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ABSTRACT 1 

Recent advances in regional traffic dynamics modeling have led to the development of large-scale traffic 2 

network control strategies, such as perimeter metering. However, existing perimeter control frameworks 3 

require precise knowledge of the functional forms of network Macroscopic Fundamental Diagrams (MFDs) 4 

or estimates of critical accumulation associated with regional congestion to be applied. In this paper, a 5 

completely model and data free deep reinforcement learning (DRL) based control scheme is proposed to 6 

tackle the optimal perimeter control problem for two-region urban networks governed by MFDs. Results 7 

of numerical tests show that the proposed method can learn optimal control policies in an extremely stable 8 

manner under various levels of uncertainties in the environment. The performance of the proposed scheme 9 

approaches that of the MPC in situations that the former is trained on. Moreover, the proposed method often 10 

exhibits superior performance to the MPC when deployed on unseen environments with different initial 11 

accumulations, traffic demands, and/or MFD modeling errors. The results in this paper suggest that DRL 12 

is a promising method for MFD-based network control. 13 

Keywords: Macroscopic Fundamental Diagram (MFD); perimeter control; model free deep reinforcement 14 

learning (DRL)  15 
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INTRODUCTION 1 

Urban traffic control is a difficult problem due to the underlying traffic dynamics. Modeling urban traffic 2 

network using microscopic modeling approaches is particularly difficult due to the high computational 3 

demands and complexity of urban traffic. Researchers have recently modeled urban traffic dynamics at an 4 

aggregate level using network Macroscopic Fundamental Diagrams (MFDs), which relate network 5 

productivity (e.g., average flow or rate trips can be completed) with network use (e.g., average density or 6 

accumulation of vehicles within a region). While network-wide relationships such as the MFD have been 7 

studied for quite some time (1–4), only recently have such relationships been integrated into a framework 8 

that could be used to model traffic dynamics evolution over time (5). The first empirical evidence that 9 

verified the existence of a network’s MFD was provided in (6). Since then, extensive investigations have 10 

been performed regarding the existence and properties of MFD (Buisson and Ladier, 2009; Daganzo et al., 11 

2011; Ji et al., 2010; Mazloumian et al., 2010a and others).  12 

MFD-based frameworks for single or multi-region systems have been utilized to develop regional-13 

level urban traffic control strategies, such as perimeter control. Perimeter control or cordon metering 14 

constrains the portion of flow allowed to transfer between two neighboring regions to improve overall 15 

throughput. (5) proposed a bang-bang perimeter control policy for single-region networks that aims to 16 

ensure the network never gets congested. While elegant, the success of this control policy is heavily 17 

dependent on the accuracy of the MFD model. Potential mismatch between the MFD model and 18 

environment dynamics was not considered. In light of this, a proportional-integral (PI) feedback regulator 19 

was developed in (11, 12) for single-region perimeter control problems with and without time delays. The 20 

single-region perimeter control problem was also investigated using classic feedback control methods in 21 

multiple studies, such as (13) and (14). The optimal perimeter control problem for two-region urban 22 

networks was first formulated in (15). Since then, several studies have proposed extensions of multi-region 23 

perimeter control frameworks (16–20). However, solving the perimeter control problem in multi-region 24 

networks is a challenging task due to the problem complexity. 25 

One promising method to solve perimeter control problems that has been shown to achieve state-26 

of-the-art performances even with different levels of uncertainty in the environment is model predictive 27 

control (MPC) (16, 17, 21–23). This approach assumes that the MPC controller has sufficient knowledge 28 

to model traffic network dynamics. While errors can be accommodated, it still requires that the general 29 

functional form and scale of the regional MFDs to be known with a high level of accuracy. While several 30 

studies have proposed methods to estimate a network’s MFD (24–30), such information is rarely 31 

available, as evidenced by the relatively small number of networks with empirically derived MFDs 32 

in the research literature. The MPC framework also may not adapt well to new environments since it 33 

assumes a horizon for predicting traffic dynamics (prediction horizon) and for estimating future control 34 

decisions (control horizon). These two parameters have to be determined beforehand, and it is unclear 35 

whether a particular parameter setting can transfer well in a new environment.  36 

Other methods to solve the optimal perimeter control problem include linear quadratic regulator 37 

(18, 31), multiple concentric PI controller (19), adaptive perimeter control (32, 33), and others. However, 38 

these methods also assume full information of regional traffic dynamics and are prone to modeling errors. 39 

For this reason, a model free adaptive iterative learning perimeter control (MFAILPC) scheme was 40 

proposed in (20) that solved the perimeter control problem in a data-driven manner. However, information 41 

from the MFD—specifically, the critical accumulation—is still required in the controller design. Though 42 

the MFD and critical accumulation can be estimated from historical data, the estimations are likely to be 43 

inaccurate due to multivaluedness, instability, and hysteresis phenomena (9, 10, 34, 35). In addition, the 44 

transferability of this method was not tested since in each case study the controller learns from scratch. It 45 

is therefore highly desirable to develop a method for perimeter control that is not only model free, but data 46 

free as well. 47 

Reinforcement learning (RL) might be an appropriate technique to solve the perimeter control 48 

problem with less detailed knowledge on regional traffic dynamics. RL and DRL have recently been applied 49 

by the transportation community for a variety of traffic control purposes, most notably signalized 50 
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intersection control (36–39). An initial attempt to integrate RL into the solution for perimeter control 1 

problems can be found in (40). However, the RL method adopted in this paper is model-based and was 2 

only utilized to substitute the direct sequential method used in (21) after formulating the open-loop control 3 

problem into a nonlinear program. A separate study (41) also applied RL to perimeter control problems. 4 

