

A CRITERIA FOR THE REGULARITY OF ABSOLUTE MINIMIZERS INVOLVING HAMILTONIAN $H \in C^0(\mathbb{R}^n)$

PENG FA, CHANGYOU WANG AND YUAN ZHOU

Abstract. Let $n \geq 2$ and suppose that $H \in C^0(\mathbb{R}^n)$ is convex and $\liminf_{p \rightarrow \infty} H(p) = \infty$. The following are proved to be equivalent:

- (i) H is not a constant in any line segment.
- (ii) Any absolute minimizer for H in any domain $\Omega \subset \mathbb{R}^n$ enjoys the linear approximation property.

When $n = 2$, (i) is further proved to be equivalent to (iii) or (iv) below:

- (iii) Any absolute minimizer for H in any domain $\Omega \subset \mathbb{R}^2$ enjoys $C^1(\Omega)$ -regularity.
- (iv) Any absolute minimizer for H in whole plane enjoying a linear growth at ∞ must be a linear function.

CONTENTS

1. Introduction	1
2. Preliminaries	5
3. Some geometric and analytic characterization of H and its convex conjugate L	7
4. Proofs of Lemma 1.3 and (i) \Leftrightarrow (ii) in Theorem 1.1	12
5. Proof of Proposition 1.4	20
6. Proofs of Theorem 1.5 and (i) \Leftrightarrow (iii) or (iv) in Theorem 1.1	26
References	29

1. INTRODUCTION

Let $n \geq 2$ and suppose that $H \in C^0(\mathbb{R}^n)$ is a convex and coercive ($\liminf_{p \rightarrow \infty} H(p) = \infty$). Aronsson 1960's initiated the study of minimization problems for L^∞ -functional

$$\mathcal{F}_H(u, \Omega) = \operatorname{esssup}_{x \in \Omega} H(Du(x)) \text{ for any domain } \Omega \subset \mathbb{R}^n \text{ and function } u \in W_{\text{loc}}^{1,\infty}(\Omega);$$

see [2, 3, 4, 5, 6]. Given a domain $\Omega \subset \mathbb{R}^n$, by Aronsson a function $u \in W_{\text{loc}}^{1,\infty}(\Omega)$ is an absolute minimizer for H in Ω (write $u \in AM_H(\Omega)$ for short) if

$$\mathcal{F}_H(u, V) \leq \mathcal{F}_H(v, V) \text{ whenever } V \Subset \Omega, v \in W_{\text{loc}}^{1,\infty}(V) \cap C(\bar{V}) \text{ and } u = v \text{ on } \partial V.$$

It turns out that the absolute minimizer is the correct notion of minimizers for such L^∞ -functionals.

The main purpose of paper is to establish the following criteria for the regularity of absolute minimizers.

11a **Theorem 1.1.** *Let $n \geq 2$ and suppose that $H \in C^0(\mathbb{R}^n)$ is a convex and coercive. Then the following are equivalent:*

- (i) H is not a constant in any line segment.
- (ii) Any absolute minimizer for H in any domain $\Omega \subset \mathbb{R}^n$ enjoys the linear approximation property.

 pdfelement 2. (i) is also equivalent to (iii) or (iv) below:

- (iii) Any absolute minimizer for H in any domain $\Omega \subset \mathbb{R}^2$ enjoys $C^1(\Omega)$ -regularity.

The Trial Version

Date: November 8, 2018.

(iv) Any absolute minimizer for H in whole plane enjoying a linear growth at ∞ must be a linear function.

We refer (iv) above as a Liouville property of absolute minimizer for H . A function $u \in C^0(\mathbb{R}^n)$ enjoys a linear growth at ∞ if $|u(x)| \leq C(1 + |x|)$ for all $x \in \mathbb{R}^n$, where C is a constant. Moreover, by Crandall-Evans [14] (see also [31] and [28]), a function $u \in C^{0,1}(\Omega)$ enjoys the linear approximation property if for any $x \in \Omega$ and any sequence $\{r_j\}_{j \in \mathbb{N}}$ which converges to 0, there exist a subsequence $\{r_{j_k}\}_{k \in \mathbb{N}}$ and a vector $e_{\{r_{j_k}\}_{k \in \mathbb{N}}}$ such that

$$\lim_{k \rightarrow \infty} \sup_{y \in B(0,1)} \left| \frac{u(x + r_{j_k}y) - u(x)}{r_{j_k}} - e_{\{r_{j_k}\}_{k \in \mathbb{N}}} \cdot y \right| = 0$$

and

$$H(e_{\{r_{j_k}\}_{k \in \mathbb{N}}}) = S u(x) := \lim_{r \rightarrow 0} \|H(Du)\|_{L^\infty(B(x,r))}.$$

Note that everywhere differentiability always implies the linear approximation property. But the converse is not necessarily correct due to Preiss' function; in particular, Lipschitz functions do not have the linear approximation property necessarily.

We have the following interesting consequence of Theorem 1.1.

Corollary 1.2. *For any Banach norm $\|p\|$ in \mathbb{R}^n , the unit sphere $S_{\|p\|}^1 := \{p \in \mathbb{R}^n : \|p\| = 1\}$ does not contain any line-segment if and only if absolute minimizers for $\|p\|$ have the linear approximation property, or the C^1 -regularity (when $n = 2$) or the Liouville property (when $n = 2$).*

In particular, let

$$|p|_t = \left(\sum_{i=1}^n p_i^t \right)^{1/t} \quad \text{when } t \geq 1 \text{ and } = \max_{1 \leq i \leq n} |p_i| \text{ when } t = \infty \text{ for all } p \in \mathbb{R}^n.$$

For $1 < t < \infty$, absolute minimizers for $|p|_t$ always have the linear approximation property, the C^1 -regularity (when $n = 2$) and the Liouville property (when $n = 2$); but for $t = 1$ and ∞ , absolute minimizers do not have any of these properties necessarily.

Recall that if $H \in C^1(\mathbb{R}^n)$, Aronsson derived the Euler-Lagrange equations for absolute minimizers:

$$\boxed{\text{eq1.2}} \quad (1.1) \quad \mathcal{A}_H[u] := \langle D[H(Du)], D_p H(Du) \rangle = \sum_{i,j=1}^n H_{p_i}(Du) H_{p_j}(Du) u_{x_i x_j} = 0 \quad \text{in } \Omega,$$

which are highly degenerate nonlinear elliptic equations. In the special case $H(p) = \frac{1}{2}|p|^2$, (1.1) is the well-known ∞ -Laplace equation

$$\boxed{\text{eq1.3}} \quad (1.2) \quad \Delta_\infty u := \frac{1}{2} \langle D|Du|^2, Du \rangle = \sum_{i,j=1}^n u_{x_i} u_{x_j} u_{x_i x_j} = 0 \quad \text{in } \Omega.$$

By Crandall-Lions' theory [17], viscosity solutions to (1.1) and (1.2) are well-defined; viscosity solutions to (1.2) are called as ∞ -harmonic functions. Jensen [23] identified ∞ -harmonic functions with absolute minimizers for $\frac{1}{2}|p|^2$. If $H \in C^1(\mathbb{R}^n)$ is convex and coercive, by Crandall et al [18] and Yu [30] (see also [11, 13, 22, 9]) we know that absolute minimizers for H coincide with viscosity solutions to (1.1).

The existence and uniqueness of ∞ -harmonic functions in bounded domains has been established by Jessen [23]; see also [10, 16, 1, 26] for other approaches for the uniqueness. If $H \in C^0(\mathbb{R}^n)$ is convex and coercive, we refer to [11, 8] for the existence of absolute minimizers. Assuming additionally that $H^{-1}(\min H)$ has empty interior, Armstrong et al [9] obtained their uniqueness; see also Jensen et al [24] when $H \in C^2(\mathbb{R}^n)$, and [8, 16]

pdf element Using a Banach norm. By [30, 24, 9], to get the uniqueness it is also necessary to assume $H^{-1}(\min H)$ having empty interior.

The Trial Version regularity of absolute minimizers/viscosity solutions to (1.1)&(1.2) is the main issue in this field. By the definition, absolute minimizers are always locally Lipschitz, and hence differentiable almost everywhere.

Crandall-Evans [14] obtained the linear approximation property of ∞ -harmonic functions. The interior C^1 -regularity of planar ∞ -harmonic functions and also a Liouville property as in Theorem 1.1 (iv) were proved by Savin [27], their interior $C^{1,\alpha}$ -regularity for some $0 < \alpha < 1/3$ by Evans-Savin [19] and their boundary C^1 -regularity by Wang-Yu [29]. When $n \geq 3$, Evans-Smart [20, 21] obtained the everywhere differentiability of ∞ -harmonic functions.

If $H \in C^2(\mathbb{R}^n)$ is locally strongly convex, Wang-Yu [28] obtained the linear approximation property of absolute minimizers/viscosity solutions to (1.1), and moreover when $n = 2$, their interior C^1 -regularity and a Liouville property as in Theorem 1.1 (iv). On the other hand, assuming $H \in C^1(\mathbb{R}^n)$, Katzourakis [25] showed that, to get C^1 -regularity of all viscosity solutions to (1.1), it is necessary to assume that H is not a constant in any line-segment. Indeed, if $H \in C^1(\mathbb{R}^n)$ is a constant in some line-segment (say $[a, b]$), by [25] the following function $u_f \notin C^1(\mathbb{R}^n)$ is a viscosity solution to (1.1):

E0 (1.3)
$$u_f(x) = \frac{b+a}{2} \cdot x + f\left(\frac{b-a}{2} \cdot x\right) \quad \forall x \in \mathbb{R}^n,$$

where $f \in C^{0,1}(\mathbb{R})$ with $\|f'\|_{L^\infty(\mathbb{R})} < 1$ but $f \notin C^1(\mathbb{R}^n)$. If $H \in C^0(\mathbb{R}^n)$ is convex and coercive, Theorem 1.1 indicates that, to get the linear approximation property, C^1 -regularity (when $n = 2$) and the Liouville property (when $n = 2$) of absolute minimizers for H , it is sufficient and also necessary to assume that H is not a constant in any line-segment.

Now we turn to the proof of Theorem 1.1, and without loss of generality, under the following stronger assumption on H :

assh0 (1.4)
$$H \in C^0(\mathbb{R}^n) \text{ is convex, } H(0) = \min_{p \in \mathbb{R}^n} H(p) = 0 \text{ and } \liminf_{p \rightarrow \infty} \frac{H(p)}{\|p\|} = \infty.$$

Indeed, if $H \in C^0(\mathbb{R}^n)$ is a convex and coercive, there exists a $p_0 \in \mathbb{R}^n$ such that $\min_{p \in \mathbb{R}^n} H(p) = H(p_0)$. Let $\tilde{H}(p) = [H(p + p_0) - H(p_0)]^2$. Then \tilde{H} satisfies the assumption (1.4), and also, \tilde{H} satisfies (i) if and only if H satisfies (i). Note that $u \in AM_H(\Omega)$ if and only if $\tilde{u}(x) \in AM_{\tilde{H}}(\Omega)$, where $\tilde{u}(x) = u(x) - p_0 \cdot x$ for all $x \in \Omega$. Moreover, u and \tilde{u} enjoy the same regularity.

To prove (ii), (iii) or (iv) \Rightarrow (i) in Theorem 1.1, we show that if H is a constant in some line-segment $[a, b]$, then the function u_f given in (1.3) is an absolute minimizer for H in \mathbb{R}^n whenever $\|f'\|_{L^\infty(\mathbb{R})} \leq 1$; see Lemma 4.2. By choosing suitable f , one easily see that u_f fails to have the linear approximation property and hence is not C^1 -regular, and also that the Liouville theorem fails. Note that this proof also works in dimension $n \geq 2$. See Section 4 for Lemma 4.2 and the proof of (ii) \Rightarrow (i) in Theorem 1.1. The proofs of (iii) or (iv) \Rightarrow (i) in Theorem 1.1 is stated in Section 6.

The proof of (i) \Rightarrow (ii) in Theorem 1.1 relies on the key Lemma 1.3.

LEMC4 **Lemma 1.3.** *Let H be as in (1.4) with $n = 2$ and satisfy (i). If $u \in C^{0,1}(\mathbb{R}^n)$ satisfies*

F1 (1.5)
$$S_t^+ u(x), -S_t^- u(x) \leq k \text{ and } S_t^+ u(0) = -S_t^- u(0) = k \quad \forall x \in \mathbb{R}^n, t > 0$$

for some $0 \leq k < \infty$, then u is a linear function and $H(Du) \equiv k$, that is, there exists a vector $p_0 \in \mathbb{R}^n$ such that

$$u(x) = u(0) + p_0 \cdot x \quad \text{for all } x \in \mathbb{R}^n, \text{ and } H(p_0) \equiv k.$$

The notion $S_t^\pm u(x)$ above will be explained in Section 2, where we also recall the comparison property with cones and convex/concave criteria for absolute minimizers, which are given by Armstrong et al [9]. Lemma 1.3 and the convex/concave criteria allow us to get the linear approximation property of absolute minimizer in a standard way; see section 4 for details.

Lemma 1.3 was first proved by Crandall-Evans [14] when $H(p) = \frac{1}{2}|p|^2$ by using its Hilbert structure.

When $H \in C^1(\mathbb{R}^2)$ is locally strongly convex, by using the C^1 -regularity of cone functions, Wang-Yu [28] proved Lemma 1.3. When $H \in C^1(\mathbb{R}^n)$ is strictly convex and satisfies (1.4), observing and using the $C^1(\mathbb{R}^n)$ -regularity and strict convexity of the conjugate L of H (see Theorem 3.1 (i) below), one could deduce Lemma

The Trial Version of Lemma 1.3. In the arguments of Yu [31], even where some stronger conditions on H were assumed. But when H satisfies (1.4) and Theorem 1.1 (i) (that is, H is not constant in any line-segment), the C^1 -regularity of cone

functions is unavailable, and the convex conjugate L of H does not necessarily have $C^1(\mathbb{R}^n)$ -regularity and also is not necessarily strictly convex. This causes some essentially difficulty to prove Lemma 1.3; hence, new idea is needed to prove Lemma 1.3.

Indeed, in Section 3, we observe that, under (1.4) and Theorem 1.1 (i) for H , the sub-differential set of its convex conjugate L at any point must be a single point or be a line-segment; see Theorem 3.1 (where we also obtain a 2-dimensional analogue for the geometry of ∂L which may has its own interests). Using this, by some careful analysis on the analytic/geometric structures of Hamilton-Jacobi flows and also the subdifferential sets of H and L , we are able to determinant a unique vector $p_0 \in H^{-1}(k)$ so that $u(x) = u(0) + p_0 \cdot x$ and hence prove Lemma 1.3; see Section 4 for details.

To prove $(i) \Rightarrow (iii) \& (iv)$ in Theorem 1.1 we need the following crucial Proposition 1.4. Given any $x^0 \in \mathbb{R}^2$ and $r, \delta \in (0, 1]$, for a function $u \in C^0(B(x^0, r))$ denote by $\mathcal{D}(u)(x^0; r; \delta)$ the collection of all vectors e such that

$$\sup_{B(x^0, 1)} |u(x + x^0) - u(x^0) - e \cdot (x - x_0)| \leq \delta r.$$

In other words, $\mathcal{D}(u)(x^0; r; \delta)$ collects all linear approximations at the scale δ of u in the ball $B(x^0, r)$.

xprop **Proposition 1.4.** *Suppose that H satisfies (1.4) with $n = 2$ and (i). Let $R \geq 1$. For any $\epsilon > 0$, there exist $\delta = \delta(H, R, \epsilon) > 0$ such that for any e_6 and $e_{0,6}$, if we can find a $u \in AM_H(B(0, 6))$ satisfying*

xlin0 (1.6) $\|H(Du)\|_{L^\infty(B(0, 6))} \leq R$ and u is not linear in some neighborhood of 0,

xlin1 (1.7) $e_6 \in \mathcal{D}(u)(0; 6; \delta)$ and $1 \leq H(e_6) \leq 2$,

and

xlin2 (1.8) $e_{0,6} \in \mathcal{D}(u)(0; 6r; \delta)$ for some $r \in (0, 1/2]$ and $H(e_{0,6}) = Su(0)$,

then we have

xlin3 (1.9) $|e_6 - e_{0,6}| \leq \epsilon.$

By an argument essentially the same to those of [27, Theorem A,B&C] and [28, Theorem B,C&E], one could deduce the following Theorem 1.5 from Proposition 1.4 and Theorem 1.1 (ii), and then prove $(i) \Rightarrow (iii)$ and (iv) in Theorem 1.1 by using Theorem 1.5; we give the details in Section 6 for reader's convenience and also for the completeness of this paper, but the reader familiar with [27] and [28] may ignore Section 6.

c2 **Theorem 1.5.** *Let H be as in (1.4) with $n = 2$ and satisfy Theorem 1.1 (i).*

- (i) *Given any domain $\Omega \subset \mathbb{R}^n$, if $u \in AM_H(\Omega)$, then $u \in C^1(\Omega)$.*
- (ii) *For any $k > 0$, there exists an increasing continuous function ρ_k with $\rho_k(0) = 0$ such that*

rho (1.10) $\sup_{x, y \in B(z, s)} |Du(x) - Du(y)| \leq \rho_k(s/r)$ whenever $s < r$, $u \in AM_H(B(x, 2r))$ and $\|H(Du)\|_{L^\infty(B(x, 2r))} \leq k$.

So to get Theorem 1.1, we only need to prove Proposition 1.4. It was first proved by Savin [27, Proposition 1] when $H(p) = \frac{1}{2}|p|^2$. and later by Wang-Yu [28, Proposition 4.1] when $H \in C^2(\mathbb{R}^2)$ is locally strongly convex. In the two proofs, a planar topology observation by Savin and several properties of absolute minimizers (including comparison property with cones, comparison with linear function and linear approximation property) were used.

When H satisfies (1.4) and Theorem 1.1 (i), we will prove Proposition 1.4 by using Theorem 1.1 (ii) and some ideas of Savin [27] and Wang-Yu [28], more precisely, using the procedure by Wang-Yu [28, Proposition 4.1]. Note that Savin (see the proof of [28, Proposition 4.1]) used the Hilbert structure of $\frac{1}{2}|p|^2$ and Wang-Yu (see the proof of [28, Proposition 4.1]) relied on the $C^2(\mathbb{R}^2)$ -regularity and (locally) strong convexity of H . However, in Proposition 1.4, H is only supposed to satisfy (1.4) and the necessary (and hence minimal) assumption (i); none of Hilbert structure, C^1 -regularity and (locally) strong convexity are available. To over-

The Trial Version several essential difficulties caused by these, and then to get Proposition 1.4, new ideas/observations are definitely required.

Indeed, by using Theorem 1.1 (ii) and Savin's topology argument (see Lemma (5.1)) as in [28, Lemma 4.2], we get some auxiliary vector e . The proof of (1.9) is then reduced to $|e_6 - e| \leq \epsilon/2$ (see (5.4)) and $|e_{0,6} - e| \leq \epsilon/2$ (see (5.5)). To get $|e_6 - e| \leq \epsilon/2$, the key observations are the analytic properties of H and L in Section 3, in particular, given in Theorems 3.2 and 3.3. These properties (in particular Theorem 3.3) allow us to build up a discrete flow and hence get the length estimate $H(e_6) \leq H(e) + \eta$ as in Lemma 5.2, and also allows to get the angle estimates as in Lemma 5.3. From these and Theorem 3.2 we conclude the key inequality $|e_6 - e| \leq \epsilon/2$. Similarly, we also have $|e_{0,6} - e| \leq \epsilon/2$.

