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Abstract

A k-factorization of the complete t-uniform hypergraph K
(t)
v is an H-

decomposition of K
(t)
v where H is a k-regular spanning subhypergraph of

K
(t)
v . For v ≤ 9, we use nauty to generate the 2-regular and 3-regular

spanning subhypergraphs of K
(3)
v and investigate which of these subhy-

pergraphs factorize K
(3)
v or K

(3)
v − I, where I is a 1-factor. We settle this

question for all but two of these subhypergraphs.

1 Introduction

A commonly studied problem in combinatorics concerns decompositions of graphs
into edge-disjoint subgraphs. A decomposition of a graphK is a set Δ = {G1, G2, . . . ,
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Gs} of subgraphs of K such that E(G1)∪E(G2)∪ · · · ∪E(Gs) = E(K) and E(Gi)∩
E(Gj) = ∅ for all 1 ≤ i < j ≤ s. If each element of Δ is isomorphic to a fixed
graph G, then Δ is called a G-decomposition of K and in this case we may say that
G decomposes K. If G is a spanning subgraph of K, then a G-decomposition of K
is also a G-factorization of K and in this case we may say that G factorizes K. If
in addition, G is k-regular, then a G-factorization of K is also a k-factorization of
K. A G-decomposition of Kv is also known as a G-design of order v. The problem
of determining all v for which there exists a G-design of order v is of special interest
(see [1] for a survey).

The notion of decompositions of graphs naturally extends to decompositions of
uniform hypergraphs. A hypergraph H consists of a finite nonempty set V of vertices
and a set E of nonempty subsets of V called hyperedges or simply edges. If for each
e ∈ E, we have |e| = t, then H is said to be t-uniform. Thus graphs are 2-uniform
hypergraphs. For integers v ≥ 1 and t ≥ 2, the complete t-uniform hypergraph of
order v, denoted K

(t)
v , is the hypergraph with a vertex set V of size v and edge set

the set of all t-element subsets of V . A decomposition of a hypergraph K is a set
Δ = {H1, H2, . . . , Hs} of subhypergraphs of K such that E(H1) ∪ E(H2) ∪ · · · ∪
E(Hs) = E(K) and E(Hi) ∩ E(Hj) = ∅ for all 1 ≤ i < j ≤ s. If each element Hi

of Δ is isomorphic to a fixed hypergraph H , then Hi is called an H-block, and Δ
is called an H-decomposition of K. If H is a spanning subhypergraph of K, then
an H-decomposition of K is also an H-factorization of K and in this case we may
say that H factorizes K. If in addition, H is k-regular, then an H-factorization of
K is also a k-factorization of K. An H-decomposition of K

(t)
v is also known as an

H-design of order v. The problem of determining all values of v for which there
exists an H-design of order v is known as the spectrum problem for H .

A K
(t)
k -design of order v is a generalization of Steiner systems and is equivalent

to an S(t, k, v)-design. A summary of results on S(t, k, v)-designs appears in [11].
Keevash [18] has recently shown that for all t and k the obvious necessary conditions
for the existence of an S(t, k, v)-design are sufficient for sufficiently large values of v.
Similar results were obtained by Glock, Kühn, Lo, and Osthus [13, 14] and extended
to include the corresponding asymptotic results for H-designs of order v for all uni-
form hypergraphs H . These results for t-uniform hypergraphs mirror the celebrated
results of Wilson [26] for graphs. Although these asymptotic results assure the ex-
istence of H-designs for sufficiently large values of v for any uniform hypergraph H ,
the spectrum problem has been settled for very few hypergraphs of uniformity larger
than 2.

In the study of graph decompositions, a fair amount of the focus has been on G-
decompositions of Kv where G is a graph with a relatively small number of edges (see
[1] and [12] for known results). Some authors have investigated the corresponding
problem for 3-uniform hypergraphs. For example, in [7], the spectrum problem is
settled for all 3-uniform hypergraphs on 4 or fewer vertices. In [21], Mathon and

Street give necessary conditions for the existence of decompositions of K
(3)
v into

copies of the projective plane PG(2, 2) and into copies of the affine plane AG(2, 3).
They give sufficient conditions for several infinite classes in both cases. More recently,
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the spectrum problem was settled in [8] for all 3-uniform hypergraphs with at most
6 vertices and at most 3 edges. In [8], they also settle the spectrum problem for the 3-
uniform hypergraph of order 6 whose edges form the lines of the Pasch configuration.
Authors have also considered H-designs where H is a 3-uniform hypergraph whose
edge set is defined by the faces of a regular polyhedron. Let T , O, and I denote the
tetrahedron, the octahedron, and the icosahedron hypergraphs, respectively. The
hypergraph T is the same asK

(3)
4 , and its spectrum was settled in 1960 by Hanani [15].

In another paper [16], Hanani settled the spectrum problem for O-designs and gave
necessary conditions for the existence of I-designs. Perhaps the best known general
result on decompositions of complete t-uniform hypergraphs is Baranyai’s result [6]

on the existence of 1-factorizations of K
(t)
mt for all positive integers m. There are,

however, several articles on decompositions of complete t-uniform hypergraphs (see
[5] and [23]) and of t-uniform t-partite hypergraphs (see [19] and [25]) into variations
on the concept of a Hamilton cycle. For t = 3, most such decompositions correspond
to 3-factorizations of K

(3)
v . There are also several results on decompositions of 3-

uniform hypergraphs into structures known as Berge cycles with a given number of
edges (see for example [17] and [20]). We note however that the Berge cycles in these
decompositions are not required to be isomorphic.

For each order v ≤ 9, we use the nauty [22] function in SageMath [24] to generate
the 2-regular and 3-regular 3-uniform hypergraphs on v vertices and investigate which
of these hypergraphs factorize K

(3)
v , or K

(3)
v − I where I is a 1-factor. This work

mirrors some of the graph factorization results by Anderson [4] and by Adams, Bryant
and Khodkar [2]. It also generalizes the Oberwolfach problem which deals with
isomorphic 2-factorizations of Kv or Kv − I (see [3] for example) and expands on
Baranyai’s 1-factorizations results [6]. Our results are summarized in the following
theorem.

Theorem 1. All but one of the eight non-isomorphic 3-uniform 2-regular hypergraphs
of order v ≤ 9 factorize K

(3)
v . All but one of the 49 non-isomorphic 3-uniform 3-

regular hypergraphs of order v ≤ 8 factorize K
(3)
v or K

(3)
v − I, where I is a 1-factor.

At most two of the 148 non-isomorphic 3-uniform 3-regular hypergraphs of order 9
do not factorize K

(3)
9 − I, where I is a 1-factor.

If a and b are integers with a ≤ b, we define [a, b] to be {a, a + 1, . . . , b}. Let
Zn denote the group of integers modulo n. We will often describe our hypergraphs
by giving their edge set only. Since the hypergraphs we consider will never contain
isolated vertices, this is enough to uniquely define them. To save space, we will often
list an edge {a, b, c} as the string abc.