However, this study takes metering rates obtained from an MPC-based framework as inputs and the RL 5 

agent was only used to redistribute these rates spatially around the cordon perimeters. 6 

In this study, we propose a model free deep reinforcement learning perimeter control (MFDRLPC) 7 

scheme to solve the perimeter metering problem for a network made up of two regions. The proposed 8 

method learns the long-run impacts of specific gating decisions for every state that might arise, i.e., action 9 

value function or Q-value. Through an exploration process, different actions are tried to learn their impacts 10 

on the environment. This information is then provided back to the MFDRLPC agent so that it can improve 11 

upon its future decision-making. The process is completely model-free and requires no information that 12 

might otherwise be needed, such as the functional form of the MFD or impacts of vehicle routing decisions. 13 

Moreover, the proposed MFDRLPC is also data free and the DRL agents learn completely from interactions 14 

with the environment. 15 

 16 

PROBLEM FORMULATION  17 

This paper considers a heterogeneous network that can be partitioned into two regions, 𝑅1 and 𝑅2, that 18 

simulate the periphery of a city and the city center; see  19 

Figure 1. Each region is assumed to be homogeneous with a well-defined MFD. Traffic demand with origin 20 

in 𝑅𝑖 and destination in 𝑅𝑗 at time 𝑡 is denoted as 𝑞𝑖𝑗(𝑡), 𝑖, 𝑗 = 1,2. Note that estimates of traffic demands 21 

are assumed to be known beforehand but actual demands can differ from these. The impact of errors 22 

between the actual and assumed demands will be explicitly tested within this framework. Denote as 𝑛𝑖𝑗(𝑡) 23 

the accumulation in 𝑅𝑖 with destination to 𝑅𝑗 at time 𝑡. It follows 𝑛𝑖(𝑡) = ∑ 𝑛𝑖𝑗(𝑡)𝑗 , where 𝑛𝑖(𝑡) is the total 24 

accumulation in 𝑅𝑖 at time 𝑡. 25 

 26 

 27 
 28 

Figure 1. Two region MFDs system. 29 
 30 

The MFD for 𝑅𝑖, denoted by 𝑓𝑖(𝑛𝑖(𝑡)), defines the trip completion rate within 𝑅𝑖 as a function of 31 

its accumulation, 𝑛𝑖(𝑡). This MFD is then used to determine the trip completion rate of vehicles in 𝑅𝑖 with 32 
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final destinations in 𝑅𝑗, denoted as 𝑀𝑖𝑗(𝑡). Assuming that the average trip length is the same for all trips 1 

within a region, then 𝑀𝑖𝑗(𝑡) = 𝑛𝑖𝑗(𝑡) / 𝑛𝑖(𝑡) ⋅ 𝑓𝑖(𝑛𝑖(𝑡)). Further, 𝑀𝑖𝑖 denotes the flow that vehicles reach 2 

their destinations, i.e., the flow that exits the network. 3 

Perimeter controllers for the two-region system are assumed to exist on the border between the two 4 

regions with the goal of maximizing the number of vehicles that reach their destinations by any time 𝑡. The 5 

controllers, denoted by 𝑢12(𝑡)  and 𝑢21(𝑡) , where 𝑢min ≤ 𝑢12(𝑡) ≤ 𝑢max  and 𝑢min ≤ 𝑢21(𝑡) ≤ 𝑢max  6 

with 0 ≤ 𝑢min < 𝑢max ≤ 1, control the ratio of flow allowed to transfer from 𝑅1 to 𝑅2 and from 𝑅2 to 𝑅1 7 

at time 𝑡, respectively. 8 

Using this terminology, the two region perimeter control problem with MFDs is formulated as 9 

follows (similar to (42)): 10 

𝐽 = max
𝑢12(𝑡),𝑢21(𝑡)

∫ [𝑀11(𝑡) + 𝑀22(𝑡)]𝑑𝑡
𝑡𝑓

𝑡0

 (1) 11 

subject to: 12 
𝑑𝑛11(𝑡)

𝑑𝑡
= 𝑞11(𝑡) + 𝑢21(𝑡) ∗ 𝑀21(𝑡) − 𝑀11(𝑡) (2) 13 

𝑑𝑛12(𝑡)

𝑑𝑡
= 𝑞12(𝑡) − 𝑢12(𝑡) ∗ 𝑀12(𝑡)                    (3) 14 

𝑑𝑛21(𝑡)

𝑑𝑡
= 𝑞21(𝑡) − 𝑢21(𝑡) ∗ 𝑀21(𝑡)                    (4) 15 

𝑑𝑛22(𝑡)

𝑑𝑡
= 𝑞22(𝑡) + 𝑢12(𝑡) ∗ 𝑀12(𝑡) − 𝑀22(𝑡)  (5) 16 

𝑀𝑖𝑗(𝑡) =
𝑛𝑖𝑗(𝑡)

