A CRITERIA FOR THE REGULARITY OF ABSOLUTE MINIMIZERS
INVOLVING HAMILTONIAN H € CO(R")
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Abstract. Let n > 2 and suppose that H € CO(R™) is convex and lim inf, o H(p) = oo. The
following are proved to be equivalent:
(i) H is not a constant in any line segment.
(i) Any absolute minimizer for H in any domain 2 C R” enjoys the linear approximation
property.
When n = 2, (i) is further proved to be equivalent to (iii) or (iv) below:
(iii) Any absolute minimizer for H in any domain Q c R? enjoys C' (Q)-regularity.
(iv) Any absolute minimizer for H in whole plane enjoying a linear growth at co must be a
linear function.
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1. INTRODUCTION

Let n > 2 and suppose that H € C O(R™) is a convex and coercive (lim inf p—oo H(p) = 00). Aronsson 1960’s

initiated the study of minimization problems for L*-functional

Fr (u, Q) = esssup H (Du(x)) for any domain Q c R” and function u € Wi «Q);

1
xeQ o¢

see [2, 3,4, 5, 6]. Given a domain Q C R”, by Aronsson a function u € Wll(’)‘:’ () is an absolute minimizer for

H in Q (write u € AMpy (Q) for short) if
Fruw,V)<Fyg(,V) whenever Ve Q, v € Wll(’)‘:’ (V)N C(V)and u = von dV.

It turns out that the absolute minimizer is the correct notion of minimizers for such L®-functionals.

The main purpose of paper is to establish the following criteria for the regularity of absolute minimizers.

1la| Theorem 1.1. Let n > 2 and suppose that H € CO(R") is a convex and coercive. Then the following are

equivalent:
i) H is not a constant in any line segment.

.- pdfe|emen‘t is also equivalent to (iii) or (iv) below:

! o . . . . 2 . 1 _ .
e e e I solute minimizer for H in any domain Q C R” enjoys C* (Q)-regularity.

er 8, 2018.

solute minimizer for H in any domain Q0 C R" enjoys the linear approximation property.
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(iv) Any absolute minimizer for H in whole plane enjoying a linear growth at oo must be a linear function.

We refer (iv) above as a Liouville property of absolute minimizer for H. A function u € C°(R") enjoys a
linear growth at oo if |u(x)| < C(1 +|x]) for all x € R", where C is a constant. Moreover, by Crandall-Evans [14]
(see also [31] and [28]), a function u € C%! (Q) enjoys the linear approximation property if for any x € Q and
any sequence {r;} ;e which converges to 0, there exist a subsequence {r;, }xery and a vector e, such that

ji Yket
. u(x + rjy) - 1 (x)

lim  sup : — e har Y| =0

k= yep.1) T

and
H (e{rjk}keN) = Su(x) := lim ||H (Du) ||L°“(B(x,r))-
r—0

Note that everywhere differentiability always implies the linear approximation property. But the converse is
not necessarily correct due to Preiss’ fucntion; in particular, Lipchitz functions do not have the linear approxi-
mation property necessarily.

We have the following interesting consequence of Theorem 1.1.

Corollary 1.2. For any Banach norm ||p|| in R”", the unit sphere Slll'll = {p e R" : |Ipll = 1} does not contain
any line-segment if and only if absolute minimizers for ||p|| have the linear approximation property, or the
C'-regularity (when n = 2) or the Liouville property (when n = 2).

In particular, let

n 1/t

Ipl; = Zpi when t > 1 and = max |p;| when t = oo for all p € R".
Py 1<i<n

For 1 < t < o, absolute minimizers for |pl; always have the linear approximation property, the C'-regularity

(when n = 2) and the Liouville property (when n = 2); but for t = 1 and oo, absolute minimizers do not have

any of these properties necessarily.

Recall that if H € C!'(R"), Aronsson derived the Euler-Lagrange equations for absolute minimizers:

(1.1) ylu] := (D[H (D)1, D,H (Du)) = Z Hy, (Du) H, (Du)ty,, =0 in Q,

ij=1

which are highly degenerate nonlinear elliptic equations. In the special case H(p) = %l p|2, (1.1) is the well-
known oo-Laplace equation
1 ) . ,
(12) Acstt = Z(DIDUP . Duy = " iyt =0 in Q.
ij=1

By Crandall-Lions’ theory [17], viscosity solutions to (1.1) and (1.2) are well-defined; viscosity solutions to
(1.2) are called as co-harmonic functions. Jensen [23] identified co-harmonic functions with absolute minimiz-
ers for %Iplz. If H € C1(R") is convex and coercive, by Crandall et al [18] and Yu [30] (see also [11, 13, 22, 9])
we know that absolute minimizers for H coincide with viscosity solutions to (1.1).

The existence and uniqueness of co-harmonic functions in bounded domains has been established by Jessen
[23]; see also [10, 16, 1, 26] for other approaches for the uniqueness. If H € CO(R") is convex and coercive, we
refer to [11, 8] for the existence of absolute minimizers. Assuming additionally that H~! (min H) has empty
rong et al [9] obtained their uniqueness; see also Jensen et al [24] when H € CZ%(R™), and [8, 16]

. . . _1 .
.- pdfelement i{[l:rcil;rnorm. By [30, 24, 9], to get the uniqueness it is also necessary to assume H~ " (min H)
The Trial Version ity of absolute minimizers/viscosity solutions to (1.1)&(1.2) is the main issue in this field. By
absolute minimizers are always locally Lipschitz, and hence differentiable almost everywhere.
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Crandall-Evans [14] obtained the linear approximation property of co-harmonic functions. The interior C'-
regularity of planar co-harmonic functions and also a Liouville property as in Theorem 1.1 (iv) were proved
by Savin [27], their interior C!*-regularity for some 0 < & < 1/3 by Evans-Savin [19] and their boundary
C'-regularity by Wang-Yu [29]. When n > 3, Evans-Smart [20, 21] obtained the everywhere differentiability
of co-harmonic functions.

If H € C*(R") is locally strongly convex, Wang-Yu [28] obtained the linear approximation property of
absolute minimizers/viscosity solutions to (1.1), and moreover when n = 2, their interior C'-regularity and a
Liouville property as in Theorem 1.1 (iv). On the other hand, assuming H € C' (R"), Katzourakis [25] showed
that, to get C'-regularity of all viscosity solutions to (1.1), it is necessary to assume that H is not a constant in
any line-segment. Indeed, if H € C '(R™) is a constant in some line-segment (say [a, b]), by [25] the following
function uy ¢ C IR")is a viscosity solution to (1.1):

b b
(1.3) uy (x) = ;a-x+f( 2a-x) VxeR",

where f € C% (R) with If' L) < 1 but f ¢ C'(R™. If H € CO(R") is convex and coercive, Theorem 1.1
indicates that, to get the linear approximation property, C'-regularity (when n = 2) and the Liouville property
(when n = 2) of absolute minimizers for H, it is sufficient and also necessary to assume that H is a not constant
in any line-segment.

Now we turn to the proof of Theorem 1.1, and without loss of generality, under the following stronger
assumption on H:

(1.4) H e CO(R") is convex, H (0) = minpezn H (p) = 0 and lim inf,, e 74 = oo.

Indeed, if H € CO°(R") is a convex and coercive, there exists a po € R" such that min,er» H(p) = H(po). Let
H (p) = [H(p + po) — H(po)]>. Then H satisfies the assumption (1.4), and also, H satisfies (i) if and only if H
satisfies (i). Note that u € AMy(Q) if and only if u(x) € AM7z(€), where u(x) = u(x) — po - x for all x € Q.
Moreover, u and u enjoy the same regularity.

To prove (ii), (iii) or (iv) = (i) in Theorem 1.1, we show that if H is a constant in some line-segment [a, b],
then the function uy given in (1.3) is an absolute minimizer for H in R" whenever ||f’||;=®) < 1; see Lemma
4.2. By choosing suitable f, one easily see that u fails to have the linear approximation property and hence is
not C'-regular, and also that the Liouville theorem fails. Note that this proof also works in dimension n > 2.
See Section 4 for Lemma 4.2 and the proof of (if) = (i) in Theorem 1.1. The proofs of (iii) or (iv) = (i) in
Theorem 1.1 is stated in Section 6.

The proof of (i) = (ii) in Theorem 1.1 relies on the key Lemma 1.3.

Lemma 1.3. Let H be as in (1.4) with n = 2 and satisfy (i). Ifu € COL(RM) satisfies
(1.5) Stux),-S;u(x)<kand Sfu(0)=-S;u© =k VxeR,t>0
for some 0 < k < oo, then u is a linear function and H(Du) = k, that is, there exists a vector py € R" such that
u(x)=u()+ po-x forall xeR" and H (py) = k.

The notion S u (x) above will be explained in Section 2, where we also recall the comparison property with
cones and convex/concave criteria for absolute minimizers, which are given by Armstrong et al [9]. Lemma
1.3 and the convex/concave criteria allow us to get the linear approximation property of absolute minimizer in
a standard way; see section 4 for details.

Lemma 1.3 was first proved by Cranial-Evans [14] when H (p) = %lpl2 by using its Hilbert structure.
(R?) is locally strongly convex, by using the C'-regularity of cone functions, Wang-Yu [28]
.- pdfelement t 1.3. When H € C'(R") is strictly convex and satisfies (1.4), observing and using the C L(RM)-
strict convexity of the conjugate L of H (see Theorem 3.1 (i) below), one could deduce Lemma
The Trial Version guments of Yu [31], even where some stronger conditions on H were assumed. But when H
hnd Theorem 1.1 (i) (that is, H is not constant in any line-segment), the C!-regularity of cone
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functions is unavailable, and the convex conjugate L of H does not necessarily have C!(R")-regularity and also
is not necessarily strictly convex. This causes some essentially difficulty to prove Lemma 1.3; hence, new idea
is needed to prove Lemma 1.3.

Indeed, in Section 3, we observe that, under (1.4) and Theorem 1.1 (i) for H, the sub-differential set of its
convex conjugate L at any point must be a single point or be a line-segment; see Theorem 3.1 (where we also
obtain a 2-dimensional analogue for the geometry of dL which may has its own interests). Using this, by some
careful analysis on the analytic/geometric structures of Hamilton-Jacobi flows and also the subdifferential sets
of H and L, we are able to determinant a unique vector pg € H ~1 (k) so that u (x) = u(0) + po - x and hence
prove Lemma 1.3; see Section 4 for details.

To prove (i) = (iii)&(iv) in Theorem 1.1 we need the following crucial Proposition 1.4. Given any 0 eR?
and r, 8 € (0, 1], for a function u € C%(B(x°, r)) denote by 2(u)(x"; r; §) the collection of all vectors e such that
sup |u(x + ) —u(x® —e- (x = xo)| < 6r.