2 2-Factors of K
(3)
v , v ≤ 9

If H is a 2-regular spanning subhypergraph of K
(3)
v on x edges, then we must have

x = 2v/3 and thus v ≡ 0 (mod 3). Also, since K
(3)
3 consists of a single edge, we

must have v ≥ 6.
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Lemma 2. There are two non-isomorphic 2-regular spanning subhypergraphs of K
(3)
6 .

One of them factorizes K
(3)
6 and the other does not.

Proof. For k ∈ [1, 2], let H2,k[0, 1, 2, 3, 4, 5] denote the hypergraph H2,k with ver-
tex set [0, 5] and edge sets E(H2,1) = {012, 234, 450, 135} and E(H2,2) = {012, 123,
345, 045}. It is easy to see that these are the only non-isomorphic 2-regular span-

ning subhypergraphs of K
(3)
6 . It is shown in [8] that H2,1 does not factorize K

(3)
6 .

Let V
(
K

(3)
6

)
= Z5 ∪ {∞} and let B2,2 = {H2,2[2, 0, 1, 3,∞, 4]}. Then an H2,2-

factorization of K
(3)
6 consists of the orbit of the H2,2-block in B under the action of

the map ∞ 
→ ∞ and j 
→ j + 1 (mod 5).

Lemma 3. There are six non-isomorphic 2-regular spanning subhypergraphs of K
(3)
9 .

All six factorize K
(3)
9 .

Proof. For k ∈ [3, 8], let H2,k[0, 1, 2, 3, 4, 5, 6, 7, 8] denote the hypergraph H2,k with
vertex set [0, 8] and edge set as defined in Table 1.

k Edge Set E(H2,k) k Edge Set E(H2,k)
3 {014, 058, 123, 234, 567, 678} 6 {012, 078, 156, 234, 345, 678}
4 {012, 067, 138, 234, 456, 578} 7 {012, 078, 123, 345, 456, 678}
5 {012, 078, 168, 234, 345, 567} 8 {012, 036, 147, 258, 345, 678}

Table 1: Edge sets for the six non-isomorphic 2-regular spanning subhypergraphs of
K

(3)
9

Let V
(
K

(3)
9

)
= Z7 ∪ {∞1,∞2} and let

B2,3 = {H2,3[0, 1, 2, 3, 5, 4, 6,∞2,∞1], H2,3[0, 1, 2,∞1, 4, 3, 6,∞2, 5]},
B2,4 = {H2,4[0, 1, 2, 3, 6, 5,∞1, 4,∞2], H2,4[0, 1, 3, 5, 6, 4, 2,∞1,∞2]},
B2,5 = {H2,5[0, 1, 2, 3,∞1, 5,∞2, 6, 4], H2,5[0, 1, 3, 2, 6, 4,∞1,∞2, 5]},
B2,6 = {H2,6[0, 1, 2, 3, 6, 5,∞1, 4,∞2], H2,6[0, 1, 3, 2,∞1, 4, 6, 5,∞2]},
B2,7 = {H2,7[0, 1, 2, 5, 6,∞1, 4, 3,∞2], H2,7[0, 1, 3, 4, 2, 6,∞1, 5,∞2]},
B2,8 = {H2,8[0, 1, 2, 3, 4,∞1, 6,∞2, 5], H2,8[0, 1, 3, 2, 4, 5,∞1, 6,∞2]}.

Then for k ∈ [3, 8], an H2,k-factorization of K
(3)
9 consists of the orbit of the H2,k-block

in B2,k, under the action of the map ∞i 
→ ∞i and j 
→ j + 1 (mod 7).

3 3-Factorizations of K(3)
v , v ≤ 9

If H is a 3-regular 3-uniform hypergraph on v vertices and x edges, then we must
have x = v. If gcd(v, 3) = 1, then v|(v

3

)
and hence a 3-factorization ofK

(3)
v is possible.

On the other hand, if gcd(v, 3) = 3, then v � |(v
3

)
, and in this case, removing a 1-factor

from K
(3)
v yields the desired size divisibility condition.
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Lemma 4. There is a unique 3-regular spanning subhypergraph of K
(3)
4 and it triv-

ially factorizes K
(3)
4 . There is also a unique 3-regular spanning subhypergraph of K

(3)
5

and it factorizes K
(3)
5 .

Proof. The only 3-regular subgraph of K
(3)
4 is H3,1 = K

(3)
4 with a trivial 3-fac-

torization. Similarly, there is only one 3-regular 3-uniform hypergraph on 5 ver-
tices. Let H3,2[0, 1, 2, 3, 4] denote the hypergraph with vertex set [0, 4] and edge
set {012, 123, 234, 340, 401}. Then B3,2 = {H3,2[0, 1, 2, 4, 3], H3,2[1, 3, 2, 0, 4]} is an

H3,2-factorization of K
(3)
5 .

Lemma 5. There are four non-isomorphic 3-regular spanning subhypergraphs of
K

(3)
6 . All four factorize K

(3)
6 − I, where I is a 1-factor.

Proof. For k ∈ [3, 6], let H3,k[0, 1, 2, 3, 4, 5] denote the hypergraph graph H3,k with
vertex set [0, 5] and edge set as defined in Table 2. It can be checked that these are

all of the non-isomorphic 3-regular spanning subhypergraphs of K
(3)
6 .

k Edge Set E(H3,k) k Edge Set E(H3,k)
3 {012, 013, 045, 234, 235, 145} 5 {012, 345, 013, 245, 023, 145}
4 {012, 034, 135, 245, 023, 145} 6 {012, 345, 013, 245, 024, 135}

Table 2: Edge sets for the four non-isomorphic 3-regular spanning subhypergraphs
of K

(3)
6

Let V
(
K

(3)
6

)
= Z3 ∪ {∞1,∞2,∞3}, let I denote the 1-factor with edge set {012,

∞1∞2∞3}. Let
B3,3 = {H3[0,∞1, 1,∞2, 2,∞3]}, B3,4 = {H4[0, 1,∞1,∞2, 2,∞3]},
B3,5 = {H5[0, 1,∞1,∞2, 2,∞3]}, B3,6 = {H6[0,∞1,∞2, 1, 2,∞3]}.

For k ∈ [3, 6], an H3,k-factorization of K
(3)
6 − I consists of the orbit of the H3,k-block

in B3,k under the action of the map ∞i 
→ ∞i and j 
→ j + 1 (mod 3).

Lemma 6. There are ten non-isomorphic 3-regular spanning subhypergraphs of K
(3)
7 .

All but one factorize K
(3)
7 .

Proof. For k ∈ [7, 16], let H3,k[0, 1, 2, 3, 4, 5, 6] denote the graph H3,k with vertex set
[0, 6] and edge set as defined in Table 3.

