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Abstract. Let n ≥ 2 and suppose that H ∈ C0(Rn) is convex and lim infp→∞ H (p) = ∞. The
following are proved to be equivalent:

(i) H is not a constant in any line segment.
(ii) Any absolute minimizer for H in any domain Ω ⊂ Rn enjoys the linear approximation

property.
When n = 2, (i) is further proved to be equivalent to (iii) or (iv) below:

(iii) Any absolute minimizer for H in any domain Ω ⊂ R2 enjoys C1 (Ω)-regularity.
(iv) Any absolute minimizer for H in whole plane enjoying a linear growth at ∞ must be a

linear function.
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1. Introduction

Let n ≥ 2 and suppose that H ∈ C0(Rn) is a convex and coercive (lim infp→∞ H(p) = ∞). Aronsson 1960’s
initiated the study of minimization problems for L∞-functional

FH (u,Ω) = esssup
x∈Ω

H (Du(x)) for any domain Ω ⊂ Rn and function u ∈ W1,∞
loc (Ω);

see [2, 3, 4, 5, 6]. Given a domain Ω ⊂ Rn, by Aronsson a function u ∈ W1,∞
loc (Ω) is an absolute minimizer for

H in Ω (write u ∈ AMH (Ω) for short) if

FH (u,V) ≤ FH (v,V) whenever V b Ω, v ∈ W1,∞
loc (V) ∩C(V) and u = v on ∂V .

It turns out that the absolute minimizer is the correct notion of minimizers for such L∞-functionals.
The main purpose of paper is to establish the following criteria for the regularity of absolute minimizers.

lla Theorem 1.1. Let n ≥ 2 and suppose that H ∈ C0(Rn) is a convex and coercive. Then the following are
equivalent:

(i) H is not a constant in any line segment.
(ii) Any absolute minimizer for H in any domain Ω ⊂ Rn enjoys the linear approximation property.

When n = 2, (i) is also equivalent to (iii) or (iv) below:
(iii) Any absolute minimizer for H in any domain Ω ⊂ R2 enjoys C1 (Ω)-regularity.
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(iv) Any absolute minimizer for H in whole plane enjoying a linear growth at∞ must be a linear function.

We refer (iv) above as a Liouville property of absolute minimizer for H. A function u ∈ C0(Rn) enjoys a
linear growth at∞ if |u(x)| ≤ C(1+ |x|) for all x ∈ Rn, where C is a constant. Moreover, by Crandall-Evans [14]
(see also [31] and [28]), a function u ∈ C0,1 (Ω) enjoys the linear approximation property if for any x ∈ Ω and
any sequence {r j} j∈N which converges to 0, there exist a subsequence {r jk }k∈N and a vector e{r jk }k∈N

such that

lim
k→∞

sup
y∈B(0,1)

∣∣∣∣∣∣u(x + r jk y) − u (x)
r jk

− e{r jk }k∈N
· y

∣∣∣∣∣∣ = 0

and
H

(
e{r jk }k∈N

)
= S u(x) := lim

r→0
‖H (Du) ‖L∞(B(x,r)).

Note that everywhere differentiability always implies the linear approximation property. But the converse is
not necessarily correct due to Preiss’ fucntion; in particular, Lipchitz functions do not have the linear approxi-
mation property necessarily.

We have the following interesting consequence of Theorem 1.1.

Corollary 1.2. For any Banach norm ‖p‖ in Rn, the unit sphere S 1
‖·‖

:= {p ∈ Rn : ‖p‖ = 1} does not contain
any line-segment if and only if absolute minimizers for ‖p‖ have the linear approximation property, or the
C1-regularity (when n = 2) or the Liouville property (when n = 2).

In particular, let

|p|t =

 n∑
i=1

pt
i

1/t

when t ≥ 1 and = max
1≤i≤n

|pi| when t = ∞ for all p ∈ Rn.

For 1 < t < ∞, absolute minimizers for |p|t always have the linear approximation property, the C1-regularity
(when n = 2) and the Liouville property (when n = 2); but for t = 1 and ∞, absolute minimizers do not have
any of these properties necessarily.

Recall that if H ∈ C1(Rn), Aronsson derived the Euler-Lagrange equations for absolute minimizers:

eq1.2eq1.2 (1.1) AH[u] := 〈D[H (Du)],DpH (Du)〉 =
n∑

i, j=1

Hpi (Du) Hp j (Du) uxi x j = 0 in Ω,

which are highly degenerate nonlinear elliptic equations. In the special case H(p) = 1
2 |p|

2, (1.1) is the well-
known∞-Laplace equation

eq1.3eq1.3 (1.2) ∆∞u :=
1
2
〈D|Du|2,Du〉 =

n∑
i, j=1

uxiux juxi x j = 0 in Ω.

By Crandall-Lions’ theory [17], viscosity solutions to (1.1) and (1.2) are well-defined; viscosity solutions to
(1.2) are called as∞-harmonic functions. Jensen [23] identified∞-harmonic functions with absolute minimiz-
ers for 1

2 |p|
2. If H ∈ C1(Rn) is convex and coercive, by Crandall et al [18] and Yu [30] (see also [11, 13, 22, 9])

we know that absolute minimizers for H coincide with viscosity solutions to (1.1).
The existence and uniqueness of∞-harmonic functions in bounded domains has been established by Jessen

[23]; see also [10, 16, 1, 26] for other approaches for the uniqueness. If H ∈ C0(Rn) is convex and coercive, we
refer to [11, 8] for the existence of absolute minimizers. Assuming additionally that H−1 (min H) has empty
interior, Armstrong et al [9] obtained their uniqueness; see also Jensen et al [24] when H ∈ C2 (Rn), and [8, 16]
when H is a Banach norm. By [30, 24, 9], to get the uniqueness it is also necessary to assume H−1 (min H)
having empty interior.

The regularity of absolute minimizers/viscosity solutions to (1.1)&(1.2) is the main issue in this field. By
the definition, absolute minimizers are always locally Lipschitz, and hence differentiable almost everywhere.
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Crandall-Evans [14] obtained the linear approximation property of ∞-harmonic functions. The interior C1-
regularity of planar ∞-harmonic functions and also a Liouville property as in Theorem 1.1 (iv) were proved
by Savin [27], their interior C1,α-regularity for some 0 < α < 1/3 by Evans-Savin [19] and their boundary
C1-regularity by Wang-Yu [29]. When n ≥ 3, Evans-Smart [20, 21] obtained the everywhere differentiability
of∞-harmonic functions.

If H ∈ C2(Rn) is locally strongly convex, Wang-Yu [28] obtained the linear approximation property of
absolute minimizers/viscosity solutions to (1.1), and moreover when n = 2, their interior C1-regularity and a
Liouville property as in Theorem 1.1 (iv). On the other hand, assuming H ∈ C1 (Rn), Katzourakis [25] showed
that, to get C1-regularity of all viscosity solutions to (1.1), it is necessary to assume that H is not a constant in
any line-segment. Indeed, if H ∈ C1 (Rn) is a constant in some line-segment (say [a, b]), by [25] the following
function u f < C1(Rn) is a viscosity solution to (1.1):

E0E0 (1.3) u f (x) =
b + a

2
· x + f

(
b − a

2
· x

)
∀x ∈ Rn,

where f ∈ C0,1 (R) with ‖ f ′‖L∞(R) < 1 but f < C1(Rn). If H ∈ C0(Rn) is convex and coercive, Theorem 1.1
indicates that, to get the linear approximation property, C1-regularity (when n = 2) and the Liouville property
(when n = 2) of absolute minimizers for H, it is sufficient and also necessary to assume that H is a not constant
in any line-segment.

Now we turn to the proof of Theorem 1.1, and without loss of generality, under the following stronger
assumption on H:

assh0assh0 (1.4) H ∈ C0(Rn) is convex, H (0) = minp∈Rn H (p) = 0 and lim infp→∞
H(p)
|p| = ∞.

Indeed, if H ∈ C0(Rn) is a convex and coercive, there exists a p0 ∈ R
n such that minp∈Rn H(p) = H(p0). Let

H̃(p) = [H(p + p0) − H(p0)]2. Then H̃ satisfies the assumption (1.4), and also, H̃ satisfies (i) if and only if H
satisfies (i). Note that u ∈ AMH(Ω) if and only if ũ(x) ∈ AMH̃(Ω), where ũ(x) = u(x) − p0 · x for all x ∈ Ω.
Moreover, u and ũ enjoy the same regularity.

To prove (ii), (iii) or (iv)⇒ (i) in Theorem 1.1, we show that if H is a constant in some line-segment [a, b],
then the function u f given in (1.3) is an absolute minimizer for H in Rn whenever ‖ f ′‖L∞(R) ≤ 1; see Lemma
4.2. By choosing suitable f , one easily see that u f fails to have the linear approximation property and hence is
not C1-regular, and also that the Liouville theorem fails. Note that this proof also works in dimension n ≥ 2.
See Section 4 for Lemma 4.2 and the proof of (ii) ⇒ (i) in Theorem 1.1. The proofs of (iii) or (iv) ⇒ (i) in
Theorem 1.1 is stated in Section 6.

The proof of (i)⇒ (ii) in Theorem 1.1 relies on the key Lemma 1.3.

LEMC4 Lemma 1.3. Let H be as in (1.4) with n = 2 and satisfy (i). If u ∈ C0,1(Rn) satisfies

F1F1 (1.5) S +t u (x) ,−S −t u (x) ≤ k and S +t u (0) = −S −t u (0) = k ∀x ∈ Rn, t > 0

for some 0 ≤ k < ∞, then u is a linear function and H(Du) ≡ k, that is, there exists a vector p0 ∈ R
n such that

u (x) = u (0) + p0 · x for all x ∈ Rn, and H (p0) ≡ k.

The notion S ±t u (x) above will be explained in Section 2, where we also recall the comparison property with
cones and convex/concave criteria for absolute minimizers, which are given by Armstrong et al [9]. Lemma
1.3 and the convex/concave criteria allow us to get the linear approximation property of absolute minimizer in
a standard way; see section 4 for details.

Lemma 1.3 was first proved by Cranial-Evans [14] when H (p) = 1
2 |p|

2 by using its Hilbert structure.
When H ∈ C2(R2) is locally strongly convex, by using the C1-regularity of cone functions, Wang-Yu [28]
proved Lemma 1.3. When H ∈ C1(Rn) is strictly convex and satisfies (1.4), observing and using the C1(Rn)-
regularity and strict convexity of the conjugate L of H (see Theorem 3.1 (i) below), one could deduce Lemma
1.3 from the arguments of Yu [31], even where some stronger conditions on H were assumed. But when H
satisfies (1.4) and Theorem 1.1 (i) (that is, H is not constant in any line-segment), the C1-regularity of cone
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functions is unavailable, and the convex conjugate L of H does not necessarily have C1(Rn)-regularity and also
is not necessarily strictly convex. This causes some essentially difficulty to prove Lemma 1.3; hence, new idea
is needed to prove Lemma 1.3.

Indeed, in Section 3, we observe that, under (1.4) and Theorem 1.1 (i) for H, the sub-differential set of its
convex conjugate L at any point must be a single point or be a line-segment; see Theorem 3.1 (where we also
obtain a 2-dimensional analogue for the geometry of ∂L which may has its own interests). Using this, by some
careful analysis on the analytic/geometric structures of Hamilton-Jacobi flows and also the subdifferential sets
of H and L, we are able to determinant a unique vector p0 ∈ H−1 (k) so that u (x) = u (0) + p0 · x and hence
prove Lemma 1.3; see Section 4 for details.

To prove (i)⇒ (iii)&(iv) in Theorem 1.1 we need the following crucial Proposition 1.4. Given any x0 ∈ R2

and r, δ ∈ (0, 1], for a function u ∈ C0(B(x0, r)) denote by D(u)(x0; r; δ) the collection of all vectors e such that

sup
B(x0,1)

|u(x + x0) − u(x0) − e · (x − x0)| ≤ δr.

In other words, D(u)(x0; r; δ) collects all linear approximations at the scale δ of u in the ball B(x0, r).

xprop Proposition 1.4. Suppose that H satisfies (1.4) with n = 2 and (i). Let R ≥ 1. For any ε > 0, there exist
δ = δ(H,R, ε) > 0 such that for any e6 and e0,6, if we can find a u ∈ AMH(B(0, 6)) satisfying

xlin0xlin0 (1.6) ‖H(Du)‖L∞(B(0,6)) ≤ R and u is not linear in some neighborhood of 0,

xlin1xlin1 (1.7) e6 ∈ D(u)(0; 6; δ) and 1 ≤ H(e6) ≤ 2,

and

xlin2xlin2 (1.8) e0,6 ∈ D(u)(0; 6r; δ) for some r ∈ (0, 1/2] and H(e0,6) = S u(0),

then we have

xlin3xlin3 (1.9) |e6 − e0,6| ≤ ε.

By an argument essentially the same to those of [27, Theorem A,B&C] and [28, Theorem B,C&E], one
could deduce the following Theorem 1.5 from Proposition 1.4 and Theorem 1.1 (ii), and then prove (i)⇒ (iii)
and (iv) in Theorem 1.1 by using Theorem 1.5; we give the details in Section 6 for reader’s convenience and
also for the completeness of this paper, but the reader familiar with [27] and [28] may ignore Section 6.

c2 Theorem 1.5. Let H be as in (1.4) with n = 2 and satisfy Theorem 1.1 (i).
(i) Given any domain Ω ⊂ Rn, if u ∈ AMH (Ω), then u ∈ C1 (Ω).

(ii) For any k > 0, there exists an increasing continuous function ρk with ρk (0) = 0 such that

rhorho (1.10) sup
x,y∈B(z,s)

|Du(x) − Du(y)| ≤ ρk (s/r) whenever s < r, u ∈ AMH (B (x, 2r)) and ‖H(Du)‖L∞(B(x,2r)) ≤ k.

So to get Theorem 1.1, we only need to prove Proposition 1.4. It was first proved by Savin [27, Propposi-
tion 1] when H (p) = 1

2 |p|
2. and later by Wang-Yu [28, Propsotion 4.1] when H ∈ C2(R2) is locally strongly

convex. In the two proofs, a planar topology observation by Savin and several properties of absolute mini-
mizers (including comparison property with cones, comparison with linear function and linear approximation
property) were used.