𝑛𝑖(𝑡)
𝑓𝑖(𝑛𝑖(𝑡)) (6) 17 

𝑛𝑖𝑗(𝑡) ≥ 0, 𝑖, 𝑗 = 1,2 (7) 18 

0 ≤ 𝑛11(𝑡) + 𝑛12(𝑡) ≤ 𝑛1,𝑗𝑎𝑚 (8) 19 

0 ≤ 𝑛21(𝑡) + 𝑛22(𝑡) ≤ 𝑛2,𝑗𝑎𝑚 (9) 20 

𝑢𝑚𝑖𝑛 ≤ 𝑢12(𝑡) ≤ 𝑢𝑚𝑎𝑥 (10) 21 

𝑢𝑚𝑖𝑛 ≤ 𝑢21(𝑡) ≤ 𝑢𝑚𝑎𝑥 (11) 22 

𝑛𝑖𝑗(𝑡0) = 𝑛𝑖𝑗,0, 𝑖, 𝑗 = 1,2 (12) 23 

where: 24 

𝑡0: start time 25 

𝑡𝑓: final time  26 

𝑛𝑖𝑗,0: initial accumulations at 𝑡0  27 

𝑛1,𝑗𝑎𝑚, 𝑛2,𝑗𝑎𝑚: jam accumulation for 𝑅1 and 𝑅2 28 

𝑢𝑚𝑖𝑛, 𝑢𝑚𝑎𝑥: lower and upper bounds for 𝑢12(𝑡) and 𝑢21(𝑡) 29 

 30 

Equation (1) provides the objective function, i.e., to maximize the cumulative sum of vehicles 31 

reaching their destination and exiting the network at any time t. Note that doing so should also 32 

simultaneously minimize travel time within this network. Equations (2)-(6) describe traffic dynamics within 33 

the two-region system. Equations (7)-(9) provide minimum/maximum accumulations constraints within 34 

each region. Equations (10)-(11) define minimum/maximum control values, while (12) provides the initial 35 

accumulations. Note that the dynamics equations are only used for the simulation environment and not 36 

needed for the controller design. 37 

 38 

METHODOLOGY 39 

In this section, we first present the reinforcement learning (RL) environment where the perimeter control 40 

problem is reformulated. Then, the proposed MFDRLPC is explained, followed by the simulation 41 

environment that the DRL agent interacts with. 42 
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 1 

RL Formulation 2 

The perimeter control problem can be formulated as a Markov decision process characterized by a tuple 3 

< 𝓢, 𝓐, 𝓟, 𝓡, 𝝅, 𝜸 >. 4 

• State space, 𝓢. In this work, the state consists of the set of four accumulations 𝑛𝑖𝑗, an estimate of 5 

the average demand 𝑞𝑖𝑗 during the next time step, and the implemented control values at the 6 

previous time step. To make scales of accumulation and demand consistent with implemented 7 

controller values, their quantities are divided by their respective maximum value. 8 

• Action space, 𝓐. Three actions are defined for each of the two perimeter controllers: 1)  increase 9 

its value by some amount, Δ𝑢; 2) keep the value unchanged; or, 3) decrease the value by Δ𝑢, where 10 

Δ𝑢 is a predefined allowable change in controller values. Changing controller values by a set 11 

amount allows for a gradual change in control over time. In total, the agent has 9 actions to choose 12 

from (three options for each of the two controllers). After an action is chosen, it stays effective in 13 

the environment for the duration of a time step, Δ𝑡. 14 

• State transition function, 𝓟. Given the observed state 𝑆𝑡 and chosen action 𝑎𝑡, the system arrives 15 

at a new state 𝑆𝑡+1, according to the state transition function 𝒫(𝑆𝑡+1|𝑆𝑡, 𝑎𝑡): 𝒮 × 𝒜 → 𝒮.  16 

• Reward function, 𝓡. The agent receives an immediate reward from the environment at time step 17 

𝑡 + 1 after taking an action at time step 𝑡, according to a reward function ℛ(𝑆𝑡, 𝑎𝑡): 𝒮 × 𝒜 → ℝ. 18 

The trip completion rate in time step 𝑡 is 𝑀11(𝑡) + 𝑀22(𝑡), which serves as the reward for the agent 19 

and higher rewards are preferred. However, the rewards are scaled to a value between 0 and 1 since 20 

previous literature suggests proper reward scaling provides more stable learning processes for DRL 21 

agents (43). The reward function is thus defined as 
𝑀11(𝑡) + 𝑀22(𝑡)

𝐶
, where 𝐶  is a large constant. 22 

Moreover, a large negative penalty is added to the reward if the actions chosen by the MFDRLPC 23 

agents lead to gridlock or invalid accumulation values in the two-region system. 24 

• Policy, 𝝅, and discount factor, 𝜸. At each time step 𝑡, the agent chooses an action based on a 25 

policy parameterized by 𝜃, 𝜋𝜃: 𝒮 → 𝒜, with the purpose of maximizing the expected return 𝔼[𝐺𝑡]. 26 