Let V
(
K

(3)
7

)
= Z5 ∪ {∞1,∞2} and let

B3,7 = {H3,7[0, 1, 3,∞1, 2,∞2, 4]}, B3,8 = {H3,8[0, 1, 2, 3,∞1,∞2, 4]},
B3,9 = {H3,9[0, 1, 3, 2, 4,∞1,∞2]}, B3,10 = {H3,10[0, 1, 2, 3,∞1, 4,∞2]},
B3,11 = {H3,11[0, 1, 4,∞1,∞2, 2, 3]}, B3,13 = {H3,13[0, 1, 4, 2,∞1,∞2, 3]},
B3,14 = {H3,14[0, 1, 4, 2,∞1,∞2, 3]}, B3,15 = {H3,15[0, 1, 2, 3,∞1, 4,∞2]},
B3,16 = {H3,16[0, 1, 2, 4,∞1, 3,∞2]}.
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k Edge Set, E(H3,k) k Edge Set, E(H3,k)
7 {012, 013, 056, 123, 246, 345, 456} 12 {012, 036, 045, 135, 146, 234, 256}
8 {012, 035, 056, 126, 134, 234, 456} 13 {012, 034, 056, 123, 135, 246, 456}
9 {012, 013, 056, 146, 235, 246, 345} 14 {012, 036, 045, 134, 156, 234, 256}
10 {012, 013, 056, 134, 234, 256, 456} 15 {012, 016, 023, 134, 256, 345, 456}
11 {012, 034, 056, 123, 124, 356, 456} 16 {012, 016, 023, 156, 234, 345, 456}

Table 3: Edge sets for the ten non-isomorphic 3-regular spanning subhypergraphs of
K

(3)
7

We note that H3,12 is a Steiner triple system of order 7. A decomposition of K
(3)
v into

Steiner triple systems of order v is a known as a large set of Steiner triple systems of
order v. It was shown by Cayley [9] that there does not exist a large set of Steiner
triple systems of order 7 (see also [10]). For k ∈ [7, 16] \ {12}, an H3,k-factorization

of K
(3)
7 consists of the orbit of the H3,k-block in B3,k under the action of the map

∞i 
→ ∞i and j 
→ j + 1 (mod 5).

Lemma 7. There are 33 non-isomorphic 3-regular spanning subhypergraphs of K
(3)
8 .

All of them factorize K
(3)
8 .

Proof. For k ∈ [17, 49], let H3,k[0, 1, 2, 3, 4, 5, 6, 7] denote the graph H3,k with vertex
set [0, 7] and edge set as defined in Table 4.

k Edge Set E(H3,k) k Edge Set E(H3,k)

17 {012, 013, 023, 456, 457, 467, 123, 567} 34 {012, 034, 567, 135, 267, 234, 045, 167}
18 {012, 013, 045, 467, 567, 236, 123, 457} 35 {012, 034, 567, 135, 267, 046, 124, 357}
19 {012, 013, 045, 467, 567, 236, 145, 237} 36 {012, 034, 567, 135, 267, 046, 234, 157}
20 {012, 034, 056, 137, 257, 467, 145, 236} 37 {012, 034, 567, 135, 267, 046, 127, 345}
21 {012, 034, 156, 357, 246, 017, 234, 567} 38 {012, 034, 567, 135, 267, 046, 347, 125}
22 {012, 034, 156, 357, 246, 017, 235, 467} 39 {012, 034, 567, 135, 267, 146, 237, 045}
23 {012, 034, 156, 357, 246, 037, 567, 124} 40 {012, 034, 567, 156, 234, 137, 027, 456}
24 {012, 034, 156, 357, 246, 137, 045, 267} 41 {012, 034, 567, 156, 234, 137, 457, 026}
25 {012, 034, 156, 357, 246, 137, 457, 026} 42 {012, 034, 567, 156, 234, 057, 126, 347}
26 {012, 034, 156, 357, 246, 137, 467, 025} 43 {012, 034, 567, 156, 234, 057, 267, 134}
27 {012, 034, 156, 357, 246, 237, 045, 167} 44 {012, 034, 567, 156, 234, 057, 367, 124}
28 {012, 034, 156, 357, 246, 237, 057, 146} 45 {012, 034, 567, 156, 347, 023, 125, 467}
29 {012, 034, 156, 357, 246, 147, 025, 367} 46 {012, 034, 567, 156, 347, 235, 124, 067}
30 {012, 034, 156, 357, 246, 147, 036, 257} 47 {012, 034, 567, 156, 347, 235, 027, 146}
31 {012, 034, 156, 357, 246, 147, 067, 235} 48 {012, 034, 567, 156, 347, 027, 123, 456}
32 {012, 034, 567, 015, 267, 346, 125, 347} 49 {012, 034, 567, 156, 347, 027, 134, 256}
33 {012, 034, 567, 015, 367, 246, 124, 357}

Table 4: Edge sets for the 33 non-isomorphic 3-regular spanning subhypergraphs of
K

(3)
8
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Let V
(
K

(3)
8

)
= Z7 ∪ {∞} and let

B3,17 = {H3,17[0, 1, 2, 4, 3, 5, 6,∞]}, B3,18 = {H3,18[0, 1, 2, 4, 3, 5,∞, 6]},
B3,20 = {H3,20[0, 1, 2, 4, 6, 3,∞, 5]}, B3,21 = {H3,21[0, 1, 2, 4, 6,∞, 5, 3]},
B3,22 = {H3,22[0, 1, 4, 2, 3, 6, 5,∞]}, B3,23 = {H3,23[0, 1, 4, 2, 6,∞, 5, 3]},
B3,24 = {H3,24[0, 1, 5, 3,∞, 2, 4, 6]}, B3,25 = {H3,25[0, 1, 5, 2,∞, 6, 4, 3]},
B3,26 = {H3,26[0, 1, 3,∞, 2, 6, 4, 5]}, B3,27 = {H3,27[0, 1, 2, 3,∞, 6, 4, 5]},
B3,28 = {H3,28[0, 1, 2, 4, 6, 3, 5,∞]}, B3,29 = {H3,29[0, 1, 2, 4, 5, 3, 6,∞]},
B3,30 = {H3,30[0, 1, 3, 4, 2, 6,∞, 5]}, B3,31 = {H3,31[0, 1, 2, 3, 4, 5,∞, 6]},
B3,32 = {H3,32[0,∞, 1, 2, 6, 5, 3, 4]}, B3,33 = {H3,33[0, 1, 2, 3, 4, 5, 6,∞]},
B3,34 = {H3,34[0, 1, 6, 5, 2,∞, 3, 4]}, B3,35 = {H3,35[0, 1, 2, 3, 4, 5, 6,∞]},
B3,36 = {H3,36[0, 1, 2, 6, 4, 5, 3,∞]}, B3,37 = {H3,37[0, 1, 2, 6, 3,∞, 5, 4]},
B3,38 = {H3,38[0, 1, 5, 6, 2,∞, 4, 3]}, B3,39 = {H3,39[0, 1, 2, 6, 3, 5, 4,∞]},
B3,40 = {H3,40[0, 1, 3, 6, 5, 2,∞, 4]}, B3,41 = {H3,41[0, 1, 3, 5, 6, 2,∞, 4]},
B3,42 = {H3,42[0, 1, 2, 5,∞, 3, 6, 4]}, B3,43 = {H3,43[0, 1, 3, 6,∞, 2, 5, 4]},
B3,44 = {H3,44[0, 1, 2, 5,∞, 4, 6, 3]}, B3,46 = {H3,46[0, 1, 4,∞, 2, 3, 5, 6]},
B3,47 = {H3,47[0, 1, 2, 3, 5,∞, 4, 6]}, B3,48 = {H3,48[0, 1, 2, 5, 3, 4,∞, 6]}.