When H satisfies (1.4) and Theorem 1.1 (i), we will prove Proposition 1.4 by using Theorem 1.1 (ii) and
some ideas of Savin [27] and Wang-Yu [28], more precisely, using the procedure by Wang-Yu [28, Propsotion
4.1]. Note that Savin (see the proof of [28, Proposition 4.1]) used the Hilbert structure of 1

2 |p|
2 and Wang-

Yu (see the proof of [28, Proposition 4.1]) relied on the C2(R2)-regularity and (locally) strong convexity of
H. However, in Proposition 1.4, H is only supposed to satisfy (1.4) and the necessary (and hence minimal)
assumption (i); none of Hilbert structure, C1-regularity and (locally) strong convexity are available. To over-
coming several essential difficulties caused by these, and then to get Proposition 1.4, new ideas/observations
are definitely required.
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Indeed, by using Theorem 1.1 (ii) and Savin’s topology argument (see Lemma (5.1)) as in [28, Lemma 4.2],
we get some auxiliary vector e. The proof of (1.9) is then reduced to |e6−e| ≤ ε/2 (see (5.4)) and |e0,6−e| ≤ ε/2
(see (5.5)). To get |e6 − e| ≤ ε/2, the key observations are the analytic properties of H and L in Section 3, in
particular, given in Theorems 3.2 and 3.3. These properties (in particular Theorem 3.3) allow us to build up a
discrete flow and hence get the length estimate H(e6) ≤ H(e) + η as in Lemma 5.2, and also allows to get the
angle estimates as in Lemma 5.3. From these and Theorem 3.2 we conclude the key inequality |e6 − e| ≤ ε/2.
Similarly, we also have |e0,6 − e| ≤ ε/2.

We emphasis that the angle estimate in Lemma 5.3 is more essential. Looking at u f given (1.3), one easily
see that S (u f ) is always continuous (recalling that H(Du f ) = S (u f ) almost everywhere) but can not expect any
angle estimate similar to Lemma 5.3 (and also everywhere differentiability and C1-regularity).

2. Preliminaries

The following comparison principle is established by [9]. It is known that linear functions are always
absolute minimizers.

com-linear Lemma 2.1. Suppose that H satisfies (1.4) and H−1(0) has empty interior. For any domain U ⊂ Rn, and
u, v ∈ AMH(U) ∩C0(U) (in particular, v is any linear function), we have

max
x∈U

[±u(x) − v(x)] ≤ max
x∈∂U

[±u(x) − v(x)].

Next we recall the comparison property with cones. The cone functions for H are defined by

C H
a (x) = sup

H(p)≤a
p · x ∀a ≥ 0, x ∈ R2.

It is evident that C H
a ∈ C0,1(Rn) is convex, positively homogeneous, subadditive and C H

a (x) > 0 for every
a > 0 and x , 0. See [9, Lemma 2.18] for the following lemma.

LEM7.11 Lemma 2.2. Let H be as in (1.4). Let U ⊂ Rn be any domain, u ∈ C0,1 (U) and a ≥ 0. The following are
equivalent:

(i) H (Du) ≤ a almost everywhere in U;
(ii) u (x) − u (y) ≤ C H

a (x − y) provided the line segment [x, y] ⊂ U.

Below denote by usc (U) (resp. lsc (U)) the class of upper (resp. lower) semi-continuous functions in U.

Definition 2.3. Let H be as in (1.4).
(i) A function u ∈ usc (U) satisfies the comparison property with cones for H from above in U if

max
V
{u − C H

a (x − x0)} = max
∂V
{u − C H

a (x − x0)}

whenever V b Ω, a ≥ 0 and x0 ∈ R
n \ V; for short, write u ∈ CCAH (U).

(ii) A function u ∈ lsc (U) satisfies the comparison property with cones for H from below in U if and

min
V
{u +CH

a (x0 − x)} = min
∂V
{u +CH

a (x0 − x)}

whenever V b Ω, a ≥ 0 and x0 ∈ R
n \ V; for short, write u ∈ CCBH (U).

(iii) We say u ∈ C0 (U) satisfies the comparison property with cones for H in U (for short, u ∈ CCH (U)) if
u ∈ CCBA (U) ∩CCBH (U).

Denote by L the convex conjugate of H, that is,

L (q) = sup
p∈R2

[〈p, q〉 − H (p)].

Note that L is convex, L (0) = minp∈Rn L (q) = 0 and lim infq→∞ L (q) /|q| = ∞. Given any domain U ⊂ Rn and
a bounded function u ∈ C0 (U), the Hamilton-Jacobi flows are defined by

T tu (x) = sup
y∈U

[
u (y) − tL

(y − x
t

)]
and Ttu (x) = inf

y∈U

[
u (y) + tL

( x − y
t

)]
∀t > 0, x ∈ U
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and T 0u (x) = u (x) = T0u (x) for all x ∈ U.
For any r > 0, we set Ur := {x ∈ U : dist (x, ∂U) > r}.

Definition 2.4. Let H be as in (1.4). Let U ⊂ Rn be any domain.
(i) A bounded function u ∈ C0 (U) enjoys a convex criteria if for any r > 0 there exists a δr > 0 such that

for all x ∈ Ur, the map t ∈ [0, δr)→ T tu (x) is convex.
(ii) A bounded function u ∈ C0 (U) enjoys a concave criteria if for any r > 0 there exists a δr > 0 such that

for all x ∈ Ur, the map t ∈ [0, δr)→ Ttu (x) is concave.

The following characterization of absolute minimizers follows from [9, Theorem 4.8].

LEM7.13 Lemma 2.5. Let H be as in (1.4) and H−1 (0) has empty interior point. For any domain U ⊂ R2, the following
are equivalent:

(i) u ∈ AMH (U) is bounded;
(ii) u ∈ CCH (U) is bounded;

(iii) u ∈ C0 (U) is bounded and enjoys the convex and concave criterion.

Define the slope functions via Hamilton-Jacobi flows as below:

S +t u (x) =
1
t

[T tu (x) − u (x)] and S −t u (x) =
1
t

[Ttu (x) − u (x)] ∀x ∈ U, t > 0.

If u ∈ AMH (U) is bounded, then the maps t ∈ (0, δr]→ ±S ±t u (x) are increasing for all x ∈ Ur and r > 0,

E-2E-2 (2.1) S u (x) := lim
r→0
‖H (Du) ‖L∞(B(x,r)) = lim

t→0
±S ±t u (x) for all x ∈ U;

and S u is upper semi-continuous in U; for details see [9, Lemmas 4.2 and 4.3].
Note that for u ∈ C0,1(Rn) which is not necessary bounded, one may also define T tu,Ttu and hence S ±t u

as above with U = Rn. Since L satisfies (1.4), all of T tu,Ttu and hence S ±t u are finite. Indeed we have the
following.

LEM3.3 Lemma 2.6. Let H be as (1.4). If u ∈ C0,1(Rn) with ‖Du‖L∞(Rn) = K < ∞, then there exists a constant RK > 0
depending on k and L such that

E3.1E3.1 (2.2) ±S ±t u (x) = sup
y∈B(x,RK t)

[
±

u (y) − u (x)
t

− L
(
±

y − x
t

)]
∀x ∈ Rn, t > 0.

Proof. Note that |u (y)−u (x) | ≤ Kt for all x, y ∈ Rn. By the sup-linear growth of L, we there exist an increasing
function M : [0,∞) → [0,∞) so that M (R) → ∞ and L (q) ≥ M (R) R whenever |q| ≥ R. If M (RK) > K and
|x − y| ≥ RK t, we have

±
u (y) − u (x)

t
− L

(
±

y − x
t

)
≤

[
K − M

(
|x − y|

t

)]
|x − y|

t
≤ 0,

which gives the desired identity (2.2). The proof of Lemma 2.6 is complete. �

We also recall the another slope function which are defined via cones as below:

Ŝ +t u (x) = inf
{
k ≥ 0, u(y) − u(x) ≤ C H

k (y − x) ∀y ∈ B(0, t)
}
∀x ∈ U, 0 < t < dist (x, ∂U)

and

−Ŝ −t u (x) = inf
{
k ≥ 0, u(x) − u(y) ≤ C H

k (y − x) ∀y ∈ B(0, t)
}
∀x ∈ U, 0 < t < dist (x, ∂U).

Following the argument of [22, Proposiitons 3.1 and 3.3] line by line, we have the following Lemmas 2.7
and 2.8, which will be used later. Here we omit the details.

LEMcone Lemma 2.7. Let H be as in (1.4) and satisfy Theorem 1.1 (i). Assume that u ∈ CCH(U) for U b Rn. Then for
any x ∈ U, the functions t ∈ (0, dist (x, ∂U))→ ±Ŝ ±t u(x) are increasing, and S u(x) = limt→0 ±Ŝ ±t u(x)
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LEMconeincreasing Lemma 2.8. Let H be as in (1.4) and satisfy Theorem 1.1 (i). Assume that u ∈ CCH(U) for U b Rn. Then for
any x ∈ U and 0 < r < dist (x, ∂U), if u(y) − u(x) = C H

Ŝ +r u(x)
(y − x), then S u(y) ≥ Ŝ +r u(x).

3. Some geometric and analytic characterization of H and its convex conjugate L

Let H be as in (1.4) and L be its convex conjugate. Note that L also satisfies (1.4). For any q ∈ Rn, denote
by ∂L(q) the sub-differential set of L at q, that is, p ∈ ∂L (q) if

L
(
q′

)
− L (q) ≥ p · (q′ − q) ∀q′ ∈ Rn.

Similarly, denote by ∂H(p) the sub-differential set of L at p ∈ Rn.
In Theorem 3.1, we obtain the following geometric characterization of ∂L when H is strictly convex or H is

not a constant in any d-simplex with d = 1, 2. In general, given any 3 ≤ d ≤ n, one may expect some analogue
result as above when H is not a constant in any d-simplex, but we are not going that far in this paper. Recall
that a 1-simplex is a line-segment, that is, the convex hull of 2 distinct points; for 2 ≤ d ≤ n, a d-simplex is
the convex hull of a (d − 1)-simplex and a point, where the point is not contained in the (d − 1)-dimensional
hyperplane determined by the (d − 1)-simplex. Theorem 3.1 and its analogue in d-simplex may have their own
interests. In this paper, Theorem 3.1 (ii) plays a key role in the proof of Lemma 1.3.

LEMC3 Theorem 3.1. Let H be as (1.4).
(i) The following are equivalent:

(i-a) H is strictly convex
(i-b) for any q ∈ Rn, ∂L(q) contains a single point,
(i-c) L ∈ C1(Rn).

(ii) The following are equivalent:
(ii-a) H is not a constant in any line-segment
(ii-b) for any q ∈ Rn, ∂L (q) consists of either a single point, or a line-segment on which H is strictly

monotone.
(iii) The following are equivalent:

(iii-a) H is not a constant in any 2-simplex (convex hull of 3 points which are not in the same line)
(iii-b) for any q ∈ Rn, ∂L (q) must be one of the following:

(iii-b-1) a single point;
(iii-b-2) a bounded closed line-segment;
(iii-b-3) a bounded closed convex set contained in some 2-dimensional hyperplane whose boundary

consists of 4 simple “curve” γ0, γ1, γ2, γ3 oriented in order so that γ0 (resp. γ2) is either a
single point or a line-segment on which H reaches its minimum (resp. maximum) in ∂L(q),
and along γ1 (resp. γ3), H is strictly increasing (resp. decreasing).

In Theorems 3.2 and 3.3, we build up some analytic characterization of H when it is not a constant in any
line-segment. Both of them will be used to prove Proposition 1.4; indeed, they play crucial roles there.

e-e6 Theorem 3.2. Let H be as (1.4). Then the following are equivalent:
(i) H is not a constant in any line-segment.

(ii) For each R ≥ 1 and each ε > 0, there exist ψR (ε) ∈ (0, ε) such that for any v ∈ B (0,R), if it satisfies

e-e6anglee-e6angle (3.1) H (p + v) − H (p) ≤ ψR (ε) and |] (q, v) − π/2| ≤ ψR (ε)

for some p ∈ B (0,R), q ∈ ∂H (p′) and p′ ∈ B(p, ψR(ε)), then |v| ≤ ε.

LEM4.5 Theorem 3.3. Let H be as (1.4). Then the following are equivalent:
(i) H is not a constant in any line-segment.

(ii) For each R ≥ 1 and each η > 0, we have

φR(η) = inf
e∈H−1([0,R])

min
{

(p − e) ·
q
|q|

: H(p) = H(e), |p − e| ≥ η, q ∈ ∂H(p)
}
> 0The Trial Version
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To prove above results, we recall the following basic properties; for reader’s convenience, we give the
details.

LEM3.1 Lemma 3.4. Let H be as (1.4).
(i) For any p, q ∈ Rn, we have

q ∈ ∂H (p) if and only if H (p) + L (q) = 〈p, q〉 if and only if p ∈ ∂L (q).

In particular, 0 ∈ ∂H(p) if and only if H(p) = 0 and 0 ∈ ∂L(q) if and only if L(q) = 0.
(ii) If p1, p2 ∈ ∂L (q) for some q ∈ Rn, then

λp1 + (1 − λ) p2 ∈ ∂L (q) and H(λp1 + (1 − λ) p2) = λH(p1) + (1 − λ)H(p2) for all λ ∈ [0, 1].

(iii) Assume that

L (λq1 + (1 − λ) q2) = λL (q1) + (1 − λ) L (q2) for some λ ∈ (0, 1).

If p ∈ ∂L (λq1 + (1 − λ) q2), then p ∈ ∂L (q1) ∩ ∂L (q2).
(iv) The set ∂L (q) is bounded locally uniformly in q ∈ Rn. If pi ∈ ∂L (qi) for all i ∈ N and qi → q0 as

i→ ∞, then up to some subsequence, pi → p0 as i→ ∞ for some p0 ∈ ∂L (q0). In particular, ∂L(q) is
always closed for any q ∈ Rn.

Proof. (i) Note that q ∈ ∂H (p) if and only if

〈p, q〉 − H (p) ≥ 〈q, p′〉 − H
(
p′

)
∀p′ ∈ Rn,

Thus, H (p) + L (q) = 〈p, q〉 if and only if

〈p, q〉 − H (p) ≥ 〈q, p′〉 − H
(
p′

)
∀p′ ∈ Rn.

Thus, q ∈ ∂H (p) if and only if H (p)+ L (q) = 〈p, q〉. Similarly, p ∈ ∂L (q) if and only if H (p)+ L (q) = 〈p, q〉.
(ii) If p1, p2 ∈ ∂L (q) for some q ∈ Rn, by (i) one has

L (q) + H (λp1 + (1 − λ) p2) ≥ (λp1 + (1 − λ) p2) · q
= λp1 · q + (1 − λ) p2 · q
= λH (p1) + (1 − λ) H (p2) + L (q) ∀λ ∈ [0, 1],

that is,
H (λp1 + (1 − λ) p2) ≥ λH (p1) + (1 − λ) H (p2)∀λ ∈ [0, 1]

By the convexity of H,

H (λp1 + (1 − λ) p2) = λH (p1) + (1 − λ) H (p2)∀λ ∈ [0, 1],

and hence (λp1 + (1 − λ) p2) ∈ ∂L (q).
(iii) If L (λq1 + (1 − λ) q2) = λL (q1) + (1 − λ) L (q2) and p ∈ ∂L (λq1 + (1 − λ) q2) for some λ ∈ (0, 1) and

by (i) one gets

L (λq1 + (1 − λ) q2) = (λq1 + (1 − λ) q2) · p − H (p) = λ[q1 · p − H (p)] + (1 − λ) [q2 · p − H (p)].