We emphasize that the angle estimate in Lemma 5.3 is more essential. Looking at u_f given (1.3), one easily see that $S(u_f)$ is always continuous (recalling that $H(Du_f) = S(u_f)$ almost everywhere) but can not expect any angle estimate similar to Lemma 5.3 (and also everywhere differentiability and C^1 -regularity).

2. PRELIMINARIES

The following comparison principle is established by [9]. It is known that linear functions are always absolute minimizers.

com-linear **Lemma 2.1.** *Suppose that H satisfies (1.4) and $H^{-1}(0)$ has empty interior. For any domain $U \subset \mathbb{R}^n$, and $u, v \in AM_H(U) \cap C^0(\overline{U})$ (in particular, v is any linear function), we have*

$$\max_{x \in U} [\pm u(x) - v(x)] \leq \max_{x \in \partial U} [\pm u(x) - v(x)].$$

Next we recall the comparison property with cones. The cone functions for H are defined by

$$\mathcal{C}_a^H(x) = \sup_{H(p) \leq a} p \cdot x \quad \forall a \geq 0, x \in \mathbb{R}^2.$$

It is evident that $\mathcal{C}_a^H \in C^{0,1}(\mathbb{R}^n)$ is convex, positively homogeneous, subadditive and $\mathcal{C}_a^H(x) > 0$ for every $a > 0$ and $x \neq 0$. See [9, Lemma 2.18] for the following lemma.

LEM7.11 **Lemma 2.2.** *Let H be as in (1.4). Let $U \subset \mathbb{R}^n$ be any domain, $u \in C^{0,1}(U)$ and $a \geq 0$. The following are equivalent:*

- (i) $H(Du) \leq a$ almost everywhere in U ;
- (ii) $u(x) - u(y) \leq \mathcal{C}_a^H(x - y)$ provided the line segment $[x, y] \subset U$.

Below denote by $\text{usc}(U)$ (resp. $\text{lsc}(U)$) the class of upper (resp. lower) semi-continuous functions in U .

Definition 2.3. Let H be as in (1.4).

- (i) A function $u \in \text{usc}(U)$ satisfies the comparison property with cones for H from above in U if

$$\max_V \{u - \mathcal{C}_a^H(x - x_0)\} = \max_{\partial V} \{u - \mathcal{C}_a^H(x - x_0)\}$$

whenever $V \Subset \Omega$, $a \geq 0$ and $x_0 \in \mathbb{R}^n \setminus V$; for short, write $u \in CCA_H(U)$.

- (ii) A function $u \in \text{lsc}(U)$ satisfies the comparison property with cones for H from below in U if and

$$\min_V \{u + \mathcal{C}_a^H(x_0 - x)\} = \min_{\partial V} \{u + \mathcal{C}_a^H(x_0 - x)\}$$

whenever $V \Subset \Omega$, $a \geq 0$ and $x_0 \in \mathbb{R}^n \setminus V$; for short, write $u \in CCB_H(U)$.

- (iii) We say $u \in C^0(U)$ satisfies the comparison property with cones for H in U (for short, $u \in CC_H(U)$) if $u \in CCA_H(U) \cap CCB_H(U)$.

Denote by L the convex conjugate of H , that is,

$$L(q) = \sup_{p \in \mathbb{R}^2} [\langle p, q \rangle - H(p)].$$

pdfelement Note that L is convex, $L(0) = \min_{p \in \mathbb{R}^n} L(q) = 0$ and $\liminf_{q \rightarrow \infty} L(q) / |q| = \infty$. Given any domain $U \subset \mathbb{R}^n$ and a bounded function $u \in C^0(U)$, the Hamilton-Jacobi flows are defined by

The Trial Version

$$T^t u(x) = \sup_{y \in U} \left[u(y) - tL\left(\frac{y-x}{t}\right) \right] \text{ and } T_{tu}(x) = \inf_{y \in U} \left[u(y) + tL\left(\frac{x-y}{t}\right) \right] \quad \forall t > 0, x \in U$$

and $T^0 u(x) = u(x) = T_0 u(x)$ for all $x \in U$.

For any $r > 0$, we set $U_r := \{x \in U : \text{dist}(x, \partial U) > r\}$.

Definition 2.4. Let H be as in (1.4). Let $U \subset \mathbb{R}^n$ be any domain.

- (i) A bounded function $u \in C^0(U)$ enjoys a convex criteria if for any $r > 0$ there exists a $\delta_r > 0$ such that for all $x \in U_r$, the map $t \in [0, \delta_r] \rightarrow T^t u(x)$ is convex.
- (ii) A bounded function $u \in C^0(U)$ enjoys a concave criteria if for any $r > 0$ there exists a $\delta_r > 0$ such that for all $x \in U_r$, the map $t \in [0, \delta_r] \rightarrow T_t u(x)$ is concave.

The following characterization of absolute minimizers follows from [9, Theorem 4.8].

LEM7.13 **Lemma 2.5.** Let H be as in (1.4) and $H^{-1}(0)$ has empty interior point. For any domain $U \subset \mathbb{R}^2$, the following are equivalent:

- (i) $u \in AM_H(U)$ is bounded;
- (ii) $u \in CC_H(U)$ is bounded;
- (iii) $u \in C^0(U)$ is bounded and enjoys the convex and concave criterion.

Define the slope functions via Hamilton-Jacobi flows as below:

$$S_t^+ u(x) = \frac{1}{t} [T^t u(x) - u(x)] \text{ and } S_t^- u(x) = \frac{1}{t} [T_t u(x) - u(x)] \quad \forall x \in U, t > 0.$$

If $u \in AM_H(U)$ is bounded, then the maps $t \in (0, \delta_r] \rightarrow \pm S_t^\pm u(x)$ are increasing for all $x \in U_r$ and $r > 0$,

$$\text{E-2} \quad (2.1) \quad S u(x) := \lim_{r \rightarrow 0} \|H(Du)\|_{L^\infty(B(x,r))} = \lim_{t \rightarrow 0} \pm S_t^\pm u(x) \quad \text{for all } x \in U;$$

and $S u$ is upper semi-continuous in U ; for details see [9, Lemmas 4.2 and 4.3].

Note that for $u \in C^{0,1}(\mathbb{R}^n)$ which is not necessary bounded, one may also define $T^t u, T_t u$ and hence $S_t^\pm u$ as above with $U = \mathbb{R}^n$. Since L satisfies (1.4), all of $T^t u, T_t u$ and hence $S_t^\pm u$ are finite. Indeed we have the following.

LEM3.3 **Lemma 2.6.** Let H be as (1.4). If $u \in C^{0,1}(\mathbb{R}^n)$ with $\|Du\|_{L^\infty(\mathbb{R}^n)} = K < \infty$, then there exists a constant $R_K > 0$ depending on k and L such that

$$\text{E3.1} \quad (2.2) \quad \pm S_t^\pm u(x) = \sup_{y \in \overline{B(x, R_K t)}} \left[\pm \frac{u(y) - u(x)}{t} - L\left(\pm \frac{y-x}{t}\right) \right] \quad \forall x \in \mathbb{R}^n, t > 0.$$

Proof. Note that $|u(y) - u(x)| \leq Kt$ for all $x, y \in \mathbb{R}^n$. By the sup-linear growth of L , we there exist an increasing function $M : [0, \infty) \rightarrow [0, \infty)$ so that $M(R) \rightarrow \infty$ and $L(q) \geq M(R)R$ whenever $|q| \geq R$. If $M(R_K) > K$ and $|x-y| \geq R_K t$, we have

$$\pm \frac{u(y) - u(x)}{t} - L\left(\pm \frac{y-x}{t}\right) \leq \left[K - M\left(\frac{|x-y|}{t}\right) \right] \frac{|x-y|}{t} \leq 0,$$

which gives the desired identity (2.2). The proof of Lemma 2.6 is complete. \square

We also recall the another slope function which are defined via cones as below:

$$\hat{S}_t^+ u(x) = \inf \left\{ k \geq 0, u(y) - u(x) \leq \mathcal{C}_k^H(y-x) \quad \forall y \in B(0, t) \right\} \quad \forall x \in U, 0 < t < \text{dist}(x, \partial U)$$

and

$$-\hat{S}_t^- u(x) = \inf \left\{ k \geq 0, u(x) - u(y) \leq \mathcal{C}_k^H(y-x) \quad \forall y \in B(0, t) \right\} \quad \forall x \in U, 0 < t < \text{dist}(x, \partial U).$$

Following the argument of [22, Propositions 3.1 and 3.3] line by line, we have the following Lemmas 2.7 which will be used later. Here we omit the details.

LEM The Trial Version 2.7. Let H be as in (1.4) and satisfy Theorem 1.1 (i). Assume that $u \in CC_H(U)$ for $U \Subset \mathbb{R}^n$. Then for any $x \in U$, the functions $t \in (0, \text{dist}(x, \partial U)) \rightarrow \pm \hat{S}_t^\pm u(x)$ are increasing, and $S u(x) = \lim_{t \rightarrow 0} \pm \hat{S}_t^\pm u(x)$

increasing

Lemma 2.8. *Let H be as in (1.4) and satisfy Theorem 1.1 (i). Assume that $u \in CC_H(U)$ for $U \subseteq \mathbb{R}^n$. Then for any $x \in U$ and $0 < r < \text{dist}(x, \partial U)$, if $u(y) - u(x) = \mathcal{C}_{\hat{S}_r^+ u(x)}^H(y - x)$, then $S u(y) \geq \hat{S}_r^+ u(x)$.*

3. SOME GEOMETRIC AND ANALYTIC CHARACTERIZATION OF H AND ITS CONVEX CONJUGATE L

Let H be as in (1.4) and L be its convex conjugate. Note that L also satisfies (1.4). For any $q \in \mathbb{R}^n$, denote by $\partial L(q)$ the sub-differential set of L at q , that is, $p \in \partial L(q)$ if

$$L(q') - L(q) \geq p \cdot (q' - q) \quad \forall q' \in \mathbb{R}^n.$$

Similarly, denote by $\partial H(p)$ the sub-differential set of H at $p \in \mathbb{R}^n$.

In Theorem 3.1, we obtain the following geometric characterization of ∂L when H is strictly convex or H is not a constant in any d -simplex with $d = 1, 2$. In general, given any $3 \leq d \leq n$, one may expect some analogue result as above when H is not a constant in any d -simplex, but we are not going that far in this paper. Recall that a 1-simplex is a line-segment, that is, the convex hull of 2 distinct points; for $2 \leq d \leq n$, a d -simplex is the convex hull of a $(d - 1)$ -simplex and a point, where the point is not contained in the $(d - 1)$ -dimensional hyperplane determined by the $(d - 1)$ -simplex. Theorem 3.1 and its analogue in d -simplex may have their own interests. In this paper, Theorem 3.1 (ii) plays a key role in the proof of Lemma 1.3.

LEM3 **Theorem 3.1.** *Let H be as (1.4).*

- (i) *The following are equivalent:*
 - (i-a) H is strictly convex
 - (i-b) for any $q \in \mathbb{R}^n$, $\partial L(q)$ contains a single point,
 - (i-c) $L \in C^1(\mathbb{R}^n)$.
- (ii) *The following are equivalent:*
 - (ii-a) H is not a constant in any line-segment
 - (ii-b) for any $q \in \mathbb{R}^n$, $\partial L(q)$ consists of either a single point, or a line-segment on which H is strictly monotone.
- (iii) *The following are equivalent:*
 - (iii-a) H is not a constant in any 2-simplex (convex hull of 3 points which are not in the same line)
 - (iii-b) for any $q \in \mathbb{R}^n$, $\partial L(q)$ must be one of the following:
 - (iii-b-1) a single point;
 - (iii-b-2) a bounded closed line-segment;
 - (iii-b-3) a bounded closed convex set contained in some 2-dimensional hyperplane whose boundary consists of 4 simple “curve” $\gamma_0, \gamma_1, \gamma_2, \gamma_3$ oriented in order so that γ_0 (resp. γ_2) is either a single point or a line-segment on which H reaches its minimum (resp. maximum) in $\partial L(q)$, and along γ_1 (resp. γ_3), H is strictly increasing (resp. decreasing).

In Theorems 3.2 and 3.3, we build up some analytic characterization of H when it is not a constant in any line-segment. Both of them will be used to prove Proposition 1.4; indeed, they play crucial roles there.

e-e6

Theorem 3.2. *Let H be as (1.4). Then the following are equivalent:*

- (i) H is not a constant in any line-segment.
- (ii) For each $R \geq 1$ and each $\epsilon > 0$, there exist $\psi_R(\epsilon) \in (0, \epsilon)$ such that for any $v \in \overline{B(0, R)}$, if it satisfies

e-e6angle

$$(3.1) \quad H(p + v) - H(p) \leq \psi_R(\epsilon) \text{ and } |\angle(q, v) - \pi/2| \leq \psi_R(\epsilon)$$

for some $p \in \overline{B(0, R)}$, $q \in \partial H(p')$ and $p' \in \overline{B(p, \psi_R(\epsilon))}$, then $|v| \leq \epsilon$.

LEM4. 5

Theorem 3.3. *Let H be as (1.4). Then the following are equivalent:*

- (i) H is not a constant in any line-segment.

 pdf element

for each $R \geq 1$ and each $\eta > 0$, we have

The Trial Version

$$\phi_R(\eta) = \inf_{e \in H^{-1}([0, R])} \min \left\{ (p - e) \cdot \frac{q}{|q|} : H(p) = H(e), |p - e| \geq \eta, q \in \partial H(p) \right\} > 0$$

To prove above results, we recall the following basic properties; for reader's convenience, we give the details.

LEM3.1

Lemma 3.4. *Let H be as (1.4).*

(i) *For any $p, q \in \mathbb{R}^n$, we have*

$$q \in \partial H(p) \text{ if and only if } H(p) + L(q) = \langle p, q \rangle \text{ if and only if } p \in \partial L(q).$$

In particular, $0 \in \partial H(p)$ if and only if $H(p) = 0$ and $0 \in \partial L(q)$ if and only if $L(q) = 0$.

(ii) *If $p_1, p_2 \in \partial L(q)$ for some $q \in \mathbb{R}^n$, then*

$$\lambda p_1 + (1 - \lambda) p_2 \in \partial L(q) \text{ and } H(\lambda p_1 + (1 - \lambda) p_2) = \lambda H(p_1) + (1 - \lambda) H(p_2) \text{ for all } \lambda \in [0, 1].$$

(iii) *Assume that*

$$L(\lambda q_1 + (1 - \lambda) q_2) = \lambda L(q_1) + (1 - \lambda) L(q_2) \text{ for some } \lambda \in (0, 1).$$

If $p \in \partial L(\lambda q_1 + (1 - \lambda) q_2)$, then $p \in \partial L(q_1) \cap \partial L(q_2)$.

(iv) *The set $\partial L(q)$ is bounded locally uniformly in $q \in \mathbb{R}^n$. If $p_i \in \partial L(q_i)$ for all $i \in \mathbb{N}$ and $q_i \rightarrow q_0$ as $i \rightarrow \infty$, then up to some subsequence, $p_i \rightarrow p_0$ as $i \rightarrow \infty$ for some $p_0 \in \partial L(q_0)$. In particular, $\partial L(q)$ is always closed for any $q \in \mathbb{R}^n$.*

Proof. (i) Note that $q \in \partial H(p)$ if and only if

$$\langle p, q \rangle - H(p) \geq \langle q, p' \rangle - H(p') \forall p' \in \mathbb{R}^n,$$

Thus, $H(p) + L(q) = \langle p, q \rangle$ if and only if

$$\langle p, q \rangle - H(p) \geq \langle q, p' \rangle - H(p') \forall p' \in \mathbb{R}^n.$$

Thus, $q \in \partial H(p)$ if and only if $H(p) + L(q) = \langle p, q \rangle$. Similarly, $p \in \partial L(q)$ if and only if $H(p) + L(q) = \langle p, q \rangle$.

(ii) If $p_1, p_2 \in \partial L(q)$ for some $q \in \mathbb{R}^n$, by (i) one has

$$\begin{aligned} L(q) + H(\lambda p_1 + (1 - \lambda) p_2) &\geq (\lambda p_1 + (1 - \lambda) p_2) \cdot q \\ &= \lambda p_1 \cdot q + (1 - \lambda) p_2 \cdot q \\ &= \lambda H(p_1) + (1 - \lambda) H(p_2) + L(q) \quad \forall \lambda \in [0, 1], \end{aligned}$$

that is,

$$H(\lambda p_1 + (1 - \lambda) p_2) \geq \lambda H(p_1) + (1 - \lambda) H(p_2) \forall \lambda \in [0, 1]$$

By the convexity of H ,

$$H(\lambda p_1 + (1 - \lambda) p_2) = \lambda H(p_1) + (1 - \lambda) H(p_2) \forall \lambda \in [0, 1],$$

and hence $(\lambda p_1 + (1 - \lambda) p_2) \in \partial L(q)$.

(iii) If $L(\lambda q_1 + (1 - \lambda) q_2) = \lambda L(q_1) + (1 - \lambda) L(q_2)$ and $p \in \partial L(\lambda q_1 + (1 - \lambda) q_2)$ for some $\lambda \in (0, 1)$ and by (i) one gets

$$L(\lambda q_1 + (1 - \lambda) q_2) = (\lambda q_1 + (1 - \lambda) q_2) \cdot p - H(p) = \lambda[q_1 \cdot p - H(p)] + (1 - \lambda)[q_2 \cdot p - H(p)].$$

Since $q_i \cdot p - H(p) \leq L(q_i)$ for $i = 1, 2$, by above and the assumption $L(\lambda q_1 + (1 - \lambda) q_2) = \lambda L(q_1) + (1 - \lambda) L(q_2)$ we have $q_i \cdot p - H(p) = L(q_i)$ for $i = 1, 2$.

(iv) Let $R \geq 1$. For any $|q| \leq R$ and $p \in \partial L(q)$, we have

$$H(p) = p \cdot q - L(q) \leq |q||p| - L(q) \leq C(R) + R|p|.$$

By the sup-linear growth of H , we know that $|p| \leq C(R)$ as desired.

Moreover, by $p_i \in \partial L(q_i)$ for $i \in \mathbb{N}$ and $q_i \rightarrow q_0$ as $i \rightarrow \infty$, one has that $p_i \cdot q_i = H(p_i) + L(q_i)$ for $i \in \mathbb{N}$, and p_i is bounded. Thus p_i converges to some p_0 as $i \rightarrow \infty$ (up to some subsequence). By the continuity of H and L , we then have $p_0 \cdot q_0 = H(p_0) + L(q_0)$, by (i) which implies $p_0 \in \partial L(q_0)$. The proof of Lemma 3.4 is complete. \square

As a consequence of Lemma 3.4, one has the following.

propH **Corollary 3.5.** Suppose that H satisfies (1.4) and Theorem 1.1(i). Then $0 \in \partial H(0)$, $H(p) > 0$ and $0 \notin \partial H(p)$ for all $p \in \mathbb{R}^n \setminus \{0\}$.