In addition, let

B3,19 = {H3,19[0, 1, 2, 3, 4, 5, 6,∞], H3,19[0, 1, 4, 6, 2,∞, 3, 5],

H3,19[0, 1, 5,∞, 3, 6, 2, 4], H3,19[0, 2, 3, 4, 5, 6, 1,∞],

H3,19[0, 4, 3,∞, 2, 5, 1, 6], H3,19[0, 6, 4,∞, 3, 5, 1, 2],

H3,19[0,∞, 3, 5, 2, 6, 1, 4]},
B3,45 = {H3,45[0, 1, 2, 3, 4, 5, 6,∞], H3,45[0, 1, 3, 5, 4, 6, 2,∞],

H3,45[0, 1, 4, 2, 5, 6,∞, 3], H3,45[0, 1,∞, 6, 2, 3, 5, 4],

H3,45[0, 2,∞, 3, 6, 1, 4, 5], H3,45[0, 4, 6, 1, 5, 3, 2,∞],

H3,45[0, 4,∞, 5, 6, 1, 3, 2]},
B3,49 = {H3,49[0, 1, 2, 3, 4, 5, 6,∞], H3,49[0, 1, 3, 2, 5, 4, 6,∞],

H3,49[0, 1, 4, 2, 6, 3, 5,∞], H3,49[0, 1, 5, 2, 4, 3, 6,∞],

H3,49[0, 2, 3, 4, 6, 1,∞, 5], H3,49[0, 4, 5, 1,∞, 2, 3, 6],

H3,49[2, 1, 3, 4, 5, 0, 6,∞]}.

For k ∈ [17, 49]\{19, 45, 49}, an H3,k-factorization of K
(3)
8 consists of the orbit of the

H3,k-block in B3,k under the action of the map ∞ 
→ ∞ and j 
→ j+1 (mod 7). For

k ∈ {19, 45, 49}, an H3,k-factorization of K
(3)
8 consists of the H3,k-blocks in B3,k.

Lemma 8. There are 148 non-isomorphic 3-regular subhypergraphs of K
(3)
9 . At most

two of them do not factorize K
(3)
9 − I, where I is a 1-factor.
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Proof. For k ∈ [50, 197], let H3,k[0, 1, 2, 3, 4, 5, 6, 7, 8] denote the hypergraph H3,k

with vertex set [0, 8] and edge set as defined in Table 5.