Since qi · p − H (p) ≤ L (qi) for i = 1, 2, by above and the assumption L (λq1 + (1 − λ) q2) = λL (q1) +
(1 − λ) L (q2) we have qi · p − H (p) = L (qi) for i = 1, 2.

(iv) Let R ≥ 1. For any |q| ≤ R and p ∈ ∂L (q), we have

H (p) = p · q − L (q) ≤ |q||p| − L (q) ≤ C (R) + R|p|.

By the sup-linear growth of H, we know that |p| ≤ C (R) as desired.
Moreover, by pi ∈ ∂L (qi) for i ∈ N and qi → q0 as i → ∞, one has that pi · qi = H (pi) + L (qi) for i ∈ N,

and pi is bounded. Thus pi converges to some p0 as i→ ∞ (up to some subsequence). By the continuity of H
and L we then have p0 · q0 = H (p0) + L (q0), by (i) which implies p0 ∈ ∂L (q0). The proof of Lemma 3.4 is
complete. �

As a consequence of Lemma 3.4, one has the following.
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propH Corollary 3.5. Suppose that H satisfies (1.4) and Theorem 1.1(i). Then 0 ∈ ∂H(0), H(p) > 0 and 0 < ∂H(p)
for all p ∈ Rn\{0}.

Proof. First we see that H(p) = 0 if and only if p = 0. Indeed, if H(p) = 0 for some p , 0, by convexity of H
and H(0) = 0, we know that H = 0 in [0, p], which is a contradiction. Thus H(p) > 0 and 0 < ∂H(p) whenever
p , 0. Moreover, by Lemma 3.4 0 ∈ ∂H(p) if and only if H(p) = 0, and hence if and only if p = 0. �

Lemma 3.6 gives some geoemtric/analytic property when H is a constant in some line-segment.

LEMconst Lemma 3.6. Suppose that H satisfies (1.4). For any a, b ∈ Rn with a , b, the following are equivalent:
(i) H is a constant in the line-segment [a, b];

(ii) b − a ⊥ ∂H( 1
2 a + 1

2 b) and

HconHcon (3.2) ∂H(
1
2

a +
1
2

b) = ∂H(λa + (1 − λ)b) ⊂ ∂H(a) ∩ ∂H(b) ∀λ ∈ (0, 1).

(iii) there exists a q ∈ Rn such that b − a ⊥ q and a, b ∈ ∂L(q) (or [a, b] ⊂ ∂L(q)).
(iv) there exists a q ∈ Rn such that H(a) = H(b) and a, b ∈ ∂L(q) (or [a, b] ⊂ ∂L(q)).

Proof. (i) ⇒ (ii) Assume that H is a constant in the line-segment [a, b]. For any λ ∈ (0, 1) and qλ ∈ ∂H(λa +
(1 − λ)b), we have

0 = H(a) − H(λa + (1 − λ)b) ≥ (1 − λ)qλ · (a − b) and 0 = H(b) − H(λa + (1 − λ)b) ≥ λqλ · (b − a),

which implies that qλ ⊥ (b − a). Thus for any µ ∈ [0, 1], we have

H(p) − H(µa + (1 − µ)b) = H(p) − H(λa + (1 − λ)b)
≥ qλ · [p − (λa + (1 − λ)b)]
= qλ · [p − (µa + (1 − µ)b)] + (µ − λ)qλ · (a − b)

= qλ · [p − (µa + (1 − µ)b)] ∀p ∈ Rn,

that is, qλ ∈ ∂H(µa + (1 − µ)b). In particular, this gives (3.2).
(ii)⇒ (iii) Let q ∈ ∂H( a+b

2 ). By (ii) and Lemma 3.4 (i), [a, b] ∈ ∂L(q) and a − b ⊥ q.
(iii) ⇒ (iv) Let q be as in (iii). By (iii), a, b ∈ ∂L(q) and hence H(b) − H(a) ≥ q · (b − a) = 0 and

H(a)−H(b) ≥ q ·(a−b) = 0, which gives (iv). Note that by Lemma 3.4 (ii), a, b ∈ ∂L(q) implies [a, b] ⊂ ∂L(q).
(iv) ⇒ (i) Let q be as in (iv). By (iv) and Lemma 3.4 (ii), [a, b] ⊂ ∂L(q). By Lemma 3.4 (i), for any

λ ∈ [0, 1],

H(λa + (1 − λ)b) − H(a) = q · [(λa + (1 − λ)b) − a] = λq · a + (1 − λ)q · b = λH(a) + (1 − λ)H(b) = H(a),

which implies that H is a constant in [a, b]. �

Now we are able to prove Theorem 3.1, Theorem 3.2 and Theorem 3.3 as below.

Proof of Theorem 3.1. Proof of (i). (i-a)⇒(i-b). Assume that H is strictly convex. If for some q ∈ Rn, ∂L(q)
contains two distinct points p1, p2, then Lemma 3.4 (ii) implies that H is linear in [p1, p2], which contradicts
with the strictly convexity of H. Thus for any q ∈ Rn, ∂L(q) must consists of a single point.

(i-b)⇒(i-c). Next, assume that for any q ∈ Rn, ∂L(q) must consists of a single point. We show that L ∈
C1(Rn). By Lemma 3.4 (iv), it suffices to show that L is differentiable everywhere. We prove by contradiction.
Assume L is not differentiable at q0 ∈ R

n. Write ∂L(q0) = {p0}. Then there exists ε0 > 0 and a sequence {qi}

which converges to q0 such that |L(qi) − L(q0) − p0 · (qi − q0)| ≥ ε0|q − q0|. Write ∂L(qi) = {pi}. Then

p0 · (qi − q0) ≤ L(qi) − L(q0) ≤ pi · (qi − q0) = p0 · (qi − q0) + (pi − p0) · (qi − q0)

and hence
|L(qi) − L(q0) − p0 · (qi − q0)| ≤ |pi − p0||qi − q0|.

But by Lemma 3.4 we have pi → p0 as i→ ∞, which is a contradiction.
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(i-c)⇒(i-a). assume that L ∈ C1(Rn) and hence ∂L(q) = {DL(q)} for any q ∈ Rn. We show that H is strictly
convex. Otherwise,

H (λp1 + (1 − λ) p2) = λH (p1) + (1 − λ) H (p2) for some λ ∈ (0, 1) and p1 , p2.

Let q ∈ ∂H (λp1 + (1 − λ) p2),. By Lemma 3.4 (iii), q ∈ ∂H (p1) ∩ ∂H (p2), and hence by Lemma 3.4,
p1, p2 ∈ ∂L(q) = {DL(q)}, which is a contradiction.

Proof of (ii). (ii-b)⇒(ii-a). If H is a constant in a line-segment, say [a, b], by Lemma 3.6 (iv), there exists
q ∈ Rn such that [a, b] ⊂ ∂L(q); but note that H is not strictly monotone in [a, b].

(ii-a)⇒(ii-b). assume that H is not a constant in any line-segment. For any q ∈ Rn, assume that ∂L(q)
contains more than one point, say p1, p2 with p1 , p2. We only need to show that ∂L (q) is contained lie in
the line determined by p1 and p2. Indeed, Lemma 3.4 ∂L (q) is a bounded convex set; but bounded convex set
contained in some line must be a line-segment.

Let p0 ∈ ∂L (q) with p0 , p1, p2. Then H (pi) , H(p j) for i, j = 0, 1, 2 and i , j. Indeed, if H (pi) = H(p j)
for some i, j = 0, 1, 2 and i , j, by (iv)⇒ (i) in Lemma 3.6, H is a constant in [pi, p j]. This is a contradiction.

Reorder p0, p1, p2 as p̃0, p̃1, p̃2 so that H ( p̃0) < H ( p̃1) < H (p̃2). Then there exists λ̃ ∈ (0, 1) such that

H
(̃
λp̃0 +

(
1 − λ̃

)
p̃2

)
= H ( p̃1) .

Since H is not a constant in any line-segment, by (iv)⇒ (i) in Lemma 3.6 again, we know that

p̃1 = λ̃p̃0 + (1 − λ̃) p̃2,

which implies that p̃1, p̃2 and p̃3 lies in the same line, that is, p0 must lie in the line determined by p1 and p2
as desired.

Proof of (iii). (iii-b)⇒(iii-a). If H is a constant in a 2-simplex ∆, which is the convex hull of p1, p2, p3, let
q ∈ ∂H( 1

3 [p1 + p2 + p3]). For any line segment I ⊂ ∆ with 1
3 [p1 + p2 + p3] ∈ I, since H is a constant in I, by

Lemma 3.6 (ii), I ⊂ ∂L(q). This implies that ∆ ⊂ ∂L(q). Obviously, ∂L(q) is not given by a) or b).
Now we show that ∂L(q) is not given c). If ∂L(q) is given by c), and then ∂L(q) is bounded by {γi}

3
i=0 in

order. Since H is strictly increasing in γ1 and strictly decreasing in γ3, for any m := minp∈∂L(q) H(p) < k <
maxp∈∂L(q) H(p)) =: M, we can only find one point ak ∈ γ1 and one point bk ∈ γ1 such that H(ak) = H(bk) = k.
We also write [am, bm] = γ0 and [aM, bM] = γ2. Thus H is constant k in [ak, bk]. Since the unions of [ak, bk] is
exactly ∂L(q), we know that H−1(k) ∩ ∂L(q) = [ak, bk]. This is a contradiction.

(iii-a)⇒(iii-b). Conversely, assume that H is not a constant in any 2-simplex. First we see that ∂L(q) must
be contained in some 2-dimensional hyperplane P; otherwise, we can find 4 distinct points p0, p1, p2, p3 which
are not contained in any 2-dimensional hyperplane. After reordering, we may assume that H(p0) ≤ H(p1) ≤
H(p2) ≤ H(p3). Since H is not constant in any 2-simplex, it can only happen that H(p0) ≤ H(p1) < H(p2) ≤
H(p3), and H(p0) < H(p1) ≤ H(p2) < H(p3). In the first we can find 3 points p′0 ∈ [p0, p2], p′1 ∈ [p0, p3] and
p′2 ∈ [p1, p2] such that

H(p′0) = H(p′1) = H(p′2) = H
(
1
2

p1 +
1
2

p2

)
,

Note that p′0, p′1, p′2 are not contained in the same line, and hence its convex hull is a 2-simplex denoted by ∆′.
Moreover, for any λ′i > 0 and

∑2
i=0 λi = 1 we have

∑2
i=0 λi p′i ∈ ∂L(q) and hence

H(
2∑

i=0

λi p′i) = (
2∑

i=0

λi p′i) · q − L(q) =
2∑

i=0

λi[p′i · q − L(q)] =
2∑

i=0

λiH(p′i) = H
(
1
2

p1 +
1
2

p2

)
That is, H is a constant in ∆′, which is a contradiction. In the second case, we can find 3 points p′0 ∈
[p0, p1], p′1 ∈ [p0, p2] and p′2 ∈ [p0, p3] such that

H(p′0) = H(p′1) = H(p′2) = H
(
1
2

p0 +
1
2

p1

)
,

Similarly, H is a constant in the convex hull of p′0 p′1 p′2; this is a contradiction.
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Next, assume that ∂L(q) is not a single point or a line-segment. Then ∂L(q) is a closed bounded domain
in P. Thus ∂L(q) is bounded by a simple closed curve γ. Note that H reaches its minimum and maximum in
∂L only at boundary. Denote by γ0 (resp. γ2) the part on which H reaches its minimum (resp. maximum) in
∂L. Since H is not a constant in any 2-simplex, γ0 and γ2 must be a single point or a line-segment. The other
two components of γ \ (γ0 ∪ γ2) are denoted by γ1 and γ3. Up to some reorientation we may assume that the
ending point of γi is the starting point of γi+1 for i = 0, 1, 2, 3 (where γ4 = γ0). Now we show that H is strict
increasing along γ1; otherwise, there exists two distinct points p0, p1 ∈ γ1 so that H(p0) = H(p1). Observe that
there exists p2 ∈ γ3 with H(p2) = H(p1). Note that H is a constant in the convex hull of {p0, p1, p2}, which is
a 2-simplex, and hence it is a contradiction. Similarly, we know that H is strict decreasing along γ3. The proof
of Theorem 3.1 is complete. �

Proof of Theorem 3.2. (ii)⇒ (i). Assume that (i) fails, that is H is a constant in some line-segment, say [a, b].
Let p = 1

2 (a + b), q ∈ ∂H(p) and v = b−a
2 . Then H(p) = H(p + v) and, by Lemma 3.6, q ⊥ v. Thus (ii) fails.

(i) ⇒ (ii). Suppose that (ii) is not correct. There exists ε0 > 0 so that for any i ∈ N we can find vectors
vi ∈ B (0, 1/ε0) with |vi| ≥ ε0 satisfying H (pi + vi) − H (pi) ≤ 1/i and |] (qi, vi) − π/2| ≤ 1/i for some
pi ∈ B (0, 1/ε0) qi ∈ ∂H

(
p′i

)
and p′i ∈ B(pi, 1/i). Note that pi, p′i → p0, vi → v0 and qi → q0 ∈ ∂H(p0) as

i→ ∞ (up to some subsequence). Moreover,

H (p0 + v0) − H (p0) ≤ 0, ∠ (q0, v0) = π/2

By the convexity of H and H (p0 + v0) − H (p0) ≤ 0, we have

H (p0 + tv0) ≤ (1 − t)H (p0) + tH(p0 + v0) ≤ H (p0) ∀t ∈ [0, 1].

Moreover, by q0 ∈ ∂H(p0) and ∠ (q0, v0) = π/2, one also has

H (p0 + tv0) − H (p0) ≥ q0 · tv0 = 0, ∀t ∈ [0, 1].

Thus H (p0 + tv0) = H (p0) for all t ∈ [0, 1], which leads to a contradiction. The proof of Theorem 3.2 is
complete. �

Proof of Theorem 3.3. (ii)⇒ (i). Assume that (i) fails, that is H is a constant in some line-segment, say [a, b].
Let p = a, e = b and q ∈ ∂H( 1

2 [a + b]). Then H(p) = H(p + v) and, by Lemma 3.6, q ⊥ (b − a). Thus
φR(|b − a|) = 0, that is, (ii) fails.

