompromised) paths.

Finally, since P" c P”, L = L\ {i;.}, and
LE}L) = ng) U {l;+}, any feasible solution to (7) remains
feasible for (8). In particular, X(°) is a feasible solution to (8),
with an objective value of > _ o) r; (X0 —x) = I‘(Ls,?)).
Thus, under the optimal solution to (8), the objective value
F(ng) U {l;~}) must be no smaller than F(ng)). O

Step 2 is to show that among all the cuts, L}, must be the
one that minimizes the total traversal number.

Lemma 2: Among all the cuts of P, the optimal set of links
to compromise is the cut with the minimum total traversal
number.

Proof: By definition, if L,, is a cut of P, then P,,, = P
and P, = (), which simplifies (2) for a given L,, to

max Z r;(X — x) (9a)

* pi€EP
S Toax > 35 > 0, VI € Ly, (9b)
T > fj >0, Vlj € L. (9¢)

It is easy to see that the optimal solution to (9) is Z; = 7
if l; € Ly, and T; = Tiax if [; € Ly,. Under this solution,
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the objective value of (9) equals

Z (miT + (|pz| - mi)Tmax) - Z r;x

pi€P pi€P
= (T - Tmax) Z M; + Tmax Z |pz| - Z r;X, (10)
pi€P pi€EP pi€P

where m; is the number of compromised links on path p; and
|pi| is the total number of links on p;. Only the first term
(T — Tmax) Zpl-eP m; depends on L,,.

As T — Tmax < 0, maximizing (10) is equivalent to
minimizing > pm;. We further note that

Z m; = Z Z Tier,,

p;EP p;EP lEp;
= E E Liep, = § wy, (11)
€L, p;eP €L,

where 1. is the indicator function. Thus, the optimal solution
to L,, among all the cuts is the cut with the minimum total
traversal number. (]

Proof of Theorem I1: By Lemma 1, Ly must be a cut
of P. Then by Lemma 2, it must have the minimum total
traversal number among all the cuts. Therefore, L, must be
the minimum-traversal cut. (]

Remark: The minimum-traversal cut of P may not be
unique. From the proof of Theorem 1, we see that all the
minimum-traversal cuts are equally optimal.

Theorem 1 implies that given a set of targeted paths P,
the optimal set L,,, of links to compromise is the solution to
a novel combinatorial optimization problem as follows.

Definition 2: Given a set of paths P, the adversarial link
selection (ALS) problem is to find the cut of P with the
minimum total traversal number.

C. Hardness Analysis

Below we show the hardness of ALS by connecting it to
several well-known hard problems in combinatorial optimiza-
tion in both the general case and a nontrivial special case.

1) Hardness of General ALS: First, consider the general
case of ALS for an arbitrary set of paths P.

Theorem 2: ALS for an arbitrary path set P is NP-hard.

Proof: To show this, we consider the corresponding
decision problem: determine whether a set of paths P has
a cut with a given total traversal number 7. We will prove
that the decision version of ALS is NP-hard by showing a
reduction from the exact cover problem [48].

Given a set of elements of £ = {ej, es,..., e,} and a
collection S of subsets of E, an exact cover is a subcollection
S* of S such that each element in E is covered once and only
once by sets in S*. To determine if there exists an exact cover
is NP-complete [48].

The exact cover problem can be reduced to the follow-
ing instance of ALS. We construct a set of paths P =
{p1, p2,..., pn} in one-one correspondence with the set of
elements £ = {ej, ea,..., e,}. Similarly, we construct a set
of links L = {ly, I3, ..., l,;,} in one-one correspondence with
the collection of sets S = {s1, s2,..., S, }. The relationship
between the paths and the links is such that link /; is traversed
by path p; if and only if set s; covers element ¢;. Note that
such construction is always possible as we allow P to contain
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Fig. 3. Relationship between ALS and known NP-hard problems.

arbitrary paths in the general case of ALS. Then we claim
that there exists an exact cover S* of F if and only if the
constructed instance of ALS has a cut with a total traversal
number of | P|.

Suppose that there exists an exact cover S*, i.e., F C
U,es- s and Y- g |s| = |E|. According to the above con-
struction, the corresponding set of links C* = {[; : s, € S*}
must cut each path in P once and only once, and hence C*
is a cut with a total traversal number of |P].

Conversely, suppose that the constructed set of paths P has
a cut C* with a total traversal number of | P|. By Definition 1,
C* must cut each path in P once and only once. According to
the construction, the corresponding subcollection S* = {s; :
l; € C*} must cover each element in £ once and only once,
i.e., S* is an exact cover of E. O

2) Hardness of All-Possible-Paths ALS: Now consider a
special case where P contains all possible paths between a
given set K of terminals. This case models networks that
employ advanced routing mechanisms such as source routing
or Software Defined Networking (SDN), that allow traffic to
be routed on any path between a pair of terminals. We call
the ALS problem in this special case all-possible-paths ALS.