k Edge Set E(H3,k) k Edge Set E(H3,k)
50 {012, 013, 024, 567, 358, 468, 257, 367, 148} 124 {012, 013, 245, 267, 468, 358, 067, 578, 134}
51 {012, 013, 024, 567, 358, 468, 457, 138, 267} 125 {012, 013, 245, 267, 468, 358, 367, 047, 158}
52 {012, 013, 024, 567, 358, 468, 457, 368, 127} 126 {012, 013, 245, 267, 468, 358, 367, 057, 148}
53 {012, 013, 024, 567, 358, 678, 246, 458, 137} 127 {012, 013, 245, 267, 468, 578, 034, 137, 568}
54 {012, 013, 024, 567, 358, 678, 456, 234, 178} 128 {012, 034, 135, 067, 248, 568, 237, 156, 478}
55 {012, 013, 024, 567, 358, 678, 456, 138, 247} 129 {012, 034, 135, 067, 248, 568, 257, 134, 678}
56 {012, 013, 045, 267, 348, 678, 456, 235, 178} 130 {012, 034, 135, 067, 248, 568, 257, 146, 378}
57 {012, 013, 045, 267, 458, 367, 468, 257, 138} 131 {012, 034, 135, 067, 248, 568, 257, 147, 368}
58 {012, 013, 045, 267, 368, 457, 278, 134, 568} 132 {012, 034, 135, 067, 248, 568, 257, 347, 168}
59 {012, 013, 045, 267, 368, 457, 378, 245, 168} 133 {012, 034, 135, 067, 248, 568, 257, 348, 167}
60 {012, 013, 045, 267, 368, 457, 378, 456, 128} 134 {012, 034, 135, 067, 248, 568, 578, 123, 467}
61 {012, 013, 045, 267, 468, 357, 238, 146, 578} 135 {012, 034, 135, 067, 248, 568, 578, 126, 347}
62 {012, 013, 045, 267, 468, 357, 168, 458, 237} 136 {012, 034, 135, 067, 268, 457, 258, 467, 138}
63 {012, 013, 045, 267, 468, 357, 368, 257, 148} 137 {012, 034, 135, 067, 268, 457, 168, 348, 257}
64 {012, 013, 045, 267, 468, 357, 568, 123, 478} 138 {012, 034, 135, 067, 268, 457, 168, 478, 235}
65 {012, 013, 045, 267, 468, 357, 568, 137, 248} 139 {012, 034, 135, 067, 268, 458, 257, 146, 378}
66 {012, 013, 045, 267, 468, 357, 478, 235, 168} 140 {012, 034, 135, 067, 268, 458, 257, 147, 368}
67 {012, 013, 045, 267, 468, 357, 478, 356, 128} 141 {012, 034, 135, 067, 268, 458, 257, 367, 148}
68 {012, 013, 045, 267, 468, 358, 257, 367, 148} 142 {012, 034, 135, 067, 268, 458, 257, 138, 467}
69 {012, 013, 045, 267, 468, 358, 257, 138, 467} 143 {012, 034, 135, 067, 268, 458, 257, 348, 167}
70 {012, 013, 045, 267, 468, 358, 367, 147, 258} 144 {012, 034, 135, 067, 268, 458, 167, 345, 278}
71 {012, 013, 045, 267, 468, 358, 567, 138, 247} 145 {012, 034, 135, 067, 268, 458, 167, 478, 235}
72 {012, 013, 045, 267, 468, 358, 567, 248, 137} 146 {012, 034, 135, 067, 268, 458, 567, 123, 478}
73 {012, 013, 045, 267, 468, 358, 278, 345, 167} 147 {012, 034, 135, 067, 268, 458, 567, 134, 278}
74 {012, 013, 045, 267, 468, 358, 278, 456, 137} 148 {012, 034, 135, 067, 268, 458, 567, 237, 148}
75 {012, 013, 045, 267, 468, 378, 457, 123, 568} 149 {012, 034, 135, 067, 268, 458, 567, 147, 238}
76 {012, 013, 045, 267, 468, 378, 457, 235, 168} 150 {012, 034, 135, 067, 268, 458, 567, 247, 138}
77 {012, 013, 045, 267, 468, 378, 457, 156, 238} 151 {012, 034, 135, 067, 268, 458, 178, 256, 347}
78 {012, 013, 045, 267, 468, 378, 457, 356, 128} 152 {012, 034, 135, 067, 268, 458, 178, 237, 456}
79 {012, 013, 045, 267, 468, 378, 568, 237, 145} 153 {012, 034, 135, 067, 268, 458, 178, 247, 356}
80 {012, 013, 045, 267, 468, 578, 367, 458, 123} 154 {012, 034, 156, 078, 235, 478, 456, 178, 236}
81 {012, 013, 045, 267, 468, 578, 368, 127, 345} 155 {012, 034, 156, 078, 235, 478, 456, 378, 126}
82 {012, 013, 045, 467, 238, 678, 458, 123, 567} 156 {012, 034, 156, 078, 235, 478, 267, 358, 146}
83 {012, 013, 045, 467, 238, 678, 458, 156, 237} 157 {012, 034, 156, 078, 345, 278, 236, 457, 168}
84 {012, 013, 045, 467, 238, 678, 458, 256, 137} 158 {012, 034, 156, 078, 345, 278, 256, 178, 346}
85 {012, 013, 045, 467, 238, 678, 568, 123, 457} 159 {012, 034, 156, 078, 237, 456, 138, 567, 248}
86 {012, 013, 045, 467, 258, 367, 268, 347, 158} 160 {012, 034, 156, 078, 237, 456, 258, 346, 178}
87 {012, 013, 045, 467, 258, 367, 268, 457, 138} 161 {012, 034, 156, 078, 237, 456, 258, 138, 467}
88 {012, 013, 045, 467, 258, 367, 568, 247, 138} 162 {012, 034, 156, 078, 237, 456, 258, 478, 136}
89 {012, 013, 045, 467, 568, 237, 258, 146, 378} 163 {012, 034, 156, 078, 347, 568, 257, 123, 468}
90 {012, 013, 045, 467, 568, 237, 258, 368, 147} 164 {012, 034, 156, 078, 347, 568, 257, 134, 268}
91 {012, 013, 045, 467, 568, 237, 578, 123, 468} 165 {012, 034, 156, 078, 347, 568, 257, 234, 168}
92 {012, 013, 045, 678, 246, 357, 238, 167, 458} 166 {012, 034, 156, 078, 347, 568, 257, 346, 128}
93 {012, 013, 045, 678, 246, 357, 368, 245, 178} 167 {012, 034, 156, 078, 357, 248, 236, 457, 168}
94 {012, 013, 045, 678, 246, 357, 368, 457, 128} 168 {012, 034, 156, 078, 357, 248, 146, 678, 235}
95 {012, 013, 045, 678, 246, 357, 468, 178, 235} 169 {012, 034, 156, 078, 357, 248, 256, 347, 168}
96 {012, 013, 045, 678, 246, 357, 568, 137, 248} 170 {012, 034, 156, 078, 357, 248, 256, 367, 148}
97 {012, 013, 045, 678, 456, 237, 268, 345, 178} 171 {012, 034, 156, 078, 357, 248, 256, 348, 167}
98 {012, 013, 045, 678, 267, 345, 238, 458, 167} 172 {012, 034, 156, 078, 357, 248, 256, 468, 137}
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99 {012, 013, 045, 678, 267, 458, 136, 348, 257} 173 {012, 034, 156, 078, 357, 248, 456, 137, 268}
100 {012, 013, 045, 678, 267, 458, 368, 134, 257} 174 {012, 034, 156, 078, 357, 248, 456, 128, 367}
101 {012, 013, 045, 678, 267, 458, 368, 145, 237} 175 {012, 034, 156, 078, 357, 248, 456, 278, 136}
102 {012, 013, 045, 678, 267, 458, 368, 245, 137} 176 {012, 034, 567, 158, 236, 478, 135, 047, 268}
103 {012, 013, 045, 678, 267, 458, 368, 457, 123} 177 {012, 034, 567, 158, 236, 478, 245, 017, 368}
104 {012, 013, 045, 678, 467, 235, 568, 247, 138} 178 {012, 034, 567, 158, 236, 478, 146, 023, 578}
105 {012, 013, 045, 678, 467, 258, 356, 123, 478} 179 {012, 034, 567, 158, 236, 478, 146, 035, 278}
106 {012, 013, 045, 678, 467, 258, 356, 247, 138} 180 {012, 034, 567, 158, 346, 278, 126, 348, 057}
107 {012, 013, 045, 678, 467, 258, 358, 234, 167} 181 {012, 034, 567, 158, 267, 348, 123, 058, 467}
108 {012, 013, 045, 678, 467, 258, 368, 134, 257} 182 {012, 034, 567, 158, 267, 348, 015, 238, 467}
109 {012, 013, 045, 678, 467, 258, 368, 125, 347} 183 {012, 034, 567, 158, 267, 348, 035, 248, 167}
110 {012, 013, 045, 678, 467, 258, 368, 245, 137} 184 {012, 034, 567, 158, 267, 348, 235, 467, 018}
111 {012, 013, 045, 678, 467, 258, 368, 457, 123} 185 {012, 034, 567, 568, 123, 478, 145, 023, 678}
112 {012, 013, 245, 267, 458, 367, 038, 678, 145} 186 {012, 034, 567, 568, 123, 478, 145, 036, 278}
113 {012, 013, 245, 267, 458, 367, 048, 358, 167} 187 {012, 034, 567, 568, 123, 478, 056, 178, 234}
114 {012, 013, 245, 267, 458, 367, 048, 568, 137} 188 {012, 034, 567, 568, 127, 348, 013, 257, 468}
115 {012, 013, 245, 267, 458, 368, 067, 138, 457} 189 {012, 034, 567, 568, 127, 348, 123, 057, 468}
116 {012, 013, 245, 267, 458, 368, 378, 014, 567} 190 {012, 034, 567, 568, 127, 348, 015, 237, 468}
117 {012, 013, 245, 267, 468, 357, 038, 146, 578} 191 {012, 034, 567, 568, 127, 348, 056, 347, 128}
118 {012, 013, 245, 267, 468, 357, 348, 016, 578} 192 {012, 034, 567, 568, 578, 123, 014, 678, 234}
119 {012, 013, 245, 267, 468, 357, 348, 567, 018} 193 {012, 345, 678, 036, 147, 258, 013, 246, 578}
120 {012, 013, 245, 267, 468, 357, 058, 167, 348} 194 {012, 345, 678, 036, 147, 258, 013, 256, 478}
121 {012, 013, 245, 267, 468, 358, 347, 016, 578} 195 {012, 345, 678, 036, 147, 258, 013, 268, 457}
122 {012, 013, 245, 267, 468, 358, 067, 357, 148} 196 {012, 345, 678, 036, 147, 258, 123, 047, 568}
123 {012, 013, 245, 267, 468, 358, 067, 378, 145} 197 {012, 345, 678, 036, 147, 258, 246, 057, 138}

