O 01N DN W —

11
12
13
14
15
16
17
18
19

Model Free Perimeter Metering Control for Urban Networks Using Deep Reinforcement
Learning

Dongqin Zhou

Department of Civil and Environmental Engineering

The Pennsylvania State University, University Park, PA, 16802
Email: dongqin.zhou@psu.edu

Vikash V. Gayah®

Department of Civil and Environmental Engineering

The Pennsylvania State University, University Park, PA, 16802
Email: gayah@engr.psu.edu

* Corresponding author.

Word Count: 7170 words + 1 table (250 words per table) = 7420 words

Submitted [07/09/2020]


mailto:dongqin.zhou@psu.edu
mailto:gayah@engr.psu.e

OO DNk W~

—
DN b W — OO

Zhou and Gayah

ABSTRACT

Recent advances in regional traffic dynamics modeling have led to the development of large-scale traffic
network control strategies, such as perimeter metering. However, existing perimeter control frameworks
require precise knowledge of the functional forms of network Macroscopic Fundamental Diagrams (MFDs)
or estimates of critical accumulation associated with regional congestion to be applied. In this paper, a
completely model and data free deep reinforcement learning (DRL) based control scheme is proposed to
tackle the optimal perimeter control problem for two-region urban networks governed by MFDs. Results
of numerical tests show that the proposed method can learn optimal control policies in an extremely stable
manner under various levels of uncertainties in the environment. The performance of the proposed scheme
approaches that of the MPC in situations that the former is trained on. Moreover, the proposed method often
exhibits superior performance to the MPC when deployed on unseen environments with different initial
accumulations, traffic demands, and/or MFD modeling errors. The results in this paper suggest that DRL
is a promising method for MFD-based network control.

Keywords: Macroscopic Fundamental Diagram (MFD); perimeter control; model free deep reinforcement
learning (DRL)
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INTRODUCTION

Urban traffic control is a difficult problem due to the underlying traffic dynamics. Modeling urban traffic
network using microscopic modeling approaches is particularly difficult due to the high computational
demands and complexity of urban traffic. Researchers have recently modeled urban traffic dynamics at an
aggregate level using network Macroscopic Fundamental Diagrams (MFDs), which relate network
productivity (e.g., average flow or rate trips can be completed) with network use (e.g., average density or
accumulation of vehicles within a region). While network-wide relationships such as the MFD have been
studied for quite some time (/—4), only recently have such relationships been integrated into a framework
that could be used to model traffic dynamics evolution over time (5). The first empirical evidence that
verified the existence of a network’s MFD was provided in (6). Since then, extensive investigations have
been performed regarding the existence and properties of MFD (Buisson and Ladier, 2009; Daganzo et al.,
2011; Ji et al., 2010; Mazloumian et al., 2010a and others).

MFD-based frameworks for single or multi-region systems have been utilized to develop regional-
level urban traffic control strategies, such as perimeter control. Perimeter control or cordon metering
constrains the portion of flow allowed to transfer between two neighboring regions to improve overall
throughput. (5) proposed a bang-bang perimeter control policy for single-region networks that aims to
ensure the network never gets congested. While elegant, the success of this control policy is heavily
dependent on the accuracy of the MFD model. Potential mismatch between the MFD model and
environment dynamics was not considered. In light of this, a proportional-integral (PI) feedback regulator
was developed in (11, 12) for single-region perimeter control problems with and without time delays. The
single-region perimeter control problem was also investigated using classic feedback control methods in
multiple studies, such as (/3) and (/4). The optimal perimeter control problem for two-region urban
networks was first formulated in (15). Since then, several studies have proposed extensions of multi-region
perimeter control frameworks (/6—20). However, solving the perimeter control problem in multi-region
networks is a challenging task due to the problem complexity.

One promising method to solve perimeter control problems that has been shown to achieve state-
of-the-art performances even with different levels of uncertainty in the environment is model predictive
control (MPC) (16, 17, 21-23). This approach assumes that the MPC controller has sufficient knowledge
to model traffic network dynamics. While errors can be accommodated, it still requires that the general
functional form and scale of the regional MFDs to be known with a high level of accuracy. While several
studies have proposed methods to estimate a network’s MFD (24—30), such information is rarely
available, as evidenced by the relatively small number of networks with empirically derived MFDs
in the research literature. The MPC framework also may not adapt well to new environments since it
assumes a horizon for predicting traffic dynamics (prediction horizon) and for estimating future control
decisions (control horizon). These two parameters have to be determined beforehand, and it is unclear
whether a particular parameter setting can transfer well in a new environment.