B(x9,1)

In other words, 2(u)(x°; r; 6) collects all linear approximations at the scale ¢ of « in the ball B(xXY, r).

xprop | Proposition 1.4. Suppose that H satisfies (1.4) with n = 2 and (i). Let R > 1. For any € > 0, there exist
0 = 0(H, R, €) > 0 such that for any e¢ and e, if we can find a u € AMy(B(0, 6)) satisfying

x1in®| (1.6) lH(Du)llL=B0,6)) < R and u is not linear in some neighborhood of 0,
xlinl| (1.7) e6 € D(u)(0;6;06) and 1 < H(eg) < 2,

and
x1in2| (1.8) eo,6 € ) (0;6r;9) for some r € (0,1/2] and H(epg) = Su(0),

then we have

x1lin3| (1.9) lec — eo6l < €.

By an argument essentially the same to those of [27, Theorem A,B&C] and [28, Theorem B,C&E], one
could deduce the following Theorem 1.5 from Proposition 1.4 and Theorem 1.1 (ii), and then prove (i) = (iii)
and (iv) in Theorem 1.1 by using Theorem 1.5; we give the details in Section 6 for reader’s convenience and
also for the completeness of this paper, but the reader familiar with [27] and [28] may ignore Section 6.

c2| Theorem 1.5. Let H be as in (1.4) with n = 2 and satisfy Theorem 1.1 (i).
(i) Given any domain Q c R", ifu € AMy (Q), then u € C' (Q).
(ii) For any k > 0, there exists an increasing continuous function py with pi (0) = 0 such that

rho| (1.10) sup |Du(x) — Du(y)| < px (s/r) whenever s <r, u € AMy (B (x,2r)) and ||H(Du)||1~B(x2r)) < k.
x,yeB(z,s)

So to get Theorem 1.1, we only need to prove Proposition 1.4. It was first proved by Savin [27, Propposi-
tion 1] when H (p) = %l p|2. and later by Wang-Yu [28, Propsotion 4.1] when H € C2(R?) is locally strongly
convex. In the two proofs, a planar topology observation by Savin and several properties of absolute mini-
mizers (including comparison property with cones, comparison with linear function and linear approximation
property) were used.

When H satisfies (1.4) and Theorem 1.1 (i), we will prove Proposition 1.4 by using Theorem 1.1 (ii) and
some ideas of Savin [27] and Wang-Yu [28], more precisely, using the procedure by Wang-Yu [28, Propsotion
4.1]. Note that Savin (see the proof of [28, Proposition 4.1]) used the Hilbert structure of %Ipl2 and Wang-
bof of [28, Proposition 4.1]) relied on the C?(R?)-regularity and (locally) strong convexity of
.- pdfelement n Proposition 1.4, H is only supposed to satisfy (1.4) and the necessary (and hence minimal)
 none of Hilbert structure, C'-regularity and (locally) strong convexity are available. To over-
The Trial Version | essential difficulties caused by these, and then to get Proposition 1.4, new ideas/observations
equired.
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Indeed, by using Theorem 1.1 (ii) and Savin’s topology argument (see Lemma (5.1)) as in [28, Lemma 4.2],
we get some auxiliary vector e. The proof of (1.9) is then reduced to |eg —e| < €/2 (see (5.4)) and |egs—e| < €/2
(see (5.5)). To get |leg — e| < €/2, the key observations are the analytic properties of H and L in Section 3, in
particular, given in Theorems 3.2 and 3.3. These properties (in particular Theorem 3.3) allow us to build up a
discrete flow and hence get the length estimate H(eg) < H(e) + 17 as in Lemma 5.2, and also allows to get the
angle estimates as in Lemma 5.3. From these and Theorem 3.2 we conclude the key inequality |eg — e| < €/2.
Similarly, we also have |ege — €| < €/2.

We emphasis that the angle estimate in Lemma 5.3 is more essential. Looking at uy given (1.3), one easily
see that S (uy) is always continuous (recalling that H(Duy) = S (uy) almost everywhere) but can not expect any
angle estimate similar to Lemma 5.3 (and also everywhere differentiability and C'-regularity).

2. PRELIMINARIES

The following comparison principle is established by [9]. It is known that linear functions are always
absolute minimizers.

Lemma 2.1. Suppose that H satisfies (1.4) and H~Y(0) has empty interior. For any domain U C R", and
u,v € AMy(U) n CO(U) (in particular, v is any linear function), we have

max[+u(x) — v(x)] < max[+u(x) — v(x)].
xelU xedU

Next we recall the comparison property with cones. The cone functions for H are defined by

CKGH()C): sup p-x VYa=0, x € R
H(p)<a

It is evident that €/ € C®!(R") is convex, positively homogeneous, subadditive and € (x) > 0 for every
a > 0and x # 0. See [9, Lemma 2.18] for the following lemma.
Lemma 2.2. Let H be as in (1.4). Let U c R" be any domain, u € C%' (U) and a > 0. The following are
equivalent:
(1) H (Du) < a almost everywhere in U;
) u(x)—u@y) < (KaH (x — y) provided the line segment [x,y] C U.
Below denote by usc (U) (resp. Isc (U)) the class of upper (resp. lower) semi-continuous functions in U.

Definition 2.3. Let H be as in (1.4).
(i) A function u € usc (U) satisfies the comparison property with cones for H from above in U if

max{u — %”f (x = x0)} = max{u — So”aH (x = x0)}
1% 1%

whenever V € Q, a > 0 and xy € R" \ V; for short, write u € CCAg (U).
(i1) A function u € Isc (U) satisfies the comparison property with cones for H from below in U if and

minu + CH(xg - x)} = minfu + CH (xp - x))

whenever V € Q, a > 0 and xy € R" \ V; for short, write u € CCBy (U).
(iii)) We say u € CY(U) satisfies the comparison property with cones for H in U (for short, u € CCg (U)) if
u€ CCBy(U)nCCBg (U).

Denote by L the convex conjugate of H, that is,
L(g) = sup[(p,q) — H (p)].
pER?
onvex, L (0) = min,egrn L (g) = 0 and liminf, o L(g) /|g| = co. Given any domain U C R" and
tion u € C° (U), the Hamilton-Jacobi flows are defined by

() = sup |u(y) - tL(y%x)] and Ty () = inf [u o) + tL(x—;y)] Vi>0,xeU

yeU
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and T% (x) = u(x) = Tou(x) forall x € U.
For any r > 0, we set U, := {x € U : dist (x,0U) > r}.
Definition 2.4. Let H be as in (1.4). Let U C R" be any domain.

(i) A bounded function u € C°(U) enjoys a convex criteria if for any » > 0 there exists a §, > 0 such that
for all x € U,, the map 7 € [0,6,) — T'u(x) is convex.

(ii) A bounded function u € C° (U) enjoys a concave criteria if for any r > 0 there exists a 6, > 0 such that
for all x € U,, the map ¢ € [0,6,) — T;u(x) is concave.

The following characterization of absolute minimizers follows from [9, Theorem 4.8].

Lemma 2.5. Let H be as in (1.4) and H™' (0) has empty interior point. For any domain U C R?, the following
are equivalent:

(1) u € AMy (U) is bounded;
(i1) u € CCqx (U) is bounded;
(iii) u € C°(U) is bounded and enjoys the convex and concave criterion.

Define the slope functions via Hamilton-Jacobi flows as below:
1 1
STu(x) = ;[T’u (x) —u(x)]and S;u(x) = ;[Ttu (x)—u(x)] VxeUt>0.

If u € AMpy (U) is bounded, then the maps ¢ € (0,6,] — +S;u (x) are increasing for all x € U, and r > 0,

E-2] (2.1) Su(x) = im [|H (Du) s = lim+SFu(x)  forall x € U:

and S'u is upper semi-continuous in U; for details see [9, Lemmas 4.2 and 4.3].

Note that for u € C%!'(R") which is not necessary bounded, one may also define 7"u, T,u and hence S;u
as above with U = R". Since L satisfies (1.4), all of T"u, T,u and hence S Fu are finite. Indeed we have the
following.

Lemma 2.6. Let H be as (1.4). Ifu € COL(R™) with [IDul|p=®r = K < oo, then there exists a constant Rx > 0
depending on k and L such that

E3.1| (2.2) +SFu(x)= sup [J_r VxeR"t>0.

yEB()C,RKt)

(1)

Proof. Note that |u (y)—u (x)| < Kt for all x,y € R". By the sup-linear growth of L, we there exist an increasing
function M : [0, c0) — [0, c0) so that M (R) — oo and L(g) > M (R) R whenever |g| > R. If M (Rg) > K and
|x — y| = Rgt, we have

L) - _L(iy—_X)S [K_M(Ix—yl)] ol .
t 1 1 1

which gives the desired identity (2.2). The proof of Lemma 2.6 is complete. O
We also recall the another slope function which are defined via cones as below:

$7u(x) = inf {k 2 0,uy) —u(x) < G'(y-x) VyeBO,n} VxeU0<t< dist(x,0U)

and

—S;u(x) =inf{k 2 0,u(x) —u(y) <6/ (y—x) VyeBO,n] VYxeU0<t< dist(x,0U).

he argument of [22, Proposiitons 3.1 and 3.3] line by line, we have the following Lemmas 2.7
.- pdfelement will be used later. Here we omit the details.

The Trial Version et H be as in (1.4) and satisfy Theorem 1.1 (i). Assume that u € CCgy(U) for U € R". Then for
| functions t € (0, dist (x,0U)) — +S Fu(x) are increasing, and S u(x) = lim;_, +8 Fu(x)
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vincreasing| Lemma 2.8. Let H be as in (1.4) and satisfy Theorem ] 1 (i). Assume that u € CCH(U)for U € R". Then for
any x € U and 0 < r < dist(x,0U), if u(y) — u(x) = s* x )(y x), then Su(y) > S+u(x)

3. SOME GEOMETRIC AND ANALYTIC CHARACTERIZATION OF H AND ITS CONVEX CONJUGATE L

Let H be as in (1.4) and L be its convex conjugate. Note that L also satisfies (1.4). For any g € R", denote

by dL(g) the sub-differential set of L at g, thatis, p € dL(g) if
L(¢)-L@>p-(d-q) VYq eR"
Similarly, denote by dH(p) the sub-differential set of L at p € R”.

In Theorem 3.1, we obtain the following geometric characterization of dL when H is strictly convex or H is
not a constant in any d-simplex with d = 1, 2. In general, given any 3 < d < n, one may expect some analogue
result as above when H is not a constant in any d-simplex, but we are not going that far in this paper. Recall
that a 1-simplex is a line-segment, that is, the convex hull of 2 distinct points; for 2 < d < n, a d-simplex is
the convex hull of a (d — 1)-simplex and a point, where the point is not contained in the (d — 1)-dimensional
hyperplane determined by the (d — 1)-simplex. Theorem 3.1 and its analogue in d-simplex may have their own
interests. In this paper, Theorem 3.1 (ii) plays a key role in the proof of Lemma 1.3.