(i)⇒ (ii). Suppose that (ii) is not correct. There exists a η0 > 0 such that δR(η0) = 0, that is, we can find pi
and ei with |pi − ei| ≥ η0 and H(ei) = H(pi) ≤ R, and qi ∈ ∂H(pi) such that

(pi − ei) ·
qi

|q|
≤ 1/i.

Letting pi → p, ei → e and qi → q ∈ ∂H(p) when i→ ∞, we get H(p) = H(e) ≤ R, |p − e| ≥ η0 and

(p − e) ·
q
|q|
≤ 0.

Since q ∈ ∂H(p) implies
(e − p) · q ≤ H(e) − H(p) = 0,

we obtain
(e − p) · q = 0.

Therefore, by q ∈ ∂H(p) again,

H(e) + L(q) = H(p) + L(q) = p · q = e · q,

which together with Lemma 3.4(i) yields that e, p ∈ ∂L(q) and hence [p, e] ∈ ∂L(q). By H(p) = H(e) and
Lemma 3.4 (iii), we know that H is constant in [p, e], which is a contradiction. �

Finally, we also use the following Lemma 3.7 and its corollary 3.8.

la-mu Lemma 3.7. Let H be as (1.4) and satisfy Theorem 1.1(i).
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(i) If q ∈ ∂H (p), then CH(p) (q) = 〈p, q〉.
(ii) If Ck (z) = 〈p0, z〉 with k > 0 and |z| > 0, then tz ∈ ∂H (p0) for some t > 0.

Proof. (i) If q ∈ ∂H (p), then

〈p, q〉 = H (p) + L (q) ≥ H (p) + sup
p′∈Rn

[〈p′, q〉 − H
(
p′

)
] ≥ sup

H(p′)≤H(p)
〈p′, q〉 = CH(p) (q) ,

which together with 〈p, q〉 ≤ CH(p) (q) gives CH(p) (q) = 〈p, q〉.
(ii) By Theorem 3.1, ∂L(tz) is either a single point or a line-segment for each t ≥ 0. We may write

It = [at, bt] = H(∂L(tz)) for each t ≥ 0. It suffices to show that ∪t≥0It = [0,∞). Indeed, if this correct, by
Lemma 3.5 and H(p0) , 0 we know that H(p0) ∈ It0 for some t0 > 0. Thus H(p0) = H(pt0z) with pt0z ∈ ∂L(t0z),
then by (i),

CH(pt0z)(t0z) = pt0z · t0z = H(pt0z) + L(t0z) = H(p0) + L(t0z).

Since

p0 · t0z = CH(p0)(t0z) =
1
t
CH(pt0z)(t0z),

we obtain p0 · t0z = H(p0) + L(t0z), which together with Lemma 3.4 gives tz ∈ ∂H(p0).
For any k > 0, note that there exist t1 < t2 such that bs < k < at for all t ≥ t2 and s < t1. Indeed, for any

pt ∈ ∂L(tz) with t > 0, by Lemma 3.4 (i) we have H(pt)+L(tz) = pt · tz and hence |pt| ≥
1
t L(tz) ≥ M(tz)|z| → ∞

as t → ∞. Moreover, by Lemma 3.4 (iv), C = supt≤1 supp∈∂H(tz) |p| < ∞ and hence H(pt) ≤ Ct|z| → 0 as t → 0.
Let tz be the supremum of t > 0 so that bt < k. Then atz ≤ k ≤ btz . Indeed, for any ε > 0, we have btz+ε ≥ k.
Let ptz+ε ∈ ∂L((tz + ε)z) such that H(ptz+ε) = btz+ε . Since Lemma (3.4) (iv) implies ptz+ε → p ∈ ∂L(tzz) as
ε → 0 (up to some subsequence), we have H(p) ≥ k and hence btz ≥ k. Moreover, by atz−ε ≤ btz−ε and a similar
argument, we atz ≤ k. Thus k ∈ Itz as desired. The proof of Lemma 3.7 is complete. �

xew4 Corollary 3.8. Let H be as (1.4) and satisfy Theorem 1.1(i). For any R ≥ 1, there exists a constant CR such
that for any δ ∈ (0, 1) and 0 ≤ k ≤ R, one has

xew5xew5 (3.3) e · x + δ|x| ≤ C H
k (x) + δ|x| ≤ C H

k+CRδ
(x), ∀x ∈ Rn, e ∈ H−1(k)

Proof. If x = 0, (3.3) holds obviously. By Lemma 3.7, x = qx/|qx| for some qx ∈ ∂H(px) with H(px) = k.
Thus

e · x + δ ≤ Ck(x) + δ = px · x + δ = (px + δ
x
|x|

) · x.

By the convexity of H we know that

H(px + δ
x
|x|

) ≤ H(px) + q · δ
x
|x|

∀q ∈ ∂H(px + δ
x
|x|

).

Letting
CR := sup{|q| : q ∈ ∂H(p + v),H(p) ≤ R, |v| ≤ 1},

we get (3.3) as desired. �

4. Proofs of Lemma 1.3 and (i)⇔ (ii) in Theorem 1.1

By using Lemmas 3.4 and 3.1, we first establish the following weaker version of Lemma 1.3.

LEMC5 Lemma 4.1. Let H be as in (1.4) with n = 2 and satisfy (i). If u ∈ C0,1(Rn) satisfies (1.5) for some 0 < k < ∞
and also

F2F2 (4.1) u(e) = k + L(e) and u(se) = su(e) ∀s ∈ R

for some vector e ∈ Rn, then there exists a vector p0 ∈ ∂L(e) such that

u (x) = p0 · x ∀x ∈ Rn, and H (p0) ≡ k.
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Proof. Note that by (4.1), u(0) = 0. Since S +t u ((t − s) e) ≤ k for all t > 0 and s ∈ R, we have

u (x + se) − u ((s − t) e)
t

− L
(

x + se − (s − t) e
t

)
≤ k ∀x ∈ Rn.

Thus, by (4.1) we obtain

−
u (x + se)

t
+

s
t
u (e) ≥ u (e) − k − L

(
e +

x
t

)
= L (e) − L

(
e +

x
t

)
∀x ∈ Rn, t > 0, s ∈ R.

By the convexity of L,
u (x + se) − su (e) ≤ pt,x · x ∀x ∈ Rn, t > 0, s ∈ R.

where pt,x ∈ ∂L (e + x/t). By Lemma 3.4 (iv), pt,x converges to some px ∈ ∂L (e) as t → ∞ (up to some
subsequence). Therefore,

F3F3 (4.2) u (x + se) − su (e) ≤ px · x ∀x ∈ Rn, s ∈ R.

Similarly, applying −S −t u (− (t − s) e) ≤ k for t > 0 and s ∈ R we also have

F4F4 (4.3) u (x + se) − su (e) ≥ p̂x · x ∀x ∈ Rn, s ∈ R

for some p̂x ∈ ∂L (e).
If ∂L (e) contains only one point say p0, then px = p0 = p̂x for all x ∈ Rn. Thus by (4.2) and (4.3), one has

u (x) = p0 · x as desired.
Below, assume that ∂L (e) contains more than one point. By Theorem 3.1, ∂L (e) must be a line-segment

contained in some line `. Therefore, pte, p̂te ∈ ` for all t ∈ R. Applying (4.2) and (4.3) with x = te and s = 0
we have

p̂te · te ≤ u (te) ≤ pte · te ∀t ∈ R.
By (4.1), one has

p̂te · e = u (e) = pte · e ∀t ∈ R.
This together with (4.1) and Lemma 3.4 (i) further gives

k = L (e) − u (e) = L (e) − pte · e = H (pte) ∀t ∈ R,

and similarly, k = H( p̂te) for all t ∈ R. Since H is not a constant in any line-segment, we conclude that pte, p̂se
must coincide for all t, s ∈ R, and is denoted by p0. Obviously, H (p0) = k > 0 and H(p0) + L(e) = p0 · e. By
Lemma 3.4 again, p0 ∈ ∂L(e).

To see u(x) = p0 · x for all x ∈ Rn, we note that e · (p0 − p) , 0 for any p ∈ ∂L (e) \ p0 and hence for any
p ∈ `, that is,

F5F5 (4.4) Rn =
⋃

z⊥`−p0

(z + Re) .

Otherwise, by Theorem 3.1, one has

H (p0) = p0 · e − L (e) = p1 · e − L (e) = H (p1)

for some p1 ∈ ∂L (e) \ p0. For any λ ∈ (0, 1), by Lemma 3.4 (ii) we have

H (λp0 + (1 − λ)p1) = (λp0 + (1 − λ)p1) · e − L(e) = λ[p0 · e − L(e)] + (1 − λ)[p1 · e − L(e)] = H(p0),

that is, H is a constant in the line-segment [p0, p1], which is a contradiction with the assumption (i).
For any z ⊥ ` − p0, since pz, p̂z ∈ ∂L (e) ⊂ ` we have p̂z · z = p0 · z = pz · z. By (4.2) and (4.3) one further

gets
p0 · z = p̂z · z ≤ u (z + se) − u (se) ≤ pz · z = p0 · z ∀z ⊥ ` − p0, s ∈ R

which implies

u (z + se) = u (se) + p0 · z = sp0 · e + p0 · z = p0 · (z + se) ∀z ⊥ ` − p0, s ∈ R.

By (4.4), one has u (x) = p0 · x for all x ∈ Rn as desired.
�
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14 PENG FA, CHANGYOU WANG AND YUAN ZHOU

By using Lemmas 3.4, 3.1 and 4.1, we are ready to prove Lemma 1.3.

Proof of Lemma 1.3. Assume that u (0) = 0 without loss of generality. If k = 0, then by ±S ±t u (0) = k for all
t > 0 we have

±
u (x)

t
− L

( x
t

)
≤ 0 ∀x ∈ Rn.

By the sup-linear growth of L one gets

±u (x) ≤ lim inf
t→∞

tL
( x

t

)
= 0 ∀x ∈ Rn,

that is, u ≡ 0 in Rn.
Assume that k > 0 below. First we have the following claim.

Claim I. There exists y± ∈ Rn such that

E6E6 (4.5) u
(
y+

)
− L

(
y+

)
= k and u

(
sy+

)
= su

(
y+

)
> 0 ∀s > 0,

E7E7 (4.6) −u
(
y−

)
− L

(
−y−

)
= k and u

(
sy−

)
= su

(
y−

)
< 0 ∀s > 0,

E8E8 (4.7) L
(
λy+ − (1 − λ) y−

)
= λL

(
y+

)
+ (1 − λ) L

(
−y−

)
∀λ ∈ (0, 1)

and

E10E10 (4.8) u
(
λty+ + (1 − λ) sy−

)
= λtu

(
y+

)
+ (1 − λ) su

(
y−

)
∀λ ∈ (0, 1), t, s > 0.

To find y± in Claim I, since S +t u (0) = k = −S −t u (0) for all t > 0, by Lemma 2.6 there exist y±t ∈ B (0,Rt)
such that

E1E1 (4.9)
u
(
y+t

)
t
− L

(
y+t
t

)
= k = −

u
(
y−t

)
t
− L

(
−y−t

t

)
∀t > 0.

This gives

E2E2 (4.10)
u
(
y+t

)
2t
−

u
(
y−t

)
2t
= k +

1
2

L
(
y+t
t

)
+

1
2

L
(
−y−t

t

)
∀t > 0.

Since y±t /t are bounded, as t → ∞ (up to some subsequence) y±t /t must converge to some points y± ∈ Rn as
desired.

To see (4.7) in Claim I, by S +2tu
(
y−t

)
≤ k for all t > 0, one has

u
(
y+t

)
− u

(
y−t

)
2t

− L
(
y+t − y−t

2t

)
≤ k ∀t > 0.

Thus, by (4.10) one gets
1
2

L
(
y+t
t

)
+

1
2

L
(
−y−t

t

)
≤ L

(
y+t − y−t

2t

)
∀t > 0,

which together with the convexity of L yields that

1
2

L
(
y+t
t

)
+

1
2

L
(
−y−t

t

)
= L

(
y+t − y−t

2t

)
∀t > 0.

By the convexity of L again, we know that L must be linear in [−y−t /t, y
+
t /t], that is,

E3E3 (4.11) L
(
λ

y+t
t
− (1 − λ)

y−t
t

)
= λL

(
y+t
t

)
+ (1 − λ) L

(
−y−t

t

)
∀t > 0, λ ∈ (0, 1) .

Letting t → ∞ and by y±t /t → y± one see that (4.7) follows from (4.11).
To see (4.5) and (4.6), by S +(θ2−θ1)tu

(
θ1y+t

)
≤ k for 0 ≤ θ1 < θ2 ≤ 1 and t > 0, we have

u
(
θ2y+t

)
− u

(
θ1y+t

)
(θ2 − θ1) t

− L
(
y+t
t

)
≤ k
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that is,

u
(
θ2y+t

)
− u

(
θ1y+t

)
≤

[
k + L

(
y+t
t

)]
(θ2t − θ1t) .

By this and (4.9), one gets

u
(
θ2y+t

)
− u

(
θ1y+t

)
=

[
k + L

(
y+t
t

)]
(θ2t − θ1t) ∀t > 0, 0 ≤ θ1 < θ2 ≤ 1.

In particular, for all 0 ≤ s ≤ t, letting θ1 = 0 and θ2 = s/t in above identity and by (4.9) we have

E4E4 (4.12)
u
(
sy+t /t

)
s

− L
(
y+t
t

)
= k and u

(
sy+t
t

)
= su

(
y+t
t

)
.

Similarly, for all 0 ≤ s ≤ t, we have

E5E5 (4.13) −
u
(
sy−t /t

)
s

− L
(
−

y−t
t

)
= k and u

(
sy−t
t

)
= su

(
y−t
t

)
.

Letting t → ∞ and by y±t /t → y± one see that (4.5) follows from (4.12), (4.6) from (4.13).
To see the (4.8) in Claim I, since S +tλu

(
(1 − λ) sy−

)
≤ k for all t, s > 0 and λ ∈ (0, 1), we have

u
(
λty+ + (1 − λ) sy−

)
− u

(
(1 − λ) sy−

)
tλ

− L
(
y+

)
≤ k,

which together with (4.5) and (4.6) yields

E9E9 (4.14) u
(
λty+ + (1 − λ) sy−

)
≤ λtu

(
y+

)
+ (1 − λ) su

(
y−

)
∀t, s > 0.