Other methods to solve the optimal perimeter control problem include linear quadratic regulator
(18, 31), multiple concentric PI controller (/9), adaptive perimeter control (32, 33), and others. However,
these methods also assume full information of regional traffic dynamics and are prone to modeling errors.
For this reason, a model free adaptive iterative learning perimeter control (MFAILPC) scheme was
proposed in (20) that solved the perimeter control problem in a data-driven manner. However, information
from the MFD—specifically, the critical accumulation—is still required in the controller design. Though
the MFD and critical accumulation can be estimated from historical data, the estimations are likely to be
inaccurate due to multivaluedness, instability, and hysteresis phenomena (9, 10, 34, 35). In addition, the
transferability of this method was not tested since in each case study the controller learns from scratch. It
is therefore highly desirable to develop a method for perimeter control that is not only model free, but data
free as well.

Reinforcement learning (RL) might be an appropriate technique to solve the perimeter control
problem with less detailed knowledge on regional traffic dynamics. RL and DRL have recently been applied
by the transportation community for a variety of traffic control purposes, most notably signalized
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intersection control (36—39). An initial attempt to integrate RL into the solution for perimeter control
problems can be found in (40). However, the RL method adopted in this paper is model-based and was
only utilized to substitute the direct sequential method used in (27) after formulating the open-loop control
problem into a nonlinear program. A separate study (4/) also applied RL to perimeter control problems.
However, this study takes metering rates obtained from an MPC-based framework as inputs and the RL
agent was only used to redistribute these rates spatially around the cordon perimeters.

In this study, we propose a model free deep reinforcement learning perimeter control (MFDRLPC)
scheme to solve the perimeter metering problem for a network made up of two regions. The proposed
method learns the long-run impacts of specific gating decisions for every state that might arise, i.e., action
value function or Q-value. Through an exploration process, different actions are tried to learn their impacts
on the environment. This information is then provided back to the MFDRLPC agent so that it can improve
upon its future decision-making. The process is completely model-free and requires no information that
might otherwise be needed, such as the functional form of the MFD or impacts of vehicle routing decisions.
Moreover, the proposed MFDRLPC is also data free and the DRL agents learn completely from interactions
with the environment.

PROBLEM FORMULATION

This paper considers a heterogeneous network that can be partitioned into two regions, R; and R,, that
simulate the periphery of a city and the city center; see

Figure 1. Each region is assumed to be homogeneous with a well-defined MFD. Traffic demand with origin
in R; and destination in R; at time t is denoted as q;;(t),i,j = 1,2. Note that estimates of traffic demands
are assumed to be known beforehand but actual demands can differ from these. The impact of errors
between the actual and assumed demands will be explicitly tested within this framework. Denote as n;;(t)
the accumulation in R; with destination to R; at time t. It follows n;(t) = X ;n;;(t), where n;(t) is the total
accumulation in R; at time t.

Figure 1. Two region MFDs system.

The MFD for R;, denoted by f;(n;(t)), defines the trip completion rate within R; as a function of
its accumulation, n;(t). This MFD is then used to determine the trip completion rate of vehicles in R; with

4



—
—_— OO0 IO Pk~ WD~

—

12
13

14

15

16

17

18
19
20
21
22
23

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Zhou and Gayah

final destinations in R;, denoted as M;;(t). Assuming that the average trip length is the same for all trips
within a region, then M;;(t) = n;;(t) / n;(¢) - fi(ni(t)). Further, M;; denotes the flow that vehicles reach
their destinations, i.e., the flow that exits the network.

Perimeter controllers for the two-region system are assumed to exist on the border between the two
regions with the goal of maximizing the number of vehicles that reach their destinations by any time t. The
controllers, denoted by u;,(t) and u,;(t), where Upin < Uq2(t) < Upax and Upin < U1 () < Umax
with 0 < Upin < Unpax < 1, control the ratio of flow allowed to transfer from R, to R, and from R, to R,
at time t, respectively.