Theorem 3.1. Let H be as (1.4).

(1) The following are equivalent:
(i-a) H is strictly convex
(i-b) for any q € R", L(q) contains a single point,
(i-c) L e C'(R).
(ii) The following are equivalent:
(ii-a) H is not a constant in any line-segment
(ii-b) for any q € R", AL (q) consists of either a single point, or a line-segment on which H is strictly
monotone.
(iii) The following are equivalent:
(iii-a) H is not a constant in any 2-simplex (convex hull of 3 points which are not in the same line)
(iii-b) for any q € R", L (g) must be one of the following:

(iii-b-1) a single point;

(iii-b-2) a bounded closed line-segment;

(iii-b-3) a bounded closed convex set contained in some 2-dimensional hyperplane whose boundary
consists of 4 simple “curve” vy, V1, Y2, Y3 oriented in order so that yq (resp. ) is either a
single point or a line-segment on which H reaches its minimum (resp. maximum) in 0L(q),
and along v (resp. y3), H is strictly increasing (resp. decreasing).

In Theorems 3.2 and 3.3, we build up some analytic characterization of H when it is not a constant in any
line-segment. Both of them will be used to prove Proposition 1.4; indeed, they play crucial roles there.

Theorem 3.2. Let H be as (1.4). Then the following are equivalent:

(i) H is not a constant in any line-segment.
(ii) For each R > 1 and each € > 0, there exist Y (€) € (0, €) such that for any v € B (0, R), if it satisfies

(3.1) H(p+v) = H(p) < yr () and |£(q.v) = n/2| < Yr (€)
for some p € B(O,R), g € 0H (p’) and p’ € B(p, Yyr(€)), then |v| < €.
Let H be as (1.4). Then the following are equivalent:

= bt a constant in any line-segment.
pdfelement h R > 1 and each n > 0, we have

The Trial Version or(1) = inf . min {(p —-e)-

ceH- ([0, tH(p) = H(e),Ip —el 21,9 € 8H(p>}

IqI
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To prove above results, we recall the following basic properties; for reader’s convenience, we give the
details.

Lemma 3.4. Let H be as (1.4).
(i) For any p,q € R", we have
q € 0H (p) if and only if H (p) + L(q) = {p, q) if and only if p € dL(q).

In particular, 0 € OH(p) if and only if H(p) = 0 and 0 € dL(q) if and only if L(q) =
@ii) If p1, p2 € L (q) for some g € R", then

Ap1+ (A =D pr e dL(g) and HAp; + (1 — A) pp) = AH(p1) + (1 — D)H(py) forall 2 € [0, 1].
(iii) Assume that

L(Aq1+ (1 —A)q2) = AL(q1) + (1 — A) L(q2) for some A € (0, 1).

If p € OL(Aq1 + (1 = ) q2), then p € AL (q1) N OL(q2).

@iv) The set 0L (q) is bounded locally uniformly in g € R". If p; € OL(q;) for alli € N and q; — qq as
i — oo, then up to some subsequence, p; — po as i — o for some py € 0L (qo). In particular, 0L(q) is
always closed for any g € R".

Proof. (i) Note that ¢ € dH (p) if and only if
(p.q)—H(p)2{q.p’) - H(p')Vp' eR",
Thus, H (p) + L(q) = {p, q) if and only if
(p.q)—H(p) 2{q,p") —H(p')¥p" € R".
Thus, g € 0H (p) if and only if H (p) + L (q) = {p, g). Similarly, p € L (g) if and only if H (p) + L (q) = {p, 9).
(i) If py, p2 € L (g) for some g € R”, by (i) one has
Li@+HUpr+(A-Dp2)=2@pr+(1-Dp2)-q
=Ap1-q+(-Dp2-q
=AH(p)+(U - H(p2)+L(g VY1e][0,1],
that is,
H@Ap1+ (1 =) p2) 2 AH (p1) + (1 - D) H(p2)¥A1 € [0,1]
By the convexity of H,
HAp1+ (1 =) p2) =AH (p1) + (1 — D H (p2)¥A € [0, 1],

and hence (Ap; + (1 — A) p2) € IL(qg).
(i) If L(Ag1 + (1 =) g2) = AL(gq1) + (1 = ) L(g2) and p € L (Aq; + (1 — ) g2) for some A € (0, 1) and
by (i) one gets

LA+ (1 -Dq)=Qq1+(A-Dq2)-p-H(p)=2Aq1-p-HP)+UA-Dlg2-p-H(p)l
Since ¢; - p — H(p) < L(g;) for i = 1,2, by above and the assumption L(Aq; + (1 =) g2) = AL(q1) +

(1 -A)L(g)wehaveq;-p—H(p)=L(g;) fori=1,2.
(iv) Let R > 1. For any |g| < R and p € L (g), we have

H(p)=p-q-L(g <lqllpl - L(¢) < C(R) + RIpl.
By the sup-linear growth of H, we know that |p| < C (R) as desired.
by p; € L (g;) fori € N and g; — ¢go as i — oo, one has that p; - ¢; = H(p;) + L(g;) fori € N,
led. Thus p; converges to some pg as i — oo (up to some subsequence). By the continuity of H
have po - g0 = H (po) + L (qo), by (i) which implies py € dL(qo). The proof of Lemma 3.4 is
m}

B pdfelement

The Trial Version

quence of Lemma 3.4, one has the following.
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Corollary 3.5. Suppose that H satisfies (1.4) and Theorem 1.1(i). Then 0 € 0H(0), H(p) > 0 and 0 ¢ 0H(p)
for all p € R™\{0}.

Proof. First we see that H(p) = 0 if and only if p = 0. Indeed, if H(p) = 0 for some p # 0, by convexity of H
and H(0) = 0, we know that H = 0 in [0, p], which is a contradiction. Thus H(p) > 0 and 0 ¢ dH(p) whenever
p # 0. Moreover, by Lemma 3.4 0 € 0H(p) if and only if H(p) = 0, and hence if and only if p = 0. O

Lemma 3.6 gives some geoemtric/analytic property when H is a constant in some line-segment.

Lemma 3.6. Suppose that H satisfies (1.4). For any a,b € R" with a # b, the following are equivalent:

(1) H is a constant in the line-segment [a, b];
(i) b—a L 0H(3a + 1b) and

(3.2) (’)H(%a + %b) = dH(la + (1 — D)b) € dH(a) N OH(b) YA € (0, 1).

(iii) there exists a g € R" such thatb —a L g and a,b € 0L(q) (or [a,b] C L(g)).
(iv) there exists a g € R" such that H(a) = H(b) and a,b € 0L(q) (or [a, b] C dL(q)).

Proof. (i) = (ii) Assume that H is a constant in the line-segment [a, b]. For any A € (0, 1) and g, € 0H(Aa +
(1 — A)b), we have
O0=H@-HAa+(Q-Db)=2(1-Dgi-(a-b)and 0= H(b) - H(da+ (1 - )b) > Ag,- (b — a),
which implies that g; L (b — a). Thus for any u € [0, 1], we have
H(p) - H(ua + (1 — p)b) = H(p) — H(da + (1 — )b)
>qa-[p—(Aa+(1-21b)]
=qga-[p—(wa+1-wb)]+W—q1-(a-Db)
=q1-lp—(ua+ (1 -pwb)] VpeR"
that is, g, € 0H(ua + (1 — w)b). In particular, this gives (3.2).
(i) = (iii) Let g € 6H(%). By (ii) and Lemma 3.4 (i), [a,b] € 0L(g) anda — b L q.
(iii) = (iv) Let g be as in (iii). By (iii), a,b € dL(g) and hence H(b) — H(a) > q- (b —a) = 0 and
H(a)-H() > q-(a—b) = 0, which gives (iv). Note that by Lemma 3.4 (ii), a, b € dL(g) implies [a, b] C IL(q).
(iv) = (i) Let g be as in (iv). By (iv) and Lemma 3.4 (ii), [a,b] C dL(g). By Lemma 3.4 (i), for any
1€[0,1],
HAa+ (1 -Db)y—H(@) =q-[la+(1-D)b)—al=Ag-a+ (1 —Dgq-b=AH(a) + (1 - )H(b) = H(a),
which implies that H is a constant in [a, b]. O

Now we are able to prove Theorem 3.1, Theorem 3.2 and Theorem 3.3 as below.

Proof of Theorem 3.1. Proof of (i). (i-a)=(i-b). Assume that H is strictly convex. If for some g € R", dL(q)
contains two distinct points pi, p», then Lemma 3.4 (ii) implies that H is linear in [p1, p>], which contradicts
with the strictly convexity of H. Thus for any ¢ € R", dL(g) must consists of a single point.

(i-b)=(i-c). Next, assume that for any ¢ € R", dL(g) must consists of a single point. We show that L €
C'(R™). By Lemma 3.4 (iv), it suffices to show that L is differentiable everywhere. We prove by contradiction.
Assume L is not differentiable at g9 € R". Write dL(go) = {po}. Then there exists ¢ > 0 and a sequence {g;}
which converges to gg such that [L(g;) — L(go) — po - (¢i — q0)| = €lg — gol.- Write dL(g;) = {p;}. Then

Do - (gi — q0) < L(qi) — L(qo) < pi - (qi — q0) = po - (qi — qo0) + (pi — po) - (qi — q0)

! pdfelement

The Trial Version |L(g:) — L(g0) — po - (gi — qo)| < |pi — pollgi — qol.

3.4 we have p; — pg as i — oo, which is a contradiction.
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(i-c)=(i-a). assume that L € C'(R") and hence 0L(q) = {DL(q)} for any g € R". We show that H is strictly
convex. Otherwise,

H@p1+ (1 -2 p2) =AH (p1) + (1 — ) H (p,) for some A € (0, 1) and p; # p».

Let g € 0H(Ap; + (1 — Q) p2),. By Lemma 3.4 (iii), ¢ € dH (p1) N 0H (p>), and hence by Lemma 3.4,
p1, P2 € 0L(q) = {DL(q)}, which is a contradiction.

Proof of (ii). (ii-b)=(ii-a). If H is a constant in a line-segment, say [a, b], by Lemma 3.6 (iv), there exists
g € R" such that [a, b] C dL(g); but note that H is not strictly monotone in [a, b].

(ii-a)=(ii-b). assume that H is not a constant in any line-segment. For any ¢ € R”, assume that dL(q)
contains more than one point, say p;, p» with p; # p>. We only need to show that dL (g) is contained lie in
the line determined by p; and p,. Indeed, Lemma 3.4 dL (g¢) is a bounded convex set; but bounded convex set
contained in some line must be a line-segment.