Similarly, by −S −(1−λ)su
(
λty+

)
≤ k for t, s > 0, we have

−
u
(
λty+ + (1 − λ) sy−

)
− u

(
λty+

)
(1 − λ) s

− L
(
−y−

)
≤ k,

which together with (4.5) and (4.6) yields again

u
(
λty+ + (1 − λ) sy−

)
≥ λtu

(
y+

)
+ (1 − λ) su

(
y−

)
∀t, s > 0.

From this and (4.14), one deduce that (4.8) as desired. The Claim I is then proved.

Observe that by (4.5), (4.6) and (4.8) in Claim I, there exists a λ0 ∈ (0, 1) such that

E11E11 (4.15) u
(
λ0sy+ + (1 − λ0) sy−

)
= s[λ0u

(
y+

)
+ (1 − λ0) u

(
y−

)
] = 0 ∀s > 0.

This leads us to consider two cases: λ0y+ + (1 − λ0) y− = 0 and λ0y+ + (1 − λ0) y− , 0.

Case 1. λ0y+ + (1 − λ0) y− = 0.
In this case, −y− = s0y+ with s0 = λ0/ (1 − λ0). By (4.15), one has u

(
y−

)
= −u

(
y+

)
/s0 and hence

u
(
−y+

)
= u

(
y−/s0

)
= (1 − λ0) u

(
y−

)
/λ0 = −u

(
y+

)
.

This together with (4.5) gives

E12E12 (4.16) u
(
y+

)
− L

(
y+

)
= k and u

(
sy+

)
= su

(
y+

)
∀s ∈ R.

Note that (4.16) says that u satisfies the condition (1.5) with e = y+ in Lemma 4.1. Therefore, applying Lemma
4.1, we can find a vector p0 ∈ ∂L(y+) such that u(x) = p0 · x for all x ∈ Rn and H(p0) = k as desired.

Case 2. λ0y+ + (1 − λ0) y− , 0.
For any s > 0, let xs = λ0sy+ + (1 − λ0) sy−, and define a function vs (z) = u (xs + z) for all z ∈ Rn. By

(4.15), we have vs (0) = 0. By u ∈ C0,1(Rn) and the Arzela-Ascolli theorem, we know that vs converges to
some function v ∈ C0,1(Rn) locally uniformly as s→ ∞ (up to some subsequence).

Writing y0 =
(
y+ − y−

)
/2, we have the following claim:

Claim II. There exists a p0 ∈ ∂L(y0) such that

E-3E-3 (4.17) v (x) = p0 · x for all x ∈ Rn, and H (p0) = k.
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16 PENG FA, CHANGYOU WANG AND YUAN ZHOU

Note that Claim II follows from Lemma 4.1 provided that v satisfies (1.5) with the same k here and also
satisfies (4.1) with e = y0. To see this, observe that, by (4.8) and (4.15), one has

u
(
xs + δy0

)
=

(
λ0s +

δ

2

)
u
(
y+

)
+

[
(1 − λ0) s −

δ

2

]
u
(
y−

)
E15E15 (4.18)

= λ0su
(
y+

)
+ (1 − λ0) su

(
y−

)
+
δ

2
[u

(
y+

)
− u

(
y−

)
]

=
δ

2
[u

(
y+

)
− u

(
y−

)
] ∀s > 0,−2λ0s < δ < 2 (1 − λ0) s.

Thus

E16E16 (4.19) v
(
δy0

)
= lim

s→∞
u
(
xs + δy0

)
=
δ

2
[u

(
y+

)
− u

(
y−

)
] = δv(y0) ∀δ ∈ R.

In particular, by (4.7)

E17E17 (4.20) v(y0) =
1
2

[u
(
y+

)
− u

(
y−

)
] = k +

1
2

[L
(
y+

)
+ L

(
−y−

)
] = k + L

(
1
2

y+ −
1
2

y−
)
= k + L(y0).

By this, one has

E18E18 (4.21) ±S ±t v (0) ≥ ±
v (±ty0)

t
− L(y0) = v(y0) − L(y0) = k ∀t > 0.

One the other hand,

±S ±t v (x) = sup
y∈Rn

[
±

v (±y + x) − v (x)
t

− L
(y

t

)]
E19E19 (4.22)

= sup
y∈Rn

lim
s→∞

[
±

u (±y + x + xs) − u (x + xs)
t

− L
(y

t

)]
≤ lim sup

s→∞
±S ±t u (x + xs)

≤ k ∀t > 0, x ∈ Rn.

Combining (4.19), (4.20), (4.21) and (4.22), we see that v satisfies (1.5) and (4.1) as required by Lemma 4.1.
This prove Claim II.

We also have the following claim.

Claim III. There exists vectors p±x ∈ ∂L(±y±) such that

E22E22 (4.23) u
(
x − sy−

)
+ su

(
y−

)
≤ p−x · x ∀x ∈ Rn, s ∈ R

and

E23E23 (4.24) u
(
x − sy+

)
+ su

(
y+

)
≥ p+x · x ∀x ∈ Rn, s ∈ R.

To see Claim III, since S +t u
(
(t − s) y−

)
≤ k for all t > 0 and s < t, one has

u
(
x − sy−

)
− u

(
(t − s) y−

)
t

− L
(

x − sy− − (t − s) y−

t

)
≤ k,

which together with (4.6) and t − s > 0 implies that

u
(
x − sy−

)
+ su

(
y−

)
t

≤ k + u
(
y−

)
+ L

(
x − ty−

t

)
= −L

(
y−

)
+ L

(
−y− +

x
t

)
and hence

−[u
(
x − sy−

)
+ su

(
y−

)
] ≥

1
t

[
L
(
y−

)
− L

(
−y− +

x
t

)]
≥ −p−t,x · x

for any p−t,x ∈ ∂L(−y− + x
t ). By Lemma 3.4 (iii), p−t,x converges to some p−x ∈ ∂L

(
−y−

)
as t → ∞ (up to some

subsequence). Thus (4.23) follows. Similarly, using −S −t u
(
(t − s) y+

)
≤ k for all t > 0 and s < t, one can prove

(4.24). This prove Claim III.
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In the reminder, we prove u(x) = p0 · x for all x ∈ Rn, which together with H(p0) = k given in (4.17)
yields Lemma 1.3. We consider the following 4 subcases as below. Note that, by Lemma 3.4 (iv) and (4.7),
p0 ∈ ∂L(y0) implies that p0 ∈ ∂L

(
±y±

)
and hence, by Lemma 3.4 (i), one has

E20E20 (4.25) ±p0 · y± = H (p0) + L
(
±y±

)
= k + L

(
±y±

)
= ±u

(
y±

)
,

which will be used below.

Subcase 2.1. ∂L
(
y+

)
∪ ∂L

(
−y−

)
contains the unique point p0. Then p±x = p0. By (4.23) and (4.24) with s = 0,

we have
p0 · x = p+x · x ≤ u (x) ≤ p−x · x = p0 · x ∀x ∈ Rn

and hence u (x) = p0 · x for all x ∈ Rn as desired.

Subcase 2.2. ∂L
(
y+

)
contains more than one point ; ∂L

(
−y−

)
constants only one point p0. Then p−x = p0, and

hence by (4.25) with s = 1, we know that

u (x) ≤ p−x · x = p0 · x ∀x ∈ Rn.

On the other hand, by Theorem 3.1, ∂L
(
y+

)
is a line-segment contained in the same line, say `y+ . Observe

that y+ is not perpendicular to ` − p0, and hence Rn = supz⊥`y+−p0

(
z + Ry+

)
. Otherwise, y+ · (p − p0) = 0 for

any p ∈ ∂L
(
y+

)
\ {p0}. By Lemma 3.4 (i) this gives

H (p) + L
(
y+

)
= p · y+ = p0 · y+ = H (p0) + L

(
y+

)
and hence H (p0) = H (p). This contradicts with our assumption that H is not a constant in any line-segment.

For any z ⊥ `y+ − p0, we have p+x · z = p0 · z. Thus by (4.24), one has

u
(
z − sy+

)
+ su

(
y+

)
≥ p+x · z = p0 · z ∀x ∈ Rn, s ∈ R.

This and (4.25) give
u
(
z − sy+

)
≥ p0 ·

(
z − sy+

)
∀x ∈ Rn, s ∈ R.

For any x ∈ Rn, by Rn = supz⊥`y+−p0

(
z + Ry+

)
, we can find s such that x + sy+ ⊥ `y+ − p0. Thus

u (x) = u
(
x + sy+ − sy+

)
≥ p0 ·

(
x + sy+ − sy+

)
= p0 · x ∀x ∈ Rn.

We conclude that u (x) = p0 · x for all x ∈ Rn.

Subcase 2.3. ∂L
(
−y−

)
contains more than one point; ∂L

(
y+

)
constants only one point p0. Similarly to the

Subcase 2.2, we have u (x) = p0 · x for all x ∈ Rn.

Subcase 2.4. ∂L
(
y+

)
contains more than one point; ∂L

(
−y−

)
contains more than one point. By Theorem 3.1,

∂L
(
y+

)
is a line-segment contained in the line, say `y+ ; ∂L

(
−y−

)
is a line-segment contained in the line, say

`y− . By an argument similar to the Subcase 2.2, we know that y± is not perpendicular to `y± − p0. Hence

Rn =
⋃

z⊥`y+−p0

(
z + Ry+

)
=

⋃
z⊥`y−−p0

(
z + Ry−

)
.

For any z ⊥ `y− − p0, we have p0 · z = p−x · z. Thus by (4.23),

u
(
z − sy−

)
+ su

(
y−

)
≤ p0 · z ∀s ∈ R.

which together with (4.25) gives

u
(
z − sy−

)
≤ p0 ·

(
z − sy−

)
∀s ∈ R.

By Rn = supz⊥`y−−p0

(
z + Ry−

)
, for any x ∈ Rn, we can find s such that x+ sy− ⊥ `y− − p0. Hence, we conclude

that u (x) ≤ p0 · x for all x ∈ Rn.
Similarly, by (4.24), (4.25) and Rn = supz⊥`y+−p0

(
z + Ry+

)
we have u (x) ≥ p0 · x for all x ∈ Rn. Thus

u (x) = p0 · x for all x ∈ Rn as desired. The proof of Lemma 1.3 is complete. �

We also need the following to prove (ii)⇒ (i) in Theorem 1.1.
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LEM3.4 Lemma 4.2. Let H be as (1.4). If H−1 (k) = [a, b] with a , b for some k ≥ 0, then the following function u f

given in (1.3) is an absolute minimizer with ‖H(Du f )‖L∞(Rn) = k whenever f ∈ C0,1 (R) and ‖ f ′‖L∞(R) ≤ 1.

Proof. Note that u f ∈ C0,1(Rn) and

Du f (x) =
b + a

2
+

b − a
2

f ′
(
b − a

2
· x

)
for almost all x ∈ Rn.

Since ‖ f ′‖L∞(R) ≤ 1 implies that | f ′
(

b−a
2 · x

)
| ≤ 1 for almost all x ∈ Rn, we know that Du f (x) ∈ [a, b] and

hence H(Du f (x)) = k for all such x ∈ Rn. Thus ‖H (Du) ‖L∞(V) = k.
To see u f ∈ AMH(Rn), by definition, it suffices to show that for some domain V b Rn and some function

v ∈ C0,1
(
V
)

with v = u f on ∂V , we have ‖H (Dv) ‖L∞(V) := s ≥ ‖H (Du) ‖L∞(V) = k.
If k = 0, we always have ‖H (Dv) ‖L∞(V) ≥ ‖H (Du) ‖L∞(V). Assume that k > 0 below. Let q0 ∈

∂H ((a + b) /2). Then q0 , 0; otherwise,

H (0) − H
(
a + b

2

)
≥ −q0 ·

a + b
2
= 0,

which implies that k = H ((a + b) /2) = 0. By Lemma 3.6, we have q0 ⊥ (b − a). Let x0 ∈ V and the line
`0 = x0 + Rq0. Denote by γ0 the component ( an open interval) containing x0 of `0 ∩ V , and t0 > 0 the length
of γ0. Write γ0 = (x0, y0) with x0, y0 ∈ ∂V and y0 = x0 + t0q0/|q0|.

Since q0 ⊥ (b − a) implies
b − a

2
· y0 =

b − a
2
· x0 +

t0
|q0|

b − a
2
· q0 =

b − a
2
· x0,

we get

u (y0) − u (x0) =
b + a

2
· (y0 − x0) + f

(
b − a

2
· y0

)
− f

(
b − a

2
· x0

)
=

t0
|q0|

b + a
2
· q0.

By q0 ∈ ∂H ((a + b) /2) and Lemma 3.4, this yields that

E25E25 (4.26) u (y0) − u (x0) =
t0
|q0|

[
H

(
b + a

2

)
+ L (q0)

]
=

t0
|q0|

[k + L (q0)].

On the other hand, by Lemma 2.2, one has

v (y) − v (x) ≤ CH
s (y − x) whenever [x, y] ⊂ V .

Up to some approximation to x0, y0, this gives that

v (y0) − v (x0) ≤ CH
s (y0 − x0) =

t0
|q0|

sup
H(p)<s

p · q0 ≤
t0
|q0|

[s + L (q0)].

By this, u (y0) − u (x0) = v (y0) − v (x0) and (4.26), we have
t0
|q0|

[s + L (q0)] ≥
t0
|q0|

[k + L (q0)]

which gives s ≥ k, that is, ‖H (Dv) ‖L∞(V) ≥ ‖H (Du) ‖L∞(V) as desired. This completes the proof of Lemma
4.2. �

With the aid of Lemmas 1.3 and 4.2, we are ready to prove (i)⇔ (ii) in Theorem 1.1.

Proof of (i)⇔ (ii) in Theorem 1.1. As clarified in the introduction, we only need to prove Theorem 1.1 under
the assumption (1.4).

Proof of (i) ⇒ (ii). Assume that H is convex, satisfies (1.4) and H is not a constant in any line-segment.
Let u ∈ AMH (Ω) and x0 ∈ Ω. Up to some translation, we assume that x0 = 0 ∈ Ω. We also assume u (0) = 0.
Let U = B (0, δ0) ⊂ Ω and K := ‖u‖C0,1(U) < ∞. Note that u ∈ AMH (U) is bounded. For any 0 < r < 1,
let ur =

1
r u (rx) for x ∈ 1

r U. Then ur ∈ AMH
(

1
r U

)
. Let B (0, δ0) b U. Since u ∈ C0,1 (U), we know that

ur ∈ C0,1 (B (0, δ0/r)) and ‖ur‖C0,1(B(0,δ0/r)) = K. Up to considering some subsequence we may assume that
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ur → v ∈ C0,1(R2) locally uniformly in R2, and ‖v‖C0,1(R2) ≤ ‖u‖C0,1(B(0,δ0)) = K. By (2.1), it suffice to show that
v is a linear function and H (Dv) = S u (0). This will follow if v fulfils all the assumptions in Lemma 1.3 with
k = S u (0).