Proof. First we see that $H(p) = 0$ if and only if $p = 0$. Indeed, if $H(p) = 0$ for some $p \neq 0$, by convexity of H and $H(0) = 0$, we know that $H = 0$ in $[0, p]$, which is a contradiction. Thus $H(p) > 0$ and $0 \notin \partial H(p)$ whenever $p \neq 0$. Moreover, by Lemma 3.4 $0 \in \partial H(p)$ if and only if $H(p) = 0$, and hence if and only if $p = 0$. \square

Lemma 3.6 gives some geoemtric/analytic property when H is a constant in some line-segment.

LEMconst **Lemma 3.6.** Suppose that H satisfies (1.4). For any $a, b \in \mathbb{R}^n$ with $a \neq b$, the following are equivalent:

- (i) H is a constant in the line-segment $[a, b]$;
- (ii) $b - a \perp \partial H(\frac{1}{2}a + \frac{1}{2}b)$ and

Hcon (3.2)
$$\partial H(\frac{1}{2}a + \frac{1}{2}b) = \partial H(\lambda a + (1 - \lambda)b) \subset \partial H(a) \cap \partial H(b) \quad \forall \lambda \in (0, 1).$$

- (iii) there exists a $q \in \mathbb{R}^n$ such that $b - a \perp q$ and $a, b \in \partial L(q)$ (or $[a, b] \subset \partial L(q)$).
- (iv) there exists a $q \in \mathbb{R}^n$ such that $H(a) = H(b)$ and $a, b \in \partial L(q)$ (or $[a, b] \subset \partial L(q)$).

Proof. (i) \Rightarrow (ii) Assume that H is a constant in the line-segment $[a, b]$. For any $\lambda \in (0, 1)$ and $q_\lambda \in \partial H(\lambda a + (1 - \lambda)b)$, we have

$$0 = H(a) - H(\lambda a + (1 - \lambda)b) \geq (1 - \lambda)q_\lambda \cdot (a - b) \text{ and } 0 = H(b) - H(\lambda a + (1 - \lambda)b) \geq \lambda q_\lambda \cdot (b - a),$$

which implies that $q_\lambda \perp (b - a)$. Thus for any $\mu \in [0, 1]$, we have

$$\begin{aligned} H(p) - H(\mu a + (1 - \mu)b) &= H(p) - H(\lambda a + (1 - \lambda)b) \\ &\geq q_\lambda \cdot [p - (\lambda a + (1 - \lambda)b)] \\ &= q_\lambda \cdot [p - (\mu a + (1 - \mu)b)] + (\mu - \lambda)q_\lambda \cdot (a - b) \\ &= q_\lambda \cdot [p - (\mu a + (1 - \mu)b)] \quad \forall p \in \mathbb{R}^n, \end{aligned}$$

that is, $q_\lambda \in \partial H(\mu a + (1 - \mu)b)$. In particular, this gives (3.2).

(ii) \Rightarrow (iii) Let $q \in \partial H(\frac{a+b}{2})$. By (ii) and Lemma 3.4 (i), $[a, b] \in \partial L(q)$ and $a - b \perp q$.

(iii) \Rightarrow (iv) Let q be as in (iii). By (iii), $a, b \in \partial L(q)$ and hence $H(b) - H(a) \geq q \cdot (b - a) = 0$ and $H(a) - H(b) \geq q \cdot (a - b) = 0$, which gives (iv). Note that by Lemma 3.4 (ii), $a, b \in \partial L(q)$ implies $[a, b] \subset \partial L(q)$.

(iv) \Rightarrow (i) Let q be as in (iv). By (iv) and Lemma 3.4 (ii), $[a, b] \subset \partial L(q)$. By Lemma 3.4 (i), for any $\lambda \in [0, 1]$,

$$H(\lambda a + (1 - \lambda)b) - H(a) = q \cdot [(\lambda a + (1 - \lambda)b) - a] = \lambda q \cdot a + (1 - \lambda)q \cdot b = \lambda H(a) + (1 - \lambda)H(b) = H(a),$$

which implies that H is a constant in $[a, b]$. \square

Now we are able to prove Theorem 3.1, Theorem 3.2 and Theorem 3.3 as below.

Proof of Theorem 3.1. Proof of (i). (i-a) \Rightarrow (i-b). Assume that H is strictly convex. If for some $q \in \mathbb{R}^n$, $\partial L(q)$ contains two distinct points p_1, p_2 , then Lemma 3.4 (ii) implies that H is linear in $[p_1, p_2]$, which contradicts with the strictly convexity of H . Thus for any $q \in \mathbb{R}^n$, $\partial L(q)$ must consists of a single point.

(i-b) \Rightarrow (i-c). Next, assume that for any $q \in \mathbb{R}^n$, $\partial L(q)$ must consists of a single point. We show that $L \in C^1(\mathbb{R}^n)$. By Lemma 3.4 (iv), it suffices to show that L is differentiable everywhere. We prove by contradiction. Assume L is not differentiable at $q_0 \in \mathbb{R}^n$. Write $\partial L(q_0) = \{p_0\}$. Then there exists $\epsilon_0 > 0$ and a sequence $\{q_i\}$ which converges to q_0 such that $|L(q_i) - L(q_0) - p_0 \cdot (q_i - q_0)| \geq \epsilon_0 |q_i - q_0|$. Write $\partial L(q_i) = \{p_i\}$. Then

$$p_0 \cdot (q_i - q_0) \leq L(q_i) - L(q_0) \leq p_i \cdot (q_i - q_0) = p_0 \cdot (q_i - q_0) + (p_i - p_0) \cdot (q_i - q_0)$$

$$|L(q_i) - L(q_0) - p_0 \cdot (q_i - q_0)| \leq |p_i - p_0| |q_i - q_0|.$$

But by Lemma 3.4 we have $p_i \rightarrow p_0$ as $i \rightarrow \infty$, which is a contradiction.

(i-c) \Rightarrow (i-a). assume that $L \in C^1(\mathbb{R}^n)$ and hence $\partial L(q) = \{DL(q)\}$ for any $q \in \mathbb{R}^n$. We show that H is strictly convex. Otherwise,

$$H(\lambda p_1 + (1 - \lambda) p_2) = \lambda H(p_1) + (1 - \lambda) H(p_2) \text{ for some } \lambda \in (0, 1) \text{ and } p_1 \neq p_2.$$

Let $q \in \partial H(\lambda p_1 + (1 - \lambda) p_2)$. By Lemma 3.4 (iii), $q \in \partial H(p_1) \cap \partial H(p_2)$, and hence by Lemma 3.4, $p_1, p_2 \in \partial L(q) = \{DL(q)\}$, which is a contradiction.

Proof of (ii). (ii-b) \Rightarrow (ii-a). If H is a constant in a line-segment, say $[a, b]$, by Lemma 3.6 (iv), there exists $q \in \mathbb{R}^n$ such that $[a, b] \subset \partial L(q)$; but note that H is not strictly monotone in $[a, b]$.

(ii-a) \Rightarrow (ii-b). assume that H is not a constant in any line-segment. For any $q \in \mathbb{R}^n$, assume that $\partial L(q)$ contains more than one point, say p_1, p_2 with $p_1 \neq p_2$. We only need to show that $\partial L(q)$ is contained lie in the line determined by p_1 and p_2 . Indeed, Lemma 3.4 $\partial L(q)$ is a bounded convex set; but bounded convex set contained in some line must be a line-segment.

Let $p_0 \in \partial L(q)$ with $p_0 \neq p_1, p_2$. Then $H(p_i) \neq H(p_j)$ for $i, j = 0, 1, 2$ and $i \neq j$. Indeed, if $H(p_i) = H(p_j)$ for some $i, j = 0, 1, 2$ and $i \neq j$, by (iv) \Rightarrow (i) in Lemma 3.6, H is a constant in $[p_i, p_j]$. This is a contradiction.

Reorder p_0, p_1, p_2 as $\tilde{p}_0, \tilde{p}_1, \tilde{p}_2$ so that $H(\tilde{p}_0) < H(\tilde{p}_1) < H(\tilde{p}_2)$. Then there exists $\tilde{\lambda} \in (0, 1)$ such that

$$H(\tilde{\lambda} \tilde{p}_0 + (1 - \tilde{\lambda}) \tilde{p}_2) = H(\tilde{p}_1).$$

Since H is not a constant in any line-segment, by (iv) \Rightarrow (i) in Lemma 3.6 again, we know that

$$\tilde{p}_1 = \tilde{\lambda} \tilde{p}_0 + (1 - \tilde{\lambda}) \tilde{p}_2,$$

which implies that \tilde{p}_1, \tilde{p}_2 and \tilde{p}_3 lies in the same line, that is, p_0 must lie in the line determined by p_1 and p_2 as desired.

Proof of (iii). (iii-b) \Rightarrow (iii-a). If H is a constant in a 2-simplex Δ , which is the convex hull of p_1, p_2, p_3 , let $q \in \partial H(\frac{1}{3}[p_1 + p_2 + p_3])$. For any line segment $I \subset \Delta$ with $\frac{1}{3}[p_1 + p_2 + p_3] \in I$, since H is a constant in I , by Lemma 3.6 (ii), $I \subset \partial L(q)$. This implies that $\Delta \subset \partial L(q)$. Obviously, $\partial L(q)$ is not given by a) or b).

Now we show that $\partial L(q)$ is not given c). If $\partial L(q)$ is given by c), and then $\partial L(q)$ is bounded by $\{\gamma_i\}_{i=0}^3$ in order. Since H is strictly increasing in γ_1 and strictly decreasing in γ_3 , for any $m := \min_{p \in \partial L(q)} H(p) < k < \max_{p \in \partial L(q)} H(p) =: M$, we can only find one point $a_k \in \gamma_1$ and one point $b_k \in \gamma_3$ such that $H(a_k) = H(b_k) = k$. We also write $[a_m, b_m] = \gamma_0$ and $[a_M, b_M] = \gamma_2$. Thus H is constant k in $[a_k, b_k]$. Since the unions of $[a_k, b_k]$ is exactly $\partial L(q)$, we know that $H^{-1}(k) \cap \partial L(q) = [a_k, b_k]$. This is a contradiction.

(iii-a) \Rightarrow (iii-b). Conversely, assume that H is not a constant in any 2-simplex. First we see that $\partial L(q)$ must be contained in some 2-dimensional hyperplane P ; otherwise, we can find 4 distinct points p_0, p_1, p_2, p_3 which are not contained in any 2-dimensional hyperplane. After reordering, we may assume that $H(p_0) \leq H(p_1) \leq H(p_2) \leq H(p_3)$. Since H is not constant in any 2-simplex, it can only happen that $H(p_0) \leq H(p_1) < H(p_2) \leq H(p_3)$, and $H(p_0) < H(p_1) \leq H(p_2) < H(p_3)$. In the first we can find 3 points $p'_0 \in [p_0, p_2]$, $p'_1 \in [p_0, p_3]$ and $p'_2 \in [p_1, p_2]$ such that

$$H(p'_0) = H(p'_1) = H(p'_2) = H\left(\frac{1}{2}p_1 + \frac{1}{2}p_2\right),$$

Note that p'_0, p'_1, p'_2 are not contained in the same line, and hence its convex hull is a 2-simplex denoted by Δ' . Moreover, for any $\lambda'_i > 0$ and $\sum_{i=0}^2 \lambda'_i = 1$ we have $\sum_{i=0}^2 \lambda'_i p'_i \in \partial L(q)$ and hence

$$H\left(\sum_{i=0}^2 \lambda'_i p'_i\right) = \left(\sum_{i=0}^2 \lambda'_i p'_i\right) \cdot q - L(q) = \sum_{i=0}^2 \lambda'_i [p'_i \cdot q - L(q)] = \sum_{i=0}^2 \lambda'_i H(p'_i) = H\left(\frac{1}{2}p_1 + \frac{1}{2}p_2\right)$$

That is, H is a constant in Δ' , which is a contradiction. In the second case, we can find 3 points $p'_0 \in [p_0, p_1]$, $p'_1 \in [p_0, p_2]$ and $p'_2 \in [p_0, p_3]$ such that

$$H(p'_0) = H(p'_1) = H(p'_2) = H\left(\frac{1}{2}p_0 + \frac{1}{2}p_1\right),$$

Similarly, H is a constant in the convex hull of $p'_0 p'_1 p'_2$; this is a contradiction.

Next, assume that $\partial L(q)$ is not a single point or a line-segment. Then $\partial L(q)$ is a closed bounded domain in P . Thus $\partial L(q)$ is bounded by a simple closed curve γ . Note that H reaches its minimum and maximum in ∂L only at boundary. Denote by γ_0 (resp. γ_2) the part on which H reaches its minimum (resp. maximum) in ∂L . Since H is not a constant in any 2-simplex, γ_0 and γ_2 must be a single point or a line-segment. The other two components of $\gamma \setminus (\gamma_0 \cup \gamma_2)$ are denoted by γ_1 and γ_3 . Up to some reorientation we may assume that the ending point of γ_i is the starting point of γ_{i+1} for $i = 0, 1, 2, 3$ (where $\gamma_4 = \gamma_0$). Now we show that H is strict increasing along γ_1 ; otherwise, there exists two distinct points $p_0, p_1 \in \gamma_1$ so that $H(p_0) = H(p_1)$. Observe that there exists $p_2 \in \gamma_3$ with $H(p_2) = H(p_1)$. Note that H is a constant in the convex hull of $\{p_0, p_1, p_2\}$, which is a 2-simplex, and hence it is a contradiction. Similarly, we know that H is strict decreasing along γ_3 . The proof of Theorem 3.1 is complete. \square

Proof of Theorem 3.2. (ii) \Rightarrow (i). Assume that (i) fails, that is H is a constant in some line-segment, say $[a, b]$. Let $p = \frac{1}{2}(a+b)$, $q \in \partial H(p)$ and $v = \frac{b-a}{2}$. Then $H(p) = H(p+v)$ and, by Lemma 3.6, $q \perp v$. Thus (ii) fails.

(i) \Rightarrow (ii). Suppose that (ii) is not correct. There exists $\epsilon_0 > 0$ so that for any $i \in \mathbb{N}$ we can find vectors $v_i \in \overline{B(0, 1/\epsilon_0)}$ with $|v_i| \geq \epsilon_0$ satisfying $H(p_i + v_i) - H(p_i) \leq 1/i$ and $|\angle(q_i, v_i) - \pi/2| \leq 1/i$ for some $p_i \in \overline{B(0, 1/\epsilon_0)}$, $q_i \in \partial H(p'_i)$ and $p'_i \in \overline{B(p_i, 1/i)}$. Note that $p_i, p'_i \rightarrow p_0$, $v_i \rightarrow v_0$ and $q_i \rightarrow q_0 \in \partial H(p_0)$ as $i \rightarrow \infty$ (up to some subsequence). Moreover,

$$H(p_0 + v_0) - H(p_0) \leq 0, \quad \angle(q_0, v_0) = \pi/2$$

By the convexity of H and $H(p_0 + v_0) - H(p_0) \leq 0$, we have

$$H(p_0 + tv_0) \leq (1-t)H(p_0) + tH(p_0 + v_0) \leq H(p_0) \quad \forall t \in [0, 1].$$

Moreover, by $q_0 \in \partial H(p_0)$ and $\angle(q_0, v_0) = \pi/2$, one also has

$$H(p_0 + tv_0) - H(p_0) \geq q_0 \cdot tv_0 = 0, \quad \forall t \in [0, 1].$$

Thus $H(p_0 + tv_0) = H(p_0)$ for all $t \in [0, 1]$, which leads to a contradiction. The proof of Theorem 3.2 is complete. \square

Proof of Theorem 3.3. (ii) \Rightarrow (i). Assume that (i) fails, that is H is a constant in some line-segment, say $[a, b]$. Let $p = a$, $e = b$ and $q \in \partial H(\frac{1}{2}[a+b])$. Then $H(p) = H(p+v)$ and, by Lemma 3.6, $q \perp (b-a)$. Thus $\phi_R(|b-a|) = 0$, that is, (ii) fails.

(i) \Rightarrow (ii). Suppose that (ii) is not correct. There exists a $\eta_0 > 0$ such that $\delta_R(\eta_0) = 0$, that is, we can find p_i and e_i with $|p_i - e_i| \geq \eta_0$ and $H(e_i) = H(p_i) \leq R$, and $q_i \in \partial H(p_i)$ such that

$$(p_i - e_i) \cdot \frac{q_i}{|q_i|} \leq 1/i.$$

Letting $p_i \rightarrow p$, $e_i \rightarrow e$ and $q_i \rightarrow q \in \partial H(p)$ when $i \rightarrow \infty$, we get $H(p) = H(e) \leq R$, $|p - e| \geq \eta_0$ and

$$(p - e) \cdot \frac{q}{|q|} \leq 0.$$

Since $q \in \partial H(p)$ implies

$$(e - p) \cdot q \leq H(e) - H(p) = 0,$$

we obtain

$$(e - p) \cdot q = 0.$$

Therefore, by $q \in \partial H(p)$ again,

$$H(e) + L(q) = H(p) + L(q) = p \cdot q = e \cdot q,$$

which together with Lemma 3.4(i) yields that $e, p \in \partial L(q)$ and hence $[p, e] \in \partial L(q)$. By $H(p) = H(e)$ and Lemma 3.4(ii), we know that H is constant in $[p, e]$, which is a contradiction. \square

Finally, we also use the following Lemma 3.7 and its corollary 3.8.

Lemma 3.7. Let H be as (1.4) and satisfy Theorem 1.1(i).

- (i) If $q \in \partial H(p)$, then $C_{H(p)}(q) = \langle p, q \rangle$.
- (ii) If $C_k(z) = \langle p_0, z \rangle$ with $k > 0$ and $|z| > 0$, then $tz \in \partial H(p_0)$ for some $t > 0$.

Proof. (i) If $q \in \partial H(p)$, then

$$\langle p, q \rangle = H(p) + L(q) \geq H(p) + \sup_{p' \in \mathbb{R}^n} [\langle p', q \rangle - H(p')] \geq \sup_{H(p') \leq H(p)} \langle p', q \rangle = C_{H(p)}(q),$$

which together with $\langle p, q \rangle \leq C_{H(p)}(q)$ gives $C_{H(p)}(q) = \langle p, q \rangle$.

(ii) By Theorem 3.1, $\partial L(tz)$ is either a single point or a line-segment for each $t \geq 0$. We may write $I_t = [a_t, b_t] = H(\partial L(tz))$ for each $t \geq 0$. It suffices to show that $\cup_{t \geq 0} I_t = [0, \infty)$. Indeed, if this correct, by Lemma 3.5 and $H(p_0) \neq 0$ we know that $H(p_0) \in I_{t_0}$ for some $t_0 > 0$. Thus $H(p_0) = H(p_{t_0 z})$ with $p_{t_0 z} \in \partial L(t_0 z)$, then by (i),

$$C_{H(p_{t_0 z})}(t_0 z) = p_{t_0 z} \cdot t_0 z = H(p_{t_0 z}) + L(t_0 z) = H(p_0) + L(t_0 z).$$

Since

$$p_0 \cdot t_0 z = C_{H(p_0)}(t_0 z) = \frac{1}{t} C_{H(p_{t_0 z})}(t_0 z),$$

we obtain $p_0 \cdot t_0 z = H(p_0) + L(t_0 z)$, which together with Lemma 3.4 gives $t_0 z \in \partial H(p_0)$.