Using this terminology, the two region perimeter control problem with MFDs is formulated as
follows (similar to (42)):

tr
1= max | @+ Mol @
subject to: ’
dnq, (1)
i q11(6) + uz1 (£) * My (8) — My4(2) (2)
d
n;zt(t) = q12(t) — ug2(t) * My,(t) 3)
dnyq(t)
P G21(t) — Uz, (t) * My () 4)
dny,(t)
i G22(t) + ugp(6) * Myp(t) — M, (t) (5)
n;(t)
M;;(t) = %fi(ni(t)) (6)
n;j(£) = 0,i,j =12 (7)
0 < nq1(6) +n12(8) <Ny jam (8)
0 < np1(t) +n22(8) <Ny jam 9
Umin < ulz(t) < Umax (10)
Umin < u21(t) < Umax (11)
n;;(to) = nyjo,.Lj = 1,2 (12)
where:

to: start time

ts: final time

n;j ¢ initial accumulations at ¢,

N4, jam» N2,jam: jam accumulation for Ry and R,

Umin> Umax: lower and upper bounds for u,,(t) and u,, (t)

Equation (1) provides the objective function, i.e., to maximize the cumulative sum of vehicles
reaching their destination and exiting the network at any time t. Note that doing so should also
simultaneously minimize travel time within this network. Equations (2)-(6) describe traffic dynamics within
the two-region system. Equations (7)-(9) provide minimum/maximum accumulations constraints within
each region. Equations (10)-(11) define minimum/maximum control values, while (12) provides the initial
accumulations. Note that the dynamics equations are only used for the simulation environment and not
needed for the controller design.

METHODOLOGY

In this section, we first present the reinforcement learning (RL) environment where the perimeter control
problem is reformulated. Then, the proposed MFDRLPC is explained, followed by the simulation
environment that the DRL agent interacts with.
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RL Formulation
The perimeter control problem can be formulated as a Markov decision process characterized by a tuple
<SAPRTTYy >.

e State space, S. In this work, the state consists of the set of four accumulations n;;, an estimate of
the average demand q;; during the next time step, and the implemented control values at the
previous time step. To make scales of accumulation and demand consistent with implemented
controller values, their quantities are divided by their respective maximum value.

e Action space, A. Three actions are defined for each of the two perimeter controllers: 1) increase
its value by some amount, Au; 2) keep the value unchanged; or, 3) decrease the value by Au, where
Au is a predefined allowable change in controller values. Changing controller values by a set
amount allows for a gradual change in control over time. In total, the agent has 9 actions to choose
from (three options for each of the two controllers). After an action is chosen, it stays effective in
the environment for the duration of a time step, At.

e State transition function, P. Given the observed state S; and chosen action a;, the system arrives
at a new state S, according to the state transition function P(S;41(S, a;): S X A - S.

e Reward function, R. The agent receives an immediate reward from the environment at time step
t + 1 after taking an action at time step t, according to a reward function R(S;,a;):8 X A — R.
The trip completion rate in time step t is My, (t) + M,,(t), which serves as the reward for the agent
and higher rewards are preferred. However, the rewards are scaled to a value between 0 and 1 since

previous literature suggests proper reward scaling provides more stable learning processes for DRL

M14(t) + Mp;(t)

agents (43). The reward function is thus defined as , where C is a large constant.

Moreover, a large negative penalty is added to the reward if the actions chosen by the MFDRLPC
agents lead to gridlock or invalid accumulation values in the two-region system.

o Policy, m, and discount factor, y. At each time step t, the agent chooses an action based on a
policy parameterized by 6, wg: S — A, with the purpose of maximizing the expected return E[G,].
The return G is defined as the total discounted reward from time step t

T
Gy = Z YT_th+1 (13)
T=t

where T is the total time steps of an episode and y € [0,1] scales down the importance of future
rewards. Intuitively, future rewards involve increasing uncertainty and are valued less than
immediate rewards.

Algorithm

In model free RL methods, the action value function Q(S, a), also known as Q-value, is used to approximate
the expected return. Specifically, the action value function is defined as the expected return starting from
state s, taking action a, and then following the current policy. Once Q(S, a) is known, an optimal control
policy can be derived by taking greedy actions that maximize the Q-value at any given state, i.e.,

n(S;) = arg n}lax Q(Se ar) (14)

Tabular methods such as Q-learning (44) and SARSA (45) store Q-values in a table where they can
be iteratively updated according to the Bellman Equation (46). However, these methods cannot scale well
with large state spaces since it is intractable to enumerate all possible state-action pairs.