The return 𝐺𝑡 is defined as the total discounted reward from time step 𝑡 27 

𝐺𝑡 = ∑ 𝛾𝜏−𝑡ℛ𝜏+1

𝑇

𝜏=𝑡

(13) 28 

where 𝑇 is the total time steps of an episode and 𝛾 ∈ [0,1] scales down the importance of future 29 

rewards. Intuitively, future rewards involve increasing uncertainty and are valued less than 30 

immediate rewards.  31 

 32 

Algorithm 33 

In model free RL methods, the action value function 𝑄(𝑆, 𝑎), also known as Q-value, is used to approximate 34 

the expected return. Specifically, the action value function is defined as the expected return starting from 35 

state 𝑠, taking action 𝑎, and then following the current policy. Once 𝑄(𝑆, 𝑎) is known, an optimal control 36 

policy can be derived by taking greedy actions that maximize the Q-value at any given state, i.e.,  37 
𝜋(𝑆𝑡) = arg max

𝑎𝑡

𝑄(𝑆𝑡 , 𝑎𝑡) (14) 38 

Tabular methods such as Q-learning (44) and SARSA (45) store Q-values in a table where they can 39 

be iteratively updated according to the Bellman Equation (46). However, these methods cannot scale well 40 

with large state spaces since it is intractable to enumerate all possible state-action pairs.  41 

With the active progress made in the deep learning community, researchers have proposed to use 42 

neural networks to estimate the action value function. Nevertheless, RL is known to be extremely unstable 43 

and sometimes diverge when nonlinear functions are used to approximate action value function (i.e., the 44 

deadly triad issue (46)). Deep Q-learning (47) is the first work that successfully addressed this issue and 45 

achieved stability through the use of experience replay and target network, where the seminal Deep Q-46 

Network algorithm (DQN) was proposed. The learning target of deep Q-learning is 47 



Zhou and Gayah   

  

7 

 

𝑌𝑡 = 𝑅𝑡+1 + 𝛾 max
𝑎

𝑄(𝑆𝑡+1, 𝑎; 𝜽𝑡
−) (15) 1 

where 𝑄(: , ∶, 𝜽𝑡
−) is the target network parameterized by 𝜽𝑡

−. The target network has the same structure as 2 

the Q-network, but its weights are only updated periodically with Q-network parameters. 3 

As can been observed in (15), updates of action values in deep Q-learning include a maximization 4 

operation, which results in an overestimation of action values. This overestimation problem was first 5 

observed in (48) and later affirmatively studied in (49). In the latter reference,  a new algorithm named 6 

Double DQN was developed that effectively addressed the overestimation issue by combining Double Q-7 

learning (50) with DQN. Specifically, the max operation in the learning target (15) is decomposed into 8 

action selection and evaluation. The Q-network is used for action selection and the target network for 9 

evaluation. In mathematical term, the learning target is 10 
𝑌𝑡 = 𝑅𝑡+1 + 𝛾𝑄(𝑆𝑡+1, arg max

𝑎
𝑄(𝑆𝑡+1, 𝑎; 𝜽𝑡); 𝜽𝑡

−) (16) 11 

where 𝑄(: , ∶, 𝜽𝑡) represents the Q-network parametrized by 𝜽𝑡. In this work, Double DQN is adopted as 12 

the learning algorithm. 13 

 DRL agents learn purely from interactions with the environment and a significant amount of 14 

experiences are needed. A distributed reinforcement learning architecture named Ape-X was proposed in 15 

(51) that maintains numerous actors and a single centralized learner. Each actor has its own instance of the 16 

environment. The actors are assigned different exploration strategies to expand the amount of experiences 17 

they jointly encounter. The experiences are then stored in a shared replay buffer. The learner samples 18 

experiences from the buffer in a prioritized fashion (52) and updates the Q-network. The actors are then 19 

updated with the most up-to-date parameters from the Q-network. As the actors gather more and more 20 

experiences by interacting with the environment, the learner updates the Q-network to generate increasingly 21 

accurate estimates of the true action value function 𝑄(𝑆, 𝑎). When the action value function has been fully 22 

learnt, an optimal policy can then be derived according to (14). Interested readers are referred to (51) for 23 

more information about the Ape-X structure. 24 

In this paper, the Ape-X architecture is combined with Double DQN. Instead of prioritizing 25 

experiences with TD errors (51, 52), we prioritize based on the recency of experiences, i.e., the experiences 26 

where the DRL agents are making more educated decisions are valued more than outdated experiences. 27 

When the amount of gathered experiences exceeds the replay buffer size, the old experiences are removed 28 

from the replay buffer. Further, all actors use decaying 𝜖-greedy policies for exploration. Pseudocode for 29 

the proposed model free deep reinforcement learning perimeter controller is presented in Algorithm 1. 30 

 31 

Simulation Environment 32 

In the context of DRL, it is requisite to have an environment which the agent could interact with to learn 33 

the expected rewards for various actions taken at each state. The agent internalizes the environment’s 34 

dynamics via this interaction. The agent also receives sequential rewards from the environment, which 35 

determine the agent’s behavior. In this paper, the simulation environment is expressed by the MFDs plant 36 

as described in (21). As this reference pointed out, the traffic dynamics in the MFDs plant are different 37 

from that in the MFDs prediction model. In the MFDs plant, noises in the demand and errors in the MFDs 38 

are expected, which represent real-world issues. In this paper unbiased noises in demand and errors in 39 