For any $k > 0$, note that there exist $t_1 < t_2$ such that $b_s < k < a_t$ for all $t \geq t_2$ and $s < t_1$. Indeed, for any $p_t \in \partial L(tz)$ with $t > 0$, by Lemma 3.4 (i) we have $H(p_t) + L(tz) = p_t \cdot tz$ and hence $|p_t| \geq \frac{1}{t} L(tz) \geq M(tz)|z| \rightarrow \infty$ as $t \rightarrow \infty$. Moreover, by Lemma 3.4 (iv), $C = \sup_{t \leq 1} \sup_{p \in \partial H(tz)} |p| < \infty$ and hence $H(p_t) \leq Ct|z| \rightarrow 0$ as $t \rightarrow 0$. Let t_z be the supremum of $t > 0$ so that $b_t < k$. Then $a_{t_z} \leq k \leq b_{t_z}$. Indeed, for any $\epsilon > 0$, we have $b_{t_z + \epsilon} \geq k$. Let $p_{t_z + \epsilon} \in \partial L((t_z + \epsilon)z)$ such that $H(p_{t_z + \epsilon}) = b_{t_z + \epsilon}$. Since Lemma (3.4) (iv) implies $p_{t_z + \epsilon} \rightarrow p \in \partial L(t_z z)$ as $\epsilon \rightarrow 0$ (up to some subsequence), we have $H(p) \geq k$ and hence $b_{t_z} \geq k$. Moreover, by $a_{t_z - \epsilon} \leq b_{t_z - \epsilon}$ and a similar argument, we $a_{t_z} \leq k$. Thus $k \in I_{t_z}$ as desired. The proof of Lemma 3.7 is complete. \square

xew4 **Corollary 3.8.** *Let H be as (1.4) and satisfy Theorem 1.1(i). For any $R \geq 1$, there exists a constant C_R such that for any $\delta \in (0, 1)$ and $0 \leq k \leq R$, one has*

$$(3.3) \quad e \cdot x + \delta|x| \leq \mathcal{C}_k^H(x) + \delta|x| \leq \mathcal{C}_{k+C_R\delta}^H(x), \quad \forall x \in \mathbb{R}^n, e \in H^{-1}(k)$$

Proof. If $x = 0$, (3.3) holds obviously. By Lemma 3.7, $x = q_x/|q_x|$ for some $q_x \in \partial H(p_x)$ with $H(p_x) = k$. Thus

$$e \cdot x + \delta \leq C_k(x) + \delta = p_x \cdot x + \delta = (p_x + \delta \frac{x}{|x|}) \cdot x.$$

By the convexity of H we know that

$$H(p_x + \delta \frac{x}{|x|}) \leq H(p_x) + q \cdot \delta \frac{x}{|x|} \quad \forall q \in \partial H(p_x + \delta \frac{x}{|x|}).$$

Letting

$$C_R := \sup\{|q| : q \in \partial H(p + v), H(p) \leq R, |v| \leq 1\},$$

we get (3.3) as desired. \square

4. PROOFS OF LEMMA 1.3 AND (i) \Leftrightarrow (ii) IN THEOREM 1.1

By using Lemmas 3.4 and 3.1, we first establish the following weaker version of Lemma 1.3.

LEMC5 **Lemma 4.1.** *Let H be as in (1.4) with $n = 2$ and satisfy (i). If $u \in C^{0,1}(\mathbb{R}^n)$ satisfies (1.5) for some $0 < k < \infty$ and also*

$$u(e) = k + L(e) \text{ and } u(se) = su(e) \quad \forall s \in \mathbb{R}$$

for some vector $e \in \mathbb{R}^n$, then there exists a vector $p_0 \in \partial L(e)$ such that

$$u(x) = p_0 \cdot x \quad \forall x \in \mathbb{R}^n, \text{ and } H(p_0) \equiv k.$$

Proof. Note that by (4.1), $u(0) = 0$. Since $S_t^+ u((t-s)e) \leq k$ for all $t > 0$ and $s \in \mathbb{R}$, we have

$$\frac{u(x+se) - u((s-t)e)}{t} - L\left(\frac{x+se-(s-t)e}{t}\right) \leq k \quad \forall x \in \mathbb{R}^n.$$

Thus, by (4.1) we obtain

$$-\frac{u(x+se)}{t} + \frac{s}{t}u(e) \geq u(e) - k - L\left(e + \frac{x}{t}\right) = L(e) - L\left(e + \frac{x}{t}\right) \quad \forall x \in \mathbb{R}^n, t > 0, s \in \mathbb{R}.$$

By the convexity of L ,

$$u(x+se) - su(e) \leq p_{t,x} \cdot x \quad \forall x \in \mathbb{R}^n, t > 0, s \in \mathbb{R}.$$

where $p_{t,x} \in \partial L(e + x/t)$. By Lemma 3.4 (iv), $p_{t,x}$ converges to some $p_x \in \partial L(e)$ as $t \rightarrow \infty$ (up to some subsequence). Therefore,

F3 (4.2)
$$u(x+se) - su(e) \leq p_x \cdot x \quad \forall x \in \mathbb{R}^n, s \in \mathbb{R}.$$

Similarly, applying $-S_t^- u(-(t-s)e) \leq k$ for $t > 0$ and $s \in \mathbb{R}$ we also have

F4 (4.3)
$$u(x+se) - su(e) \geq \hat{p}_x \cdot x \quad \forall x \in \mathbb{R}^n, s \in \mathbb{R}$$

for some $\hat{p}_x \in \partial L(e)$.

If $\partial L(e)$ contains only one point say p_0 , then $p_x = p_0 = \hat{p}_x$ for all $x \in \mathbb{R}^n$. Thus by (4.2) and (4.3), one has $u(x) = p_0 \cdot x$ as desired.

Below, assume that $\partial L(e)$ contains more than one point. By Theorem 3.1, $\partial L(e)$ must be a line-segment contained in some line ℓ . Therefore, $p_{te}, \hat{p}_{te} \in \ell$ for all $t \in \mathbb{R}$. Applying (4.2) and (4.3) with $x = te$ and $s = 0$ we have

$$\hat{p}_{te} \cdot te \leq u(te) \leq p_{te} \cdot te \quad \forall t \in \mathbb{R}.$$

By (4.1), one has

$$\hat{p}_{te} \cdot e = u(e) = p_{te} \cdot e \quad \forall t \in \mathbb{R}.$$

This together with (4.1) and Lemma 3.4 (i) further gives

$$k = L(e) - u(e) = L(e) - p_{te} \cdot e = H(p_{te}) \quad \forall t \in \mathbb{R},$$

and similarly, $k = H(\hat{p}_{te})$ for all $t \in \mathbb{R}$. Since H is not a constant in any line-segment, we conclude that p_{te}, \hat{p}_{se} must coincide for all $t, s \in \mathbb{R}$, and is denoted by p_0 . Obviously, $H(p_0) = k > 0$ and $H(p_0) + L(e) = p_0 \cdot e$. By Lemma 3.4 again, $p_0 \in \partial L(e)$.

To see $u(x) = p_0 \cdot x$ for all $x \in \mathbb{R}^n$, we note that $e \cdot (p_0 - p) \neq 0$ for any $p \in \partial L(e) \setminus p_0$ and hence for any $p \in \ell$, that is,

F5 (4.4)
$$\mathbb{R}^n = \bigcup_{z \perp \ell - p_0} (z + \mathbb{R}e).$$

Otherwise, by Theorem 3.1, one has

$$H(p_0) = p_0 \cdot e - L(e) = p_1 \cdot e - L(e) = H(p_1)$$

for some $p_1 \in \partial L(e) \setminus p_0$. For any $\lambda \in (0, 1)$, by Lemma 3.4 (ii) we have

$$H(\lambda p_0 + (1-\lambda)p_1) = (\lambda p_0 + (1-\lambda)p_1) \cdot e - L(e) = \lambda[p_0 \cdot e - L(e)] + (1-\lambda)[p_1 \cdot e - L(e)] = H(p_0),$$

that is, H is a constant in the line-segment $[p_0, p_1]$, which is a contradiction with the assumption (i).

For any $z \perp \ell - p_0$, since $p_z, \hat{p}_z \in \partial L(e) \subset \ell$ we have $\hat{p}_z \cdot z = p_0 \cdot z = p_z \cdot z$. By (4.2) and (4.3) one further gets

$$p_0 \cdot z = \hat{p}_z \cdot z \leq u(z+se) - u(se) \leq p_z \cdot z = p_0 \cdot z \quad \forall z \perp \ell - p_0, s \in \mathbb{R}$$

which implies

$$u(z+se) = u(se) + p_0 \cdot z = s p_0 \cdot e + p_0 \cdot z = p_0 \cdot (z+se) \quad \forall z \perp \ell - p_0, s \in \mathbb{R}.$$

The Trial Version (1), one has $u(x) = p_0 \cdot x$ for all $x \in \mathbb{R}^n$ as desired. □

By using Lemmas 3.4, 3.1 and 4.1, we are ready to prove Lemma 1.3.

Proof of Lemma 1.3. Assume that $u(0) = 0$ without loss of generality. If $k = 0$, then by $\pm S_t^\pm u(0) = k$ for all $t > 0$ we have

$$\pm \frac{u(x)}{t} - L\left(\frac{x}{t}\right) \leq 0 \quad \forall x \in \mathbb{R}^n.$$

By the sup-linear growth of L one gets

$$\pm u(x) \leq \liminf_{t \rightarrow \infty} tL\left(\frac{x}{t}\right) = 0 \quad \forall x \in \mathbb{R}^n,$$

that is, $u \equiv 0$ in \mathbb{R}^n .

Assume that $k > 0$ below. First we have the following claim.

Claim I. There exists $y^\pm \in \mathbb{R}^n$ such that

[E6] (4.5) $u(y^+) - L(y^+) = k \quad \text{and} \quad u(sy^+) = su(y^+) > 0 \quad \forall s > 0,$

[E7] (4.6) $-u(y^-) - L(-y^-) = k \quad \text{and} \quad u(sy^-) = su(y^-) < 0 \quad \forall s > 0,$

[E8] (4.7) $L(\lambda y^+ - (1 - \lambda) y^-) = \lambda L(y^+) + (1 - \lambda) L(-y^-) \quad \forall \lambda \in (0, 1)$

and

[E10] (4.8) $u(\lambda t y^+ + (1 - \lambda) s y^-) = \lambda t u(y^+) + (1 - \lambda) s u(y^-) \quad \forall \lambda \in (0, 1), t, s > 0.$

To find y^\pm in Claim I, since $S_t^+ u(0) = k = -S_t^- u(0)$ for all $t > 0$, by Lemma 2.6 there exist $y_t^\pm \in \overline{B(0, Rt)}$ such that

[E1] (4.9) $\frac{u(y_t^+)}{t} - L\left(\frac{y_t^+}{t}\right) = k = -\frac{u(y_t^-)}{t} - L\left(\frac{-y_t^-}{t}\right) \quad \forall t > 0.$

This gives

[E2] (4.10) $\frac{u(y_t^+)}{2t} - \frac{u(y_t^-)}{2t} = k + \frac{1}{2} L\left(\frac{y_t^+}{t}\right) + \frac{1}{2} L\left(\frac{-y_t^-}{t}\right) \quad \forall t > 0.$

Since y_t^\pm/t are bounded, as $t \rightarrow \infty$ (up to some subsequence) y_t^\pm/t must converge to some points $y^\pm \in \mathbb{R}^n$ as desired.

To see (4.7) in Claim I, by $S_{2t}^+ u(y_t^-) \leq k$ for all $t > 0$, one has

$$\frac{u(y_t^+) - u(y_t^-)}{2t} - L\left(\frac{y_t^+ - y_t^-}{2t}\right) \leq k \quad \forall t > 0.$$

Thus, by (4.10) one gets

$$\frac{1}{2} L\left(\frac{y_t^+}{t}\right) + \frac{1}{2} L\left(\frac{-y_t^-}{t}\right) \leq L\left(\frac{y_t^+ - y_t^-}{2t}\right) \quad \forall t > 0,$$

which together with the convexity of L yields that

$$\frac{1}{2} L\left(\frac{y_t^+}{t}\right) + \frac{1}{2} L\left(\frac{-y_t^-}{t}\right) = L\left(\frac{y_t^+ - y_t^-}{2t}\right) \quad \forall t > 0.$$

By the convexity of L again, we know that L must be linear in $[-y_t^-/t, y_t^+/t]$, that is,

[E3] (4.11) $L\left(\lambda \frac{y_t^+}{t} - (1 - \lambda) \frac{y_t^-}{t}\right) = \lambda L\left(\frac{y_t^+}{t}\right) + (1 - \lambda) L\left(\frac{-y_t^-}{t}\right) \quad \forall t > 0, \lambda \in (0, 1).$

Letting $t \rightarrow \infty$ and by $y_t^\pm/t \rightarrow y^\pm$ one see that (4.7) follows from (4.11).

By (4.5) and (4.6), by $S_{(\theta_2 - \theta_1)t}^+ u(\theta_1 y_t^+) \leq k$ for $0 \leq \theta_1 < \theta_2 \leq 1$ and $t > 0$, we have

$$\frac{u(\theta_2 y_t^+) - u(\theta_1 y_t^+)}{(\theta_2 - \theta_1)t} - L\left(\frac{y_t^+}{t}\right) \leq k$$

that is,

$$u(\theta_2 y_t^+) - u(\theta_1 y_t^+) \leq \left[k + L\left(\frac{y_t^+}{t}\right) \right] (\theta_2 t - \theta_1 t).$$

By this and (4.9), one gets

$$u(\theta_2 y_t^+) - u(\theta_1 y_t^+) = \left[k + L\left(\frac{y_t^+}{t}\right) \right] (\theta_2 t - \theta_1 t) \quad \forall t > 0, 0 \leq \theta_1 < \theta_2 \leq 1.$$

In particular, for all $0 \leq s \leq t$, letting $\theta_1 = 0$ and $\theta_2 = s/t$ in above identity and by (4.9) we have

$$\boxed{\text{E4}} \quad (4.12) \quad \frac{u(sy_t^+/t)}{s} - L\left(\frac{y_t^+}{t}\right) = k \quad \text{and} \quad u\left(\frac{sy_t^+}{t}\right) = su\left(\frac{y_t^+}{t}\right).$$

Similarly, for all $0 \leq s \leq t$, we have

$$\boxed{\text{E5}} \quad (4.13) \quad -\frac{u(sy_t^-/t)}{s} - L\left(-\frac{y_t^-}{t}\right) = k \quad \text{and} \quad u\left(\frac{sy_t^-}{t}\right) = su\left(\frac{y_t^-}{t}\right).$$

Letting $t \rightarrow \infty$ and by $y_t^\pm/t \rightarrow y^\pm$ one see that (4.5) follows from (4.12), (4.6) from (4.13).

To see the (4.8) in Claim I, since $S_{t\lambda}^+ u((1-\lambda)sy^-) \leq k$ for all $t, s > 0$ and $\lambda \in (0, 1)$, we have

$$\frac{u(\lambda t y^+ + (1-\lambda)sy^-) - u((1-\lambda)sy^-)}{t\lambda} - L(y^+) \leq k,$$

which together with (4.5) and (4.6) yields

$$\boxed{\text{E9}} \quad (4.14) \quad u(\lambda t y^+ + (1-\lambda)sy^-) \leq \lambda t u(y^+) + (1-\lambda) s u(y^-) \quad \forall t, s > 0.$$

Similarly, by $-S_{(1-\lambda)s}^- u(\lambda t y^+) \leq k$ for $t, s > 0$, we have

$$-\frac{u(\lambda t y^+ + (1-\lambda)sy^-) - u(\lambda t y^+)}{(1-\lambda)s} - L(-y^-) \leq k,$$

which together with (4.5) and (4.6) yields again

$$u(\lambda t y^+ + (1-\lambda)sy^-) \geq \lambda t u(y^+) + (1-\lambda) s u(y^-) \quad \forall t, s > 0.$$

From this and (4.14), one deduce that (4.8) as desired. The Claim I is then proved.

Observe that by (4.5), (4.6) and (4.8) in Claim I, there exists a $\lambda_0 \in (0, 1)$ such that

$$\boxed{\text{E11}} \quad (4.15) \quad u(\lambda_0 s y^+ + (1-\lambda_0) s y^-) = s[\lambda_0 u(y^+) + (1-\lambda_0) u(y^-)] = 0 \quad \forall s > 0.$$

This leads us to consider two cases: $\lambda_0 y^+ + (1-\lambda_0) y^- = 0$ and $\lambda_0 y^+ + (1-\lambda_0) y^- \neq 0$.

Case 1. $\lambda_0 y^+ + (1-\lambda_0) y^- = 0$.

In this case, $-y^- = s_0 y^+$ with $s_0 = \lambda_0 / (1-\lambda_0)$. By (4.15), one has $u(y^-) = -u(y^+) / s_0$ and hence

$$u(-y^-) = u(y^-/s_0) = (1-\lambda_0) u(y^-) / \lambda_0 = -u(y^+).$$

This together with (4.5) gives

$$\boxed{\text{E12}} \quad (4.16) \quad u(y^+) - L(y^+) = k \quad \text{and} \quad u(sy^+) = su(y^+) \quad \forall s \in \mathbb{R}.$$

Note that (4.16) says that u satisfies the condition (1.5) with $e = y^+$ in Lemma 4.1. Therefore, applying Lemma 4.1, we can find a vector $p_0 \in \partial L(y^+)$ such that $u(x) = p_0 \cdot x$ for all $x \in \mathbb{R}^n$ and $H(p_0) = k$ as desired.

Case 2. $\lambda_0 y^+ + (1-\lambda_0) y^- \neq 0$.