To this end, let RK be as in Lemma 2.6. For any x ∈ R2, by Lemma 2.6 we write

S +t v (x) = sup
|x−y|≤RK t

1
t

[
v (y) − v (x) − tL

(y − x
t

)]
= sup
|x−y|≤RK t

lim
r→0

1
t

[
u (ry) − u (rx)

r
− tL

(y − x
t

)]
≤ lim inf

r→0
sup

|rx−y|≤RK tr

1
tr

[
u (y) − u (rx) − trL

(y − rx
tr

)]
≤ lim inf

r→0
S +tru (rx) .

By Lemma 2.5, we have

E26E26 (4.27) S +t v (x) ≤ lim inf
r→0

S +tru (rx) ≤ lim inf
δ→0

lim inf
r→0

S +δ u (rx) = lim inf
δ→0

S +δ u (0) = S u (0) ∀x ∈ Rn.

Similarly, we have

E27E27 (4.28) −S −t v (x) ≤ −S −u (0) = S u (0) ∀x ∈ Rn.

One the other hand, for any 0 < r < δ0/Rt, by Lemma 4.2 let zr ∈ B (0,RK tr) such that

u (zr)
tr
− trL

(zr

tr

)
= S +tru (0) .

Then zr/r ∈ B (0,Rt). For any ε > 0, there exists rε,t > 0 such that for any y ∈ B (0,Rt), we have v (y) ≥ ur (y)−ε
for all r ∈

(
0, rε,t

)
. For r sufficiently small, we have

S +t v (0) ≥
1
t

[
v (zr/r) − tL

(zr

tr

)]
≥

1
tr

[
u (zr) − trL

(y
t

)]
−
ε

t
= S +tru (0) −

ε

t
≥ S u (0) −

ε

t
.

By the arbitrariness of ε > 0, we have S +t v (0) ≥ S u (0). Similarly we have −S −t v (0) ≥ S u (0) . Combining
these, (4.27) and(4.28), we see that the assumptions of Lemma 1.3 is fulfilled with k = S u (0). This proves
(i)⇒ (ii).

Proofs of (ii) ⇒ (i). Assume that H−1 (k) = [a, b] with a , b for some k ≥ 0. It suffices to show that (ii)
fail.

To this end, let f (t) = |t| for t ∈ R, and u f be as in (1.3). By Lemma 4.2, u f ∈ AMH(Rn) and
‖H(Du f )‖L∞(Rn) = k. To see the failure of (ii), we only need to show that u f does not have the linear ap-
proximation property, that is, for any vector e ∈ Rn and r ∈ (0, 1), one always has

lim inf
r→0

sup
x∈B(0,1)

∣∣∣∣∣∣u f (rx) − u f (0)
r

− e · x

∣∣∣∣∣∣ > c

for some constant c > 0 depending only on a, b, e. Write

lim inf
r→0

sup
x∈B(0,1)

∣∣∣∣∣∣u f (rx) − u f (0)
r

− e · x

∣∣∣∣∣∣ = sup
x∈B(0,1)

∣∣∣∣∣∣
∣∣∣∣∣b − a

8
· x

∣∣∣∣∣ − (
e −

b + a
2

)
· x

∣∣∣∣∣∣ .
If e − b+a

2 , 0, letting x = 1
2

2e−(b+a)
|2e−(b+a)| , we have

lim inf
r→0

sup
x∈B(0,1)

∣∣∣∣∣∣u f (rx)
r
− e · x

∣∣∣∣∣∣ ≥ 1
2
|e −

b + a
2
|.
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If e − b+a
2 = 0, letting x = 1

2
b−a
|b−a| , we obtain

lim inf
r→0

sup
x∈B(0,1)

∣∣∣∣∣∣u f (rx)
r
− e · x

∣∣∣∣∣∣ ≥ |b − a|
16

as desired. This gives (ii)⇒ (i). The proof of (i)⇔ (ii) in Theorem 1.1 is complete. �

5. Proof of Proposition 1.4

Suppose that vectors e0,6, e6 ∈ R
2 and u ∈ AMH(B(0, 6)) satisfy (1.6),(1.7) and (1.8). We want to show that

for any ε > 0, if δ > 0 is sufficiently small, then |e0,6 − e6| ≤ Cε.
Since u is not linear in B(0, r), there are a line segment [z1, z2] ⊂ B(0, r) , a linear function l(x) = a0 · x+b0,

z3 ∈ [z1, z2] with a0 =
u(z2)−u(z1)
|z2−z1 |

such that either

xcase1xcase1 (5.1) u ≥ l on [z1, z2], u(z1) > l(z1), u(z3) = l(z3), u(z2) > l(z2),

or

xcase2xcase2 (5.2) u ≤ l on [z1, z2], u(z1) < l(z1), u(z3) = l(z3), u(z2) < l(z2).

Without loss of generality, we assume that (5.1) holds.

xcon-com Lemma 5.1. There exists e ∈ R2, with H(e) = S +(u)(z3), such that z1 and z2 belong two distinct connected
components of the set {y ∈ R2 : u(y) > u(z3) + e · (y − z3)} ∩ B(0, 6).

Proof of Lemma 5.1. By Theorem 1.1 (ii), for an sequence {sk}k∈N which converges to 0, up to considering
subsequence there exists e ∈ R2 such that H(e) = S +u(z3) and

xeq4.1xeq4.1 (5.3) lim
sk→0

sup
B(z3,sk)

|u(y) − u(z3) − e · (y − z3)|
sk

= 0.

Since u is not linear in B(0, r), for any zk ∈ [z1, z2] ∩ ∂B(z3, sk), by (5.3) we have

(a0 − e) ·
(
zk − z3

sk

)
=

l(zk) − l(z3) − e · (zk − z3)
sk

≤
u(zk) − u(z3) − e · (zk − z3)

sk
→ 0,

as k → ∞. Therefore we have (a0 − e) · (z − z3) = 0 for any z ∈ [z1, z2], that is

u(zi) − u(z3) > l(zi) − l(z3) = a0 · (zi − z3) = e · (zi − z3), i = 1, 2,

and hence z1, z2 ∈ {y ∈ R2 : u(y) > u(z3) + e · (y − z3)}. Now we assume that z1, z2 belong to the same
connected component of {y ∈ R2 : u(y) > u(z3) + e · (y − z3)} ∩ B(0, 6). Then there exists a ploygonal line
Γ ⊂ {y ∈ R2 : u(y) > u(z3) + e · (y − z3)} ∩ B(0, 6) joining z1 to z2. Let S = Γ ∪ [z1, z2] be the closed curve and
U ⊂ B(0, 6) be the open set such that S = ∂U. Without loss of the generality, we may assume that there exists
a β > 0 such that

B+(z3, β) := B(z3, β) ∩ {y ∈ R2 : 0 < ∠(y − z3, z2 − z1) < π} ⊂ U.
It is clear that there exists an δ0 such that u(y) − u(z3) − e · (y − z3) ≥ δ0 for any y ∈ Γ. Therefore there are a
small ε > 0 and a unit vector v ∈ R2, with ∠(v, z2 − z1) = π

2 and e + εv , 0, such that

u(y) ≥ u(z3) + (e + εv) · (y − z3), ∀y ∈ S .

Note that φ(y) = u(z3) + (e + εv) · (y − z3) is linear and Dφ = e + εv , 0 so that Lemma 2.1 implies that

u(y) ≥ u(z3) + (e + εv) · (y − z3), y ∈ U.

On the other hand, we have

lim
sk→0

max
y∈B+(z3,β)∩B(z3,β)

|u(y) − u(z3) − e · (y − z3)|
sk

≥ ε > 0,

this is contradicts (5.3). The proof of Lemma 5.1 is complete. �
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The proof (1.9) is reduced to proving

xeq4.2xeq4.2 (5.4) |e − e6|
2 ≤ ε/2

and

xxeq4.2xxeq4.2 (5.5) |e − e0,6|
2 ≤ ε/2.

Proof of (5.4). Note that e6 − e ∈ B (0, 2R). For any ε > 0 the function ψ2R(ε/2) be as in Theorem 3.2. By
Lemma 5.2 and Lemma 5.3 as below, for 0 < δ < δ(H,R, ε) as there, the assumptions of Theorem 3.2 with
p = e and v = e6 − e are fulfilled, and hence |e6 − e| ≤ ε/2 as desired.

xlength Lemma 5.2. For any ε > 0, there exists a δ = δ(H,R, ε) > 0 such that

xeq4.3xeq4.3 (5.6) H(e6) − H(e) ≤ ψ2R(ε/2).

xangle Lemma 5.3. For any ε > 0, there is δ = δ(H,R, ε) > 0 such that

xeq4.28xeq4.28 (5.7)
∣∣∣∣∣∠(q, e6 − e) −

π

2

∣∣∣∣∣ ≤ ψ2R(ε/2) for some q ∈ ∂H(e′) and some e′ ∈ B(e, ψ2R(ε/2)) with H(e) = H(e′).

Below we prove Lemma 5.2 and Lemma 5.3. Write η = 1
2ψ2R(ε/2) and f = e6 − e for simple. We may

assume that | f | ≥ η/2 without loss of generality. Write

S := {y ∈ R2 : | f · (y − z3)| ≤ 2δ},S− := {y ∈ R2 : f · (y − z3) < −2δ} and S+ := {y ∈ R2 : f · (y − z3) > 2δ}.

The width of S is 2δ/| f |, and hence, at most 2δ
ε . Moreover, (1.7) implies that

|u(y) − u(z3) − e6 · (y − z3)| ≤ 2δ, ∀y ∈ B(0, 6).

Since
S− ∩ B(0, 6) ⊂ {y ∈ R2 : u(y) < u(z3) + e · (y − z3)}

and
S+ ∩ B(0, 6) ⊂ {y ∈ R2 : u(y) > u(z3) + e · (y − z3)},

by Lemma 5.1 above there is a connected component of {y ∈ R2 : u(y) > u(z3) + e · (y − z3)} ∩ B(0, 6), called
U, that contains either z1 or z2, and hence intersects B(0, 1), and is contained in the strip S .

Observe that U 1 B(0, 6); otherwise, thanks to u(y) = u(z3) + e · (y − z3) on y ∈ ∂U, by Lemma 2.1,
u = u(z3) + e · (y − z3) in U, which contradicts with the definition of U. Therefore there exists a polygonal
line Γ inside U starting in B(0, 1) and and exiting B(0, 6). Now we find z4 ∈ B(0, 6), with |z4 − z3| = 3 and
z4 − z3 ⊥ f , such that

(A1) supB(z4,2) |u(y) − u(z3) − e6 · (y − z3)| ≤ 2δ and 1 ≤ H(e6) ≤ 2.
(A2) {y ∈ R2 : u(y) > u(z3) + e · (y − z3)} ∩ B(0, 6) has a connected component U ⊂ S that contains a

polygonal line Γ connecting the two arcs S ∩ ∂B(z4, 2).

xlengthU Lemma 5.4. If δ ∈ (0, 2/C) for some constant C(H) ≥ 1, then

xeq4.6xeq4.6 (5.8) S u(x) ≤ H(e) +Cδ ∀x ∈ U ∩ B(z4, 1).

Proof of Lemma 5.4. For any x0 ∈ B(z4, 1) ∩ U, we have B(x0, 1) ⊂ B(z4, 2) and u(z3) + e · (x0 − z3) < u(x0).
Note that

xeq4.7xeq4.7 (5.9) u(y) = u(z3) + e · (y − x0) ≤ u(x0) + C H
H(e)(y − x0), ∀y ∈ ∂U ∩ B(x0, 1),

and

xeq4.8xeq4.8 (5.10) u(y) ≤ u(z3) + e · (y − x0) + 4δ ≤ u(x0) + e · (y − x0) + 4δ, ∀y ∈ U ∩ ∂B(x0, 1),

By (3.3), (5.9) and (5.10) we have

xeq4.9xeq4.9 (5.11) u(y) ≤ u(x0) + C H
H(e)+Cδ(y − x0), ∀y ∈ ∂(U ∩ B(x0, 1)).
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Since u ∈ CCH(B(0, 6)), we have

u(y) ≤ u(x0) + C H
H(e)+Cδ(y − x0), in U ∩ B(x0, 1).

This, combined with the Proposition 2.2 in [28], implies (5.8). �

We are able to prove Lemma 5.2 as below.

Proof of Lemma 5.2. If H(e) > H(e6) − η, then (5.6) follows. Assume that H(e) ≤ H(e6) − η now. Thanks to
1 ≤ H(e6) ≤ 2, by (i) and Lemma 3.5, we know that e6 , 0 and 0 < ∂H(e6). The convexity of H implies

xeq4.4xeq4.4 (5.12) q · f = q · (e6 − e) ≥ H(e6) − H(e) ≥ η, ∀q ∈ ∂H(e6).

We always let δ > 0 is small so that 50|q|δ ≤ 1
2 H(e6) for all q ∈ ∂H(e6) below.

Claim 5.2 (a) For any q ∈ ∂H(e6), there exists

wq ∈ L :=
{

z4 + s
q
|q|

: −
1
3
≤ s ≤ −

1
4

}
⊂ B(z4, 1)

such that

xeq4.10xeq4.10 (5.13) S u(yq) ≥ H(e6) − 50|q|δ.

Proof of Claim 5.2 (a). Let q ∈ ∂H(e6) and c := supx∈L S u(x). To find yq it suffices to show that

H(e6) − 48|q|δ ≤ c.

This is further reduced this to proving

xeq4.14xeq4.14 (5.14) e6 · q − 48|q|δ ≤ C H
c (q).

Indeed, since
C H

c (q) = sup
H(p)≤c

p · q ≤ sup
H(p)≤c

[H(p) + L(q)] = c + L(q),

by e6 · q = H(e6) + L(q) as in Lemma 3.4, one has H(e6) − 48|q|δ ≤ c.
To see (5.14), thanks to L ⊂ B(z4, 2), (A1) implies

xeq4.11xeq4.11 (5.15) u
(
z4 −

1
4

q
|q|

)
− u

(
z4 −

1
3

q
|q|

)
≥

1
12

e6 ·
q
|q|
− 4δ.

On the other hand, by the semi-continuity of S u, for any η > 0 there exists an open neighborhood Vη(L) such
that supx∈Vη(L) S u(x) ≤ c + η. and hence supx∈Vη(L) H(Du(x)) ≤ c + η. By Lemma 2.2, We have

u
(
z4 −

1
3

q
|q|

)
− u

(
z4 −

1
4

q
|q|

)
≤ C H

c+η(
q

12|q|
).