With the active progress made in the deep learning community, researchers have proposed to use
neural networks to estimate the action value function. Nevertheless, RL is known to be extremely unstable
and sometimes diverge when nonlinear functions are used to approximate action value function (i.e., the
deadly triad issue (46)). Deep Q-learning (47) is the first work that successfully addressed this issue and
achieved stability through the use of experience replay and target network, where the seminal Deep Q-
Network algorithm (DQN) was proposed. The learning target of deep Q-learning is

6
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Yi =Riyq + y max Q(Sev1,a;07) (15)

where Q(:,:, 0;7) is the target network parameterized by ;. The target network has the same structure as
the Q-network, but its weights are only updated periodically with Q-network parameters.

As can been observed in (15), updates of action values in deep Q-learning include a maximization
operation, which results in an overestimation of action values. This overestimation problem was first
observed in (48) and later affirmatively studied in (49). In the latter reference, a new algorithm named
Double DQN was developed that effectively addressed the overestimation issue by combining Double Q-
learning (50) with DQN. Specifically, the max operation in the learning target (15) is decomposed into
action selection and evaluation. The Q-network is used for action selection and the target network for
evaluation. In mathematical term, the learning target is

Ye = Reiq +yQ(5t+1,argm§1x Q(St+1,a;0,);07) (16)
where Q(:,:, 8;) represents the Q-network parametrized by ;. In this work, Double DQN is adopted as
the learning algorithm.

DRL agents learn purely from interactions with the environment and a significant amount of
experiences are needed. A distributed reinforcement learning architecture named Ape-X was proposed in
(517) that maintains numerous actors and a single centralized learner. Each actor has its own instance of the
environment. The actors are assigned different exploration strategies to expand the amount of experiences
they jointly encounter. The experiences are then stored in a shared replay buffer. The learner samples
experiences from the buffer in a prioritized fashion (52) and updates the Q-network. The actors are then
updated with the most up-to-date parameters from the Q-network. As the actors gather more and more
experiences by interacting with the environment, the learner updates the Q-network to generate increasingly
accurate estimates of the true action value function Q(S, a). When the action value function has been fully
learnt, an optimal policy can then be derived according to (14). Interested readers are referred to (57) for
more information about the Ape-X structure.

In this paper, the Ape-X architecture is combined with Double DQN. Instead of prioritizing
experiences with TD errors (51, 52), we prioritize based on the recency of experiences, i.e., the experiences
where the DRL agents are making more educated decisions are valued more than outdated experiences.
When the amount of gathered experiences exceeds the replay buffer size, the old experiences are removed
from the replay buffer. Further, all actors use decaying e-greedy policies for exploration. Pseudocode for
the proposed model free deep reinforcement learning perimeter controller is presented in Algorithm 1.

Simulation Environment

In the context of DRL, it is requisite to have an environment which the agent could interact with to learn
the expected rewards for various actions taken at each state. The agent internalizes the environment’s
dynamics via this interaction. The agent also receives sequential rewards from the environment, which
determine the agent’s behavior. In this paper, the simulation environment is expressed by the MFDs plant
as described in (27). As this reference pointed out, the traffic dynamics in the MFDs plant are different
from that in the MFDs prediction model. In the MFDs plant, noises in the demand and errors in the MFDs
are expected, which represent real-world issues. In this paper unbiased noises in demand and errors in
MFDs are considered.

Noises in demand are modeled as follows:

Gy () = max (q;;(©) (1 + £5()),0),i,j = 1,2 (17)
where §;;(t) is actual demand in the environment, q;;(t) is the average demand provided to the MFDRLPC
agents (or MPC) and ¢&;;(t) is a Gaussian error term with mean 0 and standard deviation . In this way, the
error in demand is a percentage of the average demand that simulates a temporal fluctuation of the actual

demand. For the same value of o, the magnitude of potential errors in demand would increase with the
expected demand level.
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Algorithm 1: Model Free Deep Reinforcement Learning Perimeter Control (MFDRLPC)

1 Initialize Q-network 6, replay buffer B, memory size M, iteration number /
2 for iter=1to I do

3 for all actors do

4: Load Q-network @;tor = 0ter—1

5: So < Environment.Reset()

6: fort =1to Tdo

7 At—1 = g, (Se-1)

8: (R¢, S¢) < Environment.Step(a;_1)

9: B.add((S¢-1, ar-1, R, St))

10: end for

11: end for

12: if B.size() > M then

13: B.remove()

14: end if

15: Training sample < B.sample()

16: Periodically load target network 0., = 0;ter—1

17: 0;ter < Update Q-network towards learning target (16)
18: end for

Errors in the MFD are modeled as:
fi(7: ) = fi(7: () + ¢ * 7 (), i = 1,2 (18)
where 7i;(t) is the accumulation in R; at time t, ¢;~U(—a, @) is an error term sampled from a uniform
distribution with predefined error level @. This suggests that errors between the expected and realized trip
completion rates grow as the network gets more congested, which is consistent with empirical findings and
analytical studies (7, 10).