For any $s > 0$, let $x_s = \lambda_0 s y^+ + (1-\lambda_0) s y^-$, and define a function $v_s(z) = u(x_s + z)$ for all $z \in \mathbb{R}^n$. By (4.15), we have $v_s(0) = 0$. By $u \in C^{0,1}(\mathbb{R}^n)$ and the Arzela-Ascoli theorem, we know that v_s converges to some function $v \in C^{0,1}(\mathbb{R}^n)$ locally uniformly as $s \rightarrow \infty$ (up to some subsequence).

 pdf element $y^0 = (y^+ - y^-)/2$, we have the following claim:

The Trial Version II. There exists a $p_0 \in \partial L(y^0)$ such that

$$\boxed{\text{E-3}} \quad (4.17) \quad v(x) = p_0 \cdot x \text{ for all } x \in \mathbb{R}^n, \text{ and } H(p_0) = k.$$

Note that Claim II follows from Lemma 4.1 provided that v satisfies (1.5) with the same k here and also satisfies (4.1) with $e = y^0$. To see this, observe that, by (4.8) and (4.15), one has

$$\begin{aligned} \text{E15} \quad (4.18) \quad u(x_s + \delta y^0) &= \left(\lambda_0 s + \frac{\delta}{2} \right) u(y^+) + \left[(1 - \lambda_0) s - \frac{\delta}{2} \right] u(y^-) \\ &= \lambda_0 s u(y^+) + (1 - \lambda_0) s u(y^-) + \frac{\delta}{2} [u(y^+) - u(y^-)] \\ &= \frac{\delta}{2} [u(y^+) - u(y^-)] \quad \forall s > 0, -2\lambda_0 s < \delta < 2(1 - \lambda_0) s. \end{aligned}$$

Thus

$$\text{E16} \quad (4.19) \quad v(\delta y^0) = \lim_{s \rightarrow \infty} u(x_s + \delta y^0) = \frac{\delta}{2} [u(y^+) - u(y^-)] = \delta v(y^0) \quad \forall \delta \in \mathbb{R}.$$

In particular, by (4.7)

$$\text{E17} \quad (4.20) \quad v(y^0) = \frac{1}{2} [u(y^+) - u(y^-)] = k + \frac{1}{2} [L(y^+) + L(-y^-)] = k + L\left(\frac{1}{2}y^+ - \frac{1}{2}y^-\right) = k + L(y^0).$$

By this, one has

$$\text{E18} \quad (4.21) \quad \pm S_t^\pm v(0) \geq \pm \frac{v(\pm t y_0)}{t} - L(y^0) = v(y^0) - L(y^0) = k \quad \forall t > 0.$$

One the other hand,

$$\begin{aligned} \text{E19} \quad (4.22) \quad \pm S_t^\pm v(x) &= \sup_{y \in \mathbb{R}^n} \left[\pm \frac{v(\pm y + x) - v(x)}{t} - L\left(\frac{y}{t}\right) \right] \\ &= \sup_{y \in \mathbb{R}^n} \lim_{s \rightarrow \infty} \left[\pm \frac{u(\pm y + x + x_s) - u(x + x_s)}{t} - L\left(\frac{y}{t}\right) \right] \\ &\leq \limsup_{s \rightarrow \infty} \pm S_t^\pm u(x + x_s) \\ &\leq k \quad \forall t > 0, x \in \mathbb{R}^n. \end{aligned}$$

Combining (4.19), (4.20), (4.21) and (4.22), we see that v satisfies (1.5) and (4.1) as required by Lemma 4.1. This prove Claim II.

We also have the following claim.

Claim III. There exists vectors $p_x^\pm \in \partial L(\pm y^\pm)$ such that

$$\text{E22} \quad (4.23) \quad u(x - sy^-) + su(y^-) \leq p_x^- \cdot x \quad \forall x \in \mathbb{R}^n, s \in \mathbb{R}$$

and

$$\text{E23} \quad (4.24) \quad u(x - sy^+) + su(y^+) \geq p_x^+ \cdot x \quad \forall x \in \mathbb{R}^n, s \in \mathbb{R}.$$

To see Claim III, since $S_t^+ u((t-s)y^-) \leq k$ for all $t > 0$ and $s < t$, one has

$$\frac{u(x - sy^-) - u((t-s)y^-)}{t} - L\left(\frac{x - sy^- - (t-s)y^-}{t}\right) \leq k,$$

which together with (4.6) and $t - s > 0$ implies that

$$\frac{u(x - sy^-) + su(y^-)}{t} \leq k + u(y^-) + L\left(\frac{x - ty^-}{t}\right) = -L(y^-) + L\left(-y^- + \frac{x}{t}\right)$$

and hence

$$-[u(x - sy^-) + su(y^-)] \geq \frac{1}{t} \left[L(y^-) - L\left(-y^- + \frac{x}{t}\right) \right] \geq -p_{t,x}^- \cdot x$$

 for any $p_{t,x}^- \in \partial L(-y^- + \frac{x}{t})$. By Lemma 3.4 (iii), $p_{t,x}^-$ converges to some $p_x^- \in \partial L(-y^-)$ as $t \rightarrow \infty$ (up to some subsequence). Thus (4.23) follows. Similarly, using $-S_t^- u((t-s)y^+) \leq k$ for all $t > 0$ and $s < t$, one can prove (4.24). This prove Claim III.

In the reminder, we prove $u(x) = p_0 \cdot x$ for all $x \in \mathbb{R}^n$, which together with $H(p_0) = k$ given in (4.17) yields Lemma 1.3. We consider the following 4 subcases as below. Note that, by Lemma 3.4 (iv) and (4.7), $p_0 \in \partial L(y^0)$ implies that $p_0 \in \partial L(\pm y^\pm)$ and hence, by Lemma 3.4 (i), one has

$$(4.25) \quad \pm p_0 \cdot y^\pm = H(p_0) + L(\pm y^\pm) = k + L(\pm y^\pm) = \pm u(y^\pm),$$

which will be used below.

Subcase 2.1. $\partial L(y^+) \cup \partial L(-y^-)$ contains the unique point p_0 . Then $p_x^\pm = p_0$. By (4.23) and (4.24) with $s = 0$, we have

$$p_0 \cdot x = p_x^+ \cdot x \leq u(x) \leq p_x^- \cdot x = p_0 \cdot x \quad \forall x \in \mathbb{R}^n$$

and hence $u(x) = p_0 \cdot x$ for all $x \in \mathbb{R}^n$ as desired.

Subcase 2.2. $\partial L(y^+)$ contains more than one point ; $\partial L(-y^-)$ constants only one point p_0 . Then $p_x^- = p_0$, and hence by (4.25) with $s = 1$, we know that

$$u(x) \leq p_x^- \cdot x = p_0 \cdot x \quad \forall x \in \mathbb{R}^n.$$

On the other hand, by Theorem 3.1, $\partial L(y^+)$ is a line-segment contained in the same line, say ℓ_{y^+} . Observe that y^+ is not perpendicular to $\ell - p_0$, and hence $\mathbb{R}^n = \sup_{z \perp \ell_{y^+} - p_0} (z + \mathbb{R}y^+)$. Otherwise, $y^+ \cdot (p - p_0) = 0$ for any $p \in \partial L(y^+) \setminus \{p_0\}$. By Lemma 3.4 (i) this gives

$$H(p) + L(y^+) = p \cdot y^+ = p_0 \cdot y^+ = H(p_0) + L(y^+)$$

and hence $H(p_0) = H(p)$. This contradicts with our assumption that H is not a constant in any line-segment.

For any $z \perp \ell_{y^+} - p_0$, we have $p_x^+ \cdot z = p_0 \cdot z$. Thus by (4.24), one has

$$u(z - sy^+) + su(y^+) \geq p_x^+ \cdot z = p_0 \cdot z \quad \forall x \in \mathbb{R}^n, s \in \mathbb{R}.$$

This and (4.25) give

$$u(z - sy^+) \geq p_0 \cdot (z - sy^+) \quad \forall x \in \mathbb{R}^n, s \in \mathbb{R}.$$

For any $x \in \mathbb{R}^n$, by $\mathbb{R}^n = \sup_{z \perp \ell_{y^+} - p_0} (z + \mathbb{R}y^+)$, we can find s such that $x + sy^+ \perp \ell_{y^+} - p_0$. Thus

$$u(x) = u(x + sy^+ - sy^+) \geq p_0 \cdot (x + sy^+ - sy^+) = p_0 \cdot x \quad \forall x \in \mathbb{R}^n.$$

We conclude that $u(x) = p_0 \cdot x$ for all $x \in \mathbb{R}^n$.

Subcase 2.3. $\partial L(-y^-)$ contains more than one point; $\partial L(y^+)$ constants only one point p_0 . Similarly to the Subcase 2.2, we have $u(x) = p_0 \cdot x$ for all $x \in \mathbb{R}^n$.

Subcase 2.4. $\partial L(y^+)$ contains more than one point; $\partial L(-y^-)$ contains more than one point. By Theorem 3.1, $\partial L(y^+)$ is a line-segment contained in the line, say ℓ_{y^+} ; $\partial L(-y^-)$ is a line-segment contained in the line, say ℓ_{y^-} . By an argument similar to the Subcase 2.2, we know that y^\pm is not perpendicular to $\ell_{y^\pm} - p_0$. Hence

$$\mathbb{R}^n = \bigcup_{z \perp \ell_{y^+} - p_0} (z + \mathbb{R}y^+) = \bigcup_{z \perp \ell_{y^-} - p_0} (z + \mathbb{R}y^-).$$

For any $z \perp \ell_{y^-} - p_0$, we have $p_0 \cdot z = p_x^- \cdot z$. Thus by (4.23),

$$u(z - sy^-) + su(y^-) \leq p_0 \cdot z \quad \forall s \in \mathbb{R}.$$

which together with (4.25) gives

$$u(z - sy^-) \leq p_0 \cdot (z - sy^-) \quad \forall s \in \mathbb{R}.$$

By $\mathbb{R}^n = \sup_{z \perp \ell_{y^-} - p_0} (z + \mathbb{R}y^-)$, for any $x \in \mathbb{R}^n$, we can find s such that $x + sy^- \perp \ell_{y^-} - p_0$. Hence, we conclude that $u(x) \leq p_0 \cdot x$ for all $x \in \mathbb{R}^n$.

 pdfelement by The Trial Version. By (4.24), (4.25) and $\mathbb{R}^n = \sup_{z \perp \ell_{y^+} - p_0} (z + \mathbb{R}y^+)$ we have $u(x) \geq p_0 \cdot x$ for all $x \in \mathbb{R}^n$. Thus $u(x) = p_0 \cdot x$ for all $x \in \mathbb{R}^n$ as desired. The proof of Lemma 1.3 is complete. \square

We also need the following to prove (ii) \Rightarrow (i) in Theorem 1.1.

LEM3.4

Lemma 4.2. Let H be as (1.4). If $H^{-1}(k) = [a, b]$ with $a \neq b$ for some $k \geq 0$, then the following function u_f given in (1.3) is an absolute minimizer with $\|H(Du_f)\|_{L^\infty(\mathbb{R}^n)} = k$ whenever $f \in C^{0,1}(\mathbb{R})$ and $\|f'\|_{L^\infty(\mathbb{R})} \leq 1$.

Proof. Note that $u_f \in C^{0,1}(\mathbb{R}^n)$ and

$$Du_f(x) = \frac{b+a}{2} + \frac{b-a}{2} f'\left(\frac{b-a}{2} \cdot x\right) \quad \text{for almost all } x \in \mathbb{R}^n.$$

Since $\|f'\|_{L^\infty(\mathbb{R})} \leq 1$ implies that $|f'\left(\frac{b-a}{2} \cdot x\right)| \leq 1$ for almost all $x \in \mathbb{R}^n$, we know that $Du_f(x) \in [a, b]$ and hence $H(Du_f(x)) = k$ for all such $x \in \mathbb{R}^n$. Thus $\|H(Du_f)\|_{L^\infty(\mathbb{R}^n)} = k$.

To see $u_f \in AM_H(\mathbb{R}^n)$, by definition, it suffices to show that for some domain $V \subseteq \mathbb{R}^n$ and some function $v \in C^{0,1}(\overline{V})$ with $v = u_f$ on ∂V , we have $\|H(Dv)\|_{L^\infty(V)} := s \geq \|H(Du_f)\|_{L^\infty(V)} = k$.

If $k = 0$, we always have $\|H(Dv)\|_{L^\infty(V)} \geq \|H(Du_f)\|_{L^\infty(V)}$. Assume that $k > 0$ below. Let $q_0 \in \partial H((a+b)/2)$. Then $q_0 \neq 0$; otherwise,

$$H(0) - H\left(\frac{a+b}{2}\right) \geq -q_0 \cdot \frac{a+b}{2} = 0,$$

which implies that $k = H((a+b)/2) = 0$. By Lemma 3.6, we have $q_0 \perp (b-a)$. Let $x_0 \in V$ and the line $\ell_0 = x_0 + \mathbb{R}q_0$. Denote by γ_0 the component (an open interval) containing x_0 of $\ell_0 \cap V$, and $t_0 > 0$ the length of γ_0 . Write $\gamma_0 = (x_0, y_0)$ with $x_0, y_0 \in \partial V$ and $y_0 = x_0 + t_0 q_0 / |q_0|$.

Since $q_0 \perp (b-a)$ implies

$$\frac{b-a}{2} \cdot y_0 = \frac{b-a}{2} \cdot x_0 + \frac{t_0}{|q_0|} \frac{b-a}{2} \cdot q_0 = \frac{b-a}{2} \cdot x_0,$$

we get

$$u(y_0) - u(x_0) = \frac{b+a}{2} \cdot (y_0 - x_0) + f\left(\frac{b-a}{2} \cdot y_0\right) - f\left(\frac{b-a}{2} \cdot x_0\right) = \frac{t_0}{|q_0|} \frac{b+a}{2} \cdot q_0.$$

By $q_0 \in \partial H((a+b)/2)$ and Lemma 3.4, this yields that

$$(4.26) \quad u(y_0) - u(x_0) = \frac{t_0}{|q_0|} \left[H\left(\frac{b+a}{2}\right) + L(q_0) \right] = \frac{t_0}{|q_0|} [k + L(q_0)].$$

On the other hand, by Lemma 2.2, one has

$$v(y) - v(x) \leq C_s^H (y - x) \quad \text{whenever } [x, y] \subset V.$$

Up to some approximation to x_0, y_0 , this gives that

$$v(y_0) - v(x_0) \leq C_s^H (y_0 - x_0) = \frac{t_0}{|q_0|} \sup_{H(p) < s} p \cdot q_0 \leq \frac{t_0}{|q_0|} [s + L(q_0)].$$

By this, $u(y_0) - u(x_0) = v(y_0) - v(x_0)$ and (4.26), we have

$$\frac{t_0}{|q_0|} [s + L(q_0)] \geq \frac{t_0}{|q_0|} [k + L(q_0)]$$

which gives $s \geq k$, that is, $\|H(Dv)\|_{L^\infty(V)} \geq \|H(Du_f)\|_{L^\infty(V)}$ as desired. This completes the proof of Lemma 4.2. \square

With the aid of Lemmas 1.3 and 4.2, we are ready to prove (i) \Leftrightarrow (ii) in Theorem 1.1.

Proof of (i) \Leftrightarrow (ii) in Theorem 1.1. As clarified in the introduction, we only need to prove Theorem 1.1 under the assumption (1.4).

Proof of (i) \Rightarrow (ii). Assume that H is convex, satisfies (1.4) and H is not a constant in any line-segment.

Let $u \in AM_H(\Omega)$ and $x^0 \in \Omega$. Up to some translation, we assume that $x^0 = 0 \in \Omega$. We also assume $u(0) = 0$.

Let $U = B(0, \delta_0) \subset \Omega$ and $K := \|u\|_{C^{0,1}(U)} < \infty$. Note that $u \in AM_H(U)$ is bounded. For any $0 < r < 1$, the Trial Version $= \frac{1}{r}u(rx)$ for $x \in \frac{1}{r}U$. Then $u_r \in AM_H\left(\frac{1}{r}U\right)$. Let $B(0, \delta_0) \Subset U$. Since $u \in C^{0,1}(U)$, we know that $u_r \in C^{0,1}(B(0, \delta_0/r))$ and $\|u_r\|_{C^{0,1}(B(0, \delta_0/r))} = K$. Up to considering some subsequence we may assume that

$u_r \rightarrow v \in C^{0,1}(\mathbb{R}^2)$ locally uniformly in \mathbb{R}^2 , and $\|v\|_{C^{0,1}(\mathbb{R}^2)} \leq \|u\|_{C^{0,1}(B(0, \delta_0))} = K$. By (2.1), it suffice to show that v is a linear function and $H(Dv) = Su(0)$. This will follow if v fulfils all the assumptions in Lemma 1.3 with $k = Su(0)$.

To this end, let R_K be as in Lemma 2.6. For any $x \in \mathbb{R}^2$, by Lemma 2.6 we write

$$\begin{aligned} S_t^+ v(x) &= \sup_{|x-y| \leq R_K t} \frac{1}{t} \left[v(y) - v(x) - tL\left(\frac{y-x}{t}\right) \right] \\ &= \sup_{|x-y| \leq R_K t} \lim_{r \rightarrow 0} \frac{1}{t} \left[\frac{u(ry) - u(rx)}{r} - tL\left(\frac{y-x}{t}\right) \right] \\ &\leq \liminf_{r \rightarrow 0} \sup_{|rx-y| \leq R_K tr} \frac{1}{tr} \left[u(y) - u(rx) - trL\left(\frac{y-rx}{tr}\right) \right] \\ &\leq \liminf_{r \rightarrow 0} S_{tr}^+ u(rx). \end{aligned}$$

By Lemma 2.5, we have

$$\boxed{\text{E26}} \quad (4.27) \quad S_t^+ v(x) \leq \liminf_{r \rightarrow 0} S_{tr}^+ u(rx) \leq \liminf_{\delta \rightarrow 0} \liminf_{r \rightarrow 0} S_\delta^+ u(rx) = \liminf_{\delta \rightarrow 0} S_\delta^+ u(0) = Su(0) \quad \forall x \in \mathbb{R}^n.$$

Similarly, we have

$$\boxed{\text{E27}} \quad (4.28) \quad -S_t^- v(x) \leq -S^- u(0) = Su(0) \quad \forall x \in \mathbb{R}^n.$$

One the other hand, for any $0 < r < \delta_0/Rt$, by Lemma 4.2 let $z_r \in \overline{B(0, R_K tr)}$ such that

$$\frac{u(z_r)}{tr} - trL\left(\frac{z_r}{tr}\right) = S_{tr}^+ u(0).$$

Then $z_r/r \in \overline{B(0, Rt)}$. For any $\epsilon > 0$, there exists $r_{\epsilon,t} > 0$ such that for any $y \in \overline{B(0, Rt)}$, we have $v(y) \geq u_r(y) - \epsilon$ for all $r \in (0, r_{\epsilon,t})$. For r sufficiently small, we have

$$S_t^+ v(0) \geq \frac{1}{t} \left[v(z_r/r) - tL\left(\frac{z_r}{tr}\right) \right] \geq \frac{1}{tr} \left[u(z_r) - trL\left(\frac{y}{t}\right) \right] - \frac{\epsilon}{t} = S_{tr}^+ u(0) - \frac{\epsilon}{t} \geq Su(0) - \frac{\epsilon}{t}.$$

By the arbitrariness of $\epsilon > 0$, we have $S_t^+ v(0) \geq Su(0)$. Similarly we have $-S_t^- v(0) \geq Su(0)$. Combining these, (4.27) and (4.28), we see that the assumptions of Lemma 1.3 is fulfilled with $k = Su(0)$. This proves (i) \Rightarrow (ii).

Proofs of (ii) \Rightarrow (i). Assume that $H^{-1}(k) = [a, b]$ with $a \neq b$ for some $k \geq 0$. It suffices to show that (ii) fail.