Letting η→ 0, we conclude (5.14) from this and (5.15).
�

Fix a q0 ∈ ∂H(e6) such that

EQ4.x1EQ4.x1 (5.16) f ·
q0

|q0|
= min

{
f ·

q
|q|

: q ∈ ∂H(e6)
}

Let y0 := wq0 = z4 + s0
q0

|q0 |
for some s0 ∈ [−1/3,−1/4] as determined in Claim 5.2(a). Since f · q0 ≥

H(e6) − H(e) ≥ η, we have

f · (y0 − z3) = f · (y0 − z4) = s0 f ·
q0

|q0|
< −

1
4
η

|q0|
.

If δ < η/|q0|2, then f · (y0 − z3) < −2δ, that is, y0 ∈ S−.
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For any 0 < δ < η/8, let

t = t(δ) := dist(Γ, ∂U ∩ B(z4, 2)) ≤
2δ
| f |
.

Applying Lemma 2.8, we get a discrete gradient flow {yi}
m
i=1 for some m = m(δ) satisfying

xeq4.18xeq4.18 (5.17) yi = yi(δ) ∈ B(z4, 2), |yi − yi−1| = t, u(yi) = u(yi−1) + C H
S +t (u)(yi−1)(yi − yi−1), 1 ≤ i ≤ m,

but ym+1 < B(z4, 2). Note that ym+1 < B(z4, 2) implies that

xeq4.19xeq4.19 (5.18) dist(ym, ∂B(z4, 2)) ≤ t.

We prove the existence of such m ≥ 1 by contradiction. Assume (5.17) holds for all i ≥ 1. By Claim 5.2(a),

xeq4.20xeq4.20 (5.19) S +(u)(yi) ≥ S +(u)(y0) ≥ H(e6) − 50|q0|δ, 0 ≤ i ≤ m.

Thus, for any j ≥ 1

u(y j) − u(y0) =
m∑

i=1

(u(yi) − u(yi−1)) ≥
j∑

i=1

C H
S +(u)(yi−1)(yi − yi−1)xeq4.20xeq4.20 (5.20)

≥

j∑
i=1

C H
S +(u)(y0)(yi − yi−1) ≥

j∑
i=1

C H
H(e6)−50|q0 |δ

(yi − yi−1),

By 50|q0|δ ≤ 1
2 H(e6), then there exists C > 0 depending only on H such that

C H
H(e6)−50|q0 |δ

(x) ≥ C|x|, ∀|x| = 1,

and hence,

u(y j) − u(y0) ≥
j∑

i=1

C H
H(e6)−50|q0 |δ

(yi − yi−1) ≥ C jt,

Noteing |u(y j)−u(y0)| ≤ ‖Du‖L∞(B(0,6))|y j−y0|, one has |y j−y0| → C jt → ∞ as j→ ∞, which is a contradiction.

Claim 5.2 (b) There exists δ(ε) > 0 such that for any 0 < δ < δ(ε), we can find 1 ≤ jδ ≤ m such that ym ∈ S+
and y jδ ∈ B(z4, 1) ∩ U.

Proof of Claim 5.2(b). We first show that ym ∈ S+ if δ > 0 is sufficiently small. Note that

xeq4.23xeq4.23 (5.21) C H
H(e6)−50|q0 |δ

(ym − y0) ≤ e6 · (ym − y0) + 4δ.

Indeed, noting that (5.20) also holds with j = m, and applying the triangle inequality for C H
k , we have

u(ym) − u(y0) ≥
m∑

i=1

C H
H(e6)−50|q0 |δ

(yi − yi−1) ≥ C H
H(e6)−50|q0 |δ

 m∑
i=1

(yi − yi−1)

 = C H
H(e6)−50|q0 |δ

(ym − y0).xeq4.21xeq4.21 (5.22)

On the other hand, by (A1) and ym, y0 ∈ B2(z4) one has

xeq4.22xeq4.22 (5.23) u(ym) − u(y0) ≤ e6 · (ym − y0) + 4δ.

From this and (5.22) one gets (5.21).
Thanks to dist (ym, ∂B(z4, 2)) ≤ t as in (5.18), there exists y ∈ ∂B(z4, 2) such that t ≥ |ym − y|. For

0 < δ < η/6, by | f | ≥ η/2 and t < 2δ/| f | ≤ 2/3, one gets

|ym − z4| ≥ |y − z4| − |y − ym| ≥ 2 − t ≥
4
3
.

Since y0 = wq0 ∈ {z4 + t q0

|q0 |
: t ∈ [−1

3 ,−
1
4 ]}, it is clear that

|ym − y0| ≥ |ym − z4| − |z4 − y0| ≥
4
3
−

1
3
= 1.
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Writing em =
ym−y0
|ym−y0 |

, by (5.21), one has

xeq4.24xeq4.24 (5.24) C H
H(e6)−50|q|δ(em) ≤ e6 · em + 4δ.

Note that em converges to some unit vector ê as δ→ 0 (up to some subsequence), and hence C H
H(e6)(ê) ≤ e6 · ê.

By definition, C H
H(e6)(ê) = e6 · ê. By Lemma 3.7, we have ê = q̂/|q̂| for some q̂ ∈ ∂H(e6). Recall that q̂ and q0

do not coincide necessarily.
Next we show that if δ > 0 is sufficiently small, then ym ∈ {y ∈ R2 : f · (y − z4) ≥ 2δ}. Indeed, by

y0 = z4 + s0
q0

|q0 |
for some s0 ∈ [−1/3,−1/4] we have

f · (ym − z4) = f · (ym − y0) + f · (y0 − z4) = |ym − y0| f · ê + s0 f ·
q0

|q0|
+ |ym − y0| f · (em − ê).

Since 1 ≤ |ym − y0| ≤ 4 and f · ê ≥ f · q0

|q0 |
≥ η/|q0|, we get

f · (ym − z4) ≥
2
3

f ·
q0

|q0|
− 4| f ||em − ê| ≥

2η
3|q0|

− 2η|em − ê|.

Since em → ê as δ→ 0, we have f ·(ym−z4) > 2δ if δ is sufficiently small. Since f ·(ym−z3) = f ·(ym−z4) > 2δ
and hence ym ∈ S+ by definition.

Now we find 1 ≤ jδ ≤ m such that y jδ ∈ U ∩ B(z4, 1) when δ is sufficiently small.
When δ is sufficiently small, by y0 ∈ S−, ym ∈ S+ and the choice of the step size t, there exists 1 ≤ jδ ≤ m

such that y jδ ∈ U ∩ B(z4, 2). It remains to show that |y jδ − z4| ≤ 1. If |y jδ − z4| > 1, we have

|y jδ − y0| ≥ |y jδ − z4| − |y0 − z4| ≥ 1 −
1
3
=

2
3
.

By an argument similar to above, we also have f · (y jδ − z4) > 2δ, that is, y jδ ∈ S+ which is a contradiction.
Thus we obtain |y jδ − z4| ≤ 1. The Claim 5.2 (b) is proven. �

Combing (5.8), (5.13),(5.20) and Claim 5.2 (b), we obtain

H(e6) − 50|q|δ ≤ S +(H, u, y jδ) ≤ H(e) +Cδ,

this implies that (5.6), where δ = δ(η,H) is chosen to be sufficiently small. The proof of Lemma 5.2 is
complete. �

The proof of Lemma 5.3 is as below.

Proof of the Lemma 5.3. If there exist e′ ∈ B(e, η) and q1, q2 ∈ ∂H(e′) with H(e) = H(e′) and ∠(q1, f ) ≤ π/2 ≤
∠(q2, f ), then we can find λ ∈ [0, 1] such that ∠(λq1 + (1− λ)q2, f ) = π/2. Then λq1 + (1− λ)q2 ∈ ∂H(e′) is the
desired result. Below we may assume

x1x1 (5.25) ∠(q, f ) ∈ [0, π2 ) for all q ∈ ∂H(e′) and all e′ ∈ B(e, η) with H(e) = H(e′).

The case ∠(q, f ) ∈ (π/2, π] for all q ∈ ∂H(e′) and all e′ ∈ B(e, η) with H(e) = H(e′) is similar.
Note that there exists e′ ∈ B(e, η) with H(e) = H(e′) and qe′ ∈ ∂H(e′) such that

α := ∠(qe′ , f ) = max
e′∈B(e,η)

max
q∈∂H(e)

∠(q, f ) <
π

2
.

Assume α < π
2 − η without loss of generality.

Let xδ = z4 −
2qe′

qe′ · f
δ be the intersection of L := {z4 + sqe′ : t ∈ R} and {y ∈ R2 : (y − z4) · f = −2δ}. Observe

that
|xδ − z4| =

2δ
| f | cos ∠(q, f )

≤
2δ

η sin η
≤ 1,

provided that δ > 0 is chosen to be sufficiently small. This implies B(xδ, 1) ⊂ (z4, 2). By (A1), we have

xeq4.29xeq4.29 (5.26) u(y) − u(z3) − e · (y − z3) ≤ u(y) − u(z3) − e6 · (y − z3) + f · (y − z3) ≤ 4δ, ∀y ∈ U ∩ B(xδ, 1),
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and

xeq4.30xeq4.30 (5.27) u(y) = u(z3) + e · (y − z3), ∀y ∈ ∂U ∩ B(xδ, 1)

Thus

u(y) = u(z3) + e · (xδ − z3) + e · (x − xδ) ≤ u(z3) + e · (xδ − z3) + C H
H(e)(x − xδ), ∀x ∈ ∂U ∩ B(xδ, 1).xeq4.32xeq4.32 (5.28)

For any x ∈ U ∩ ∂B(xδ, 1), we have

xeq4.33xeq4.33 (5.29) u(x) ≤ u(z3) + e · (xδ − z3) + e · (x − xδ) + 4δ.

Let px ∈ H−1(H(e)) such that tx(x− xδ) ∈ ∂H(px) for some tx > 0; see Lemma 3.7 for the existence of tx. Since
∠(x − xδ, f ) > π

2 − Cδ/| f | for some constant C ≥ 2, we know that if δ < 2Rη/C, then ∠(x − xδ, f ) > π
2 − η and

hence, by the assumption (5.25), |px − e| ≥ η. If δ < 1
4φ2R(η) as needed in Theorem 3.3 we further have

(px − e) · (x − xδ) ≥ 4δ.

Since CH(e)(x − xδ) = px · (x − xδ), we obtain,

CH(e)(x − xδ) = px · (x − xδ) ≥ e · (x − xδ) + 4δ.

By this and (5.29), one has

xeq4.34xeq4.34 (5.30) u(x) ≤ u(z3) + e · (xδ − z3) + e · (x − xδ) + 4δ ≤ u(z3) + e · (xδ − z3) +CH(e)(x − xδ).

It follows from (5.28), (5.29) and (5.30) that for sufficiently small δ > 0, we have

eq4.37eq4.37 (5.31) u(y) ≤ u(z3) + e · (xδ − z3) + C H
H(e)(y − xδ), ∀y ∈ ∂B(U ∩ B(xδ, 1)).

Applying comparison property with cones, we have

eq4.38eq4.38 (5.32) u(y) ≤ u(z3) + e · (xδ − z3) + C H
H(e)(y − xδ), in U ∩ B(xδ, 1).

By (A2), we have {xδ + tqe : t ≥ 0} ∩ (U ∩ B(xδ, 1)) , ∅ for any qe ∈ ∂H(e). For any y0 = xδ + t0qe ∈

U ∩ B(xδ, 1), by (5.32) and Lemma 3.7 one has

u(y0) ≤ u(z3) + e · (xδ − z3) + C H
H(e)(y0 − xδ)

≤ u(z3) + e · (xδ − z3) + t0C H
H(e)(qe)

= u(z3) + e · (xδ − z3) + t0e · qe

= u(z3) + e · (y0 − z3),

which contradicts with y0 ∈ U, that u(y0) > u(z3) + e · (y0 − z3). This completes the proof of Lemma 5.3. �

Proof of (5.5). To see (5.5), define vr(x) = u(rx)
r for x ∈ B(0, 6). Then we have

sup
x∈B(0,6)

|vr(x) − e0,6 · x| ≤ δ.

Moreover, Lemma 5.1 also implies that {y ∈ R2 : u(y) > u(z3) + e · (y − z3)} ∩ B(0, 6r) has two connected
components that intersect B(0, r). This implies that for zr

3 =
z3
r , {y ∈ R2 : vr(y) > vr(zr

3) + e · (y − zr
3)} ∩ B(0, 6)

has two connected components that intersect B(0, 1). Therefore similarly to the proof (5.4) above, we could
also derive (5.5) provided that

ew2ew2 (5.33)
1
2
≤ H(e0,6) ≤ 4.

Below we verify (5.33). By Lemma 3.8 and (1.7), one has

xew13xew13 (5.34) u(x) ≤ e6 · x + δ ≤ C H
H(e6)(x) + δ ≤ C H

H(e6)+Cδ(x), ∀x ∈ ∂B(0, 3).

Thus for δ ∈ (0, 2/C), we have

xew14xew14 (5.35) H(e0,6) = S u(0) ≤ H(e6) +Cδ ≤ 4.
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On the other hand, we have ψ2R(ε) ≤ 1/4 for 0 < ε < ε0. Lemma 5.2 implies that for δ > 0 sufficiently
small, we have

ew3ew3 (5.36) H(e) ≥ H(e6) − ψ2R(ε) ≥ 1 − ψ2R(ε) ≥
3
4
.

Since e0,6 ∈ D(u)(0; 6r; δ), we have

u(x) ≤ u(z3) + e0,6 · (x − z3) + 2δreeweew (5.37)

≤ u(z3) + C H
H(e0,6)(x − z3) + 2δr ≤ u(z3) + C H

H(e0,6)+Cδ(x − z3)

for any x ∈ ∂B(z3, 2r) ⊂ B(0, 6r), and hence by comparison property with cones, for any x ∈ B(z3, 2r). By the
definition of S +2r(u)(z3) and (5.37), if Cδ < 1/4 we have

ew10ew10 (5.38) S +2r(u)(z3) ≤ H(e0,6) +Cδ ≤ H(e0,6) +
1
4
.

By Lemma 2.5 and Lemma 2.1, we have

H(e) = S +(u)(z3) ≤ S +2r(u)(z3),

which together with (5.38) yields H(e0,6) ≥ 1/2 as desired. The proof of (5.5) is complete.