Traffic dynamics in the environment are then computed as described in Equations (2)-(6), except
MFDs and demand values in these equations are replaced with the terms (17)-(18). Solution to these
dynamic equations yields accumulations at the next time step as well as number of trips completed, which
are used to calculate rewards for the agent.

In summary, the simulation environment is a two-region MFDs plant expressing traffic dynamics,
where there are noises in the demands and/or errors in the MFDs. The environment implements an action
generated by the agent and arrives at a new state. It also returns rewards to the agent that evaluate the actions
generated.

NUMERICAL TESTS

In this section, the proposed MFDRLPC is tested and compared with the MPC framework by solving the
two-region optimal perimeter control problem. Note that the benefit of the proposed method is that
information about the MFD or knowledge of system dynamics are not needed, whereas the MPC framework
requires that the MFD and dynamics equations that govern the evaluation of network accumulations and
trip completions to be fully known.

Experiment Setup
The MFD of Yokohama, Japan, is adopted from (6, 53) for Ry:

2.28 X 107813 — 8.62 x 10™*n? + 9.58n, 0 <n<14,000
fin) =4 27,731 — 1.38655(n — 14000), 14,000 < n < 34,000 (19)
0,n > 34,000
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where critical accumulation n, o, = 8241 veh, jam accumulation 1y j4., = 34000 veh, maximum trip
completion rate Cy gy = f1(4,r) = 33168 veh/hr. For R, the above MFD is scaled down by a factor of
2 to simulate a smaller region so 1, o = 4120 veh, 1y jgm = 17000 veh, Cy oy = f2(N2r) = 16584
veh/hr.

The traffic demand pattern adopted in this paper is shown in Figure 2(a), which simulates a 1-hour
morning peak where there is a larger demand to R, (city center) than to R; (the periphery of a city). The
duration of a time step is set to At = 60s that simulates the cycle length of traffic signals. The signals can
be placed in the border between two regions to implement the perimeter controllers.

q11 — Ny,

3.0 0> 12000 Paz
— g2 Ny
— 4z2 — n.
25 10000 2
5] —ny
—_ % —nz
i B
S 20 2 B0
= 2
= =
E = 6000
i NI
o |
2 4000 S
1.0 / / - —
\ 200(} “n,ﬁ 7_’;7_:_7_:'_7_',.,:7--":"_'_"-;_
0.5 3:}.\_‘:‘\1__7:,_ =
(} ——
0 500 1000 1500 2000 2500 3000 3500 0 500 1000 1500 2000 2500 3000 3500
time (sec) time (sec)
(a) (b)

Figure 2. (a) Average demands used for numerical tests; (b) Accumulations that arise under no control

Initial accumulations are assumed to be 147 9 = 11,9 = 3000 veh and 1,7 9 = 15,9 = 2500 veh.
Intuitively, when the initial accumulations are too small, no control should be applied, and the controller
values will be set to the maximum value possible. On the contrary, no control can prevent gridlock when
the initial accumulations are extremely large.

The evolution of accumulations when the demands and the MFDs are deterministic and no control
is applied is presented in Figure 2(b). As can be observed, the accumulation in R; steadily decreases while
the accumulation in R, keeps increasing and approaches jam accumulation. These results are expected since
the demand from R, to R, is significantly larger than otherwise. Clearly, this is unsustainable and
undesirable, even more so considering region 2 simulates the city center. In the next section it will be shown
how this congestion can be effectively addressed by properly implementing perimeter control.

The objective of perimeter control is to maximize the number of trips completed. Based on this
objective, two metrics are defined to evaluate the performance of the proposed MFDRLPC and MPC: a)
total travel time (TTT) of all vehicles in the system, which can be calculated as the area between the arrival
curve and departure curve in an input-output diagram; b) cumulative total trip completion (CTC) during the
1-hour period under study.