To this end, let $f(t) = |t|$ for $t \in \mathbb{R}$, and u_f be as in (1.3). By Lemma 4.2, $u_f \in AM_H(\mathbb{R}^n)$ and $\|H(Du_f)\|_{L^\infty(\mathbb{R}^n)} = k$. To see the failure of (ii), we only need to show that u_f does not have the linear approximation property, that is, for any vector $e \in \mathbb{R}^n$ and $r \in (0, 1)$, one always has

$$\liminf_{r \rightarrow 0} \sup_{x \in B(0,1)} \left| \frac{u_f(rx) - u_f(0)}{r} - e \cdot x \right| > c$$

for some constant $c > 0$ depending only on a, b, e . Write

$$\liminf_{r \rightarrow 0} \sup_{x \in B(0,1)} \left| \frac{u_f(rx) - u_f(0)}{r} - e \cdot x \right| = \sup_{x \in B(0,1)} \left| \left| \frac{b-a}{8} \cdot x \right| - \left(e - \frac{b+a}{2} \right) \cdot x \right|.$$

letting $x = \frac{1}{2} \frac{2e-(b+a)}{|2e-(b+a)|}$, we have

$$\liminf_{r \rightarrow 0} \sup_{x \in B(0,1)} \left| \frac{u_f(rx) - u_f(0)}{r} - e \cdot x \right| \geq \frac{1}{2} |e - \frac{b+a}{2}|.$$

If $e - \frac{b+a}{2} = 0$, letting $x = \frac{1}{2} \frac{b-a}{|b-a|}$, we obtain

$$\liminf_{r \rightarrow 0} \sup_{x \in B(0,1)} \left| \frac{u_f(rx)}{r} - e \cdot x \right| \geq \frac{|b-a|}{16}$$

as desired. This gives (ii) \Rightarrow (i). The proof of (i) \Leftrightarrow (ii) in Theorem 1.1 is complete. \square

5. PROOF OF PROPOSITION 1.4

Suppose that vectors $e_{0,6}, e_6 \in \mathbb{R}^2$ and $u \in AM_H(B(0,6))$ satisfy (1.6), (1.7) and (1.8). We want to show that for any $\epsilon > 0$, if $\delta > 0$ is sufficiently small, then $|e_{0,6} - e_6| \leq C\epsilon$.

Since u is not linear in $B(0, r)$, there are a line segment $[z_1, z_2] \subset B(0, r)$, a linear function $l(x) = a_0 \cdot x + b_0$, $z_3 \in [z_1, z_2]$ with $a_0 = \frac{u(z_2) - u(z_1)}{|z_2 - z_1|}$ such that either

xcase1 (5.1) $u \geq l \quad \text{on } [z_1, z_2], \quad u(z_1) > l(z_1), \quad u(z_3) = l(z_3), \quad u(z_2) > l(z_2),$

or

xcase2 (5.2) $u \leq l \quad \text{on } [z_1, z_2], \quad u(z_1) < l(z_1), \quad u(z_3) = l(z_3), \quad u(z_2) < l(z_2).$

Without loss of generality, we assume that (5.1) holds.

xcon-com **Lemma 5.1.** *There exists $e \in \mathbb{R}^2$, with $H(e) = S^+(u)(z_3)$, such that z_1 and z_2 belong to two distinct connected components of the set $\{y \in \mathbb{R}^2 : u(y) > u(z_3) + e \cdot (y - z_3)\} \cap B(0, 6)$.*

Proof of Lemma 5.1. By Theorem 1.1 (ii), for an sequence $\{s_k\}_{k \in \mathbb{N}}$ which converges to 0, up to considering subsequence there exists $e \in \mathbb{R}^2$ such that $H(e) = S^+u(z_3)$ and

xeq4.1 (5.3)
$$\lim_{s_k \rightarrow 0} \sup_{B(z_3, s_k)} \frac{|u(y) - u(z_3) - e \cdot (y - z_3)|}{s_k} = 0.$$

Since u is not linear in $B(0, r)$, for any $z_k \in [z_1, z_2] \cap \partial B(z_3, s_k)$, by (5.3) we have

$$(a_0 - e) \cdot \left(\frac{z_k - z_3}{s_k} \right) = \frac{l(z_k) - l(z_3) - e \cdot (z_k - z_3)}{s_k} \leq \frac{u(z_k) - u(z_3) - e \cdot (z_k - z_3)}{s_k} \rightarrow 0,$$

as $k \rightarrow \infty$. Therefore we have $(a_0 - e) \cdot (z - z_3) = 0$ for any $z \in [z_1, z_2]$, that is

$$u(z_i) - u(z_3) > l(z_i) - l(z_3) = a_0 \cdot (z_i - z_3) = e \cdot (z_i - z_3), \quad i = 1, 2,$$

and hence $z_1, z_2 \in \{y \in \mathbb{R}^2 : u(y) > u(z_3) + e \cdot (y - z_3)\}$. Now we assume that z_1, z_2 belong to the same connected component of $\{y \in \mathbb{R}^2 : u(y) > u(z_3) + e \cdot (y - z_3)\} \cap B(0, 6)$. Then there exists a ploygonal line $\Gamma \subset \{y \in \mathbb{R}^2 : u(y) > u(z_3) + e \cdot (y - z_3)\} \cap B(0, 6)$ joining z_1 to z_2 . Let $S = \Gamma \cup [z_1, z_2]$ be the closed curve and $U \subset B(0, 6)$ be the open set such that $S = \partial U$. Without loss of the generality, we may assume that there exists a $\beta > 0$ such that

$$B^+(z_3, \beta) := B(z_3, \beta) \cap \{y \in \mathbb{R}^2 : 0 < \angle(y - z_3, z_2 - z_1) < \pi\} \subset U.$$

It is clear that there exists an δ_0 such that $u(y) - u(z_3) - e \cdot (y - z_3) \geq \delta_0$ for any $y \in \Gamma$. Therefore there are a small $\epsilon > 0$ and a unit vector $v \in \mathbb{R}^2$, with $\angle(v, z_2 - z_1) = \frac{\pi}{2}$ and $e + \epsilon v \neq 0$, such that

$$u(y) \geq u(z_3) + (e + \epsilon v) \cdot (y - z_3), \quad \forall y \in S.$$

Note that $\phi(y) = u(z_3) + (e + \epsilon v) \cdot (y - z_3)$ is linear and $D\phi = e + \epsilon v \neq 0$ so that Lemma 2.1 implies that

$$u(y) \geq u(z_3) + (e + \epsilon v) \cdot (y - z_3), \quad y \in U.$$

On the other hand, we have

$$\lim_{s_k \rightarrow 0} \max_{y \in B^+(z_3, \beta) \cap B(z_3, \beta)} \frac{|u(y) - u(z_3) - e \cdot (y - z_3)|}{s_k} \geq \epsilon > 0,$$

this contradicts (5.3). The proof of Lemma 5.1 is complete. \square

The proof (1.9) is reduced to proving

xseq4.2 (5.4) $|e - e_6|^2 \leq \epsilon/2$

and

xxeq4.2 (5.5) $|e - e_{0,6}|^2 \leq \epsilon/2.$

Proof of (5.4). Note that $e_6 - e \in \overline{B(0, 2R)}$. For any $\epsilon > 0$ the function $\psi_{2R}(\epsilon/2)$ be as in Theorem 3.2. By Lemma 5.2 and Lemma 5.3 as below, for $0 < \delta < \delta(H, R, \epsilon)$ as there, the assumptions of Theorem 3.2 with $p = e$ and $v = e_6 - e$ are fulfilled, and hence $|e_6 - e| \leq \epsilon/2$ as desired.

xlength **Lemma 5.2.** For any $\epsilon > 0$, there exists a $\delta = \delta(H, R, \epsilon) > 0$ such that

xseq4.3 (5.6) $H(e_6) - H(e) \leq \psi_{2R}(\epsilon/2).$

xangle **Lemma 5.3.** For any $\epsilon > 0$, there is $\delta = \delta(H, R, \epsilon) > 0$ such that

xeq4.28 (5.7) $\left| \angle(q, e_6 - e) - \frac{\pi}{2} \right| \leq \psi_{2R}(\epsilon/2) \quad \text{for some } q \in \partial H(e') \text{ and some } e' \in \overline{B(e, \psi_{2R}(\epsilon/2))} \text{ with } H(e) = H(e').$

Below we prove Lemma 5.2 and Lemma 5.3. Write $\eta = \frac{1}{2}\psi_{2R}(\epsilon/2)$ and $f = e_6 - e$ for simple. We may assume that $|f| \geq \eta/2$ without loss of generality. Write

$$\mathcal{S} := \{y \in \mathbb{R}^2 : |f \cdot (y - z_3)| \leq 2\delta\}, \mathcal{S}_- := \{y \in \mathbb{R}^2 : f \cdot (y - z_3) < -2\delta\} \text{ and } \mathcal{S}_+ := \{y \in \mathbb{R}^2 : f \cdot (y - z_3) > 2\delta\}.$$

The width of \mathcal{S} is $2\delta/|f|$, and hence, at most $\frac{2\delta}{\epsilon}$. Moreover, (1.7) implies that

$$|u(y) - u(z_3) - e_6 \cdot (y - z_3)| \leq 2\delta, \quad \forall y \in B(0, 6).$$

Since

$$\mathcal{S}_- \cap B(0, 6) \subset \{y \in \mathbb{R}^2 : u(y) < u(z_3) + e \cdot (y - z_3)\}$$

and

$$\mathcal{S}_+ \cap B(0, 6) \subset \{y \in \mathbb{R}^2 : u(y) > u(z_3) + e \cdot (y - z_3)\},$$

by Lemma 5.1 above there is a connected component of $\{y \in \mathbb{R}^2 : u(y) > u(z_3) + e \cdot (y - z_3)\} \cap B(0, 6)$, called U , that contains either z_1 or z_2 , and hence intersects $B(0, 1)$, and is contained in the strip \mathcal{S} .

Observe that $U \not\subset B(0, 6)$; otherwise, thanks to $u(y) = u(z_3) + e \cdot (y - z_3)$ on $y \in \partial U$, by Lemma 2.1, $u = u(z_3) + e \cdot (y - z_3)$ in U , which contradicts with the definition of U . Therefore there exists a polygonal line Γ inside U starting in $B(0, 1)$ and exiting $B(0, 6)$. Now we find $z_4 \in B(0, 6)$, with $|z_4 - z_3| = 3$ and $z_4 - z_3 \perp f$, such that

(A1) $\sup_{B(z_4, 2)} |u(y) - u(z_3) - e_6 \cdot (y - z_3)| \leq 2\delta$ and $1 \leq H(e_6) \leq 2$.

(A2) $\{y \in \mathbb{R}^2 : u(y) > u(z_3) + e \cdot (y - z_3)\} \cap B(0, 6)$ has a connected component $U \subset \mathcal{S}$ that contains a polygonal line Γ connecting the two arcs $\mathcal{S} \cap \partial B(z_4, 2)$.

xlengthU **Lemma 5.4.** If $\delta \in (0, 2/C)$ for some constant $C(H) \geq 1$, then

xseq4.6 (5.8) $Su(x) \leq H(e) + C\delta \quad \forall x \in U \cap B(z_4, 1).$

Proof of Lemma 5.4. For any $x_0 \in B(z_4, 1) \cap U$, we have $B(x_0, 1) \subset B(z_4, 2)$ and $u(z_3) + e \cdot (x_0 - z_3) < u(x_0)$. Note that

xeq4.7 (5.9) $u(y) = u(z_3) + e \cdot (y - x_0) \leq u(x_0) + \mathcal{C}_{H(e)}^H(y - x_0), \quad \forall y \in \partial U \cap B(x_0, 1),$

and

pdfelement $u(y) \leq u(z_3) + e \cdot (y - x_0) + 4\delta \leq u(x_0) + e \cdot (y - x_0) + 4\delta, \quad \forall y \in U \cap \partial B(x_0, 1),$

The Trial Version

By (5.3), (5.9) and (5.10) we have

xeq4.9 (5.11) $u(y) \leq u(x_0) + \mathcal{C}_{H(e)+C\delta}^H(y - x_0), \quad \forall y \in \partial(U \cap B(x_0, 1)).$

Since $u \in CC_H(B(0, 6))$, we have

$$u(y) \leq u(x_0) + \mathcal{C}_{H(e)+C\delta}^H(y - x_0), \quad \text{in } U \cap B(x_0, 1).$$

This, combined with the Proposition 2.2 in [28], implies (5.8). \square

We are able to prove Lemma 5.2 as below.

Proof of Lemma 5.2. If $H(e) > H(e_6) - \eta$, then (5.6) follows. Assume that $H(e) \leq H(e_6) - \eta$ now. Thanks to $1 \leq H(e_6) \leq 2$, by (i) and Lemma 3.5, we know that $e_6 \neq 0$ and $0 \notin \partial H(e_6)$. The convexity of H implies

$$(5.12) \quad q \cdot f = q \cdot (e_6 - e) \geq H(e_6) - H(e) \geq \eta, \quad \forall q \in \partial H(e_6).$$

We always let $\delta > 0$ is small so that $50|q|\delta \leq \frac{1}{2}H(e_6)$ for all $q \in \partial H(e_6)$ below.

Claim 5.2 (a) For any $q \in \partial H(e_6)$, there exists

$$w_q \in L := \left\{ z_4 + s \frac{q}{|q|} : -\frac{1}{3} \leq s \leq -\frac{1}{4} \right\} \subset B(z_4, 1)$$

such that

$$(5.13) \quad Su(y_q) \geq H(e_6) - 50|q|\delta.$$

Proof of Claim 5.2 (a). Let $q \in \partial H(e_6)$ and $c := \sup_{x \in L} Su(x)$. To find y_q it suffices to show that

$$H(e_6) - 48|q|\delta \leq c.$$

This is further reduced this to proving

$$(5.14) \quad e_6 \cdot q - 48|q|\delta \leq \mathcal{C}_c^H(q).$$

Indeed, since

$$\mathcal{C}_c^H(q) = \sup_{H(p) \leq c} p \cdot q \leq \sup_{H(p) \leq c} [H(p) + L(q)] = c + L(q),$$

by $e_6 \cdot q = H(e_6) + L(q)$ as in Lemma 3.4, one has $H(e_6) - 48|q|\delta \leq c$.

To see (5.14), thanks to $L \subset B(z_4, 2)$, (A1) implies

$$(5.15) \quad u\left(z_4 - \frac{1}{4} \frac{q}{|q|}\right) - u\left(z_4 - \frac{1}{3} \frac{q}{|q|}\right) \geq \frac{1}{12} e_6 \cdot \frac{q}{|q|} - 4\delta.$$

On the other hand, by the semi-continuity of Su , for any $\eta > 0$ there exists an open neighborhood $V_\eta(L)$ such that $\sup_{x \in V_\eta(L)} Su(x) \leq c + \eta$. and hence $\sup_{x \in V_\eta(L)} H(Du(x)) \leq c + \eta$. By Lemma 2.2, We have

$$u\left(z_4 - \frac{1}{3} \frac{q}{|q|}\right) - u\left(z_4 - \frac{1}{4} \frac{q}{|q|}\right) \leq \mathcal{C}_{c+\eta}^H\left(\frac{q}{12|q|}\right).$$

Letting $\eta \rightarrow 0$, we conclude (5.14) from this and (5.15). \square

Fix a $q^0 \in \partial H(e_6)$ such that

$$(5.16) \quad f \cdot \frac{q^0}{|q^0|} = \min \left\{ f \cdot \frac{q}{|q|} : q \in \partial H(e_6) \right\}$$

Let $y_0 := w_{q^0} = z_4 + s_0 \frac{q^0}{|q^0|}$ for some $s_0 \in [-1/3, -1/4]$ as determined in Claim 5.2(a). Since $f \cdot q^0 \geq H(e_6) - H(e) \geq \eta$, we have

$$f \cdot (y^0 - z_3) = f \cdot (y^0 - z_4) = s_0 f \cdot \frac{q^0}{|q^0|} < -\frac{1}{4} \frac{\eta}{|q^0|}.$$

If $\delta < \eta/|q^0|/2$, then $f \cdot (y^0 - z_3) < -2\delta$, that is, $y^0 \in \mathcal{S}_-$.

For any $0 < \delta < \eta/8$, let

$$t = t(\delta) := \text{dist}(\Gamma, \partial U \cap B(z_4, 2)) \leq \frac{2\delta}{|f|}.$$

Applying Lemma 2.8, we get a discrete gradient flow $\{y_i\}_{i=1}^m$ for some $m = m(\delta)$ satisfying

$$(5.17) \quad y_i = y_i(\delta) \in B(z_4, 2), \quad |y_i - y_{i-1}| = t, \quad u(y_i) = u(y_{i-1}) + \mathcal{C}_{S_t^+(u)(y_{i-1})}^H(y_i - y_{i-1}), \quad 1 \leq i \leq m,$$

but $y_{m+1} \notin B(z_4, 2)$. Note that $y_{m+1} \notin B(z_4, 2)$ implies that

$$(5.18) \quad \text{dist}(y_m, \partial B(z_4, 2)) \leq t.$$

We prove the existence of such $m \geq 1$ by contradiction. Assume (5.17) holds for all $i \geq 1$. By Claim 5.2(a),

$$(5.19) \quad S^+(u)(y_i) \geq S^+(u)(y_0) \geq H(e_6) - 50|q^0|\delta, \quad 0 \leq i \leq m.$$

Thus, for any $j \geq 1$

$$(5.20) \quad \begin{aligned} u(y_j) - u(y_0) &= \sum_{i=1}^m (u(y_i) - u(y_{i-1})) \geq \sum_{i=1}^j \mathcal{C}_{S^+(u)(y_{i-1})}^H(y_i - y_{i-1}) \\ &\geq \sum_{i=1}^j \mathcal{C}_{S^+(u)(y_0)}^H(y_i - y_{i-1}) \geq \sum_{i=1}^j \mathcal{C}_{H(e_6) - 50|q^0|\delta}^H(y_i - y_{i-1}), \end{aligned}$$

By $50|q^0|\delta \leq \frac{1}{2}H(e_6)$, then there exists $C > 0$ depending only on H such that

$$\mathcal{C}_{H(e_6) - 50|q^0|\delta}^H(x) \geq C|x|, \quad \forall |x| = 1,$$

and hence,

$$u(y_j) - u(y_0) \geq \sum_{i=1}^j \mathcal{C}_{H(e_6) - 50|q^0|\delta}^H(y_i - y_{i-1}) \geq Cjt,$$

Noting $|u(y_j) - u(y_0)| \leq \|Du\|_{L^\infty(B(0,6))}|y_j - y_0|$, one has $|y_j - y_0| \rightarrow Cjt \rightarrow \infty$ as $j \rightarrow \infty$, which is a contradiction.

Claim 5.2 (b) There exists $\delta(\epsilon) > 0$ such that for any $0 < \delta < \delta(\epsilon)$, we can find $1 \leq j_\delta \leq m$ such that $y_m \in \mathcal{S}_+$ and $y_{j_\delta} \in B(z_4, 1) \cap U$.

Proof of Claim 5.2(b). We first show that $y_m \in \mathcal{S}_+$ if $\delta > 0$ is sufficiently small. Note that

$$(5.21) \quad \mathcal{C}_{H(e_6) - 50|q^0|\delta}^H(y_m - y_0) \leq e_6 \cdot (y_m - y_0) + 4\delta.$$

Indeed, noting that (5.20) also holds with $j = m$, and applying the triangle inequality for \mathcal{C}_k^H , we have

$$(5.22) \quad u(y_m) - u(y_0) \geq \sum_{i=1}^m \mathcal{C}_{H(e_6) - 50|q^0|\delta}^H(y_i - y_{i-1}) \geq \mathcal{C}_{H(e_6) - 50|q^0|\delta}^H \left(\sum_{i=1}^m (y_i - y_{i-1}) \right) = \mathcal{C}_{H(e_6) - 50|q^0|\delta}^H(y_m - y_0).$$

On the other hand, by (A1) and $y_m, y_0 \in B_2(z_4)$ one has

$$(5.23) \quad u(y_m) - u(y_0) \leq e_6 \cdot (y_m - y_0) + 4\delta.$$

From this and (5.22) one gets (5.21).