Let po € 0L (q) with pg # p1, p>. Then H (p;) # H(p;) fori, j=0,1,2and i # j. Indeed, if H (p;) = H(p;)
forsome i, j = 0,1,2 and i # j, by (iv) = (i) in Lemma 3.6, H is a constant in [p;, p;]. This is a contradiction.

Reorder py, p1, p2 as po, p1, p2 so that H (pg) < H (p1) < H (p). Then there exists A€ (0,1) such that

H(po+(1-2)p2) = H@).
Since H is not a constant in any line-segment, by (iv) = (i) in Lemma 3.6 again, we know that
p1=apo + (1= Dp2,

which implies that py, p> and p3 lies in the same line, that is, po must lie in the line determined by p; and p;
as desired.

Proof of (iii). (iii-b)=(iii-a). If H is a constant in a 2-simplex A, which is the convex hull of py, p2, p3, let
g € OH(X[p1 + p2 + p3]). For any line segment I C A with 1[p; + p> + p3] € I, since H is a constant in I, by
Lemma 3.6 (ii), I € dL(g). This implies that A C dL(q). Obviously, dL(g) is not given by a) or b).

Now we show that dL(g) is not given c). If dL(q) is given by c), and then dL(g) is bounded by {)/,-}?=0 in
order. Since H is strictly increasing in y; and strictly decreasing in 3, for any m := min,csry) H(p) < k <
max,esr(q) H(p)) =: M, we can only find one point a; € y; and one point by € vy such that H(ax) = H(by) = k.
We also write [a;;, b;,] = Yo and [ay, bys] = v2. Thus H is constant k in [ag, br]. Since the unions of [ag, b] is
exactly 0L(q), we know that H Tk n 0L(q) = [ay, bi]. This is a contradiction.

(iii-a)=(iii-b). Conversely, assume that H is not a constant in any 2-simplex. First we see that dL(g) must
be contained in some 2-dimensional hyperplane P; otherwise, we can find 4 distinct points pg, p1, p2, p3 wWhich
are not contained in any 2-dimensional hyperplane. After reordering, we may assume that H(pg) < H(p;) <
H(p,) < H(p3). Since H is not constant in any 2-simplex, it can only happen that H(po) < H(p1) < H(pz) <
H(ps3), and H(po) < H(p1) < H(p2) < H(p3). In the first we can find 3 points p{ € [po, p2], p] € [po, p3] and
p’2 € [p1, p2] such that

H(py) = H(p) = H(p)) = H(%Pl + %Pz),
Note that p, p}, p, are not contained in the same line, and hence its convex hull is a 2-simplex denoted by A’.
Moreover, for any A7 > 0 and Z%:o A; = 1 we have 21.2:0 Aip; € 0L(g) and hence

2 2 2 2

/ ’ ’ ’ 1 1

HO )= Q- ip)-q-Lg) = ) Ailp; - g - L@ = Y 4H(p)) = H(Em + Epz)
i=0 i=0 i=0 i=0

a constant in A’, which is a contradiction. In the second case, we can find 3 points p; €

po, p2] and pj € [po, p3] such that

a pdfelement
2073

a constant in the convex hull of p{p| p; this is a contradiction.

The Trial Version

1 1
H(py) = H(p)) = H(p)) = H(—po + —pl),
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Next, assume that dL(q) is not a single point or a line-segment. Then dL(g) is a closed bounded domain
in P. Thus dL(g) is bounded by a simple closed curve y. Note that H reaches its minimum and maximum in
OL only at boundary. Denote by yq (resp. y2) the part on which H reaches its minimum (resp. maximum) in
OL. Since H is not a constant in any 2-simplex, yg and > must be a single point or a line-segment. The other
two components of y \ (yp U y2) are denoted by y; and y3. Up to some reorientation we may assume that the
ending point of y; is the starting point of ;| fori = 0, 1,2, 3 (where y4 = yg). Now we show that H is strict
increasing along y; otherwise, there exists two distinct points pg, p; € 1 so that H(pg) = H(p). Observe that
there exists p; € y3 with H(py) = H(p;). Note that H is a constant in the convex hull of {pg, p1, p2}, which is
a 2-simplex, and hence it is a contradiction. Similarly, we know that H is strict decreasing along 3. The proof
of Theorem 3.1 is complete. O

Proof of Theorem 3.2. (ii) = (i). Assume that (i) fails, that is H is a constant in some line-segment, say [a, b].
Let p = %(a +b),qe 0H(p)and v = b%“. Then H(p) = H(p +v) and, by Lemma 3.6, ¢ L v. Thus (ii) fails.

(i) = (ii). Suppose that (ii) is not correct. There exists €p > 0 so that for any i € N we can find vectors
v; € B(0,1/¢) with |v;| > ¢ satisfying H (p; +v;) — H(p;) < 1/i and |£(q;,v;) — /2| < 1/i for some
pi € B(0.1/€) q; € 0H (p}) and p; € B(p;, 1/i). Note that p;, p; — po, vi = vo and g; — qo € IH(po) as
i — oo (up to some subsequence). Moreover,

H (po+vo) —H (po) <0,  £(q0,v0) = 7/2
By the convexity of H and H (pg + vo) — H (pg) < 0, we have
H (po + tvo) < (1 —0H (po) + tH(po +vo) < H(po) Vit e€[0,1].
Moreover, by gg € 0H(pg) and £ (qo, vo) = /2, one also has
H (po +tvo) — H(po) =2 qo - tvo =0, Vre[0,1].
Thus H (po + tvg) = H (po) for all ¢t € [0, 1], which leads to a contradiction. The proof of Theorem 3.2 is

complete. |

Proof of Theorem 3.3. (ii) = (i). Assume that (i) fails, that is H is a constant in some line-segment, say [a, b].
Letp =a,e =band g € BH(%[a + b]). Then H(p) = H(p + v) and, by Lemma 3.6, ¢ L (b — a). Thus
or(|b — al) = 0, that is, (ii) fails.
(i) = (ii). Suppose that (ii) is not correct. There exists a 179 > 0 such that 5g(r9) = 0, that is, we can find p;
and e; with |p; — e;| = 19 and H(e;) = H(p;) < R, and g; € 0H(p;) such that
(pi—e) - <1/i
lq
Letting p; = p,e; > eand q; — g € 0H(p) wheni — oo, we get H(p) = H(e) < R, |p — e| = ng and
(p-e-L <o,
lq
Since g € 0H(p) implies
(e-p)-q<H(e)—H(p) =0,
we obtain
(e-p)-g=0.
Therefore, by g € 0H(p) again,
He)+ Lg=Hp)+Llg=p-gq=e-q,

with Lemma 3.4(i) yields that e, p € dL(q) and hence [p,e] € dL(g). By H(p) = H(e) and
.- pdfelement ), we know that H is constant in [p, e], which is a contradiction. O

also use the following Lemma 3.7 and its corollary 3.8.

et H be as (1.4) and satisfy Theorem 1.1(i).

The Trial Version
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(1) If g € OH (p), then Cy(p) (q) = (P, q).
(i) If Cx (z) = {po,z) with k > 0 and |z| > O, then tz € OH (py) for some t > 0.

Proof. (i) If g € 0H (p), then

(p.g)=H(p)+L(q)=H(p)+ sup[(p'.q)-H((P) > sup (p'.q)=Cuyp)(q),
p'eR” H(p")<H(p)
which together with (p, g) < Cgp) (q) gives Cr(p) (q) = {p, ).
(i) By Theorem 3.1, dL(tz) is either a single point or a line-segment for each + > 0. We may write
I, = [a;, b;] = H(OL(tz)) for each r > 0. It suffices to show that U,sol; = [0, 00). Indeed, if this correct, by
Lemma 3.5 and H(pg) # 0 we know that H(po) € I, for some ty > 0. Thus H(po) = H(py,;) with p;,; € 0L(t02),

then by (i),
CH(piy)(T02) = Pryz - 102 = H(pyyz) + L(toz) = H(po) + L(toz).
Since

1
Do 102 = CH(py)(t02) = ;CH(p,Oz)(foZ),

we obtain pg - toz = H(po) + L(t9z), which together with Lemma 3.4 gives tz € dH(po).

For any k£ > 0, note that there exist #; < , such that by < k < a, for all t > t, and s < #;. Indeed, for any
pr € 0L(tz) with t > 0, by Lemma 3.4 (i) we have H(p,) + L(tz) = p;-tz and hence |p,| > %L(tz) > M(t2)lz] = o
as t — oo. Moreover, by Lemma 3.4 (iv), C = sup,; SUP hegH 1) |p| < oo and hence H(p;) < Ct|z] = Oast — 0.
Let ¢, be the supremum of # > 0 so that b, < k. Then a;, < k < b; . Indeed, for any € > 0, we have b; . > k.
Let p;+e € OL((t; + €)z) such that H(p; +¢) = by 4e. Since Lemma (3.4) (iv) implies p; s — p € 0L(t;z) as
€ — 0 (up to some subsequence), we have H(p) > k and hence b; > k. Moreover, by a; _¢ < b; _. and a similar
argument, we a; < k. Thus k € I;_as desired. The proof of Lemma 3.7 is complete. O

Corollary 3.8. Let H be as (1.4) and satisfy Theorem 1.1(i). For any R > 1, there exists a constant Cg such
that for any 6 € (0,1) and 0 < k < R, one has

(3.3) e-x+0lxl <G + ol <G (), VxeR'.eeH (k)
Proof. If x = 0, (3.3) holds obviously. By Lemma 3.7, x = ¢./|g«| for some g, € dH(p,) with H(p,) = k.
Thus
e-x+6< Ck(x)+(5:px-x+6:(px+6ﬁ)-x.
X
By the convexity of H we know that
X X X
Hpi+0—)<Hpy+q-6— VYqgedH(py+5—).
|x] | x| | x|
Letting
Cr :=supllq| : ¢ € 0H(p +v), H(p) < R, |v| < 1},
we get (3.3) as desired. ]

4. Proors oF LEMMA 1.3 anD (i) < (ii) IN THEOREM 1.1
By using Lemmas 3.4 and 3.1, we first establish the following weaker version of Lemma 1.3.

Lemma 4.1. Let H be as in (1.4) with n = 2 and satisfy (i). If u € CO'(R") satisfies (1.5) for some 0 < k < oo

B pdfelement u(e) = k+ L(e) and u(se) = su(e) Vs €R

e € R", then there exists a vector py € 0L(e) such that

u(x)=po-x VYxeR" and H(py) = k.