MFDs are considered. 40 

Noises in demand are modeled as follows: 41 

𝑞̃𝑖𝑗(𝑡) = max (𝑞𝑖𝑗(𝑡) ∗ (1 + 𝜀𝑖𝑗(𝑡)) , 0) , 𝑖, 𝑗 = 1,2 (17) 42 

where 𝑞̃𝑖𝑗(𝑡) is actual demand in the environment, 𝑞𝑖𝑗(𝑡) is the average demand provided to the MFDRLPC 43 

agents (or MPC) and  𝜀𝑖𝑗(𝑡) is a Gaussian error term with mean 0 and standard deviation 𝜎. In this way, the 44 

error in demand is a percentage of the average demand that simulates a temporal fluctuation of the actual 45 

demand. For the same value of 𝜎, the magnitude of potential errors in demand would increase with the 46 

expected demand level.  47 

 48 
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Algorithm 1: Model Free Deep Reinforcement Learning Perimeter Control (MFDRLPC) 1 

1: Initialize Q-network 𝜽0, replay buffer B, memory size M, iteration number I 2 

2: for iter = 1 to 𝐼 do 3 

3:  for all actors do 4 

4:   Load Q-network 𝜽𝑖𝑡𝑒𝑟 = 𝜽𝑖𝑡𝑒𝑟−1 5 

5:   𝑆0 ← Environment.Reset() 6 

6:   for 𝑡 = 1 to T do 7 

7:    𝑎𝑡−1 = 𝜋𝜃𝑖𝑡𝑒𝑟
(𝑆𝑡−1) 8 

8:    (𝑅𝑡 , 𝑆𝑡) ← Environment.Step(𝑎𝑡−1) 9 

9:    B.add((𝑆𝑡−1, 𝑎𝑡−1, 𝑅𝑡 , 𝑆𝑡)) 10 

10:   end for 11 

11:  end for 12 

12:  if B.size() > M then 13 

13:   B.remove() 14 

14:  end if 15 

15:  Training sample ← B.sample() 16 

16:  Periodically load target network 𝜽𝑖𝑡𝑒𝑟
− = 𝜽𝑖𝑡𝑒𝑟−1 17 

17:  𝜽𝑖𝑡𝑒𝑟 ← Update Q-network towards learning target (16) 18 

18: end for 19 

 20 

Errors in the MFD are modeled as: 21 

 𝑓𝑖(𝑛̃𝑖(𝑡)) = 𝑓𝑖(𝑛̃𝑖(𝑡)) + 𝜍𝑖 ∗ 𝑛̃𝑖(𝑡), 𝑖 = 1,2 (18) 22 

where 𝑛̃𝑖(𝑡) is the accumulation in 𝑅𝑖  at time 𝑡, 𝜍𝑖~𝑈(−𝛼, 𝛼) is an error term sampled from a uniform 23 

distribution with predefined error level 𝛼. This suggests that errors between the expected and realized trip 24 

completion rates grow as the network gets more congested, which is consistent with empirical findings and 25 

analytical studies (7, 10). 26 

Traffic dynamics in the environment are then computed as described in Equations (2)-(6), except 27 

MFDs and demand values in these equations are replaced with the terms (17)-(18). Solution to these 28 

dynamic equations yields accumulations at the next time step as well as number of trips completed, which 29 

are used to calculate rewards for the agent.  30 

In summary, the simulation environment is a two-region MFDs plant expressing traffic dynamics, 31 

where there are noises in the demands and/or errors in the MFDs. The environment implements an action 32 

generated by the agent and arrives at a new state. It also returns rewards to the agent that evaluate the actions 33 

generated. 34 

 35 

NUMERICAL TESTS 36 

In this section, the proposed MFDRLPC is tested and compared with the MPC framework by solving the 37 

two-region optimal perimeter control problem. Note that the benefit of the proposed method is that 38 

information about the MFD or knowledge of system dynamics are not needed, whereas the MPC framework 39 

requires that the MFD and dynamics equations that govern the evaluation of network accumulations and 40 

trip completions to be fully known. 41 

 42 

Experiment Setup 43 

The MFD of Yokohama, Japan, is adopted from (6, 53) for 𝑅1: 44 

 45 

𝑓1(𝑛) = {
2.28 × 10−8𝑛3 − 8.62 × 10−4𝑛2 + 9.58𝑛, 0 ≤ 𝑛 < 14,000

27,731 − 1.38655(𝑛 − 14000), 14,000 ≤ 𝑛 ≤ 34,000
0, 𝑛 > 34,000

(19) 46 

 47 
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where critical accumulation 𝑛1,𝑐𝑟 = 8241  veh, jam accumulation 𝑛1,𝑗𝑎𝑚 = 34000  veh, maximum trip 1 

completion rate 𝐶1,𝑚𝑎𝑥 = 𝑓1(𝑛1,𝑐𝑟) = 33168 veh/hr. For 𝑅2, the above MFD is scaled down by a factor of 2 