Thanks to $\text{dist}(y_m, \partial B(z_4, 2)) \leq t$ as in (5.18), there exists $y \in \partial B(z_4, 2)$ such that $t \geq |y_m - y|$. For $0 < \delta < \eta/6$, by $|f| \geq \eta/2$ and $t < 2\delta/|f| \leq 2/3$, one gets

$$|y_m - z_4| \geq |y - z_4| - |y - y_m| \geq 2 - t \geq \frac{4}{3}.$$

 pdf element Since $y_0 = w_{q^0}$ $\in \{z_4 + t \frac{q^0}{|q^0|} : t \in [-\frac{1}{3}, -\frac{1}{4}]\}$, it is clear that

$$|y_m - y_0| \geq |y_m - z_4| - |z_4 - y_0| \geq \frac{4}{3} - \frac{1}{3} = 1.$$

Writing $e_m = \frac{y_m - y_0}{|y_m - y_0|}$, by (5.21), one has

$$(5.24) \quad \mathcal{C}_{H(e_6)-50|q|\delta}^H(e_m) \leq e_6 \cdot e_m + 4\delta.$$

Note that e_m converges to some unit vector \hat{e} as $\delta \rightarrow 0$ (up to some subsequence), and hence $\mathcal{C}_{H(e_6)}^H(\hat{e}) \leq e_6 \cdot \hat{e}$. By definition, $\mathcal{C}_{H(e_6)}^H(\hat{e}) = e_6 \cdot \hat{e}$. By Lemma 3.7, we have $\hat{e} = \hat{q}/|\hat{q}|$ for some $\hat{q} \in \partial H(e_6)$. Recall that \hat{q} and q^0 do not coincide necessarily.

Next we show that if $\delta > 0$ is sufficiently small, then $y_m \in \{y \in \mathbb{R}^2 : f \cdot (y - z_4) \geq 2\delta\}$. Indeed, by $y_0 = z_4 + s_0 \frac{q^0}{|q^0|}$ for some $s_0 \in [-1/3, -1/4]$ we have

$$f \cdot (y_m - z_4) = f \cdot (y_m - y_0) + f \cdot (y_0 - z_4) = |y_m - y_0|f \cdot \hat{e} + s_0 f \cdot \frac{q^0}{|q^0|} + |y_m - y_0|f \cdot (e_m - \hat{e}).$$

Since $1 \leq |y_m - y_0| \leq 4$ and $f \cdot \hat{e} \geq f \cdot \frac{q^0}{|q^0|} \geq \eta/|q^0|$, we get

$$f \cdot (y_m - z_4) \geq \frac{2}{3}f \cdot \frac{q^0}{|q^0|} - 4|f||e_m - \hat{e}| \geq \frac{2\eta}{3|q^0|} - 2\eta|e_m - \hat{e}|.$$

Since $e_m \rightarrow \hat{e}$ as $\delta \rightarrow 0$, we have $f \cdot (y_m - z_4) > 2\delta$ if δ is sufficiently small. Since $f \cdot (y_m - z_3) = f \cdot (y_m - z_4) > 2\delta$ and hence $y_m \in \mathcal{S}_+$ by definition.

Now we find $1 \leq j_\delta \leq m$ such that $y_{j_\delta} \in U \cap B(z_4, 1)$ when δ is sufficiently small.

When δ is sufficiently small, by $y^0 \in \mathcal{S}_-$, $y_m \in \mathcal{S}_+$ and the choice of the step size t , there exists $1 \leq j_\delta \leq m$ such that $y_{j_\delta} \in U \cap B(z_4, 2)$. It remains to show that $|y_{j_\delta} - z_4| \leq 1$. If $|y_{j_\delta} - z_4| > 1$, we have

$$|y_{j_\delta} - y_0| \geq |y_{j_\delta} - z_4| - |y_0 - z_4| \geq 1 - \frac{1}{3} = \frac{2}{3}.$$

By an argument similar to above, we also have $f \cdot (y_{j_\delta} - z_4) > 2\delta$, that is, $y_{j_\delta} \in \mathcal{S}_+$ which is a contradiction. Thus we obtain $|y_{j_\delta} - z_4| \leq 1$. The Claim 5.2 (b) is proven. \square

Combing (5.8), (5.13), (5.20) and Claim 5.2 (b), we obtain

$$H(e_6) - 50|q|\delta \leq S^+(H, u, y_{j_\delta}) \leq H(e) + C\delta,$$

this implies that (5.6), where $\delta = \delta(\eta, H)$ is chosen to be sufficiently small. The proof of Lemma 5.2 is complete. \square

The proof of Lemma 5.3 is as below.

Proof of the Lemma 5.3. If there exist $e' \in B(e, \eta)$ and $q_1, q_2 \in \partial H(e')$ with $H(e) = H(e')$ and $\angle(q_1, f) \leq \pi/2 \leq \angle(q_2, f)$, then we can find $\lambda \in [0, 1]$ such that $\angle(\lambda q_1 + (1 - \lambda)q_2, f) = \pi/2$. Then $\lambda q_1 + (1 - \lambda)q_2 \in \partial H(e')$ is the desired result. Below we may assume

$$(5.25) \quad \angle(q, f) \in [0, \frac{\pi}{2}] \text{ for all } q \in \partial H(e') \text{ and all } e' \in B(e, \eta) \text{ with } H(e) = H(e').$$

The case $\angle(q, f) \in (\pi/2, \pi]$ for all $q \in \partial H(e')$ and all $e' \in B(e, \eta)$ with $H(e) = H(e')$ is similar.

Note that there exists $e' \in \overline{B(e, \eta)}$ with $H(e) = H(e')$ and $q_{e'} \in \partial H(e')$ such that

$$\alpha := \angle(q_{e'}, f) = \max_{e' \in \overline{B(e, \eta)}} \max_{q \in \partial H(e')} \angle(q, f) < \frac{\pi}{2}.$$

Assume $\alpha < \frac{\pi}{2} - \eta$ without loss of generality.

Let $x_\delta = z_4 - \frac{2q_{e'}}{q_{e'} \cdot f} \delta$ be the intersection of $L := \{z_4 + sq_{e'} : t \in \mathbb{R}\}$ and $\{y \in \mathbb{R}^2 : (y - z_4) \cdot f = -2\delta\}$. Observe that

$$|x_\delta - z_4| = \frac{2\delta}{|f| \cos \angle(q, f)} \leq \frac{2\delta}{\eta \sin \eta} \leq 1,$$

The Trial Version indicated that $\delta > 0$ is chosen to be sufficiently small. This implies $B(x_\delta, 1) \subset (z_4, 2)$. By (A1), we have

$$(5.26) \quad u(y) - u(z_3) - e \cdot (y - z_3) \leq u(y) - u(z_3) - e_6 \cdot (y - z_3) + f \cdot (y - z_3) \leq 4\delta, \quad \forall y \in U \cap B(x_\delta, 1),$$

and

xeq4.30 (5.27) $u(y) = u(z_3) + e \cdot (y - z_3), \quad \forall y \in \partial U \cap B(x_\delta, 1)$

Thus

xeq4.32 (5.28) $u(y) = u(z_3) + e \cdot (x_\delta - z_3) + e \cdot (x - x_\delta) \leq u(z_3) + e \cdot (x_\delta - z_3) + \mathcal{C}_{H(e)}^H(x - x_\delta), \quad \forall x \in \partial U \cap B(x_\delta, 1).$

For any $x \in U \cap \partial B(x_\delta, 1)$, we have

xeq4.33 (5.29) $u(x) \leq u(z_3) + e \cdot (x_\delta - z_3) + e \cdot (x - x_\delta) + 4\delta.$

Let $p_x \in H^{-1}(H(e))$ such that $t_x(x - x_\delta) \in \partial H(p_x)$ for some $t_x > 0$; see Lemma 3.7 for the existence of t_x . Since $\angle(x - x_\delta, f) > \frac{\pi}{2} - C\delta/|f|$ for some constant $C \geq 2$, we know that if $\delta < 2R\eta/C$, then $\angle(x - x_\delta, f) > \frac{\pi}{2} - \eta$ and hence, by the assumption (5.25), $|p_x - e| \geq \eta$. If $\delta < \frac{1}{4}\phi_{2R}(\eta)$ as needed in Theorem 3.3 we further have

$$(p_x - e) \cdot (x - x_\delta) \geq 4\delta.$$

Since $C_{H(e)}(x - x_\delta) = p_x \cdot (x - x_\delta)$, we obtain,

$$C_{H(e)}(x - x_\delta) = p_x \cdot (x - x_\delta) \geq e \cdot (x - x_\delta) + 4\delta.$$

By this and (5.29), one has

xeq4.34 (5.30) $u(x) \leq u(z_3) + e \cdot (x_\delta - z_3) + e \cdot (x - x_\delta) + 4\delta \leq u(z_3) + e \cdot (x_\delta - z_3) + C_{H(e)}(x - x_\delta).$

It follows from (5.28), (5.29) and (5.30) that for sufficiently small $\delta > 0$, we have

eq4.37 (5.31) $u(y) \leq u(z_3) + e \cdot (x_\delta - z_3) + \mathcal{C}_{H(e)}^H(y - x_\delta), \quad \forall y \in \partial B(U \cap B(x_\delta, 1)).$

Applying comparison property with cones, we have

eq4.38 (5.32) $u(y) \leq u(z_3) + e \cdot (x_\delta - z_3) + \mathcal{C}_{H(e)}^H(y - x_\delta), \quad \text{in } U \cap B(x_\delta, 1).$

By (A2), we have $\{x_\delta + tq_e : t \geq 0\} \cap (U \cap B(x_\delta, 1)) \neq \emptyset$ for any $q_e \in \partial H(e)$. For any $y_0 = x_\delta + t_0 q_e \in U \cap B(x_\delta, 1)$, by (5.32) and Lemma 3.7 one has

$$\begin{aligned} u(y_0) &\leq u(z_3) + e \cdot (x_\delta - z_3) + \mathcal{C}_{H(e)}^H(y_0 - x_\delta) \\ &\leq u(z_3) + e \cdot (x_\delta - z_3) + t_0 \mathcal{C}_{H(e)}^H(q_e) \\ &= u(z_3) + e \cdot (x_\delta - z_3) + t_0 e \cdot q_e \\ &= u(z_3) + e \cdot (y_0 - z_3), \end{aligned}$$

which contradicts with $y_0 \in U$, that $u(y_0) > u(z_3) + e \cdot (y_0 - z_3)$. This completes the proof of Lemma 5.3. \square

Proof of (5.5). To see (5.5), define $v_r(x) = \frac{u(rx)}{r}$ for $x \in B(0, 6)$. Then we have

$$\sup_{x \in B(0, 6)} |v_r(x) - e_{0,6} \cdot x| \leq \delta.$$

Moreover, Lemma 5.1 also implies that $\{y \in \mathbb{R}^2 : u(y) > u(z_3) + e \cdot (y - z_3)\} \cap B(0, 6r)$ has two connected components that intersect $B(0, r)$. This implies that for $z_3^r = \frac{z_3}{r}$, $\{y \in \mathbb{R}^2 : v_r(y) > v_r(z_3^r) + e \cdot (y - z_3^r)\} \cap B(0, 6)$ has two connected components that intersect $B(0, 1)$. Therefore similarly to the proof (5.4) above, we could also derive (5.5) provided that

ew2 (5.33) $\frac{1}{2} \leq H(e_{0,6}) \leq 4.$

Below we verify (5.33). By Lemma 3.8 and (1.7), one has

$$u(x) \leq e_6 \cdot x + \delta \leq \mathcal{C}_{H(e_6)}^H(x) + \delta \leq \mathcal{C}_{H(e_6) + C\delta}^H(x), \quad \forall x \in \partial B(0, 3).$$

The Trial Version for $\delta \in (0, 2/C)$, we have

xew14 (5.35) $H(e_{0,6}) = S u(0) \leq H(e_6) + C\delta \leq 4.$

On the other hand, we have $\psi_{2R}(\epsilon) \leq 1/4$ for $0 < \epsilon < \epsilon_0$. Lemma 5.2 implies that for $\delta > 0$ sufficiently small, we have

ew3 (5.36)
$$H(e) \geq H(e_6) - \psi_{2R}(\epsilon) \geq 1 - \psi_{2R}(\epsilon) \geq \frac{3}{4}.$$

Since $e_{0,6} \in \mathcal{D}(u)(0; 6r; \delta)$, we have

ew (5.37)
$$\begin{aligned} u(x) &\leq u(z_3) + e_{0,6} \cdot (x - z_3) + 2\delta r \\ &\leq u(z_3) + \mathcal{C}_{H(e_{0,6})}^H(x - z_3) + 2\delta r \leq u(z_3) + \mathcal{C}_{H(e_{0,6})+C\delta}^H(x - z_3) \end{aligned}$$

for any $x \in \partial B(z_3, 2r) \subset B(0, 6r)$, and hence by comparison property with cones, for any $x \in B(z_3, 2r)$. By the definition of $S_{2r}^+(u)(z_3)$ and (5.37), if $C\delta < 1/4$ we have

ew10 (5.38)
$$S_{2r}^+(u)(z_3) \leq H(e_{0,6}) + C\delta \leq H(e_{0,6}) + \frac{1}{4}.$$

By Lemma 2.5 and Lemma 2.1, we have

$$H(e) = S^+(u)(z_3) \leq S_{2r}^+(u)(z_3),$$

which together with (5.38) yields $H(e_{0,6}) \geq 1/2$ as desired. The proof of (5.5) is complete.

6. PROOFS OF THEOREM 1.5 AND (i) \Leftrightarrow (iii) OR (iv) IN THEOREM 1.1

In the following Corollary 6.1, the condition (1.6) needed in Proposition 1.4 is reduced to $\|H(Du)\|_{L^\infty(B(0,6))} \leq R$, that is, u is may be linear in some neighborhood of 0.

xcor *Corollary 6.1. Suppose that H satisfies (1.4) with $n = 2$ and (i). Let $R \geq 1$. For any $\epsilon > 0$, there exists $\delta = \delta(R, \epsilon) > 0$ such that for any e_6 and $e_{0,6}$, if we can find a $u \in AM_H(B(0, 6))$ satisfying $\|H(Du)\|_{L^\infty(B(0,6))} \leq R$, (1.7) and (1.8), then we have*

xxlin3 (6.1)
$$|e_6 - e_{0,6}| \leq \epsilon.$$

Proof. Let $u \in AM_H(B(0, 6))$ satisfy $\|H(Du)\|_{L^\infty(B(0,6))} \leq R$, (1.7) and (1.8). If u is not linear in any neighborhood of 0, this follows from Proposition 1.4. Below, we assume that $u \equiv e \cdot x$ near 0 for some vector $e \in \mathbb{R}^2$. Let $r_0 \in (0, 6)$ be the largest $r \in (0, 6)$ so that $u(x) = u(0) + e \cdot x$ in $B(0, r)$. Obviously, $u(x) = u(0) + e \cdot x$ in $B(0, r_0)$. By (1.8) one has

$$\sup_{B(0,6r)} |e \cdot y - e_{0,6} \cdot y| \leq \delta r$$

that is, $\|e - e_{0,6}\| \leq \delta/6$.

If $r_0 > 1/2$, by (1.7) we have

$$\sup_{B(0,6)} |e \cdot x - e_6 \cdot x| \leq \delta,$$

that is, $\|e - e_6\| \leq \delta/6$. Therefore, $\|e_{0,6} - e_6\| \leq \delta/3 \leq \epsilon$ whenever $\delta < \epsilon$.

If $r_0 < 1/2$, by the choice of r_0 we can find $x_0 \in \partial B(0, r_0)$, $u \neq e \cdot x$ in some neighborhood. Moreover, we see that u is not linear in any neighborhood of x^0 . Indeed, if $u(x) = u(x^0) + p \cdot (x - x^0)$ in $B(x^0, s)$ for some p and $s > 0$, then $(e - p) \cdot (x - x^0) = 0$ in $B(0, r_0) \cap B(x^0, s)$. If $e - p \perp x^0$, then we can find $z_j \in B(0, r_0) \cap B(z, x^0)$ such that $(z_j - x^0)/|z_j - x^0|$ converges to $(e - p)/|e - p|$ as $j \rightarrow \infty$, and hence $e - p = 0$, that is, $e = p$. If $e - p \not\perp x^0$, then we can find $w \in B(0, r_0) \cap B(x^0, s)$ such that either $(w - x^0)/|w - x^0|$ or $(x^0 - w)/|w - x^0|$ equals to $(e - p)/|e - p|$, and hence $e = p$. But this is impossible by the choice of x^0 .

Next we have $H(e) = Su(x^0)$ and $e \in \mathcal{D}(u)(x^0; r; \delta)$ for any $\delta > 0$ and sufficiently small $r > 0$. Indeed, by Theorem 1.1 (ii), for any sequence $\mathbf{r} = \{r_j\}$ which converges to 0, up to considering its subsequence, there

pdf element

such that $H(e_{x_0, \mathbf{r}}) = Su(x^0)$ and

$$\lim_{j \rightarrow \infty} \sup_{y \in B(0,1)} \frac{|u(y + x_0) - u(x_0) - e_{x_0, \mathbf{r}} \cdot y|}{r_j} = 0.$$

Since $u(y) = e \cdot y \in \overline{B(0, r_0)}$, we have

$$\lim_{r_j \rightarrow 0} \sup_{y \in B(x_0, r_j) \cap B(0, r_0)} \frac{|(e - e_{x_0, \mathbf{r}}) \cdot (y - x_0)|}{r_j} = 0.$$

If $e - e_{x_0, \mathbf{r}} \perp x_0$, then we can find vectors $p_j \in \partial B(x_0, r_j) \cap B(0, r_0)$ so that $p_j/|p_j| \rightarrow \frac{e - e_{x_0, \mathbf{r}}}{|e - e_{x_0, \mathbf{r}}|}$. Thus $|e - e_{x_0, \mathbf{r}}| = 0$, that is, $e = e_{x_0, \mathbf{r}}$. If $e - e_{x_0, \mathbf{r}} \not\perp x_0$, then we can find vectors $p \in \partial B(x_0, r_j) \cap B(0, r_0)$ so that either $w/|w|$ or $-w/|w|$ is exactly $\frac{e - e_{x_0, \mathbf{r}}}{|e - e_{x_0, \mathbf{r}}|}$, and hence $e = e_{x_0, \mathbf{r}}$. Thus $H(e) = Su(x^0)$ and, for any $\delta > 0$, $e \in \mathcal{D}(u)(x^0; r; \delta)$ for sufficiently small $r > 0$.

We also note that (1.7) implies

$$|u(y) - u(x_0) - e_6 \cdot (y - x_0)|_{L^\infty(B(x_0, 5))} \leq 2\delta, \quad 1 \leq H(e_6) \leq 2.$$

That is, $e_6 \in \mathcal{D}(u)(x^0; 5/6; 2\delta)$.