Experiment Results

Multiple MFDRLPC agents were trained in the experiments, each under different levels of errors that might
exist both in the demands and in the MFDs, as described in Table 1. Note that, for all agents trained, the
same Q-network design and same set of hyperparameters were used. The allowable change in perimeter
controller values is set to Au = 0.1, which is a reasonable control precision.
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Table 1. MFDRLPC agent configurations

Agent No. o a Description
1 0 deterministic scenario as a benchmark
2 0.1 0 test the performance under medium noise in demands
3 0.2 0 test the performance under high noise in demands
4 0 0.2 test the performance with errors in MFDs
5 0.1 0.2 test the performance with mixed errors in demands and MFDs

Stability of the MFDRLPC method

Figure 3 shows the evolution of CTC achieved in the 1-hour period with training iterations for the five
agents. The results are obtained by training the agents with 10 random seeds, while all hyperparameters are
fixed. The darker line shows the median performance over random seeds. The shaded areas of MFDRLPC
curves represent the confidence bound of the performances and are obtained by plotting the two extreme
values over random seeds in each iteration. Moreover, the performances of MPC are also plotted in Figure
3. In cases where there are noises in demand and/or errors in MFDs, the MPC is run for 10 times and the
median and extreme values are reported. Since the MPC is a model-based method that involves no learning,
its range of performances is relatively fixed. As shown in Figure 3, the proposed MFDRLPC agents can
learn perimeter control strategies under all training scenarios in an extremely stable fashion. The
performances of MFDRLPC agents approach those of MPC most of the time and sometimes even exceed
the performance of MPC when there is uncertainty from demands or MFDs. In a few training instances, the
performances of MFDRLPC agents have not fully converged within 250 iterations (i.e., still improving).
Thus, the performances may be even better if the agents are allowed to train for longer periods.

(aA)a=0,a=0 (b)o=0.1,a=0 ()o=0.2,a=0
20000 20000

19000 19000 19000
£ 18000 18000 18000
I~
-~
< 17000 17000 17000

16000 16000 16000

0 50 100 150 200 250 0 50 100 150 200 250 0 50 100 150 200 250
dyoe=0a=0.2 (©)cg=0.1,a=0.2 Training iterations (-)
20000 20000
15006 19000 — MFDRLPC (median)
MPC (median)

"“f‘ 18000 18000
g
-
< 17000 17000

16000 16000

0 50 100 150 200 250 0 50 100 150 200 250
Training iterations (-) Training iterations (-)

Figure 3. Learning curves of 5 MFDRLPC agents
Effectiveness of the MEDRLPC method
The proposed MFDRLPC is compared with the state-of-the-art MPC approach to examine its effectiveness.
The MPC controller is implemented as per (2/) without adding smoothing control constraints, and it
assumes a prediction horizon of 20 and a control horizon of 2. The lower bound for the perimeter controller

10
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1 wvalues is set to Ui, = 0.1 and upper bound set to u,,x = 0.9. Additionally, the results when no control
2 (NC) is applied are provided as a baseline. Figure 4 and Figure 5 show the evolution of accumulations and
3 control actions over the study period when there is no uncertainty in the environment. Note that since the
4  overall demands to R, are smaller and R, has larger capacity to contain vehicles, transfers from R, to R;
5  arenotrestricted by any control method. Thus, u;; = uy,,x for the entire study period and this is not shown
6  in Figure 5. For scenarios where uncertainties are present, the results are similar.
7
ny(t) oo ny(t) ny(t)
3000 8000
— 2500 6000
f 2000 5000 /\ 6000 ///—\
= 4000
= 1500
g 3000 / 4000
2 1000
2000
500 2000
1000
Nz (£) Nz (t) ny(t)
10000
12000
2500
E 8000 10000
= 2000
Ei 6000 8000
g 15 oo / 6000
1000 2000 / 4000 —
0 1000 2000 3000 0 1000 2000 3000 0 1000 2000 3000
8 time (s) time (s) time (s)
9 Figure 4. Evolution of accumulation under determinism. Blue: MFDRLPC; ;
10
0.9
— MFDRLPC
0.8 MPC
NC
0.7
0.6
T 05 :
0.4
03
0.2
0.1
0 500 1000 1500 2000 2500 3000 3500
11 time (s)
12 Figure 5. Control action (1) over time under determinism
13
14 When no control is applied, the accumulation in R, rapidly increases and approaches gridlock. This

15  is mostly due to the high demands to R, both from R; and internally from R,. On the contrary, the

11
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accumulation in R, steadily decreases since vehicles in R; can pass the border freely and demands to R,
are much lower. Under perimeter control, only a portion of vehicles from R, can transfer to R, hence n;,
first increases. Then, when the demands decrease at the end of the simulated morning peak, more vehicles
are allowed to transfer and n;, decreases. Due to the relatively stricter control actions chosen by
MFDRLPC in the early peak, the accumulation in R, first decreases. Later, as the controller gets relaxed,
more vehicles are able to enter R, and its accumulation increases. Overall, the evolutions of accumulations
exhibit similar trends for both MPC and MFDRLPC.