The Trial Version
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Proof. Note that by (4.1), u(0) = 0. Since S u ((t — s)e) < kforall# > 0 and s € R, we have
(x+ se—(s—t)e)
t

ux+se)—u((s—1e) B
t

L <k VYxeR"

Thus, by (4.1) we obtain
u(x+ se)

=

By the convexity of L,

+gu(e)ZM(e)—k—L(e+;):L(e)—L(e+;) VxeR"t>0,5€R.

u(x+se)—su(e) < prx-x YxeR"r>0,seR.
where p;, € 0L(e + x/t). By Lemma 3.4 (iv), p;, converges to some p, € dL(e) as t — co (up to some
subsequence). Therefore,

4.2) u(x+se)—su(e) <p,-x ¥YxeR'seR
Similarly, applying —S;u(—(t — s)e) < kfor # > 0 and s € R we also have
4.3) u(x+se)—su(e)>p,-x ¥YxeR", seR

for some p, € dL (e).

If L (e) contains only one point say pg, then p, = po = p, for all x € R". Thus by (4.2) and (4.3), one has
u(x) = po - x as desired.

Below, assume that dL (e) contains more than one point. By Theorem 3.1, dL (¢) must be a line-segment
contained in some line £. Therefore, py., p;. € € for all € R. Applying (4.2) and (4.3) with x = feand s = 0
we have

Die - te <u(te) < pg-te VteR.
By (4.1), one has
Pre-e=u(e)=pp-e VteR.
This together with (4.1) and Lemma 3.4 (i) further gives

k=L(e)—u(e)=L(e)—pre-e=H(pe) VI€R,

and similarly, k = H(p,.) for all € R. Since H is not a constant in any line-segment, we conclude that p;,, P,
must coincide for all ¢, s € R, and is denoted by pg. Obviously, H (pg) = k > 0 and H(pg) + L(e) = pg - e. By
Lemma 3.4 again, py € dL(e).

To see u(x) = po - x for all x € R", we note that e - (pg — p) # 0 for any p € AL (e) \ pp and hence for any
p € ¢, that is,

(4.4) R'= | | +Re).
zLl—po
Otherwise, by Theorem 3.1, one has
H(po) = po-e—L(e)=pi-e—L(e)=H(p1)
for some p; € AL (e) \ po. For any A € (0, 1), by Lemma 3.4 (ii) we have
H (Apo + (1= Dp1) = (Apo + (1 = Dp1) - e — L(e) = Apo - e — L(e)] + (1 = D[p1 - e — L(e)] = H(po),

that is, H is a constant in the line-segment [ pg, p1], which is a contradiction with the assumption (i).

For any z L € — po, since p;, p, € OL(e) C { we have p, -z = po -z = p; - z. By (4.2) and (4.3) one further
gets
po-z2=p;-z2<u(z+se)—u(se)<p,-z=po-z YzL—po,seR

a pdfelement

u(z+se)=u(se)+po-z=spo-e+po-z=po-(z+se) Yz L{L-py,seR.

The Trial Version as u(x) = pg - x for all x € R” as desired.
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By using Lemmas 3.4, 3.1 and 4.1, we are ready to prove Lemma 1.3.

Proof of Lemma 1.3. Assume that u (0) = 0 without loss of generality. If k = 0, then by +57u (0) = k for all
t > 0 we have
u (x)

t

+

—L(f) <0 VxeR"
By the sup-linear growth of L one gets
+u (x) < liminf tL();C) -0 VxeR",
t—00

that is, u = 0 in R".
Assume that k£ > 0 below. First we have the following claim.

Claim I. There exists y* € R" such that

4.5) u(y ) -L(O )=k and u(sy*)=su(y*)>0 Vs>0,
(4.6) —u(y )-L(-y )=k and u(sy )=su(y")<0 Vs>O0,
@47 L(y* = (1 =Dy) =L +A=DL(-y") Y1e(1)
and
E10| (4.8) u( Ay + (1 =D sy ) =Au( )+ (1 =Dsu(y”) VY1e€(0,1),ts>0.
To find y* in Claim I, since S;u (0) = k = —S;u (0) for all # > 0, by Lemma 2.6 there exist y; € B (0, Rr)
such that
+ + — o
(4.9) ”(ff)_L(ny)ﬂc:_@_L(%) V> 0.
This gives
ulr) _uly) Loy, 1 (o
E2| (4.1 —_— - —— = —L|—|+zL|—] V¥ .
(2] (4.10) 2t 2t k+2 t +2 t >0
Since y;/t are bounded, as t — co (up to some subsequence) y; /¢ must converge to some points y* € R" as
desired.
To see (4.7) in Claim I, by S7 u (y;) < k for all £ > 0, one has
+\ _ — +
u(yf)—u(y,) L e =W <k V>0
2t 2t
Thus, by (4.10) one gets
AT Y ) Y=y
L= |+=zL|— <L
2(t)+2(t - 2t V>4,
which together with the convexity of L yields that
AT Y Y=y
—L|—|+zL|—|=L|——— .
2(t)+2(t ) >0
By the convexity of L again, we know that L must be linear in [—y; /t,y; /1], that is,
i Yo\ oy (X Vi
4.11) L{A= =A== )= L= |+ (A =D L|==| Vr>0,2€(0,1).

and by y;/t — y* one see that (4.7) follows from (4.11).

E pdfclement  FENTENS) by S, g (61y]) < kfor0<6; <6 < 1andr> 0, we have

The Trial Version u(ezy;r) - u(ely:—) _ L(y_;r) <k
(6 —01)1

t
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that is,
u(b2y;) —u(Ory) <

i
k+ L 7 (62t — 011).
By this and (4.9), one gets

u(b2y;) —u(Ory)) =

+
k+L(y7t)](92t—91f) Vi>0,0<6 <6 <1

In particular, for all 0 < s < ¢, letting 8; = 0 and 6, = s/t in above identity and by (4.9) we have
¢ + + +
(4.12) u(sy /1) L(y—’):k and u(&):su(y—’).
S t t t
Similarly, for all 0 < s < ¢, we have
7 _ _ _
4.13) —M—L(—y—f):k and u(&):su(y—t).
S t t t
Letting r — oo and by y;"/t — y* one see that (4.5) follows from (4.12), (4.6) from (4.13).
To see the (4.8) in Claim I, since S/ u ((1 — 1) sy™) < kforall 7, s > 0 and A € (0, 1), we have
u(Aty* + (1 =) sy")—u((1 =2 sy")
td

-L(") <k,
which together with (4.5) and (4.6) yields
(4.14) u(yt + (1= sy?) < au(y)+A = D)su(y”) Vi,s>0.
u(Aty*) < kfort, s > 0, we have
u(@yt+ A =D syT) —u(Ay’)
a1-As
which together with (4.5) and (4.6) yields again
u(Ay"+ (A =-Dsy )2 Au(y)+A-Dsu(y”) Vi, s>0.
From this and (4.14), one deduce that (4.8) as desired. The Claim I is then proved.
Observe that by (4.5), (4.6) and (4.8) in Claim I, there exists a 4y € (0, 1) such that
E11| (4.15) u(Aosy™ + (1= 29)sy") = s[Aou(y" )+ (1 = 2)u(y")] =0 Vs>0.
This leads us to consider two cases: Agy* + (1 — Ag)y~ = 0 and Apy* + (1 — Ag)y~ # 0.
Case 1. gyt +(1 —29)y” =0.
In this case, —y~ = soy* with sg = Ap/ (1 — Ap). By (4.15), one has u (y~) = —u (y*) /so and hence
u(=y")=uly /so) =10 -)u@y")/do=-ul").
This together with (4.5) gives
E12| (4.16) u(y')-L(O")=k and u(sy")=su(y*) VseR.
Note that (4.16) says that u satisfies the condition (1.5) with e = y* in Lemma 4.1. Therefore, applying Lemma
4.1, we can find a vector py € L(y*) such that u(x) = pg - x for all x € R" and H(pg) = k as desired.

Case 2. gyt +(1 —29)y~ #0.

For any s > 0, let x; = Agsy* + (1 — ) sy~, and define a function v, (z) = u(x; + z) for all z € R". By
4 ebave v;(0) = 0. Byu € C%!(R™) and the Arzela-Ascolli theorem, we know that v, converges to
y € CO(R") locally uniformly as s — oo (up to some subsequence).
. pdfelement = (y* —y7) /2, we have the following claim:

Similarly, by =S (1-2)s

L(-y") <k,

The Trial Version P exists a po € aL(yO) such that

v(x) = po - x for all x € R", and H (pg) = k.
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Note that Claim II follows from Lemma 4.1 provided that v satisfies (1.5) with the same k here and also
satisfies (4.1) with e = y°. To see this, observe that, by (4.8) and (4.15), one has

E15| (4.18) u(xs + (5y0) = (/los + g)u(y+) + [(1 —Ay) s — (22] u(y”)

)
= osu(y*) + (1 - ) su(y™) + > lu 0" —u()]
= g[u O —u()] Ys>0,-22ps <6 <2(1 - 1) s.
Thus
E16] (4.19) v(6y°) = lim u (x5 +8°) = g[u OGN =u( ) =v(%) VY5 eR.

In particular, by (4.7)

1 _ 1 _ 1 1 _
E17] (4.20) vof) = S (M) —u ) = k+ SILOT) + L(=y )] =k+ L(5y+ -3 ) = k+LOY).
By this, one has
E18] (4.21) £5¥v(0) > i@ Lo =vO") - L") =k V> 0.
One the other hand,
E19] (4.22) +8%y (x) = sup [iv(iy r0-vl L(X)]
yeR? t t
_ sup lim [iu(iy +x+x) —ulx+x) L(X)]
yeRn $00 t t

< limsup S u (x + xy)

§—00

<k Vt>0,xeR"

Combining (4.19), (4.20), (4.21) and (4.22), we see that v satisfies (1.5) and (4.1) as required by Lemma 4.1.
This prove Claim II.
We also have the following claim.

Claim IlI. There exists vectors py € OL(xy™) such that

E22| (4.23) u(x—sy )+su(y’)<p;-x VYxeR"'seR
and
E23| (4.24) u(x—syN)+su(yt)>pl-x YxeR"seR.

To see Claim III, since S} u ((t — s)y~) < kforall > 0 and s < ¢, one has
u(x—sy ) —u(@-9y) L(x— sy~ = (- s)y‘) <k
t t
which together with (4.6) and # — s > 0 implies that

u(x—sy ) +su(y”)
t

X =ty

Sk+u(y_)+L( ):—L(y_)+L(—y_+;)

_ _ 1 _ _x _
L Gr=sy) +su () 2 - [L(y )—L(—y + ;)] > =Pt X
DL(—y~ + 7). By Lemma 3.4 (iii), p,, converges to some p, € dL(-y~) as t — oo (up to some
The Trial Version Thus (4.23) follows. Similarly, using —S;u ((t — s)y*) < kforall t > 0 and s < ¢, one can prove
ove Claim III.

a pdfelement
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In the reminder, we prove u(x) = po - x for all x € R”", which together with H(pg) = k given in (4.17)
yields Lemma 1.3. We consider the following 4 subcases as below. Note that, by Lemma 3.4 (iv) and (4.7),
po € OL(?) implies that pg € L (+y*) and hence, by Lemma 3.4 (i), one has
(4.25) +po - y* = H(po) + L(2y*) = k+ L(xy*) = zu ("),
which will be used below.