Table 5: Edge sets for the 148 non-isomorphic 3-regular 3-uniform hypergraphs on
9 vertices

Let V
(
K

(3)
9

)
= Z9 and let I denote the 1-factor with edge set {036, 147, 258}. Let

B3,50 = {H3,50[0, 1, 3, 5, 2, 6, 4, 8, 7]}, B3,51 = {H3,51[0, 1, 2, 4, 5, 7, 8, 3, 6]},
B3,52 = {H3,52[0, 1, 3, 5, 7, 2, 4, 8, 6]}, B3,53 = {H3,53[0, 1, 2, 4, 5, 6, 7, 3, 8]},
B3,54 = {H3,54[0, 1, 2, 4, 7, 3, 6, 5, 8]}, B3,55 = {H3,55[0, 1, 2, 3, 5, 8, 4, 6, 7]},
B3,56 = {H3,56[0, 1, 2, 6, 4, 8, 5, 3, 7]}, B3,57 = {H3,57[0, 1, 2, 5, 6, 4, 7, 8, 3]},
B3,58 = {H3,58[0, 3, 2, 5, 8, 7, 1, 4, 6]}, B3,59 = {H3,59[0, 1, 2, 5, 4, 7, 8, 3, 6]},
B3,60 = {H3,60[0, 1, 5, 2, 4, 6, 3, 7, 8]}, B3,61 = {H3,61[0, 1, 6, 2, 7, 5, 3, 4, 8]},
B3,62 = {H3,62[0, 1, 2, 4, 3, 7, 6, 5, 8]}, B3,63 = {H3,63[0, 1, 4, 2, 5, 7, 3, 6, 8]},
B3,64 = {H3,64[0, 1, 4, 3, 7, 5, 2, 8, 6]}, B3,65 = {H3,65[0, 1, 3, 5, 8, 6, 4, 7, 2]},
B3,66 = {H3,66[0, 1, 2, 5, 6, 4, 8, 7, 3]}, B3,67 = {H3,67[0, 1, 4, 6, 5, 7, 2, 8, 3]},
B3,68 = {H3,68[0, 1, 2, 3, 5, 6, 8, 4, 7]}, B3,69 = {H3,69[0, 1, 2, 3, 4, 5, 8, 7, 6]},
B3,70 = {H3,70[0, 1, 4, 5, 8, 7, 3, 6, 2]}, B3,71 = {H3,71[0, 1, 2, 3, 5, 4, 8, 6, 7]},
B3,72 = {H3,72[0, 1, 5, 6, 7, 4, 2, 3, 8]}, B3,73 = {H3,73[0, 1, 2, 4, 6, 8, 7, 5, 3]},
B3,74 = {H3,74[0, 1, 2, 3, 8, 5, 4, 7, 6]}, B3,75 = {H3,75[0, 3, 1, 4, 2, 7, 6, 5, 8]},
B3,76 = {H3,76[0, 1, 2, 7, 4, 6, 8, 3, 5]}, B3,77 = {H3,77[0, 1, 4, 5, 6, 8, 3, 2, 7]},
B3,78 = {H3,78[0, 1, 3, 7, 4, 5, 2, 8, 6]}, B3,79 = {H3,79[0, 1, 2, 7, 4, 6, 8, 3, 5]},
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B3,80 = {H3,80[0, 1, 2, 4, 5, 8, 7, 6, 3]}, B3,81 = {H3,81[0, 1, 2, 3, 7, 4, 5, 6, 8]},
B3,82 = {H3,82[0, 1, 4, 8, 2, 6, 3, 5, 7]}, B3,83 = {H3,83[0, 1, 2, 5, 3, 7, 8, 6, 4]},
B3,84 = {H3,84[0, 1, 2, 5, 8, 6, 4, 7, 3]}, B3,85 = {H3,85[0, 1, 2, 7, 5, 3, 4, 8, 6]},
B3,86 = {H3,86[0, 1, 3, 2, 4, 6, 7, 8, 5]}, B3,87 = {H3,87[0, 1, 4, 6, 7, 2, 8, 5, 3]},
B3,88 = {H3,88[0, 1, 3, 2, 5, 7, 4, 8, 6]}, B3,89 = {H3,89[0, 1, 2, 3, 4, 5, 8, 6, 7]},
B3,90 = {H3,90[0, 1, 2, 7, 5, 4, 3, 8, 6]}, B3,91 = {H3,91[0, 1, 3, 7, 2, 4, 6, 8, 5]},
B3,92 = {H3,92[0, 1, 4, 6, 2, 5, 3, 8, 7]}, B3,93 = {H3,93[0, 1, 2, 4, 6, 8, 5, 3, 7]},
B3,94 = {H3,94[0, 1, 2, 5, 6, 8, 4, 3, 7]}, B3,95 = {H3,95[0, 1, 2, 5, 7, 3, 8, 6, 4]},
B3,96 = {H3,96[0, 1, 3, 7, 5, 6, 4, 2, 8]}, B3,97 = {H3,97[0, 1, 3, 4, 2, 5, 7, 8, 6]},
B3,98 = {H3,98[0, 1, 3, 5, 2, 4, 6, 7, 8]}, B3,100 = {H3,100[0, 1, 2, 4, 3, 7, 6, 5, 8]},
B3,101 = {H3,101[0, 1, 2, 4, 3, 7, 6, 5, 8]}, B3,102 = {H3,102[0, 1, 4, 8, 2, 5, 3, 6, 7]},
B3,103 = {H3,103[0, 1, 3, 4, 2, 5, 8, 7, 6]}, B3,104 = {H3,104[0, 1, 2, 4, 5, 7, 8, 6, 3]},
B3,105 = {H3,105[0, 1, 2, 4, 5, 7, 8, 3, 6]}, B3,106 = {H3,106[0, 1, 2, 7, 5, 4, 8, 3, 6]},
B3,108 = {H3,108[0, 1, 2, 3, 6, 5, 8, 4, 7]}, B3,109 = {H3,109[0, 1, 3, 2, 6, 5, 4, 7, 8]},
B3,110 = {H3,110[0, 1, 2, 5, 6, 8, 7, 3, 4]}, B3,111 = {H3,111[0, 1, 2, 6, 3, 8, 7, 5, 4]},
B3,112 = {H3,112[0, 1, 2, 5, 3, 8, 4, 7, 6]}, B3,113 = {H3,113[0, 3, 1, 2, 7, 6, 4, 8, 5]},
B3,114 = {H3,114[0, 1, 2, 5, 4, 6, 8, 7, 3]}, B3,115 = {H3,115[0, 1, 2, 6, 3, 5, 4, 8, 7]},
B3,116 = {H3,116[0, 1, 2, 4, 5, 3, 6, 8, 7]}, B3,117 = {H3,117[0, 1, 2, 6, 3, 7, 8, 4, 5]},
B3,118 = {H3,118[0, 1, 3, 4, 2, 8, 5, 6, 7]}, B3,119 = {H3,119[0, 1, 3, 4, 8, 5, 7, 2, 6]},