Figure 5 reveals that both MPC and MFDRLPC tend to increase u4, to allow more transfer flows
in the early stage when demands are relatively small. As demands increase to the maximum, transfer flows
are more tightly restricted. Approaching the end of the morning peak, all controllers have a propensity to
allow more vehicles to transfer and complete their trips. Furthermore, instead of decreasing 14, at higher
demand and increasing it later as MPC controller does, MFDRLPC keeps u,, around the mean value of
MPC control values. In this way, MFDRLPC is able to increase the number of trips completed as well as
reduce the complexity of perimeter control implementation in real life.

Transferability of the MFDRLPC method

This section examines the transferability of the MFDRLPC to unseen scenarios. To the best of our
knowledge, this is the first examination of the ability of perimeter control methods to be implemented on
unseen environments. Under all case studies reported in (20), the MFAILPC controller learns from scratch
and it is unclear whether the controller in one case can perform well in another without conducting the
learning process all over again. MPC (21) is a model-based method and needs to formulate an optimization
problem at every time step. It remains in question whether a particular parameter setting (control horizon,
prediction horizon, etc.) can generalize well to a different environment.

A variety of environment configurations are considered, each differing in at least one of these three
factors: initial accumulations, demand patterns, and MFD models. The transferability of the proposed
method is tested against each factor by keeping the other two constant.

The initial accumulations in the environment are chosen to simulate daily variation of traffic
conditions according to

Ninew = Nyo * (1 + ¢), 1 =12 (20)
where ¢ increases from 0 to 0.30 by 0.05 representing the variation of initial accumulations from original
accumulations n; o. Note that n; o = 6000 veh and n, ; = 5000 veh. The demand patterns are selected by

Gij = qij* (1 +n),i,j=12 (21)

where q;; is basic demand from Figure 2a and n = 0, 0.05,0.10, 0.15, 0.20, 0.25, 0.30, which indicates the
variation of traffic demands. The MFD models in the environment are defined as

fi(7:(®) = fi(7:(©) + @ * 7 (2), i = 1,2 (22)

where ¢ € [—0.50,—-0.30,—-0.10,0,0.10,0.30,0.50] and it indicates the level of MFD modeling errors.

When ¢ is less than 0, the environment dynamics internalized by the MFDRLPC agents or known by the

MPC overrepresent the real situation in the environment and fewer trips can be completed. In total, 73 =

343 new environment configurations are considered, and only the results for a fraction of environment

configurations are presented. Results for other configurations are similar and do not affect the conclusions.

The performances of the proposed method and the MPC are expressed as improvements from the
NC in terms of total travel time (TTT), as shown in Figure 6. The environments assume 7 = 0,¢ = 0. As
can be observed from Figure6, the improvements from NC for all MFDRLPC agents and MPC increase
with initial accumulations, which suggests a higher level of necessity to implement perimeter control as
initial accumulations become larger. More importantly, the performances of the MFDRLPC agents are
generally better than those of the MPC as initial accumulations increase. For example, MFDRLPC agents
1,2, 3, and 5 consistently outperform MPC when ¢ > 0.15 even though the agents have never encountered
the test environments before and MPC has full information about the environment at every time step. Agent
1 was trained without environment uncertainty, i.e., ¢ = 0, = 0. The test environment adopts basic
demand pattern and no MFD modeling error, which is consistent with the environment agent 1 was trained

12
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on. The excellent performance achieved by agent 1 suggests that the MFDRLPC can adapt well to similar
environments. Further, agents 2, 3, and 5, which were trained with high environment uncertainty, also
performed very well on the test environments. This indicates that an MFDRLPC agent trained in high
uncertainty can generalize well to environments with low uncertainty. Note that, though agent 4
underperforms other agents, it generally performs as well or better than MPC.