Let $v(x) = \frac{6}{5}[u(\frac{5}{6}x + x_0) - u(x_0)]$ for $x \in B(0, 6)$. We see that $v \in AM_H(B(0, 6))$, $\|Dv\|_{L^\infty(B(0, 6))} \leq 2R$, $e_6 \in \mathcal{D}(v)(0; 1; 2\delta)$ with $1 \leq H(e_6) \leq 2$, and $e \in \mathcal{D}(v)(0; r; 2\delta)$ for some sufficiently small $r > 0$, $Sv(0) = H(e)$. By Proposition 1.4, if $\delta < \delta(H, 2R, 2\delta)$ we know that $|e_6 - e| \leq \epsilon$. Thus $|e_6 - e_{0,6}| \leq \epsilon$ as desired. \square

Using Corollary 6.1 and Theorem 1.1 (ii) we are able to prove Theorem 1.5.

Proof of Theorem 1.5. Step 1. We prove that u is differentiable everywhere and $H(Du) = Su$ everywhere. Let $x^0 \in \Omega$. Up to considering $u(\cdot + x_0) - u(x^0)$, we may assume that $x^0 = 0$ and $u(0) = 0$. Up to considering $\frac{1}{r}u(rx)$ we may assume that $B(0, 2) \subset \Omega$.

To see the differentiability of u at 0, it suffices to find a vector e such that for any sequence $\{r_j\}_{j \in \mathbb{N}}$ which converges to 0 we have

c21 (6.2)
$$\lim_{j \rightarrow \infty} \sup_{y \in B(0, 1)} \left| \frac{1}{r_j} u(r_j y) - e \cdot y \right| = 0,$$

and $H(e) = Su(0)$. Thus $Du(0) = e$. Indeed, if u is not differentiable at 0, then there exists a sequence s_j such that $\lim_{j \rightarrow \infty} \left| \frac{1}{s_j} u(s_j y) - e \cdot y \right| > 0$.

If $Su(0) = 0$, by Theorem 1.1 (ii) we know that (6.2) holds with $e = 0$.

If $Su(0) > 0$, up to considering $\tilde{H} = \frac{1}{Su(0)}H$, we may assume that $Su(0) = 1$. By Theorem 1.1 (ii), for any sequence $\mathbf{r} = \{r_j\}_{j \in \mathbb{N}}$ which converges to 0, up to considering its subsequence we can find a vector $e_{\mathbf{r}}$ such that

c21x (6.3)
$$\lim_{j \rightarrow \infty} \sup_{y \in B(0, 1)} \left| \frac{1}{r_j} u(r_j y) - e_{\mathbf{r}} \cdot y \right| = 0,$$

and $H(e_{\mathbf{r}}) = Su(0)$. Let $\mathbf{s} = \{s_k\}_{k \in \mathbb{N}}$ be any another sequence with vector $e_{\mathbf{s}}$ satisfying

c21xx (6.4)
$$\lim_{k \rightarrow \infty} \sup_{y \in B(0, 1)} \left| \frac{1}{s_k} u(s_k y) - e_{\mathbf{s}} \cdot y \right| = 0$$

and $H(e_{\mathbf{s}}) = Su(0)$. To get (6.2), we only need to prove $e_{\mathbf{r}} = e_{\mathbf{s}}$.

For any j , set $v_j(y) = \frac{6}{r_j}u(r_j y/6)$ for all $y \in B(0, 6)$. Note that, for all $j \in \mathbb{N}$, we have $Sv_j(0) = Su(0)$ and

$$\|H(Dv_j)\|_{L^\infty(B(0, 6))} = \|H(Du)\|_{L^\infty(B(0, r_j))} \leq \|H(Du)\|_{L^\infty(B(0, 1))} =: R < \infty.$$

For any $\delta > 0$, by (6.3) and (6.4), there exists a j_δ such that $e_{\mathbf{r}} \in \mathcal{D}(v_j)(0; 1; \delta)$ and $e_{\mathbf{s}} \in \mathcal{D}(v_j)(0; s_k/r_j; \delta)$ for all $j \geq j_\delta$ and large k with $s_k \ll r_j$. For any $\epsilon > 0$, applying Corollary 6.1 with $\delta < \delta(H, R, \epsilon)$, we obtain $|e_{\mathbf{s}} - e_{\mathbf{r}}| \leq C\epsilon$. By the arbitrariness of ϵ , we have $e_{\mathbf{s}} = e_{\mathbf{r}}$ as desired.

Step 2. We prove (1.10) and hence the continuity of Du .

Suppose that the conclusion (1.10) in Theorem 1.5 is not correct. Then there exist $k_0 > 0$, $\epsilon_0 > 0$ so that we can find a sequence $\{s_j > 0\}$ and a family $u_j \subset AM_H(B(x_j, 2r_j))$ satisfying $s_j/r_j \rightarrow 0$,

c24 (6.5)
$$\|H(Du_j)\|_{L^\infty(B(x_j, 2r_j))} \leq k_0, \quad |Du_j(x_j) - Du_j(y_j)| \geq \epsilon_0 \text{ for some } y_j \in B(x_j, s_j).$$

Up to considering $\frac{1}{r_j}u_j(r_jx + x_j) - u_j(x_j)$ for $x \in B(0, 1)$ we may assume that $x_j = 0$, $u_j(0) = 0$, $r_j = 1$ and $s_j \rightarrow 0$. Since $\|H(Du_j)\|_{L^\infty(B(0,2))} \leq k_0$ implies that $\|Du_j\|_{L^\infty(B(0,2))} \leq C(H, k)$, we know that $u_j \rightarrow u_\infty$ locally uniformly in $B(0, 2)$ as $j \rightarrow \infty$ (up to some subsequence). Note that $u_\infty \in AM_H(B(0, 2))$, $u_\infty(0) = 0$. By Step 1, u_∞ is differentiable in $B(0, 2)$, and hence for any $\delta > 0$, there exists $r_0 > 0$ such that we have

$$(c25) \quad (6.6) \quad \sup_{x \in B(0, r_0)} |u_\infty(x) - Du_\infty(0) \cdot x| \leq \frac{\delta r_0}{2}, \quad |Du_j(y_j) - Du_j(0)| \geq \epsilon_0.$$

Therefore there exists a sufficiently large $j_\delta > 0$ such that

$$(c26) \quad (6.7) \quad \sup_{x \in B(0, r_0)} |u_j(x) - Du_\infty(0) \cdot x| \leq \delta r_0, \quad \forall j \geq j_\delta.$$

This implies that for $j \geq j_\delta$, we have

$$(c27) \quad (6.8) \quad |u_j(x) - u_j(y) - Du_\infty(0) \cdot (y - x)| \leq 2\delta r_0, \quad \forall x, y \in B(0, r_0).$$

In particular, for $j \geq j_\delta$, we have

$$(c28) \quad (6.9) \quad \sup_{x \in B(0, r_0/2)} |u_j(x + y_j) - u_j(y_j) - Du_\infty(0) \cdot x| \leq 2\delta r_0.$$

If $Du_\infty(0) = 0$, by (6.6) we have

$$u_j(x) \leq \delta r_0 = \delta|x| \leq \mathcal{C}_{C\delta}^H(x) \quad \forall x \in \partial B(0, r_0)$$

and hence by Corollary 3.8, $u_j(x) \leq \mathcal{C}_{C\delta}^H(x) \quad \forall x \in B(0, r_0)$. This implies that $H(Du_j(0)) = Su_j(0) \leq C\delta$. Similarly, by (6.9), one has $H(Du_j(y_j)) = Su_j(y_j) \leq C\delta$. If $\delta \ll \epsilon$, this leads to a contraction with $|H(Du_j(y_j)) - H(Du_j(0))| \geq \epsilon_0$.

If $Du_\infty(0) \neq 0$, up to considering $\tilde{H} = \frac{1}{H(Du_\infty(0))}H$ we may assume that $H(Du_\infty(0)) = 1$. It suffices to show that for any $\epsilon > 0$,

$$|Du_j(y_j) - Du_\infty(0)| \leq C\epsilon, \quad |Du_j(0) - Du_\infty(0)| \leq C\epsilon \text{ for sufficiently large } j.$$

If this is correct, letting $\epsilon < \epsilon_0/4C$ we get contradiction with $|H(Du_j(y_j)) - H(Du_j(0))| \geq \epsilon_0$.

Below we only verify $|Du_j(y_j) - Du_\infty(0)| \leq C\epsilon$ for large j ; the proof of $|Du_j(0) - Du_\infty(0)| \leq C\epsilon$ for large j is similar and easier. Let $v_j(x) = \frac{12}{r_0}u(r_0x/12 + y_j)$. We have $\|H(Dv_j)\|_{L^\infty(B(0,6))} \leq k_0$. Moreover, (6.9) implies $Du_\infty(0) \in \mathcal{D}(v_j)(0; 1; 2\delta)$ for $j \geq j_0$. Since v_j is differentiable at 0, we know that $Du(y_j) = Dv_j(0) \in \mathcal{D}(v_j)(0; r; 2\delta)$ for sufficiently small $r > 0$. For any $\epsilon > 0$, applying Corollary 6.1 with $\delta < \delta(H, k_0, \epsilon)$ we know that $|Du(y_j) - Du_\infty(0)| \leq C\epsilon$. Thus we complete proof of the Theorem 1.5. \square

With the aid of Theorem 1.5 we prove (i) \Leftrightarrow (iii) and (i) \Leftrightarrow (iv) in Theorem 1.1 as below.

Proof of (i) \Leftrightarrow (iii) and (i) \Leftrightarrow (iv) in Theorem 1.1. As clarified in the introduction, we only need to prove Theorem 1.1 under the assumption (1.4).

Proof of (i) \Rightarrow (iii). This follows from Theorem 1.5 directly.

Proof of (i) \Rightarrow (iv). Let $u \in AM_H(\mathbb{R}^n)$ and assume that there exists some constant $K \geq 1$ such that $|u(x)| \leq K(1 + |x|)$ for all $x \in \mathbb{R}^n$. By Theorem 1.5, $u \in C^1(\mathbb{R}^n)$. Moreover we have $\|H(Du)\|_{L^\infty(\mathbb{R}^n)} < \infty$. Indeed, since Lemma 2.5 implies $H(Du(x)) = Su(x) \leq S_t u(x)$ for any $t > 0$ and $x \in \mathbb{R}^n$, it suffices to show $S_t^+ u(x) < C(K)$ whenever t is sufficiently large for any given $x \in \mathbb{R}^n$. By $|u(y)| \leq K(1 + |y|)$ for all $y \in \mathbb{R}^n$, if $t \geq (1 + |x|)$, we have

$$S_t^+ u(x) = \sup_{y \in \mathbb{R}^n} \left[\frac{u(y) - u(x)}{t} - L\left(\frac{y - x}{t}\right) \right] \leq 2K + \sup_{y \in \mathbb{R}^n} \left[\frac{K|y - x|}{t} - L\left(\frac{y - x}{t}\right) \right] = 2K + \sup_{z \in \mathbb{R}^n} [K|z| - L(z)].$$

$$S_t^+ u(x) \leq 2K + \sup_{|z| \leq R_K} [K|z| - L(z)] \leq 2K + KR_K$$

Write $k = \|H(Du)\|_{L^\infty(\mathbb{R}^2)}$. For any $R > 0$ let $u_R(x) = u(Rx)/R$ for all $x \in \mathbb{R}^n$. Then $u_R \in AM_H(\mathbb{R}^2) \cap C^1(\mathbb{R}^2)$ and $\|H(Du_R)\|_{L^\infty(\mathbb{R}^2)} = k$. By Theorem 1.5 again,

$$|Du(x) - Du(0)| = \limsup_{R \rightarrow \infty} \left| Du_R \left(\frac{x}{R} \right) - Du(0) \right| \leq \limsup_{R \rightarrow \infty} \rho_k \left(\frac{|x|}{R} \right) = 0 \quad \forall x \in \mathbb{R}^n.$$

This implies that $Du \equiv Du(0)$ and hence $u(x) = u(0) + Du(0) \cdot x$ for all $x \in \mathbb{R}^n$.

Proofs of (iii) or (vi) \Rightarrow (i). Assume that $H^{-1}(k) = [a, b]$ with $a \neq b$ for some $k \geq 0$. It suffices to show that (iii) and (iv) fail.

Let f and u_f be as in the proof of (ii) \Rightarrow (i). Obviously, $u_f \notin C^1(\mathbb{R}^n)$ and hence (iii) fails. This gives (iii) \Rightarrow (i). Note also that $\|H(Du_f)\|_{L^\infty(\mathbb{R}^n)} = k$ implies that $\|Du_f\|_{L^\infty(\mathbb{R}^n)} < \infty$ and hence u_f enjoys a linear growth. But, obviously, u_f is not a linear function and hence (iv) fails. This gives (iv) \Rightarrow (i). The proof of Theorem 1.1 is complete. \square

Acknowledgment. The authors would like to thank Professor Yifeng Yu for several valuable discussions in this paper.

REFERENCES

as [1] S. N. Armstrong and C. K. Smart, *An easy proof of Jensen's theorem on the uniqueness of infinity harmonic functions*. Calc. Var. Partial Differential Equations **37** (2010), 381-384.

a1 [2] G. Aronsson, *Minimization problems for the functional $\sup_x F(x, f(x), f'(x))$* . Ark. Mat. **6** (1965), 33-53.

a2 [3] G. Aronsson, *Minimization problems for the functional $\sup_x F(x, f(x), f'(x))$. II*. Ark. Mat. **6** (1966), 409-431.

a3 [4] G. Aronsson, *Extension of functions satisfying Lipschitz conditions*. Ark. Mat. **6** (1967), 551-561.

A1968 [5] G. Aronsson, *On the partial differential equation $u_x^2 u_{xx} + 2u_x u_y u_{xy} + u_y^2 u_{yy} = 0$* . Ark. Mat. **7** (1968), 395-425.

a4 [6] G. Aronsson, *Minimization problems for the functional $\sup_x F(x, f(x), f'(x))$. III*. Ark. Mat. **7** (1969), 509-512.

a84 [7] G. Aronsson, *On certain singular solutions of the partial differential equation $u^2 u_{xx} + 2u_x u_y u_{xy} + u_y^2 u_{yy} = 0$* . Manuscripta Math. **47** (1984), 133-151.

acj [8] G. Aronsson, M. Crandall and P. Juutinen, *A tour of the theory of absolutely minimizing functions*. Bull. Amer. Math. Soc. (N.S.) **41** (2004), 439-505.

acjs [9] S. N. Armstrong, M. G. Crandall, V. Julin and C. K. Smart, *Convexity criteria and uniqueness of absolutely minimizing functions*. Arch. Ration. Mech. Anal. **200** (2011), 405-443.

bb [10] G. Barles and J. Busca, *Existence and comparison results for fully nonlinear degenerate elliptic equations without zeroth-order term*. Comm. Partial Differential Equations **26** (2001), 2323-2337.

bjw [11] N. Barron, R. Jensen and C. Y. Wang, *The Euler equation and absolute minimizers of L^∞ functionals*. Arch. Ration. Mech. Anal. **157** (2001), 255-283.

bej [12] E. N. Barron, L. C. Evans, and R. Jensen, *The infinity Laplacian, Aronsson's equation and their generalizations*. Trans. Amer. Math. Soc. **360** (2008), 77-101.

c03 [13] M. Crandall, *An efficient derivation of the Aronsson equation*. Arch. Ration. Mech. Anal. **167** (2003), 271-279.

ce [14] M. Crandall and L. C. Evans, *A remark on infinity harmonic functions*. Proceedings of the USA-Chile Workshop on Nonlinear Analysis, Viadel Mar-Valparaíso, 2000 (electronic), Electron. J. Differ. Equ. Conf. 6, pp. 123-129.

ceg [15] M. Crandall, C. Evans and R. Gariepy, *Optimal Lipschitz extensions and the infinity Laplacian*. Calc. Var. Partial Differential Equations **13** (2001), 123-139.

cgw [16] M. G. Crandall, G. Gunnarsson and P. Wang, *Uniqueness of ∞ -harmonic functions and the eikonal equation*. Comm. Partial Differential Equations **32** (2007), 1587-1615.

CIL [17] M. G. Crandall, H. Ishii, P. Lions, *User's guide to viscosity solutions of second order partial differential equations*. Bull. Amer. Math. Soc. (N.S.) **27** (1992), 1-67.

cwy [18] M. G. Crandall, C. Y. Wang and Y. F. Yu, *Derivation of the Aronsson equation for C^1 -Hamiltonians*. Trans. Amer. Math. Soc. **361** (2009), 103-124.

es08 [19] L. C. Evans and O. Savin, *$C^{1,\alpha}$ regularity for infinity harmonic functions in two dimensions*. Calc. Var. Partial Differential Equations **32** (2008), 325-347.

es11a [20] L. C. Evans and C. K. Smart, *Everywhere differentiability of infinity harmonic functions*. Calc. Var. Partial Differential Equations **42** (2011), 289-299.

pdf [21] L. C. Evans and C. K. Smart, *Adjoint methods for the infinity Laplacian partial differential equation*. Arch. Ration. Mech. Anal. **201** (2011), 87-113.

gwy06 [22] R. Gariepy, C. Y. Wang and Y. F. Yu, *Generalized cone comparison principle for viscosity solutions of the Aronsson equation and absolute minimizers*. Comm. Partial Differential Equations **31** (2006) 1027-1046.

- [j93] [23] R. Jensen, *Uniqueness of Lipschitz extensions: minimizing the sup norm of the gradient*. Arch. Ration. Mech. Anal. **123** (1993), 51–74.
- [jwy] [24] R. Jensen, C. Y. Wang, and Y. F. Yu, *Uniqueness and nonuniqueness of viscosity solutions to Aronsson's equation*. Arch. Ration. Mech. Anal. **190** (2008), 347–370.
- [k11] [25] N. Katzourakis, *Explicit singular viscosity solutions of the Aronsson equation*. C. R. Acad. Sci. Paris, Ser. I **349** (2011), 1173–1176.
- [pssw] [26] Y. Peres, O. Schramm, S. Sheffield and D. B. Wilson, *Tug-of-war and the infinity Laplacian*. J. Amer. Math. Soc. **22** (2009), 167–210.
- [s05] [27] O. Savin, *C^1 -regularity for infinity harmonic functions in two dimensions*. Arch. Ration. Mech. Anal. **176** (2005), 351–361.
- [wy] [28] C. Y. Wang and Y. F. Yu, *C^1 -regularity of the Aronsson equation in \mathbb{R}^2* . Ann. Inst. H. Poincaré Anal. Non Linéaire **25** (2008), 659–678.
- [wy12] [29] C. Y. Wang and Y. F. Yu, *C^1 -boundary regularity of planar infinity harmonic functions*. Math. Res. Lett. **19** (2012), 823–835.
- [y06] [30] Y. F. Yu, *L^∞ variational problems and Aronsson equations*. Arch. Ration. Mech. Anal. **182** (2006), 153–180.
- [y07] [31] Y. F. Yu, *L^∞ Variational Problems and Weak KAM Theory*. Comm. Pure Appl. Math. **LX** (2007), 1111–1147.

DEPARTMENT OF MATHEMATICS, BEIHANG UNIVERSITY, BEIJING 100191, P.R. CHINA

E-mail address: SY1609131@buaa.edu.cn

DEPARTMENT OF MATHEMATICS, PURDUE UNIVERSITY, 150 N. UNIVERSITY STREET WEST LAFAYETTE, IN 47907-2067, US

E-mail address: wang2482@wang2482@purdue.edu

DEPARTMENT OF MATHEMATICS, BEIHANG UNIVERSITY, BEIJING 100191, P.R. CHINA

E-mail address: yuanzhou@buaa.edu.cn