All-possible-paths ALS can reduce to the Multiway Cut
problem [49]. Also known as the Multiterminal Cut problem,
the Multiway Cut problem is a graph division problem, where
given an undirected graph G(V, E) with link weights w :
E — RT and a set of terminals K C V, we want to find
a subset of links with the minimum total weight to cut all the
paths between the terminals. When the number of terminals
equals 2, the Multiway Cut problem becomes the min-cut
problem, which can be solved efficiently by the max-flow
algorithms. We see that all-possible-paths ALS is a special
case of Multiway Cut, where the weights are the traversal
numbers. We note that the two problems are not equivalent:
in Multiway Cut, the link weights are arbitrary; in all-possible-
paths ALS, the link weights are the traversal numbers, which
are determined by the network topology and the locations of
terminals.

It is known that Multiway Cut is NP-hard, even in a very
special case when all the links have unit weights.

Theorem 3 [49]: The Multiway Cut problem is NP-hard
for all |K| > 3, even if all the link weights are equal to 1.

The hardness of all-possible-paths ALS still remains an
open question. Based on Theorem 3, we conjecture that all-
possible-paths ALS is NP-hard, since it is also a special case
of Multiway Cut.

Fig. 3 summarizes the relationship between ALS and known
NP-hard problems, where the arrows indicate the direction of
reduction. As shown in Section III-D.1, ALS can reduce to the
Weighted Set Cover (WSC) problem, which is also NP-hard.
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Fig. 4. Reducing ALS to Weighted Set Cover.

D. Approximation Algorithms

As ALS is NP-hard, there is no polynomial-time exact
algorithm for it unless P = NP. As we mentioned, ALS
reduces to Weighted Set Cover (WSC), and all-possible-paths
ALS reduces to Multiway Cut. Below we will use known
approximation algorithms designed for WSC and Multiway
Cut to solve ALS and all-possible-paths ALS, respectively.

1) The Greedy Algorithm for ALS: Given a set of elements
E ={ey, es,...,e,} and a collection S = {s1, $2,..., Sm }
of subsets of F, where each s; has a weight of w;, WSC
aims at finding the subcollection S* that covers E with the
minimum total weight.

We reduce ALS (for arbitrary P) to WSC as follows. Given
a set of paths P = {pi1, pa,..., pn} traversing a set of
links L = {l1, la,..., L,n}, we construct a set of elements
E = {e1, ea,..., e,} in one-one correspondence with the
paths, and a collection of sets S = {s1, S2,..., S} in one-
one correspondence with the links, such that set s; covers
element e; if and only if link /; is on path p;, as illustrated
in Fig. 4. Each set s; has a weight w; that equals the traversal
number of link [;. It is easy to see that finding the cut
with the minimum total traversal number is equivalent to
finding the subcollection of sets to cover all the elements with
the minimum total weight. We note that in the constructed
instance of WSC, the weight of a set always equals its
cardinality (i.e., w; = |s;]), and thus ALS is a special case
of WSC.

We apply a well-known greedy algorithm [50], designed
for solving WSC, to the ALS problem. The algorithm iterates
until all the paths are compromised, where in each iteration,
it picks a link with the smallest cost-value ratio and adds the
paths traversing it to the set of compromised paths. For a link

l, we define the cost-value ratio by %, where P is the

set of paths traversing link . Since the link weight equals |P|,
this ratio is the cost we pay for each newly compromised path,
if link [ is selected. The pseudocode is shown in Algorithm 1.
The while loop (lines 3-6) is repeated O(|L|) times, each
iteration taking O(|L|-|P]) time (due to line 4), leading to an
overall complexity of O(|L|?|P]).

Although straightforward, this greedy algorithm is known to
have the best approximation guarantee for WSC [50]. Applied
to our problem, it guarantees the following.

Theorem 4 [50]: Algorithm 1 achieves an approxima-
tion factor of Hpj = 1+ 1 + ...+ ﬁ = O(log|P|)
for ALS, ie., T &Y < p , T OPt — ©(log|P|)T P,
where T &€€dY g the total traversal number achieved by

Algorithm 1 and T' Pl is the minimum total traversal number
of all the cuts of P.

Algorithm 1: ALS Greedy
input : Paths P
output: Compromised links L,,
1 P, — 0
2 Lm, — (Z);
3 while P, # P do
4 find the link [ with the smallest ratio %;
5| P PnUP;
6 | Ly — Ly U{l};
7 return L,,,;

However, our ultimate goal is to maximize the performance
degradation measured by (2a). We can substitute Eme pm;

by T £r¢€dY in (10) to get the corresponding objective value.

Corollary 1: Using Algorithm 1 to select the compromised
links and the LP (6) to compute the manipulations achieves a
total performance degradation of

(T - Tmax)T greedy + Tmax Z |p7| - Z r;x
pi€EP piEP

> (7— - 7—max)I{\Pﬂ—‘ opt + Tmax Z |pz| - Z Ir;X, (12)
pi€P pi€P

where T 81€€dY and T OPt are defined as in Theorem 4.