Subcase 2.1. L (y*) U AL (—y~) contains the unique point py. Then p; = po. By (4.23) and (4.24) with s = 0,
we have

po-x=pr-x<u(x)<p,-x=pp-x YxeR"
and hence u (x) = pg - x for all x € R" as desired.

Subcase 2.2. L (y*) contains more than one point ; L (—y~) constants only one point py. Then p; = po, and
hence by (4.25) with s = 1, we know that

u(x)<p,-x=pp-x YxeR"
On the other hand, by Theorem 3.1, L (y*) is a line-segment contained in the same line, say ¢,+. Observe

that y* is not perpendicular to £ — po, and hence R" = sup, L8,po (z + Ry™). Otherwise, y* - (p — po) = 0 for

any p € OL(y") \ {po}. By Lemma 3.4 (i) this gives
Hp)+L)=p-y =po-y" =H(po)+L(O")

and hence H (pg) = H (p). This contradicts with our assumption that H is not a constant in any line-segment.
For any z L £+ — po, we have p} - z = po - z. Thus by (4.24), one has

u(z=sy ) +su(y")>pf-z=po-z ¥YxeR'seR.
This and (4.25) give
u(z—sy")=po-(z—sy") VYxeR'seR.

Forany x € R", by R" = sup_,, ., (z+ Ry"), we can find s such that x + sy* L {y+ — po. Thus

—Po
u@) =ulx+sy"—sy )2 po-(x+sy" =5y )=po-x VYxeR™.
We conclude that u (x) = pg - x for all x € R"™.

Subcase 2.3. OL(—y~) contains more than one point; OL (y*) constants only one point py. Similarly to the
Subcase 2.2, we have u (x) = pg - x for all x € R".

Subcase 2.4. AL (y*) contains more than one point; L (—y~) contains more than one point. By Theorem 3.1,
OL (y*) is a line-segment contained in the line, say £y+; L(—y~) is a line-segment contained in the line, say
{,-. By an argument similar to the Subcase 2.2, we know that y* is not perpendicular to {,= — po. Hence

R'= | )] G+®Ry)= | G+Ry).
ZJ_[er —Po ZJ_fy— —Po
For any z L {y- — po, we have pg - z = p} - z. Thus by (4.23),
u(z—sy )+su(y )<po-z VYseR.
which together with (4.25) gives
u(z—sy )<po-(z—sy) VYseR.
— (z+Ry™), for any x € R”, we can find s such that x + sy~ L £,- — po. Hence, we conclude
- x for all x e R".

T pdfelement SETRIREELIETTEC= SUP,. ¢ . p, (2+Ry*) we have u(x) 2 po - x for all x € R". Thus

The Trial Version

pr all x € R" as desired. The proof of Lemma 1.3 is complete. m|

ed the following to prove (ii) = (i) in Theorem 1.1.
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Lemma 4.2. Let H be as (1.4). If H' (k) = [a, b] with a # b for some k > 0, then the following function us
given in (1.3) is an absolute minimizer with ||H(Duy)||=® = k whenever f € C%' (R) and If lom) < 1.
Proof. Note that uy € C%'(R") and

b+a
2

b- b-

Duy (x) = + 2af'( 2a -x) for almost all x € R".
Since ||f’|lz=®) < 1 implies that |f” (b%" -x)l < 1 for almost all x € R", we know that Duy (x) € [a,b] and
hence H(Duy (x)) = k for all such x € R". Thus ||H (Du) ||z~ = k.

To see uy € AMy(R"), by definition, it suffices to show that for some domain V' € R" and some function
ve ! (\7) with v = uy on 9V, we have [|[H (DV) ||~y := s > ||H (Du) l|Iz=(v) = k.

If k = 0, we always have |[H (Dv)llr~v) = ||H (Du)|lz=~v). Assume that k& > 0 below. Let gy €
0H ((a + b) /2). Then g¢ # 0; otherwise,

a+b

a+b
HO-H|l—1|>—qo- =0,
0) ( > )_ —

which implies that k = H ((a + b) /2) = 0. By Lemma 3.6, we have go L (b —a). Let xo € V and the line
€o = xo + Rqp. Denote by y( the component ( an open interval) containing xo of £y N V, and 79 > 0 the length
of yp. Write vy = (xo,y0) With xo,yo € dV and yo = xo + toq0/Iqol-

Since g L (b — a) implies

b-a b-a N to b—a b-a
. frd -x — . =
2 Yo 2 0 lgol 2 90 2

we get

b b— b— b
M(YO)—M(XO)=¥'()’0—X0)+JC( Za'yo)—f(Ta'xo)=|;—(;l ;a'%-

By qo € 0H ((a + b) /2) and Lemma 3.4, this yields that

E25| (4.26) (o) — 1 (xp) = ~% [H(b*—“) + L(Qo)] = 0 s Ligon.
g0l 2 g0l

On the other hand, by Lemma 2.2, one has
v(y)—v(x) < C? (y — x) whenever [x,y] C V.

Up to some approximation to xo, yo, this gives that

Ty )
V() — v (x0) < C¥ (yo —x0) = — sup p-qo < —1[s+ L(qo)].
|q0| H(p)<s |q0|

By this, u (yo) — u (x0) = v(yo) — v(xp) and (4.26), we have

fo fo

—[s+ L(qo)] = —I[k + L(qo)]

g0l lqol
which gives s > k, that is, ||H (Dv) ||L=v) > [|H (Du) ||L~(v) as desired. This completes the proof of Lemma
4.2, m]

With the aid of Lemmas 1.3 and 4.2, we are ready to prove (i) < (ii) in Theorem 1.1.

Proof of (i) & (ii) in Theorem 1.1. As clarified in the introduction, we only need to prove Theorem 1.1 under
the assumption (1.4).

2 = (ii). Assume that H is convex, satisfies (1.4) and H is not a constant in any line-segment.
- dfel )and X € Q. Up to some translation, we assume that ¥ =0 e Q. We also assume u (0) = 0.
m P element d0) € Qand K := |jullco1yy < co. Note that u € AMg (U) is bounded. Forany 0 < r < 1,

The Trial Version ) for x € %U. Then u, € AMy (%U) Let B(0,89) € U. Since u € C%! (U), we know that
,00/r)) and |lu,llcor(pos,/r) = K- Up to considering some subsequence we may assume that
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ur — v € C*(R?) locally uniformly in R?, and |[vllcoi g2y < lullcoi o, = K- By (2.1), it suffice to show that
v is a linear function and H (Dv) = Su (0). This will follow if v fulfils all the assumptions in Lemma 1.3 with
k= Su(0).

To this end, let R be as in Lemma 2.6. For any x € R?, by Lemma 2.6 we write

S/vx) = Ix—syge,(;l [v ) =-v(x)—tL (y;t)C)]
= sup lim 1 [

|x—y|<Rxt r—0 t

r

u(ry) —u(rx) tL(y - x)]
t

1
<liminf sup — [u o) —u(@rx) - trL(

r—=0 |rx—y|<Rgtr

y—rx)
tr

< liminf S u(rx).
r—0

By Lemma 2.5, we have

E26| (4.27) S;7v(x) <lim iglfS;u (rx) < lign iglf lim iglfS:;u (rx) = li%n i(glngu (0)=Su() VxeR"
r— — r— -

Similarly, we have

E27| (4.28) -S;v(x)<-Su0)=Su() VxeR"
One the other hand, for any 0 < r < §y/Rt, by Lemma 4.2 let z, € B (0, Rxtr) such that
u(z) (Zr) o+
= trL )= S;u).

Then z,./r € B(0, Rt). For any € > 0, there exists ¢, > 0 such that for any y € B (0, Rt), we have v (y) > u, (y)—¢€
for all r € (0, r¢,). For r sufficiently small, we have

1 Zr 1 y € € €
s LG b ) -siom 52w
S0 2 [V(Zr/r) ()2~ u@) - oL (2)] - £ = Siu© - S 2 500 - £
By the arbitrariness of € > 0, we have S;v(0) > Su(0). Similarly we have —S;v(0) > Su(0). Combining
these, (4.27) and(4.28), we see that the assumptions of Lemma 1.3 is fulfilled with £ = S« (0). This proves
(i) = (ii).

Proofs of (i) = (i). Assume that H™' (k) = [a,b] with a # b for some k > 0. It suffices to show that (ii)
fail.

To this end, let f(r) = [f| for t € R, and uy be as in (1.3). By Lemma 4.2, uy € AMy(R") and
[H(Dug)llp=@®n = k. To see the failure of (ii), we only need to show that u; does not have the linear ap-
proximation property, that is, for any vector e € R"” and r € (0, 1), one always has

up (rx) —uy(0) _

liminf sup e-x|>c
=0 xeB(0,1) r
for some constant ¢ > 0 depending only on a, b, e. Write
. up (rx) —uys (0) b—a b+a
liminf sup | ————— —e-x|= sup -x|—le- - x|.
r=0  1eB(0,1) r xeB(0,1) 2
. _ 1 2e—=(b+a)
.- pdfelement letting x = 5 5= 0> We have
The Trial Version liminf s P uf(rx) S 1| b+a|
imi u —e-x|>=|le— .
=0 xepo,n| T 2 2
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Ife- b% =0, letting x = %Iz:gl’ we obtain
ur(rx b —
liminf sup ¢ )—e x| = bl
=0 xepo,)| T 16
as desired. This gives (i) = (i). The proof of (i) © (ii) in Theorem 1.1 is complete. ]

5. Proor or ProrosiTiON 1.4

Suppose that vectors eg g, €6 € R? and u € AMy(B(0,6)) satisfy (1.6),(1.7) and (1.8). We want to show that
for any € > 0, if 6 > 0 is sufficiently small, then |eg s — eg| < Ce.

Since u is not linear in B(0, ), there are a line segment [z1,22] C B(0, r) , a linear function /(x) = ag - x + by,
73 € [z1,22] with ag = uG)-uz1) gych that either

lz2—z1]
(5.1) u>1l onlz,22], w(zi)>Uz1), w(zz)=1Uzz), u(z)>Ilz),
or
(5.2) u<l onlz,z2], w(zi) <lz1), u(z3)=1Uz3), u(z2)<Il(z2).

Without loss of generality, we assume that (5.1) holds.