B3,120 = {H3,120[0, 1, 2, 3, 4, 6, 5, 7, 8]}, B3,122 = {H3,122[0, 1, 2, 3, 6, 5, 4, 8, 7]},
B3,123 = {H3,123[0, 1, 2, 3, 4, 8, 6, 5, 7]}, B3,124 = {H3,124[0, 1, 2, 3, 7, 4, 5, 6, 8]},
B3,125 = {H3,125[0, 1, 2, 3, 5, 6, 7, 4, 8]}, B3,126 = {H3,126[0, 1, 2, 6, 7, 3, 4, 8, 5]},
B3,127 = {H3,127[0, 1, 2, 4, 7, 6, 3, 8, 5]}, B3,128 = {H3,128[0, 1, 3, 7, 8, 5, 2, 6, 4]},
B3,129 = {H3,129[0, 1, 2, 8, 3, 5, 4, 6, 7]}, B3,130 = {H3,130[0, 1, 2, 5, 7, 4, 6, 8, 3]},
B3,131 = {H3,131[0, 1, 2, 3, 5, 8, 7, 6, 4]}, B3,132 = {H3,132[0, 1, 2, 5, 7, 4, 3, 8, 6]},
B3,133 = {H3,133[0, 1, 2, 8, 5, 6, 3, 7, 4]}, B3,134 = {H3,134[0, 1, 2, 4, 6, 5, 3, 8, 7]},
B3,135 = {H3,135[0, 1, 3, 5, 8, 7, 2, 4, 6]}, B3,136 = {H3,136[0, 1, 2, 5, 4, 3, 6, 7, 8]},
B3,137 = {H3,137[0, 1, 2, 6, 8, 7, 5, 4, 3]}, B3,138 = {H3,138[0, 1, 2, 5, 3, 4, 6, 7, 8]},
B3,139 = {H3,139[0, 1, 2, 4, 8, 5, 3, 7, 6]}, B3,140 = {H3,140[0, 1, 2, 3, 7, 5, 8, 6, 4]},
B3,141 = {H3,141[0, 1, 2, 4, 8, 5, 6, 7, 3]}, B3,142 = {H3,142[0, 1, 2, 3, 8, 5, 7, 4, 6]},
B3,143 = {H3,143[0, 1, 3, 2, 7, 8, 5, 6, 4]}, B3,144 = {H3,144[0, 1, 2, 8, 3, 7, 4, 6, 5]},
B3,145 = {H3,145[0, 1, 2, 3, 8, 5, 6, 4, 7]}, B3,146 = {H3,146[0, 1, 2, 6, 7, 8, 5, 3, 4]},
B3,147 = {H3,147[0, 1, 2, 5, 3, 4, 6, 7, 8]}, B3,148 = {H3,148[0, 1, 2, 4, 5, 3, 7, 6, 8]},
B3,149 = {H3,149[0, 1, 2, 8, 4, 7, 3, 5, 6]}, B3,150 = {H3,150[0, 1, 2, 7, 6, 5, 8, 4, 3]},
B3,151 = {H3,151[0, 1, 2, 5, 3, 4, 6, 8, 7]}, B3,152 = {H3,152[0, 1, 3, 5, 7, 8, 4, 6, 2]},
B3,153 = {H3,153[0, 1, 4, 5, 3, 7, 8, 2, 6]}, B3,155 = {H3,155[0, 1, 2, 3, 4, 7, 5, 6, 8]},
B3,156 = {H3,156[0, 1, 2, 4, 5, 7, 3, 6, 8]}, B3,157 = {H3,157[0, 1, 2, 4, 7, 5, 6, 8, 3]},
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B3,158 = {H3,158[0, 1, 4, 3, 7, 5, 6, 2, 8]}, B3,159 = {H3,159[0, 1, 2, 3, 4, 5, 8, 7, 6]},
B3,160 = {H3,160[0, 1, 2, 5, 8, 4, 3, 7, 6]}, B3,161 = {H3,161[0, 1, 2, 4, 3, 8, 7, 5, 6]},
B3,162 = {H3,162[0, 1, 2, 3, 4, 8, 5, 7, 6]}, B3,163 = {H3,163[0, 1, 2, 4, 7, 6, 5, 8, 3]},
B3,164 = {H3,164[0, 1, 2, 4, 8, 5, 3, 7, 6]}, B3,165 = {H3,165[0, 1, 3, 2, 7, 5, 4, 8, 6]},
B3,166 = {H3,166[0, 1, 2, 6, 7, 8, 3, 4, 5]}, B3,167 = {H3,167[0, 1, 2, 3, 4, 8, 7, 6, 5]},
B3,168 = {H3,168[0, 1, 2, 4, 8, 7, 6, 5, 3]}, B3,169 = {H3,169[0, 1, 2, 3, 8, 5, 4, 7, 6]},
B3,171 = {H3,171[0, 1, 2, 7, 4, 3, 6, 8, 5]}, B3,172 = {H3,172[0, 1, 2, 4, 7, 5, 3, 8, 6]},
B3,173 = {H3,173[0, 1, 4, 3, 2, 6, 5, 8, 7]}, B3,174 = {H3,174[0, 1, 2, 5, 6, 3, 7, 8, 4]},
B3,175 = {H3,175[0, 1, 2, 3, 4, 5, 8, 6, 7]}, B3,176 = {H3,176[0, 1, 4, 5, 3, 7, 6, 2, 8]},
B3,177 = {H3,177[0, 1, 6, 8, 4, 2, 5, 7, 3]}, B3,178 = {H3,178[0, 1, 3, 7, 2, 4, 8, 5, 6]},
B3,179 = {H3,179[0, 1, 2, 3, 7, 5, 8, 4, 6]}, B3,181 = {H3,181[0, 1, 2, 4, 8, 5, 3, 6, 7]},
B3,182 = {H3,182[0, 1, 2, 6, 8, 5, 4, 7, 3]}, B3,183 = {H3,183[0, 1, 2, 4, 3, 8, 5, 7, 6]},
B3,184 = {H3,184[0, 1, 2, 4, 5, 6, 3, 8, 7]}, B3,185 = {H3,185[0, 1, 2, 7, 6, 4, 8, 3, 5]},
B3,186 = {H3,186[0, 1, 2, 4, 5, 3, 6, 7, 8]}, B3,187 = {H3,187[0, 1, 2, 7, 4, 5, 6, 3, 8]},
B3,188 = {H3,188[0, 1, 2, 3, 5, 6, 4, 7, 8]}, B3,189 = {H3,189[0, 1, 2, 5, 3, 6, 4, 7, 8]},
B3,190 = {H3,190[0, 1, 2, 3, 5, 4, 6, 7, 8]}, B3,193 = {H3,193[0, 1, 3, 4, 5, 2, 7, 6, 8]},
B3,194 = {H3,194[0, 1, 2, 3, 5, 6, 7, 8, 4]}, B3,195 = {H3,195[0, 1, 2, 6, 3, 4, 5, 8, 7]},
B3,196 = {H3,196[0, 1, 2, 6, 3, 5, 4, 8, 7]}.