2) CKR Relaxation With Rounding for All-Possible-Paths
ALS: As mentioned in Section III-C.2, all-possible-paths ALS
reduces to the Multiway Cut problem, which means we can
apply algorithms for Multiway Cut to all-possible-paths ALS.

Calinescu et al. [51] proposed an approach called CKR
relaxation for Multiway Cut, for which it has been proved
that it is NP-hard to achieve a better integrality gap than CKR
relaxation for any fixed number of terminals, assuming the
Unique Games Conjecture to hold [52]. In a minimization
problem, the integrality gap is the ratio between the objective
value of the optimal integer solution and that of its relaxation,
i.e., OPT ,¢/OPT Lqlaxation- We first formulate the Multiway
Cut problem as an integer program, and then introduce its
CKR relaxation. Given a set V' of nodes, a set £ of links with
weights (Wy,v)(s,0)cE> and a set K (K C V) of terminals,
the Multiway Cut problem aims at solving

o1
Hf;(ln 5 Z Z wv,v’|x1J,t - mv’,tl (13a)
(v')EEtEK
sty my=1, Wev, (13b)
teK
$t7t=1, vVt € K, (13¢)
e €{0, 1}, Yo eV, teK, (13d)

where z, ¢ is the decision variable indicating whether node v
will be connected to terminal ¢ after the cut.

By relaxing the integer constraint (13d) and replacing
|€yt — T4 | Dy @ new variable y,, . 1, we get the following:

o1
I'}Iclll’l 5 Z Z Wy v Yo,v' t (14a)
v (vv)eEtEK
sty my =1, WwevV, (14b)
teK
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TABLE I
APPROXIMATION ALGORITHMS FOR ALS

algorithm case approximation factor

ALS Greedy general O(log | P|)

CKR relaxation all-possible-paths o?
Tt = 1, YVt € K, (14¢)
Tor >0, YveV, te K, (14d)
yv,v’,t Z xv,t - xv’,tv v(vvvl) S E7 t S K; (146)
Yo't Z Tyt — Loty v(vvvl) € E7 te K; (l4f)

which is an LP [50], i.e., an LP relaxation of (13).

For each node v and each terminal ¢, the solution Z,, ; to the
LP relaxation can be viewed as the probability of assigning
v to (the connected component containing) ¢ after the cut.
A rounding scheme is used to convert this fractional value to
either 0 or 1, subject to the constraint (14b). Different rounding
schemes lead to different approximation factors. Specifically,
the randomized rounding scheme achieves an approximation
factor of 1.5 [50], and the best-known rounding scheme can
achieve an approximation factor of 1.2965 [53]. Finally, given
the rounded value of z,; (Vv € V, t € K), the cut is the
set of all the links whose endpoints are assigned to different
terminals, i.e., L,, = {(v,?v') € E: 3t, t' € K with t £,
satisfying x,, ; = xy v = 1}.

The complexity of this method is dominated by solv-
ing the LP (14), which has O(|K|(|V]| + |E|)) variables
and O(|K|(|[V| + |E|)) constraints, and can be solved in
Polynomial(| K|(|V| 4+ |E])) time, where the exact order of
polynomial depends on the LP algorithm used. For example,
the complexity will be O(|K|*?(|V| + |E|)*®) if using
Vaidya’s algorithm [54].!

By similar argument as Corollary 1, we can bound the
overall performance of the attack as follows.

Corollary 2: Using CKR relaxation with an
a-approximation rounding scheme to select the compromised
links and the LP (6) to compute the manipulations achieves a
total performance degradation of

(T - Tmax)T CKR + Tmax Z |p2| - Z ;X Z
piEP p;EP

(7- - Tmax)aT opt + Tmax Z |pb| - Z riX, (15)
pi€P pi€P

where T CKR s the total traversal number of the links
selected by CKR relaxation, and 7' °Pl is the minimum
total traversal number of all the multiway cuts between the
terminals.

TABLE 1 summarizes the performance guarantee of the
aforementioned algorithms in solving ALS.

3) Illustrative Example: Consider the example in Fig. 2 (a).
ALS Greedy selects the link with smallest cost-value ratio in
each iteration (breaking ties arbitrarily), and ends up selecting
L., = {l1,13,14}, as shown in Fig. 5. CKR relaxation first
obtains a fractional assignment from each node to the terminals

IThis algorithm has a worst-case complexity of O((n +m)-5nB) for an
LP with n variables, m constraints, and B input bits.

2The constant o depends on the rounding scheme, e.g., 1.5 for randomized
rounding and 1.2965 for the rounding scheme in [53].
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2nd iteration 3rd iteration

st iteration

Lm={}
Pm={}

Lm = {l1}
Pm = {p1, p2, p3}

Lm = {1, I3}

Lm ={I1, I3, la}
Pm = {p1, p2, p3, p4, ps}  Pm = {p1, p2, p3, p4, ps, pe}

Fig. 5.

as in Fig. 2 (a), and each link is labeled with its cost-value ratio
(randomly breaking ties in 1st and 3rd iterations).