2 to simulate a smaller region so 𝑛2,𝑐𝑟 = 4120 veh, 𝑛2,𝑗𝑎𝑚 = 17000 veh, 𝐶2,𝑚𝑎𝑥 = 𝑓2(𝑛2,𝑐𝑟) = 16584 3 

veh/hr.  4 

The traffic demand pattern adopted in this paper is shown in Figure 2(a), which simulates a 1-hour 5 

morning peak where there is a larger demand to 𝑅2 (city center) than to 𝑅1 (the periphery of a city). The 6 

duration of a time step is set to Δ𝑡 = 60𝑠 that simulates the cycle length of traffic signals. The signals can 7 

be placed in the border between two regions to implement the perimeter controllers. 8 

 9 

 10 

Figure 2. (a) Average demands used for numerical tests; (b) Accumulations that arise under no control 11 
 12 

Initial accumulations are assumed to be 𝑛11,0 = 𝑛12,0 = 3000 veh and 𝑛21,0 = 𝑛22,0 = 2500 veh. 13 

Intuitively, when the initial accumulations are too small, no control should be applied, and the controller 14 

values will be set to the maximum value possible. On the contrary, no control can prevent gridlock when 15 

the initial accumulations are extremely large.  16 

The evolution of accumulations when the demands and the MFDs are deterministic and no control 17 

is applied is presented in Figure 2(b). As can be observed, the accumulation in 𝑅1 steadily decreases while 18 

the accumulation in 𝑅2 keeps increasing and approaches jam accumulation. These results are expected since 19 

the demand from 𝑅1  to 𝑅2  is significantly larger than otherwise. Clearly, this is unsustainable and 20 

undesirable, even more so considering region 2 simulates the city center. In the next section it will be shown 21 

how this congestion can be effectively addressed by properly implementing perimeter control. 22 

The objective of perimeter control is to maximize the number of trips completed. Based on this 23 

objective, two metrics are defined to evaluate the performance of the proposed MFDRLPC and MPC: a) 24 

total travel time (TTT) of all vehicles in the system, which can be calculated as the area between the arrival 25 

curve and departure curve in an input-output diagram; b) cumulative total trip completion (CTC) during the 26 

1-hour period under study. 27 

 28 

Experiment Results 29 

Multiple MFDRLPC agents were trained in the experiments, each under different levels of errors that might 30 

exist both in the demands and in the MFDs, as described in Table 1. Note that, for all agents trained, the 31 

same Q-network design and same set of hyperparameters were used. The allowable change in perimeter 32 

controller values is set to Δ𝑢 = 0.1, which is a reasonable control precision.   33 
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Table 1. MFDRLPC agent configurations 1 

Agent No. 𝝈 𝜶 Description 

1 0 0 deterministic scenario as a benchmark 

2 0.1 0 test the performance under medium noise in demands 

3 0.2 0 test the performance under high noise in demands 

4 0 0.2 test the performance with errors in MFDs 

5 0.1 0.2 test the performance with mixed errors in demands and MFDs 

 2 

Stability of the MFDRLPC method 3 

Figure 3 shows the evolution of CTC achieved in the 1-hour period with training iterations for the five 4 

agents. The results are obtained by training the agents with 10 random seeds, while all hyperparameters are 5 

fixed. The darker line shows the median performance over random seeds. The shaded areas of MFDRLPC 6 

curves represent the confidence bound of the performances and are obtained by plotting the two extreme 7 

values over random seeds in each iteration. Moreover, the performances of MPC are also plotted in Figure 8 

3. In cases where there are noises in demand and/or errors in MFDs, the MPC is run for 10 times and the 9 

median and extreme values are reported. Since the MPC is a model-based method that involves no learning, 10 

its range of performances is relatively fixed. As shown in Figure 3, the proposed MFDRLPC agents can 11 

learn perimeter control strategies under all training scenarios in an extremely stable fashion. The 12 

performances of MFDRLPC agents approach those of MPC most of the time and sometimes even exceed 13 

the performance of MPC when there is uncertainty from demands or MFDs. In a few training instances, the 14 

performances of MFDRLPC agents have not fully converged within 250 iterations (i.e., still improving). 15 

Thus, the performances may be even better if the agents are allowed to train for longer periods. 16 

 17 

 18 
Figure 3. Learning curves of 5 MFDRLPC agents 19 

Effectiveness of the MFDRLPC method 20 

The proposed MFDRLPC is compared with the state-of-the-art MPC approach to examine its effectiveness. 21 

The MPC controller is implemented as per (21) without adding smoothing control constraints, and it 22 

assumes a prediction horizon of 20 and a control horizon of 2. The lower bound for the perimeter controller 23 
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values is set to 𝑢min = 0.1 and upper bound set to 𝑢max = 0.9. Additionally, the results when no control 1 

(NC) is applied are provided as a baseline. Figure 4 and Figure 5 show the evolution of accumulations and 2 

control actions over the study period when there is no uncertainty in the environment. Note that since the 3 

overall demands to 𝑅1 are smaller and 𝑅1 has larger capacity to contain vehicles, transfers from 𝑅2 to 𝑅1 4 

are not restricted by any control method. Thus, 𝑢21 = 𝑢max  for the entire study period and this is not shown 5 

in Figure 5. For scenarios where uncertainties are present, the results are similar.  6 