6 le6

n

MFDRLPC agent 1
MFDRLPC agent 2
—— MFDRLPC agent 3
—— MFDRLPC agent 4
—— MFDRLPC agent 5
****** MPC

Improvements from NC (TTT: veh * s)

! 0.00 0.05 0.10 0.15 0.20 0.25 0.30

Variation of initial accumulations, ¢
Figure 6. Performances with respect to deviation of initial accumulations

To test the sensitivity of the proposed MFDRLPC to unseen demands in the environment, initial
accumulations are kept at their original values and MFDs are assumed to have no modeling error while the
demand levels are allowed to vary. Figure 7 shows the improvements from NC with respect to demand for
the five MFDRLPC agents and MPC. As shown in Figure 7, the improvements from NC monotonically
increase with traffic demands for both the MFDRLPC and MPC. Initially, when traffic demands are small,
MPC exhibits some advantage over MFDRLPC agents. However, as traffic demand becomes relatively
large (n = 0.15), MPC cannot generalize as well and is outperformed by MFDRLPC agents. Notably, agent
3, which was trained assuming only a noise level of ¢ = 0.2 in the environment, consistently achieved the
best performance when 1 = 0.15. This seems reasonable since its training environment is closest to the test
environments that assume increasing demands and no MFD modeling errors. Additionally, agent 2, whose
training environment (o = 0.1, @ = 0) is second closest to the test environments, achieved second best
performances as traffic demands increase. It is then shown again that the MFDRLPC agents can transfer
well to similar environments. The relative consistency of performances among all agents also confirms the
robustness of the proposed method to traffic demands in the environment.
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MFDRLPC agent 1

Improvements from NC (TTT: veh * s)

2.0 —— MFDRLPC agent 2
—— MFDRLPC agent 3
—— MFDRLPC agent 4

1.3 —— MFDRLPC agent 5
------ MPC

0.00 0.05 0.10 0.15 0.20 0.25 0.30

Variation of traffic demands, n
Figure 7. Performances with respect to traffic demands

The performances of all methods relative to NC with respect to MFD modeling errors are shown
in Figure 8. The test environments take original initial accumulations and basic traffic demands. As MFD
modeling error changes from -0.5 to 0.5, the trip completion rate increases, hence the number of trips
completed in the 1-hour period increases and total travel time in the system decreases. Under most MFD
modeling error levels, MPC performs the best. However, when the MFDs are significantly underestimated
(¢ = 0.4), improvements from NC turn negative for both MPC and the MFDRLPC agents, suggesting that
it is best not to implement any perimeter control at all. Intuitively, when the MPC or MFDRLPC agents
assumes that traffic dynamics will evolve according to the underestimated or under-perceived MFD,
perimeter control will be implemented to keep regions from becoming congested. However, since the
network is more productive than expected, better performances can be obtained by not restricting vehicle
movement. Moreover, when the MFDRLPC agents are over-optimistic about the environment dynamics,
i.e., environment MFDs are overestimated or ¢ < 0, the differences of performances between the
MFDRLPC and MPC become smaller. On the other hand, the performances between the MFDRLPC and
MPC tend to diverge as MFD underestimation error grows. This shows the proposed MFDRLPC is robust
to MFD overestimation error in the environment.
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Figure 8. Performances with respect to MFD modeling errors

Overall, the test results presented in this section demonstrate the superior transferability of the
proposed method and show that DRL is a promising method for MFD-based network control. Particularly,
the proposed MFDRLPC is robust to different initial accumulations, traffic demands, and MFD
overestimation errors in the environment. These results also suggest that the MFDRLPC agents be trained
offline with relatively large initial accumulations, high traffic demands, and on environments with higher
MFDs, so that they can be deployed directly to environments that have lower outflows while maintaining
performances that are comparable with those of MPC.

SUMMARY

In this paper, a DRL-based method named MFDRLPC is developed to solve the optimal perimeter control
problem for two-region urban networks with MFDs by combining the Ape-X architecture and Double DQN.
The proposed method is completely model free and data free. Results from extensive numerical experiments
show that the proposed MFDRLPC can learn in an extremely stable manner and achieve performances that
are comparable with or better than the state-of-the-art MPC-based framework. Moreover, the proposed
MFDRLPC is shown to be highly transferable and robust by deploying it to a variety of test environments
with different initial accumulations, traffic demands, and MFD modeling errors. In addition, results reported
in this paper provide a lower bound for the full capability of DRL-based methods on perimeter control.
With future research efforts, even better results can be achieved. In general, this paper demonstrates that
DRL has great applicability on MFD-based network traffic control. Future works could include the
development of a general multi-region DRL-based control framework that solves perimeter control and
traffic signal control simultaneously.
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