The illustrative example for ALS Greedy. The network topology is
[P
[P\ P |

t=1,v=1 (1,0,0,0)

(1,0,0,0)

(0,1,0,0) .(0,1 ,0,0)

(0.25,0.25,0.25,0.25)

(0.25,0.25,0.25,0.25)

(0,0,1,0)

(0,0,1,0) °
(000,1) (0.001)
(a) (b) ©

t=4, v=6

Fig. 6. The illustrative example for CKR relaxation: (a) input topology with
node/terminal labels (links labeled as in Fig. 2 (a)); (b) fractional solution to
(14) ((acv,t)f}:1 for each node v); (c) rounded solution (highlighted links are
in the cut between the terminals).

TABLE 11
PARAMETERS OF ISP TOPOLOGIES

Network size #nodes | #links | #candidate terminals*
Bics small 33 48 16

BTN small 53 65 25

Colt medium 153 191 45

Cogent medium 197 245 21

AS 20965 large 968 8283 75

AS 8717 large 1778 3755 1075

as in Fig. 6 (b), and then rounds it to an integer assignment
in Fig. 6 (c) by the scheme in [50]. The output L,, is the set
of links in the cut, L,,, = {l2,l4,15} in this case.

I'V. PERFORMANCE EVALUATION

We conduct simulations to evaluate the capabilities of an
intelligent attacker employing our strategies in comparison
with benchmarks, based on real ISP topologies. To be concrete,
we consider delay-based DGoS attacks, where the attacker
tries to inject the maximum amount of delay onto a set of
targeted paths, while the user of these paths tries to localize
links with abnormally large delays by network tomography.

A. Experiment Setup

1) Network Topology: We use real network topologies from
public datasets, whose parameters are shown in the TABLE II.
The first four topologies are Point of Presence (PoP)-level
topologies from the Internet Topology Zoo [55], and the last
two topologies are router-level topologies from the CAIDA
project [56]. We classify the topologies into small, medium,
and large networks. For each topology, we select a given
number of terminals uniformly at random from low-degree
nodes (degree < 2), and repeat this selection for 20 times.
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2) Parameter Setting: For each topology and each set of
selected terminals, we compute the paths in P in two ways:

i) All possible paths: In this case, P contains all the cycle-
free paths between the terminals. Note that cutting all
the cycle-free paths is equivalent to cutting all the paths
between the terminals. Since the number of all the cycle-
free paths can grow exponentially with the network size,
we only evaluate this case on the small networks.

ii) Shortest paths: In this case, P only contains one short-
est path (in hop count) for each pair of terminals,
with ties broken arbitrarily. Since there are only (‘12( ‘)
paths for |K| terminals, we evaluate this case on the
medium-large networks.

We assume that before the attack, each link has a delay
randomly drawn from [0,15] ms, and a link is considered
“normal” if its delay is within 15 ms, i.e., 7 = 15. These
parameters are consistent with single-hop delays in real ISP
networks [57]. The maximum delay at a link is set to 200 ms,
i.e., Tmax = 200, which is within the range of typical buffering
capacities at router interfaces.?

3) Benchmarks: We compare the two proposed algorithms,
Algorithm 1 (‘ALS greedy’) and CKR relaxation with random-
ized rounding (‘CKR’), with the following three heuristics for
selecting the set of compromised links:

i) “Random selection” (‘random’): To illustrate the capa-
bility of an attacker who cannot actively select which
links to compromise, this algorithm selects £ links
uniformly at random, where £ is set to the number
of compromised links selected by ‘CKR’ to facilitate
comparison.

ii) “Top traversal” (‘top traversal’): Based on the intuition
that compromising the most traversed links will provide
control over more paths, this algorithm selects the &
links with the largest traversal numbers. Again, to facil-
itate comparison, k is set to the number of compromised
links selected by ‘CKR’.

“Compromise all” (‘all’): Compromising all the links is

also a very intuitive approach to maximize the damage

the attacker can cause to the network.

iii)

Under each selection of compromised links, we solve the
LP (6) to compute the total performance degradation (mea-
sured by the total amount of delay injected by the attacker
over all the paths) under the optimal manipulations.

B. Results

Overall, we observe that the proposed algorithms (‘ALS
greedy’ and ‘CKR’) perform similarly to each other and signif-
icantly better than the heuristic algorithms. More importantly,
these algorithms show that it is possible to introduce signif-
icant delay on communication paths without being localized
by network tomography, signaling the need of new defenses.