 7 

 8 
Figure 4. Evolution of accumulation under determinism. Blue: MFDRLPC; Orange: MPC; Green: NC 9 

 10 

 11 
Figure 5. Control action (𝒖𝟏𝟐) over time under determinism 12 

 13 

When no control is applied, the accumulation in 𝑅2 rapidly increases and approaches gridlock. This 14 

is mostly due to the high demands to 𝑅2  both from 𝑅1  and internally from 𝑅2 . On the contrary, the 15 
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accumulation in 𝑅1 steadily decreases since vehicles in 𝑅1 can pass the border freely and demands to 𝑅1 1 

are much lower. Under perimeter control, only a portion of vehicles from 𝑅1 can transfer to 𝑅2, hence 𝑛12 2 

first increases. Then, when the demands decrease at the end of the simulated morning peak, more vehicles 3 

are allowed to transfer and 𝑛12  decreases. Due to the relatively stricter control actions chosen by 4 

MFDRLPC in the early peak, the accumulation in 𝑅2 first decreases. Later, as the controller gets relaxed, 5 

more vehicles are able to enter 𝑅2 and its accumulation increases. Overall, the evolutions of accumulations 6 

exhibit similar trends for both MPC and MFDRLPC. 7 

Figure 5 reveals that both MPC and MFDRLPC tend to increase 𝑢12 to allow more transfer flows 8 

in the early stage when demands are relatively small. As demands increase to the maximum, transfer flows 9 

are more tightly restricted. Approaching the end of the morning peak, all controllers have a propensity to 10 

allow more vehicles to transfer and complete their trips. Furthermore, instead of decreasing 𝑢12 at higher 11 

demand and increasing it later as MPC controller does, MFDRLPC keeps 𝑢12 around the mean value of 12 

MPC control values. In this way, MFDRLPC is able to increase the number of trips completed as well as 13 

reduce the complexity of perimeter control implementation in real life.  14 

 15 

Transferability of the MFDRLPC method 16 

This section examines the transferability of the MFDRLPC to unseen scenarios. To the best of our 17 

knowledge, this is the first examination of the ability of perimeter control methods to be implemented on 18 

unseen environments. Under all case studies reported in (20), the MFAILPC controller learns from scratch 19 

and it is unclear whether the controller in one case can perform well in another without conducting the 20 

learning process all over again. MPC (21) is a model-based method and needs to formulate an optimization 21 

problem at every time step. It remains in question whether a particular parameter setting (control horizon, 22 

prediction horizon, etc.) can generalize well to a different environment. 23 

A variety of environment configurations are considered, each differing in at least one of these three 24 

factors: initial accumulations, demand patterns, and MFD models. The transferability of the proposed 25 

method is tested against each factor by keeping the other two constant. 26 

The initial accumulations in the environment are chosen to simulate daily variation of traffic 27 

conditions according to 28 
𝑛𝑖,𝑛𝑒𝑤 = 𝑛𝑖,0 ∗ (1 + 𝜙), 𝑖 = 1,2 (20) 29 

where 𝜙 increases from 0 to 0.30 by 0.05 representing the variation of initial accumulations from original 30 

accumulations 𝑛𝑖,0. Note that 𝑛1,0 = 6000 veh and 𝑛2,0 = 5000 veh. The demand patterns are selected by 31 

𝑞̃𝑖𝑗 = 𝑞𝑖𝑗 ∗ (1 + 𝜂), 𝑖, 𝑗 = 1, 2 (21) 32 

where 𝑞𝑖𝑗 is basic demand from Figure 2a and 𝜂 = 0, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, which indicates the 33 

variation of traffic demands. The MFD models in the environment are defined as 34 

𝑓𝑖(𝑛̃𝑖(𝑡)) = 𝑓𝑖(𝑛̃𝑖(𝑡)) + 𝜑 ∗ 𝑛̃𝑖(𝑡), 𝑖 = 1,2 (22) 35 

where 𝜑 ∈ [−0.50, −0.30, −0.10, 0, 0.10, 0.30, 0.50] and it indicates the level of MFD modeling errors. 36 

When 𝜑 is less than 0, the environment dynamics internalized by the MFDRLPC agents or known by the 37 

MPC overrepresent the real situation in the environment and fewer trips can be completed. In total, 73 =38 

343 new environment configurations are considered, and only the results for a fraction of environment 39 

configurations are presented. Results for other configurations are similar and do not affect the conclusions.  40 

The performances of the proposed method and the MPC are expressed as improvements from the 41 

NC in terms of total travel time (TTT), as shown in Figure 6. The environments assume 𝜂 = 0, 𝜑 = 0. As 42 

can be observed from Figure6, the improvements from NC for all MFDRLPC agents and MPC increase 43 

with initial accumulations, which suggests a higher level of necessity to implement perimeter control as 44 

initial accumulations become larger. More importantly, the performances of the MFDRLPC agents are 45 

generally better than those of the MPC as initial accumulations increase. For example, MFDRLPC agents 46 

1, 2, 3, and 5 consistently outperform MPC when 𝜙 ≥ 0.15 even though the agents have never encountered 47 

the test environments before and MPC has full information about the environment at every time step. Agent 48 