Lemma 5.1. There exists e € R?, with H(e) = S*(u)(z3), such that 71 and z, belong two distinct connected
components of the set {y € R? : u(y) > u(z3) + e - (y — z3)} N B(0, 6).

Proof of Lemma 5.1. By Theorem 1.1 (ii), for an sequence {si}ien Which converges to 0, up to considering
subsequence there exists e € R? such that H(e) = S *u(z3) and

5.3) lim sup uy) —uz3) —e- =23l _
5670 B(z3,51) Sk

0.

Since u is not linear in B(0, ), for any zx € [z1, z2] N dB(z3, k), by (5.3) we have

(ao—e)-( 0,

=23\ _ Na) —Uz) —e- (2 —23) < u(zx) — u(z3) — e - (2 — 23) N
Sk Sk B Sk
as k — oo. Therefore we have (ag — ¢) - (z — z3) = 0 for any z € [z1, z2], that is

u(zi) —u(z3) > l(z;)) = (z3) =ap-(zi—w3)=e-(zi—z3), i=12,

and hence 71,22 € {y € R? : u(y) > u(z3) + e - (y — z3)}. Now we assume that z;, z belong to the same
connected component of {y € R? : u(y) > u(z3) + e - (y — z3)} N B(0,6). Then there exists a ploygonal line
F'c{ye R2: u(y) > u(zz) + e (y — z3)} N B(0, 6) joining z; to zo. Let S = T"U [z1, 22] be the closed curve and
U c B(0, 6) be the open set such that S = dU. Without loss of the generality, we may assume that there exists
a B > 0 such that

B*(z3,8) := Bz, N{y e R>:0< L(y—z3,20 —21) <7} C U.

It is clear that there exists an 0y such that u(y) — u(z3) — e - (y — z3) = d¢ for any y € I'. Therefore there are a
small € > 0 and a unit vector v € RZ, with 2(v,z, — z1) = % and ¢ + ev # 0, such that

uy) > u(zz) +(e+ev)-(y—z3), VYyes.
Note that ¢(y) = u(z3) + (e + €v) - (y — z3) is linear and D¢ = e + ev # 0 so that Lemma 2.1 implies that

u@) > u(zz)+(e+ev)-(y—2z3), yeUl.

hnd, we have

lim max

> 0,

The Trial Version sk—0 yeB* (z3,8)NB(z3.8) Sk

cts (5.3). The proof of Lemma 5.1 is complete. |
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The proof (1.9) is reduced to proving

(5.4) le —egl*> < €/2
and
(5.5) le — eq6l* < €/2.

Proof of (5.4). Note that eg — e € B(0,2R). For any € > 0 the function ¥,g(€/2) be as in Theorem 3.2. By
Lemma 5.2 and Lemma 5.3 as below, for 0 < 6 < 6(H, R, €) as there, the assumptions of Theorem 3.2 with
p =eand v = ¢g — e are fulfilled, and hence |eg — ¢| < €/2 as desired.

Lemma 5.2. For any € > 0, there exists a 6 = 6(H, R, €) > 0 such that
(5.6) H(eg) — H(e) < Yar(€/2).
Lemma 5.3. For any € > 0, there is 6 = 5(H, R, €) > 0 such that

5.7

/(q,e6 —e€) — g < Yor(e/2) for some q € OH(e') and some ¢’ € B(e, Yr(e/2)) with H(e) = H(e').

Below we prove Lemma 5.2 and Lemma 5.3. Write = %l//zR(E/Z) and f = eg — e for simple. We may
assume that | f| > n/2 without loss of generality. Write

S ={yeR*:|f-(y—23)| <26),. 7 ={yeR?>: f-(y—z3) <26} and .%, :={y e R*: f - (y — 23) > 26}.
The width of .# is 26/|f], and hence, at most 2?5. Moreover, (1.7) implies that
lu(y) — u(z3) —e6 - (v — 23)I < 26, Vy € B(0,0).
Since
- NB0,6) C{yeR?: u(y) <u(zz) +e-(y—2z3)}
and
SN B0,6) C {y € R? 1u(y) > u(z3) + e (v = 23)},
by Lemma 5.1 above there is a connected component of {y € R? : u(y) > u(zz) + e - (y —z3)} N B(0, 6), called
U, that contains either z; or 2, and hence intersects B(0, 1), and is contained in the strip ..
Observe that U ¢ B(0, 6); otherwise, thanks to u(y) = u(zz) + e - (y — z3) on y € 9U, by Lemma 2.1,
u = u(zz) + e - (y — z3) in U, which contradicts with the definition of U. Therefore there exists a polygonal
line I inside U starting in B(0, 1) and and exiting B(0, 6). Now we find z4 € B(0, 6), with |z4 — z3| = 3 and
z4 —z3 L f, such that
(A1) supp, 2 lu(y) —u(z3) —ec - (y —z3)l < 26 and 1 < H(es) < 2.
(A2) {ye R? : u(y) > u(zz) + e - (y — z3)} N B(0, 6) has a connected component U C .¥ that contains a
polygonal line I" connecting the two arcs . N dB(z4, 2).

Lemma 5.4. If6 € (0,2/C) for some constant C(H) > 1, then
(5.8) Su(x) <He)+Cé VYxeUnB(z,1).

Proof of Lemma 5.4. For any xo € B(z4,1) N U, we have B(xg, 1) C B(z4,2) and u(z3) + e - (xo — z3) < u(xp).
Note that

5.9 u(y) = u(zz) +e- (y — xo) < u(xg) + ‘Klg"(e)(y —x9), Yy e€oUn B(xop,1),

.- pdfelement u(y) <u(zz)+e-(y—xo)+46 <ulxg)+e-(y—x9)+496, Vye UnNadB(xy,1),

The Trial Version

and (5.10) we have
u(y) < u(x0) + Citpyrcs = X0), Yy € (U N Blxo, 1)),
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Since u € CCy(B(0, 6)), we have
u(y) < u(x0) + Gy rcs(y = X0).  in U N B(xo, 1).
This, combined with the Proposition 2.2 in [28], implies (5.8). m|
We are able to prove Lemma 5.2 as below.

Proof of Lemma 5.2. If H(e) > H(eg) — 1, then (5.6) follows. Assume that H(e) < H(eg) — n now. Thanks to
1 < H(eg) < 2, by (i) and Lemma 3.5, we know that eg # 0 and 0 ¢ dH(eg). The convexity of H implies

(5.12) q-f=q-(ec—e)=H(es) — H(e) 2 1, Vg € dH(ee).
We always let 6 > 0 is small so that 50|g|d < %H (eg) for all g € dH(eg) below.
Claim 5.2 (a) For any q € 0H(eg), there exists

wqeL:={z4+s%:—%§s§—%}cB(z4,l)
such that
(5.13) Su(yg) > H(eg) — 50Iglo.
Proof of Claim 5.2 (a). Let q € 0H(eg) and ¢ := sup,; Su(x). To find y, it suffices to show that
H(eg) —48|ql0 < c.
This is further reduced this to proving
(5.14) e6 - q — 481416 < € (g).
Indeed, since

€ (q) = sup p-q< sup [H(p)+ L(@)] = c+ L(g),
H(p)<c H(p)zc

by e¢ - g = H(eg) + L(g) as in Lemma 3.4, one has H(eg) — 48glo < c.
To see (5.14), thanks to L C B(z4,2), (Al) implies

1 g 1 g 1 q
(5.15) u(z ———)—u(z ———)Z—e 4y
* T 4l T 3g) T 1270 gl

On the other hand, by the semi-continuity of Su, for any > 0O there exists an open neighborhood V(L) such
that sup, .y, ;) Su(x) < ¢ + 7. and hence sup,cy, ;) H(Du(x)) < ¢ + 7. By Lemma 2.2, We have

1q) ( 1q) Ho. 4
ulzg — = |-ulzs — == | < C L, (=)-
(“ 3ql YT 40gl) T T 12y

Letting n — 0, we conclude (5.14) from this and (5.15).

O
Fix a ¢° € 0H(eg) such that
¢ q
(5.16) f-—O:min{f-—:qeaH(e6)}
lg" 7]
Let yo == wpo = z4 + sol‘;—zl for some sy € [—1/3,—1/4] as determined in Claim 5.2(a). Since f - ¢° >

> 77, we have
F00 = f 00— = sof L <L
0 -B)=f0 —w)=sof = < —-——.
g% 4140

hen f - (¥ — z3) < =26, that is, y* € .7_.
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For any 0 < 6 < n/8, let
26
t =t(8) :=dist(I", 0U N B(z4,2)) < —

Applying Lemma 2.8, we get a discrete gradient flow {y;}7 | for some n|1f|= m(0) satisfying
(5.17) Vi = yi(6) € B(24,2), lvi = yi-tl = £, u() = ui-1) + €5y (O =yic1), 1<i<m,
but y,,+1 € B(z4,2). Note that y,,,+1 € B(z4,2) implies that
(5.18) dist(y,, 0B(z4,2)) < t.
We prove the existence of such m > 1 by contradiction. Assume (5.17) holds for all i > 1. By Claim 5.2(a),
(5.19) S*Tw)(yi) = STu)(yo) = H(es) — 501°16, 0 <i<m.
Thus, for any j > 1
m j
(5.20) u(y)) = uyo) = ) = uGi-0)) = D Gl 00 = icn)
i=1 i=1

l
J J
H H
2 Z CKS*—(M)(};O)(yl' - yi—]) 2 Z C61_1(6.6)_5(”‘10|§(le - yi—l)’
i=1 i=1

By 501¢°|6 < %H (e6), then there exists C > 0 depending only on H such that
H —
(gH(es)—SOIqOIzS(x) >Clxl, Vixl=1,
and hence,

J
u(y)) = u(vo) = Y CH 000 = yieD) = Cit,

i=1
Noteing [u(y ;) —u(yo)| < ||Dullz=B(0,6)yj—yol, one has [y ;—yo| — Cjt — oo as j — oo, which is a contradiction.
Claim 5.2 (b) There exists 6(¢) > 0 such that for any 0 < 6 < 6(€), we can find 1 < js < m such that y,, € .%;
andyj; € B(z4,1) N U.
Proof of Claim 5.2(b). We first show that y,, € .7, if § > 0 is sufficiently small. Note that

xeq4.23] (5.21) C w501 = Y0) < €6+ Om = ¥0) + 40.

Indeed, noting that (5.20) also holds with j = m, and applying the triangle inequality for €7, we have

m m
xeq4. 21 (522) u()’m) - u(yO) > Z CKI_P]I(%)_SOWOM())I' - yi—l) > Cgl_l}l(%)_smqo'a [Z(yl - yi—l)] = %151(66)_50|q0|§(ym - }’O)
i=1 i=1

On the other hand, by (A1) and y,,;, yo € B2(z4) one has

xeqd.22| (5.23) u(ym) — u(yo) < e6 - (ym — yo) +46.