In addition, let

B3,99 = {H3,99[0, 1, 7, 2, 4, 3, 5, 8, 6], H3,99[0, 1, 4, 3, 7, 5, 2, 8, 6],

H3,99[0, 1, 5, 8, 7, 4, 2, 3, 6], H3,99[0, 7, 2, 3, 8, 6, 4, 5, 1],

H3,99[0, 7, 6, 8, 2, 4, 1, 5, 3], H3,99[0, 8, 2, 3, 1, 6, 5, 7, 4],

H3,99[1, 2, 4, 7, 3, 6, 8, 0, 5], H3,99[1, 8, 5, 4, 7, 3, 6, 0, 2],

H3,99[7, 1, 5, 6, 8, 4, 2, 0, 3]},
B3,107 = {H3,107[0, 1, 2, 3, 6, 4, 7, 5, 8], H3,107[0, 1, 6, 4, 2, 7, 3, 5, 8],

H3,107[0, 1, 7, 5, 2, 3, 6, 8, 4], H3,107[0, 2, 6, 4, 1, 8, 3, 7, 5],

H3,107[1, 2, 7, 5, 4, 3, 0, 8, 6], H3,107[1, 5, 6, 8, 3, 2, 0, 4, 7],

H3,107[1, 8, 2, 4, 7, 6, 0, 3, 5], H3,107[3, 8, 1, 2, 6, 4, 0, 7, 5],

H3,107[4, 2, 1, 3, 6, 7, 0, 5, 8]},
B3,121 = {H3,121[0, 1, 4, 7, 3, 5, 2, 8, 6], H3,121[0, 1, 3, 5, 4, 7, 6, 8, 2],

H3,121[0, 4, 7, 3, 1, 5, 8, 6, 2], H3,121[0, 4, 5, 2, 7, 8, 6, 1, 3],

H3,121[0, 7, 3, 2, 4, 8, 5, 1, 6], H3,121[0, 5, 3, 8, 1, 4, 2, 7, 6],

H3,121[0, 2, 3, 8, 7, 5, 6, 4, 1], H3,121[0, 8, 1, 7, 6, 4, 3, 2, 5],

H3,121[0, 6, 5, 7, 1, 2, 8, 3, 4]},
B3,154 = {H3,154[0, 1, 3, 4, 2, 7, 5, 8, 6], H3,154[0, 1, 4, 3, 7, 2, 8, 5, 6],

H3,154[0, 1, 2, 3, 4, 7, 6, 5, 8], H3,154[0, 1, 7, 6, 2, 3, 8, 4, 5],
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H3,154[1, 3, 6, 2, 4, 7, 5, 0, 8], H3,154[4, 0, 6, 8, 1, 3, 5, 2, 7],

H3,154[4, 3, 1, 6, 5, 0, 2, 7, 8], H3,154[4, 8, 2, 1, 6, 3, 5, 0, 7],

H3,154[2, 3, 5, 0, 8, 1, 7, 4, 6]},
B3,170 = {H3,170[0, 6, 2, 8, 1, 3, 7, 5, 4], H3,170[0, 6, 8, 2, 1, 3, 4, 5, 7],

H3,170[0, 6, 1, 2, 8, 5, 4, 7, 3], H3,170[0, 6, 7, 8, 5, 2, 1, 4, 3],

H3,170[0, 6, 5, 2, 4, 1, 3, 8, 7], H3,170[0, 6, 4, 1, 3, 8, 7, 5, 2],

H3,170[0, 2, 7, 8, 3, 6, 5, 4, 1], H3,170[0, 8, 4, 1, 7, 6, 2, 5, 3],

H3,170[0, 1, 5, 2, 3, 6, 8, 7, 4]},
B3,180 = {H3,180[4, 2, 3, 8, 7, 0, 1, 6, 5], H3,180[0, 1, 3, 2, 4, 6, 5, 8, 7],

H3,180[0, 1, 2, 3, 4, 6, 5, 7, 8], H3,180[0, 1, 4, 3, 2, 7, 6, 8, 5],

H3,180[0, 3, 8, 2, 7, 4, 6, 5, 1], H3,180[0, 3, 7, 2, 6, 8, 1, 4, 5],

H3,180[3, 4, 6, 1, 8, 7, 2, 5, 0], H3,180[4, 1, 5, 2, 8, 7, 6, 3, 0],

H3,180[8, 3, 2, 0, 5, 6, 7, 4, 1],

B3,192 = {H3,192[0, 3, 1, 4, 2, 7, 5, 8, 6], H3,192[0, 3, 4, 7, 5, 1, 2, 8, 6],

H3,192[0, 3, 7, 1, 8, 4, 2, 5, 6], H3,192[0, 1, 4, 8, 6, 3, 2, 7, 5],

H3,192[0, 4, 7, 2, 6, 3, 1, 5, 8], H3,192[0, 7, 1, 5, 6, 3, 4, 2, 8],

H3,192[3, 2, 1, 7, 6, 0, 4, 5, 8], H3,192[3, 5, 4, 1, 6, 0, 2, 7, 8],

H3,192[3, 8, 7, 4, 6, 0, 1, 2, 5]}.

For k ∈ [50, 197] \ {99, 107, 121, 154, 170, 180, 191, 192, 197}, an H3,k-factorization

of K
(3)
9 − I consists of the orbit of the H3,k-block in B3,k under the action of the map

j 
→ j + 1 (mod 9). For k ∈ {99, 107, 121, 154, 170, 180, 192}, an H3,k-factorization

of K
(3)
9 − I consists of the H3,k-blocks in B3,k. For k ∈ {191, 197}, we are uncertain

about the existence of the factorization.
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