1) Case of All Possible Paths: In the case that P contains
all the possible paths between the terminals, the results are
shown in Fig. 7 (top 2). The y-axis is the performance of

3For example, Cisco Supervisor Engine 7-E with a Gigabit port and 32MB
memory can buffer traffic for 320 ms [58], and Juniper line cards can buffer
traffic for 100-250 ms [59].

4For Bics, these are all the nodes with degree < 2; for the other networks,
these are all the nodes with degree one.
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Fig. 7. Average delay degradation for the case of all possible paths (top 2)
and the case of shortest paths (bottom 4).

the attacker measured by the average injected delay per path
(plus/minus one standard deviation), computed over 20 sets
of randomly selected terminals, and the x-axis is the number
of terminals. In this experiment, ‘CKR’ performs the best
as expected, as it has the best approximation guarantee.
Both ‘CKR’ and ‘ALS greedy’ perform much better than the
heuristic algorithms, demonstrating the importance of carefully
selecting the compromised links in modeling the capabilities
of intelligent attackers. Among the heuristic algorithms, ‘top
traversal’ performs the best, as it leads to more compromised
paths than ‘random’. However, it is not sufficient to just
compromise more paths. To prevent the compromised links
from being detected as bad links by network tomography,
the attacker needs to ensure constraint (2e). Therefore, com-
promising too many links can reduce the attacker’s capability
in injecting delays. This is why ‘all’ performs the worst.

2) Case of Shortest Paths: Similar results are shown
in Fig. 7 (bottom 4) for the case where P only contains the
shortest paths between the terminals. We see that ‘ALS greedy’
and ‘CKR’ still significantly outperform the other algorithms.
However, ‘CKR’ is not always the best any more, because
it is not designed for this case. In particular, ‘CKR’ will
select links to cut all the possible paths between the terminals,
while the ALS problem in this case only needs to cut the
shortest paths. Because of that, ‘CKR’ may compromise more
links than necessary, which reduces the attacker’s capability
to manipulate the path delays.

In both cases, the best attack algorithm is able to inject
significant delays (0.3-3 seconds/path) without exposing the
compromised links to network tomography. Detailed exami-
nation of the measurement paths shows that the vulnerability
of a network to DGoS attacks is negatively correlated with

Authorized licensed use limited to: Penn State University. Downloaded on April 01,2021 at 20:33:56 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

its identifiability, measured by rank(R)/|L|: the average delay
degradation per path decreases from 3 seconds to 0.3 second
as rank(R)/|L| increases from 0.1 to 0.9. This observation
suggests that existing techniques for improving the identi-
fiability via placing monitors and constructing measurement
paths [35]-[38] also help to reduce the vulnerability to DGoS
attacks. Note that achieving identifiability does not eliminate
this vulnerability, e.g., the paths in Fig. 2 (a) can identify all
the links, but DGoS attack can still be launched as in Fig. 2 (c).

V. CONSTRAINED ATTACKS

So far we have assumed that the attacker can compromise
any subset of links. In practice, however, there are usually
constraints on which and/or how many links the attacker is
capable of compromising. To shed light on the impact of such
constraints, we will analyze the optimal attack strategy under
the constraint that for a given k£ > 0,

Z CjSka

l;E€ELm

(16)

where ¢; (c; > 0) is the cost of compromising link /;, and k is
the total budget of the attacker for compromising links. We use
the costs to model the difficulty of controlling the links, e.g.,
by gaining backdoor access to the associated devices [10], [60]
or manipulating the paths (e.g., through BGP hijacking [61])
to position attacker-controlled devices on the links. We assume
that these costs can be evaluated by the attacker.

A. Mixed Integer Linear Programming (MILP) Formulation

First of all, we note that the budgeted attack optimization
includes the unbudgeted optimization (2) as a special case,
which boils down to the ALS problem that is NP-hard as
shown in Theorems 1 and 2. Thus, the budgeted optimization
is also NP-hard. Nevertheless, we will show that this problem
can be formulated as an MILP, which allows us to evaluate
the maximum damage achievable by a budgeted attacker for
small problem instances using MILP solvers.

Specifically, define binary variables

o, = 1 ifl; € .Lm, a7
0 otherwise,
1 if p; € Py,
i = . 18
b {O otherwise. (18)

Then (2) under the additional constraint (16) can be written as:

max r;(X — x) (19a)

X0 pEP

s.t. 1;X < 1X + BiTmaxril, Vp; € P, (19b)
r;Xx >r;x, Vp; €P, (19¢)
bi <rja, Vp; € P, (19d)
Z; < a7+ (1 — aj)Tmax, Vlj € L, (19e)
fj > 0, VZJ S L, (l9f)
Z ajc; < k, (19g)
ljel
a;, 3 € {0,1}, Vi, € L,p; € P, (19h)