1 was trained without environment uncertainty, i.e., 𝜎 = 0, 𝛼 = 0. The test environment adopts basic 49 

demand pattern and no MFD modeling error, which is consistent with the environment agent 1 was trained 50 
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on. The excellent performance achieved by agent 1 suggests that the MFDRLPC can adapt well to similar 1 

environments. Further, agents 2, 3, and 5, which were trained with high environment uncertainty, also 2 

performed very well on the test environments. This indicates that an MFDRLPC agent trained in high 3 

uncertainty can generalize well to environments with low uncertainty. Note that, though agent 4 4 

underperforms other agents, it generally performs as well or better than MPC. 5 

 6 
 7 

Figure 6. Performances with respect to deviation of initial accumulations 8 
 9 

To test the sensitivity of the proposed MFDRLPC to unseen demands in the environment, initial 10 

accumulations are kept at their original values and MFDs are assumed to have no modeling error while the 11 

demand levels are allowed to vary. Figure 7 shows the improvements from NC with respect to demand for 12 

the five MFDRLPC agents and MPC. As shown in Figure 7, the improvements from NC monotonically 13 

increase with traffic demands for both the MFDRLPC and MPC. Initially, when traffic demands are small, 14 

MPC exhibits some advantage over MFDRLPC agents. However, as traffic demand becomes relatively 15 

large (𝜂 ≥ 0.15), MPC cannot generalize as well and is outperformed by MFDRLPC agents. Notably, agent 16 

3, which was trained assuming only a noise level of 𝜎 = 0.2 in the environment, consistently achieved the 17 

best performance when 𝜂 ≥ 0.15. This seems reasonable since its training environment is closest to the test 18 

environments that assume increasing demands and no MFD modeling errors. Additionally, agent 2, whose 19 

training environment (𝜎 = 0.1, 𝛼 = 0) is second closest to the test environments, achieved second best 20 

performances as traffic demands increase. It is then shown again that the MFDRLPC agents can transfer 21 

well to similar environments. The relative consistency of performances among all agents also confirms the 22 

robustness of the proposed method to traffic demands in the environment. 23 
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 1 
 2 

Figure 7. Performances with respect to traffic demands 3 
 4 

The performances of all methods relative to NC with respect to MFD modeling errors are shown 5 

in Figure 8. The test environments take original initial accumulations and basic traffic demands. As MFD 6 

modeling error changes from -0.5 to 0.5, the trip completion rate increases, hence the number of trips 7 

completed in the 1-hour period increases and total travel time in the system decreases. Under most MFD 8 

modeling error levels, MPC performs the best. However, when the MFDs are significantly underestimated 9 

(𝜑 ≥ 0.4), improvements from NC turn negative for both MPC and the MFDRLPC agents, suggesting that 10 

it is best not to implement any perimeter control at all. Intuitively, when the MPC or MFDRLPC agents 11 

assumes that traffic dynamics will evolve according to the underestimated or under-perceived MFD, 12 

perimeter control will be implemented to keep regions from becoming congested. However, since the 13 

network is more productive than expected, better performances can be obtained by not restricting vehicle 14 

movement. Moreover, when the MFDRLPC agents are over-optimistic about the environment dynamics, 15 

i.e., environment MFDs are overestimated or 𝜑 < 0 , the differences of performances between the 16 

MFDRLPC and MPC become smaller. On the other hand, the performances between the MFDRLPC and 17 

MPC tend to diverge as MFD underestimation error grows. This shows the proposed MFDRLPC is robust 18 

to MFD overestimation error in the environment.   19 
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 1 
 2 

Figure 8. Performances with respect to MFD modeling errors 3 
 4 

Overall, the test results presented in this section demonstrate the superior transferability of the 5 

proposed method and show that DRL is a promising method for MFD-based network control. Particularly, 6 

the proposed MFDRLPC is robust to different initial accumulations, traffic demands, and MFD 7 

overestimation errors in the environment. These results also suggest that the MFDRLPC agents be trained 8 

offline with relatively large initial accumulations, high traffic demands, and on environments with higher 9 

MFDs, so that they can be deployed directly to environments that have lower outflows while maintaining 10 

performances that are comparable with those of MPC. 11 

 12 

SUMMARY 13 

In this paper, a DRL-based method named MFDRLPC is developed to solve the optimal perimeter control 14 

problem for two-region urban networks with MFDs by combining the Ape-X architecture and Double DQN. 15 

The proposed method is completely model free and data free. Results from extensive numerical experiments 16 

show that the proposed MFDRLPC can learn in an extremely stable manner and achieve performances that 17 

are comparable with or better than the state-of-the-art MPC-based framework. Moreover, the proposed 18 

MFDRLPC is shown to be highly transferable and robust by deploying it to a variety of test environments 19 

with different initial accumulations, traffic demands, and MFD modeling errors. In addition, results reported 20 

in this paper provide a lower bound for the full capability of DRL-based methods on perimeter control. 21 

With future research efforts, even better results can be achieved. In general, this paper demonstrates that 22 

DRL has great applicability on MFD-based network traffic control. Future works could include the 23 

development of a general multi-region DRL-based control framework that solves perimeter control and 24 

traffic signal control simultaneously.  25 
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