6. Proofs of Theorem 1.5 and (i)⇔ (iii) or (iv) in Theorem 1.1

In the following Corollary 6.1, the condition (1.6) needed in Proposition 1.4 is reduced to ‖H(Du)‖L∞(B(0,6)) ≤

R, that is, u is may be linear in some neighborhood of 0.

xcor Corollary 6.1. Suppose that H satisfies (1.4) with n = 2 and (i). Let R ≥ 1. For any ε > 0, there exists δ =
δ(R, ε) > 0 such that for any e6 and e0,6, if we can find a u ∈ AMH(B(0, 6)) satisfying ‖H(Du)‖L∞(B(0,6)) ≤ R,
(1.7) and (1.8), then we have

xxlin3xxlin3 (6.1) |e6 − e0,6| ≤ ε.

Proof. Let u ∈ AMH(B(0, 6)) satisfy ‖H(Du)‖L∞(B(0,6)) ≤ R, (1.7) and (1.8). If u is not linear in any neighbor-
hood of 0, this follows from Proposition 1.4. Below, we assume that u ≡ e · x near 0 for some vector e ∈ R2.
Let r0 ∈ (0, 6) be the largest r ∈ (0, 6) so that u(x) = u(0) + e · x in B(0, r). Obviously, u(x) = u(0) + e · x in
B(0, r0). By (1.8) one has

sup
B(0,6r)

|e · y − e0,6 · y| ≤ δr

that is, ‖e − e0,6‖ ≤ δ/6.
If r0 > 1/2, by (1.7) we have

sup
B(0,6)

|e · x − e6 · x| ≤ δ,

that is, ‖e − e6‖ ≤ δ/6. Therefore, ‖e0,6 − e6‖ ≤ δ/3 ≤ ε whenever δ < ε.
If r0 < 1/2, by the choice of r0 we can find x0 ∈ ∂B(0, r0), u , e · x in some neighborhood. Moreover, we

see that u is not linear in any neighborhood of x0. Indeed, if u(x) = u(x0) + p · (x − x0) in B(x0, s) for some p
and s > 0, then (e− p) · (x− x0) = 0 in B(0, r0)∩B(x0, s). If e− p ⊥ x0, then we can find z j ∈ B(0, r0)∩B(z, x0)
such that (z j − x0)/|z j − x0| converges to (e − p)/|e − p| as j → ∞, and hence e − p = 0, that is, e = p. If
e− p 6⊥ x0, then we can find w ∈ B(0, r0)∩ B(x0, s) such that either (w− x0)/|w− x0| or (x0 −w)/|w− x0| equals
to (e − p)/|e − p|, and hence e = p. But this is impossible by the choice of x0.

Next we have H(e) = S u(x0) and e ∈ D(u)(x0; r; δ) for any δ > 0 and sufficiently small r > 0. Indeed,
by Theorem 1.1 (ii), for any sequence r = {r j} which converges to 0, up to considering its subsequence, there
exists a vector ex0,r such that H(ex0,r) = S u(x0) and

lim
j→∞

sup
y∈B(0,1)

|u(y + x0) − u(x0) − ex0,r · y|
r j

= 0.
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Since u(y) = e · y ∈ B(0, r0), we have

lim
r j→0

sup
y∈B(x0,r j)∩B(0,r0)

|(e − ex0,r) · (y − x0)|
r j

= 0.

If e−ex0,r ⊥ x0, then we can find vectors p j ∈ ∂B(x0, r j)∩B(0, r0)) so that p j/|p j| →
e−ex0 ,r
|e−ex0 ,r |

. Thus |e−ex0,r| = 0,
that is, e = ex0,r. If e − ex0,r 6⊥ x0, then we can find vectors p ∈ ∂B(x0, r j) ∩ B(0, r0)) so that either w/|w| or
−w/|w| is exactly

e−ex0 ,r
|e−ex0 ,r |

, and hence e = ex0,r. Thus H(e) = S u(x0) and, for any δ > 0, e ∈ D(u)(x0; r; δ) for
sufficiently small r > 0.

We also note that (1.7) implies

|u(y) − u(x0) − e6 · (y − x0)|L∞(B(x0,5)) ≤ 2δ, 1 ≤ H(e6) ≤ 2.

That is, e6 ∈ D(u)(x0; 5/6; 2δ).
Let v(x) = 6

5 [u( 5
6 x + x0) − u(x0)] for x ∈ B(0, 6). We see that v ∈ AMH(B(0, 6)), ‖Dv‖L∞(B(0,6)) ≤ 2R,

e6 ∈ D(v)(0; 1; 2δ) with 1 ≤ H(e6) ≤ 2, and e ∈ D(v)(0; r; 2δ) for some sufficiently small r > 0, S v(0) = H(e).
By Proposition 1.4, if δ < δ(H, 2R, 2δ) we know that |e6 − e| ≤ ε. Thus |e6 − e0,6| ≤ ε as desired. �

Using Corollary 6.1 and Theorem 1.1 (ii) we are able to prove Theorem 1.5.

Proof of Theorem 1.5. Step 1. We prove that u is differentiable everywhere and H(Du) = S u everywhere. Let
x0 ∈ Ω. Up to considering u(·+ x0)−u(x0), we may assume that x0 = 0 and u(0) = 0. Up to considering 1

r u(rx)
we may assume that B(0, 2) ⊂ Ω.

To see the differentiability of u at 0, it suffices to find a vector e such that for any sequence {r j} j∈N which
converges to 0 we have

c21c21 (6.2) lim
j→∞

sup
y∈B(0,1)

∣∣∣∣∣∣ 1
r j

u(r jy) − e · y

∣∣∣∣∣∣ = 0,

and H(e) = S u(0). Thus Du(0) = e. Indeed, if u is not differentiable at 0, then there exists a sequence s j such
that lim j→∞

∣∣∣∣ 1
s j

u(s jy) − e · y
∣∣∣∣ > 0.

If S u(0) = 0, by Theorem 1.1 (ii) we know that (6.2) holds with e = 0.
If S u(0) > 0, up to considering H̃ = 1

S u(0) H, we may assume that S u(0) = 1. By Theorem 1.1 (ii), for any
sequence r = {r j} j∈N which converges to 0, up to considering its subsequence we can find a vector er such that

c21xc21x (6.3) lim
j→∞

sup
y∈B(0,1)

∣∣∣∣∣∣ 1
r j

u(r jy) − er · y

∣∣∣∣∣∣ = 0,

and H(er) = S u(0). Let s = {sk}k∈N be any another sequence with vector es satisfying

c21xxc21xx (6.4) lim
k→∞

sup
y∈B(0,1)

∣∣∣∣∣ 1
sk

u(sky) − es · y
∣∣∣∣∣ = 0

and H(es) = S u(0). To get (6.2), we only need to prove er = es.
For any j, set v j(y) = 6

r j
u(r jy/6) for all y ∈ B(0, 6). Note that, for all j ∈ N, we have S v j(0) = S u(0) and

‖H(Dv j)‖L∞(B(0,6)) = ‖H(Du)‖L∞(B(0,r j)) ≤ ‖H(Du)‖L∞(B(0,1)) =: R < ∞.

For any δ > 0, by (6.3) and (6.4), there exists a jδ such that er ∈ D(v j)(0; 1; δ) and es ∈ D(v j)(0; sk/r j; δ) for
all j ≥ jδ and large k with sk << r j. For any ε > 0, applying Corollary 6.1 with δ < δ(H,R, ε), we obtain
|es − er| ≤ Cε. By the arbitrariness of ε, we have es = er as desired.

Step 2. We prove (1.10) and hence the continuity of Du.
Suppose that the conclusion (1.10) in Theorem 1.5 is not correct. Then there exist k0 > 0, ε0 > 0 so that we

can find a sequence {s j > 0} and a family u j ⊂ AMH(B(x j, 2r j)) satisfying s j/r j → 0,

c24c24 (6.5) ‖H(Du j)‖L∞(B(x j,2r j)) ≤ k0, |Du j(x j) − Du j(y j)| ≥ ε0 for some y j ∈ B(x j, s j).
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Up to considering 1
r j

u j(r jx + x j) − u j(x j) for x ∈ B(0, 1) we may assume that x j = 0, u j(0) = 0 r j = 1 and
s j → 0. Since ‖H(Du j)‖L∞(B(0,2)) ≤ k0 implies that ‖Du j‖L∞(B(0,2)) ≤ C(H, k), we know that u j → u∞ locally
uniformly in B(0, 2) as j → ∞ (up to some subsequence). Note that u∞ ∈ AMH(B(0, 2)), u∞(0) = 0. By Step
1, u∞ is differentiable in B(0, 2), and hence for any δ > 0, there exists r0 > 0 such that we have

c25c25 (6.6) sup
x∈B(0,r0)

|u∞(x) − Du∞(0) · x| ≤
δr0

2
, |Du j(y j) − Du j(0)| ≥ ε0.

Therefore there exists a sufficiently large jδ > 0 such that

c26c26 (6.7) sup
x∈B(0,r0)

|u j(x) − Du∞(0) · x| ≤ δr0, ∀ j ≥ jδ.

This implies that for j ≥ jδ, we have

c27c27 (6.8) |u j(x) − u j(y) − Du∞(0) · (y − x)| ≤ 2δr0, ∀x, y ∈ B(0, r0).

In particular, for j ≥ jδ, we have

c28c28 (6.9) sup
x∈B(0,r0/2)

|u j(x + y j) − u j(y j) − Du∞(0) · x| ≤ 2δr0.

If Du∞(0) = 0, by (6.6) we have

u j(x) ≤ δr0 = δ|x| ≤ C H
Cδ(x) ∀x ∈ ∂B(0, r0)

and hence by Corollary 3.8, u j(x) ≤ C H
Cδ(x) ∀x ∈ B(0, r0). This implies that H(Du j(0)) = S u j(0) ≤ Cδ.

Similarly, by (6.9), one has H(Du j(y j)) = S u j(y j) ≤ Cδ. If δ << ε, this leads to a contraction with
|H(Du j(y j)) − H(Du j(0))| ≥ ε0.

If Du∞(0) , 0, up to considering H̃ = 1
H(Du∞(0)) H we may assume that H(Du∞(0)) = 1. It suffices to show

that for any ε > 0,

|Du j(y j) − Du∞(0)| ≤ Cε, |Du j(0) − Du∞(0)| ≤ Cε for sufficiently large j.

If this is correct, letting ε < ε0/4C we get contradiction with |H(Du j(y j)) − H(Du j(0))| ≥ ε0.
Below we only verify |Du j(y j) − Du∞(0)| ≤ Cε for large j; the proof of |Du j(0) − Du∞(0)| ≤ Cε for

large j is similar and easier. Let v j(x) = 12
r0

u(r0x/12 + y j). We have ‖H(Dv j)‖L∞(B(0,6)) ≤ k0. Moreover, (6.9)
implies Du∞(0) ∈ D(v j)(0; 1; 2δ) for j ≥ j0. Since v j is differentiable at 0, we know that Du(y j) = Dv j(0) ∈
D(v j)(0; r; 2δ) for sufficiently small r > 0. For any ε > 0, applying Corollary 6.1 with δ < δ(H, k0, ε) we know
that |Du j(y j) − Du∞(0)| ≤ Cε. Thus we complete proof of the Theorem 1.5. �

Withe the aid of Theorem 1.5 we prove (i)⇔ (iii) and (i)⇔ (iv) in Theorem 1.1 as below.

Proof of (i)⇔ (iii) and (i)⇔ (iv) in Theorem 1.1. As clarified in the introduction, we only need to prove The-
orem 1.1 under the assumption (1.4).

Proof of (i)⇒ (iii). This follows from Theorem 1.5 directly.
Proof of (i) ⇒ (iv). Let u ∈ AMH(Rn) and assume that there exists some constant K ≥ 1 such that

|u(x)| ≤ K(1 + |x|) for all x ∈ Rn. By Theorem 1.5, u ∈ C1(Rn). Moreover we have ‖H(Du)‖L∞(Rn) < ∞.
Indeed, since Lemma 2.5 implies H(Du(x)) = S u(x) ≤ S tu(x) for any t > 0 and x ∈ Rn, it suffices to show
S +t u(x) < C(K) whenever t is sufficiently large for any given x ∈ Rn. By |u(y)| ≤ K(1 + |y|) for all y ∈ Rn, if
t ≥ (1 + |x|), we have

S +t u(x) = sup
y∈Rn

[
u(y) − u(x)

t
− L

(y − x
t

)]
≤ 2K + sup

y∈Rn

[
K|y − x|

t
− L

(y − x
t

)]
= 2K + sup

z∈Rn
[K|z| − L(z)] .

By Lemma 2.6,
S +t u(x) ≤ 2K + sup

|z|≤RK

[K|z| − L(z)] ≤ 2K + KRK

as desired.
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Write k = ‖H(Du)‖L∞(R2). For any R > 0 let uR(x) = u(Rx)/R for all x ∈ Rn. Then uR ∈ AMH(R2)∩C1(R2)
and ‖H(DuR)‖L∞(R2) = k. By Theorem 1.5 again,

|Du(x) − Du(0)| = lim sup
R→∞

∣∣∣∣∣DuR

( x
R

)
− Du(0)

∣∣∣∣∣ ≤ lim sup
R→∞

ρk

(
|x|
R

)
= 0 ∀x ∈ Rn.

This implies that Du ≡ Du(0) and hence u(x) = u(0) + Du(0) · x for all x ∈ Rn.
Proofs of (iii) or (vi) ⇒ (i). Assume that H−1 (k) = [a, b] with a , b for some k ≥ 0. It suffices to show

that (iii) and (iv) fail.
Let f and u f be as in the proof of (ii) ⇒ (i). Obviously, u f < C1(Rn) and hence (iii) fails. This gives

(iii) ⇒ (i). Note also that ‖H(Du f )‖L∞(Rn) = k implies that ‖Du f ‖L∞(Rn) < ∞ and hence u f enjoys a linear
growth. But, obviously, u f is not a linear function and hence (iv) fails. This gives (iv) ⇒ (i). The proof of
Theorem 1.1 is complete. �
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659–678.
wy12 [29] C. Y. Wang and Y. F. Yu, C1-boundary regularity of planar infinity harmonic functions. Math. Res. Lett. 19 (2012), 823–835.
y06 [30] Y. F. Yu, L∞ variational problems and Aronsson equations. Arch. Ration. Mech. Anal. 182 (2006), 153–180.
y07 [31] Y. F. Yu, L∞ Variational Problems and Weak KAM Theory. Comm. Pure Appl. Math. LX (2007), 1111-1147.

Department ofMathematics, Beihang University, Beijing 100191, P.R. China
E-mail address: SY1609131@buaa.edu.cn

Department ofMathematics, Purdue University, 150 N. University StreetWest Lafayette, IN 47907-2067, US
E-mail address: wang2482@wang2482@purdue.edu

Department ofMathematics, Beihang University, Beijing 100191, P.R. China
E-mail address: yuanzhou@buaa.edu.cn

The Trial Version