Lemma 3: The MILP (9) is equivalent to (2) under the
additional constraint (16).
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Proof: First, we argue that constraints (19b)—(19d) are
equivalent to constraints (2b)—(2c). This is because if a path
p; contains no compromised link (i.e., r;a = 0), then [3;
must be zero and thus (19b)-(19¢) imply (2b), whereas if
p; contains at least one compromised link, then [; will
be one under the optimal solution, and thus (19b) imposes
no constraint on X (as Tyaxr;1 is an upper bound on the
path metric for p;). Moreover, it is easy to see that con-
straints (19e)—(19f) are equivalent to (2d)—(2e), and con-
straint (19g) is equivalent to (16). Finally, as uncompromised
paths do not incur any degradation, the objective (19a) is
equivalent to (2a). ]

B. Asymptotic Property of the Optimal L.,

To solve the attack optimization efficiently for large problem
instances, we seek to characterize the optimal set of com-
promised links more explicitly. Generally, adding the budget
constraint (16) to (2) will invalidate Theorem 1. To derive its
counterpart under the budget constraint, we have the following
result.

Lemma 4: If Tiax > ;%X (Vp; € P) and Tax > 7, then
the optimal value of (2) for a given set L,, of compromised
links is asymptotically proportional to

Tm = Z ZTZ'J‘,

;€L picP

(20)

where L], := L, \U,cp, pis the set of uncompromised links
that are only traversed by compromised paths.
Proof: We rewrite the objective function (2a) as

DD @i —w) =) Y (@ —xy). @D
pi€EPy, leL lJELpiEPm
If l; € Ly, then ; < 7 by (2e). If [; € Ly, then Z; <
min(Tmax, Ming: p, e p, ,r;;—1 r:X) by (2b,2d). For a large Tiax,
Z; can achieve T ax if and only if l; € L,. Thus, when Tyax
is large, the optimal value of (21) wrt X is approximately:

Tmax Z Z Tij = Tmax Z Z Tij (22)

1,EL!, pi€ P LEL! pieP
o< Ty

where (22) is because the traversal number of compromised
paths is equal to the traversal number of measurement paths
forl; € Ly, ie, > cp 1ij=>_, cpriy forl; € L. [

Lemma 4 immediately yields the following asymptotically
equivalent formulation of the budget-constrained DGoS.

Theorem 5: If Tpax > 1r;x (Vp; € P) and Tynay > 7, then
the optimal set L, of compromised links that solves (2) under
the additional constraint (16) is the solution to

Z CjSk7

I;€Lm,

max 1),
s.t. Ly, C L,

(23a)
(23b)

which we refer to as the constrained adversarial link selection
(CALS) problem.
Proof: By Lemma 4, the objective in (2a) is asymptotically
equivalent to the objective in (23a) as Tyax — O0. ]
In words, CALS is a novel combinatorial optimization
problem that aims at selecting compromised links subject to a
budget constraint to maximize the total traversal number of the
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uncompromised links that only reside on compromised paths.
Similar to ALS, we will show that CALS is also NP-hard.
Corollary 3: The CALS problem (23) is NP-hard.

Proof: 'The idea is to show that CALS is actually a
generalization of ALS, and hence its NP-hardness is implied
by the NP-hardness of ALS as proved in Theorem 2.

To this end, consider a special case of CALS, where it
is known that it suffices to optimize L,, among the cuts
of P. If L,, is a cut, then L/, = L,, and hence T,, =

Yt er 2apepTii = XieL, Zp cp Tij» Which is the total
traversal number of all the uncompromised links. As

Z Z”i'i' Z Z”jzzzfij,

lj€Ln pi€EP l;€Lm pi€P pi€P ;€L

(24)

which is a constant (the total hop count of all the paths in P),
maximizing >, c; >, cp7ij is equivalent to minimizing
Zz e, 2opiep Tij (i.e., minimizing the total traversal num-
ber of the compromised links), which is the ALS problem.
O
Compared to the MILP formulation (9), although CALS
remains NP-hard, it facilitates the development of an efficient
suboptimal algorithm as shown below. Moreover, Lemma 4
implies that T},, can be used as a proxy for analyzing the
performance of any strategy for selecting the compromised
links.

C. Simple Greedy Algorithm

In the unconstrained case, we have seen in Section IV that
the simple greedy algorithm (Algorithm 1) achieves superior
performance wrt benchmarks. It is thus natural to consider
its extension in the constrained case. The resulting algorithm,
called CALS Greedy, selects the link that yields the maximum
increase in 7}, per unit cost in each iteration. Specifically,
it follows the same steps as Algorithm 1, except that:

e line 3 is replaced by “while P,, # P and 3l € L\ L,,

such that L,, U {l} satisfies the budget constraint (16)”;

e line 4 is replaced by “find the link [; with the largest

ratio Lm(Lm Uil }) Tin(Em) o ¢ L., U{l } satisfies (16)”,

where 7T, (L") denotes the value of T, as defined in (20) when
L., = L'. There are again O(|L|) iterations, and each iteration
is dominated by the new line 4 above that takes O(|L|?|P|)
time, as we need to evaluate T, (L., U{l;}) for all the O(|L|)
candidate links and each evaluation takes O(|L|-| P|) time. The
complexity of CALS Greedy is thus O(|L|?|P]).

Counterexample: As shown later, CALS Greedy performs
very well empirically, which raises a question of whether it
always closely approximates the optimal solution. To this end,
we will show by a counterexample that its approximation
factor is at most inversely proportional to the number of paths,
i.e., O(1/|P]). Specifically, consider the network topology and
the set of paths P as shown in Fig. 8, where k = 2 and ¢; = 1
(Vl; € L). CALS Greedy will achieve TG = 2 by select-
ing L, = {(C,E),(K,G)}. However, the optimal solution
achieves T, = 6n + 2 by selecting L, = {(A, E), (G, I)}.
For this instance of CALS, we see that

¢ 1 1 _o

Ti 3n+1 2|P|-5 |P|
Therefore, the approximation factor of CALS Greedy (defined
by the worst-case instance) is O(1/|P|). This counterexample

(25)

{A E Fl G, H}| 1<i<n,
{B,E.Fi, G, 1}| 1<i<n,

D K {J, G K:}
Fig. 8. Example showing the O(%) approximation of CALS Greedy.

TABLE III
PARAMETERS FOR EVALUATING BUDGET-CONSTRAINED ATTACKS

Network #terminals budget k cost
Bics 8 1,3,5,7,9,00 | [0,2)
BTN 8 1,3,5,7,9,00 | [0,2)
Cogent 8 1,3,5,7,9,00 | [0,2)
Colt 10 1,3,5,7,9,00 | [0,2)
AS 8717 10 1,3,5,7,9,00 | [0,2)
AS 20965 12 1,3,5,7,9,00 | [0,2)

shows that the greedy heuristic does not provide a good
approximation for CALS in the worst case. Nevertheless,
it achieves near-optimal performance for the attacker in aver-
age cases as shown in Section V-D. It remains open whether
there exists a polynomial-time approximation algorithm for
CALS.

Remark: Theoretically, we can also apply the greedy heuris-
tic directly to the original objective (2a). Let F'(L,,) denote
the optimal objective value of the LP wrt X under a given
L,,, computed as in Section III-A. Then this LP based
greedy heuristic will select the link [; with the maximum

F(L"‘U{lcf) F{Lm) in each iteration subject to the budget con-
straint. This approach, however, will incur a much higher com-
plexity than CALS Greedy due to the need of solving O(|L|?)
LP’s. For example, its complexity will be O(|L|*(| P|+|L|)?*%)
if using Vaidya’s algorithm [54] to solve the LP for F(L,,)
(with O(|L|) variables and O(|P| 4 |L|) constraints).

D. Evaluation

Setup: We evaluate the optimal solution obtained by solving
(9) (‘MILP’) and the proposed algorithm, CALS Greedy
(‘CALS greedy’), for the budget-constrained DGoS under the
setup in Section IV-A, except that we fix the number of
terminals and only consider the case of shortest paths. Table III
shows the parameter values. As mentioned before, we use costs
to model the difficulty for the attacker to control the links,
which depends on the specific method of controlling the links
and the related parameters, e.g., the models and the vendors of
the associated devices for backdoor-based control, or locations
of the attacker’s devices for hijacking-based control. In our
evaluation, the cost of compromising each link is drawn
uniformly at random from the interval of [0,2). This leads
to a unit cost per link on the average, giving the budget &
an intuitive meaning of the average number of compromised
links under random selection. The results are averaged (£ one
standard deviation) over 20 sets of randomly selected terminals
and randomly generated link costs.

Benchmarks: As our problem is a MILP, we use the follow-
ing heuristics commonly used to solve MILPs as benchmarks:
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Fig. 9. Average delay degradation under the budget constraint.

1) “LP relaxation with Randomized Rounding” (‘LP-RR’):
This heuristic first solves the LP relaxation of (9), and
then treats the fractional solution (;);;er as probabili-
ties for selecting links, subject to the budget constraint.

2) “LP based greedy”: This heuristic directly maximizes
(2a) by selecting one more compromised link per itera-
tion that yields the maximum additional delay degrada-
tion per unit cost, subject to the budget constraint.

We also adapt algorithms from the unconstrained case as
benchmarks. Algorithm 1 (‘ALS greedy’) can be easily
adapted to satisfy the budget constraint (16) by stopping after
exhausting the budget. Similarly, the heuristics ‘random’ and
‘top traversal’ (see Section IV-A.3) can also be easily adapted
to satisfy the budget constraint (16).

Results: Fig. 9 shows the comparison of different attack
strategies, where k = oo is the unconstrained case. First of all,
the result shows that it is necessary to change the objective
from minimizing the total traversal number to maximizing
T, (20) when we (the attacker) are not able to compromise
a cut due to the budget constraint. This is indicated by the
poor performance of ‘ALS greedy’ when k is small. Secondly,
the proposed algorithm, ‘CALS greedy’, achieves as much
damage as ‘ALS greedy’ under an unlimited budget, but
much more damage under a limited budget. Across all budget
values, ‘CALS greedy’ achieves near-optimal performance
(i.e., close to ‘MILP’). Finally, ‘CALS greedy’ outperforms
the other heuristics derived from our optimization formulation
(i.e., ‘LP-RR’, ‘LP based greedy’). In particular, while ‘LP
based greedy’ achieves comparable performance degradation,
it is much slower, e.g., the experiment on AS 20965 takes
17 seconds for ‘CALS greedy’ but 4844 seconds for ‘LP based
greedy’, indicating the value of using 7, (20) as a proxy
objective function. Overall, we see that even though ‘CALS
greedy’ does not guarantee a good approximation in the worst
case (see the counterexample in Section V-C), it performs well
in average cases.

Moreover, we evaluate the impact of imperfect knowledge
of measurement paths, by setting the attacker-assumed mea-
surement paths P to the set of all the shortest paths between
the terminals and the actual measurement paths P used by net-
work tomography to a random subset of these paths. We then

IEEE/ACM TRANSACTIONS ON NETWORKING
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Fig. 10.  Average delay degradation when the attacker overestimates the
measurement paths (| P|/|P| = 50%).

repeat the experiment in Fig. 9, except that we only count the
performance degradation on the paths in P (assuming that only
these paths are used). Fig. 10 shows the average degradations
achieved by the optimal attack strategy (‘MILP’) and the
best polynomial-time strategy (‘CALS greedy’) with accurate
knowledge of the measurement paths, together with those
without accurate knowledge (‘overestimated’). The results
show that although the attacker incurs some suboptimality
due to not knowing the exact set of communication paths,
he can still launch the attack on all possible paths and achieve
significant damage on the actually used paths. Here we have
assumed that network tomography can only monitor the paths
used for communications; our recent work [62] considers a
more general scenario where network tomography can monitor
additional paths via active probing, in which case only the per-
formance degradation on data communication paths matters.
Finally, as our attack model does not rule out the possibility
for a specific inference algorithm to detect some of the
compromised links as bad links, we evaluate the detectabil-
ity of compromised links under our best polynomial-time
attack strategy, CALS Greedy. To this end, we implement a
tomography-based detector that tries to explain all the mea-
surements with the minimum number of bad links as in [18].
Let L; denote the set of detected bad links. Fig. 11 shows
the fraction of detected compromised links |Lg N Ly, |/| L]
(‘detection rate’), the fraction of detected uncompromised
links |Lg N Ly, |/|Ly| (‘false alarm rate’), the fraction of com-
promised links |L,,|/|L| (‘compromised’), and the fraction
of detected links |Lg|/|L| (‘detected’). We see that although
the detector detects some compromised links as bad links,
it detects even more innocent links as bad links, and is
thus unable to localize the compromised links. Specifically,
the false alarm rate is comparable to or even higher than
the detection rate in most attack scenarios, meaning that an
uncompromised link is more likely to be flagged as a bad link
than a compromised link. This is because the detector flags
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Fig. 11. Performance of tomography-based bad link detection.

a much larger number of bad links than the actual number of
links introducing significant delays (i.e., compromised links).
For example, in Cogent, the detector claims that 70-80%
links are bad while most of the delays are injected by 10%
of the links. This indicates the difficulty of localizing the
compromised links using existing tomography techniques.

VI. CONCLUSION

This work helps to establish the fundamental limit of net-
work tomography in adversarial environments by formulating
and analyzing a novel type of attack, called the stealthy
DeGrading of Service (DGoS) attack, that aims at maximally
degrading the performance of targeted paths without being
localized by network tomography. Through careful analysis,
we derive explicit properties of the optimal attack strategy. The
derived properties allow us to link our problem to well-known
combinatorial optimization problems, and leverage existing
algorithms with approximation guarantees. Our evaluations on
real topologies show that the proposed attack can significantly
degrade communication performances without being localized
by network tomography, signaling the need of new defenses.
In particular, our evaluations show a notable performance gap
between heuristic attack strategies (e.g., compromising the
most traversed links) and the proposed strategies, demonstrat-
ing the importance of modeling intelligent attackers.

Discussion: Our results suggest several potential approaches
to the defense. First, our proposed algorithms can be used to
identify the set of links that once controlled by an adversary,
will cause the maximum damage, which helps to select links
for protection (e.g., by installing monitoring agents or updating
software/hardware at the endpoints). Moreover, the results
in Fig. 10 suggest that dynamically adapting the measurement
paths among a larger set of paths can help network tomography
to mitigate DGoS attacks by making it harder for the attacker
to learn which paths are monitored. Lastly, our observations
that networks with higher identifiability are less vulnerable
to DGoS attacks suggest that existing measurement design
algorithms can also help to defend against such attacks.

We leave detailed investigation of these defenses to future
work.
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