From this and (5.22) one gets (5.21).
Thanks to dist (y,,, B(z4,2)) < t as in (5.18), there exists y € dB(z4,2) such that ¢t > |y,, — y|. For
0<6<mn/6,by|fl =n/2andt < 25/|f] < 2/3, one gets

4
Vm—zal2ly—zal=ly—yml 22-12 3
|
0
m pdfelement  Fyi ti5 o € [-5, {1}, itis clear that
The Trial Version 4 1
[ym = Yol 2 lym — 24l = lza — yol = 373" 1.
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Writing e, = &:::ﬁgl, by (5.21), one has

(5.24) Ghioe)—s01gi0(€m) < €6 - em + 45,

Note that e,, converges to some unit vector & as 6 — 0 (up to some subsequence), and hence ‘55(%)(@) <eg-e.
By definition, (55(66)(2) = ¢ - . By Lemma 3.7, we have & = §/|g| for some § € 0H(eg). Recall that § and ¢°
do not coincide necessarily.

Next we show that if § > 0 is sufficiently small, then y,, € {y € R? : f-(y — z4) > 26}. Indeed, by
Yo=24+ solg—ﬁl for some sg € [-1/3,—1/4] we have

0
f‘(ym—Z4)=f'(Ym—y0)+f'O’0—Z4)=|ym—y0|f'@+sof'ﬁ*‘l)’m—yolf'(em—@)-

Since 1 < [y, —)° S4andf~é2f-|z—2| > n/14°, we get

2 q° 2n
. — > fF. 2 - _

f (.Ym Z4) = 3f Iqol 3|q0|
Since e,,, —» ¢asd — 0, we have f-(y,, —z4) > 20 if § is sufficiently small. Since f-(y,—23) = f-(Ym—24) > 26
and hence y,, € .%; by definition.

Now we find 1 < js < m such that y;; € U N B(z4, 1) when ¢ is sufficiently small.

When ¢ is sufficiently small, by y° € .7, y,, € .%, and the choice of the step size t, there exists 1 < js <m
such that y;; € U N B(z4,2). It remains to show that |y;; — z4| < 1. If [y;; — z4] > 1, we have

— 4 fllem — el = 2nlen — el

1 2

[yjs = Yol = Iyj; —zal = lyo —zal = 1 - 353
By an argument similar to above, we also have f - (y;; — z4) > 26, that is, y;; € .4 which is a contradiction.
Thus we obtain |y;; — z4| < 1. The Claim 5.2 (b) is proven. m]

Combing (5.8), (5.13),(5.20) and Claim 5.2 (b), we obtain
H(eg) — 501916 < S*(H,u,y;,) < H(e) + C,
this implies that (5.6), where § = (i, H) is chosen to be sufficiently small. The proof of Lemma 5.2 is
complete. O

The proof of Lemma 5.3 is as below.

Proof of the Lemma 5.3. 1f there exist ¢’ € B(e,n) and q1, g2 € dH(e") with H(e) = H(e’) and Z(q1, f) < n/2 <
2(q2, f), then we can find A € [0, 1] such that Z(Adg; + (1 — Dq», f) = x/2. Then Aq; + (1 — D)g, € dH(€') is the
desired result. Below we may assume

(5.25) £(q, f) €10, 3) for all g € 0H(e") and all ¢’ € B(e,n) with H(e) = H(e").

The case Z(q, f) € (x/2,n] for all ¢ € dH(¢’) and all ¢’ € B(e, n) with H(e) = H(e’) is similar.
Note that there exists ¢’ € B(e,n) with H(e) = H(¢’) and g, € 0H(e’) such that

n
@:=/(qy, f)= max max /(q,f) < =.
e'€Ble,) qe0H(e) 2

Assume @ < 5 — i without loss of generality.

quf}.d be the intersection of L := {z4 + sq. : t € R} and {y € RZ: (y—z4) - f = —26}. Observe

Letxs = z4 —

25 26
= <——x<1
|flcos £(q, f) — msinp

The Tl DERYAA > 0 is chosen to be sufficiently small. This implies B(xs, 1) C (z4,2). By (Al), we have

—u(zz) —e-(y—z3) su(y) —u(z3) —es - (y—z3) + f - (v —23) <46, ¥y e UnN B(xs, 1),
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and

(5.27) u(y) =u(zz)+e-(y—2z3), VYyeadUn B(xs,1)

Thus

(5.28) u(y)=u(zz)+e-(xs—z3)+e-(x—x5) <u(zz)+e-(xs—z3) + Cﬁg@(x —xs5), VYxe€oUnN B(xs,1).
For any x € U N 0B(xs, 1), we have

(5.29) ulx) <u(zz)+e-(xs —z3) +e-(x — xs) + 40.

Let p, € H '(H(e)) such that #,(x — x5) € 0H(p,) for some ¢, > 0; see Lemma 3.7 for the existence of t,. Since
L(x = x5, f) > 5 — C6/|f| for some constant C > 2, we know that if § < 2Rn/C, then Z(x — x5, f) > 5 —n and
hence, by the assumption (5.25), |p, —e| > n. If § < 4—1‘¢2R(n) as needed in Theorem 3.3 we further have

(px—e) - (x— xs) = 40.
Since Cr)(x — x5) = px - (x — Xx5), we obtain,
Cre)(x = x5) = px - (x — x5) 2 e - (x — x5) + 40.

By this and (5.29), one has
(5.30) u(x) <u(zz)+e-(xs—z3) +e-(x—xs5) +406 <u(z3) + e - (xs — 23) + Cre)(x — x5).

It follows from (5.28), (5.29) and (5.30) that for sufficiently small 6 > 0, we have
(5.31) u(y) < u(z3) + e - (xs —23) + 6 (v = xs), ¥y € OB(U N B(xs, 1)).
Applying comparison property with cones, we have
(5.32) u(y) < u(z3) + e - (x5 —23) + € (v = Xs),  in U N Blxs, 1).

By (A2), we have {xs + tq. : t = 0} N (U N B(xs,1)) # 0 for any g, € dH(e). For any yy = x5 + tog. €
U N B(xs, 1), by (5.32) and Lemma 3.7 one has

u(yo) < u(z3) + € - (x5 — 23) + G ) 60 — X5)
< u(z3) + e (x5 — 23) + 0G4, (qe)
= u(z3) +e- (x5 —23) + loe - ge
= u(z3) + e (yo — 23),

which contradicts with yg € U, that u(yg) > u(z3) + e - (yo — z3). This completes the proof of Lemma 5.3. O

Proof of (5.5). To see (5.5), define v,(x) = @ for x € B(0,6). Then we have

sup [vu(x) —eps - x| < 6.
x€B(0.6)

Moreover, Lemma 5.1 also implies that {y € R? : u(y) > u(zz) + e - (y — z3)} N B(0, 6r) has two connected
components that intersect B(0, r). This implies that for z§ = Z73, {ye R?: vi(y) > vi(z5) + e (y — 25)} N B(0,6)
has two connected components that intersect B(0, 1). Therefore similarly to the proof (5.4) above, we could
also derive (5.5) provided that

1
(5.33) 3 < H(epp) < 4.
erify (5.33). By Lemma 3.8 and (1.7), one has

pdfelement u(x) S eg-x+06 S G, () +6 < Ch 0500, Vx € dBO,3).

The Trial Version az/C), we have

H(eos) = Su(0) < H(eg) + C6 < 4.
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On the other hand, we have yog(e) < 1/4 for 0 < € < . Lemma 5.2 implies that for § > 0 sufficiently
small, we have

3
(5.36) H(e) > H(eg) — Yor(€) > 1 —yar(e) > T
Since eg 6 € Z(u)(0; 6r;0), we have
(5.37) u(x) < u(z3) + eop - (x — z3) + 20r

< U(Z3) + Gy o)X = 23) + 207 < (z3) + Gy 060X — 23)

for any x € 0B(z3,2r) C B(0, 6r), and hence by comparison property with cones, for any x € B(z3, 2r). By the
definition of S3 (1)(z3) and (5.37), if C6 < 1/4 we have

(5.38) S5, u)(z3) < H(eop) + C6 < H(epg) + i

By Lemma 2.5 and Lemma 2.1, we have
H(e) = S " (u)(z3) < 85,(u)(z3),
which together with (5.38) yields H(egg) > 1/2 as desired. The proof of (5.5) is complete.

6. Proors oF THEOREM 1.5 AND (i) & (iii) orR (iv) IN THEOREM 1.1

In the following Corollary 6.1, the condition (1.6) needed in Proposition 1.4 is reduced to ||H(Du)||1=(B(0,6)) <
R, that is, u is may be linear in some neighborhood of 0.

Corollary 6.1. Suppose that H satisfies (1.4) with n = 2 and (i). Let R > 1. For any € > 0, there exists 6 =
O(R, €) > 0 such that for any e and e, if we can find a u € AMy(B(0, 6)) satisfying ||H(Du)l|r=B0,6)) < R,
(1.7) and (1.8), then we have

(6.1) lec — eoel < €.

Proof. Letu € AMy(B(0, 6)) satisty ||[H(Du)|lz=0.6)) < R, (1.7) and (1.8). If u is not linear in any neighbor-
hood of 0, this follows from Proposition 1.4. Below, we assume that u = e - x near 0 for some vector e € R?.
Let ry € (0, 6) be the largest r € (0, 6) so that u(x) = u(0) + e - x in B(0, r). Obviously, u(x) = u(0) + e - x in
B(0, rp). By (1.8) one has

sup le-y—epe -yl <or
B(0,6r)

that is, |le — eg6ll < 9/6.
If ro > 1/2, by (1.7) we have
sup le-x—eg- x| <6,
B(0,6)
that is, |le — eg|| < /6. Therefore, |legs — €6l < 0/3 < € whenever d < e.

If ry < 1/2, by the choice of ry we can find xy € dB(0, rg), u # e - x in some neighborhood. Moreover, we
see that u is not linear in any neighborhood of 1. Indeed, if u(x) = u(x®) + p - (x — x%) in B(x°, 5) for some p
and s > 0, then (e — p) - (x—x°) = 0in B0, r9) N B(x%, 5). If e— p L x¥, then we can find z; € B(0, ro) N B(z, x°)
such that (Zj - O)/|Zj — x% converges to (e — p)/le — p| as j — oo, and hence e — p = 0, that is, e = p. If
e—p L x°, then we can find w € B(0, ro) N B(x, s) such that either (w — xo)/lw 1%l or (x% —w)/Iw — x| equals
to (e -p)/ |e — pl, and hence e = p. But this is 1mp0531ble by the choice of X0

e abave H(e) = Su(x?) and e € 2(u)(x%;r; ) for any 6 > 0 and sufﬁc1ently small » > 0. Indeed,
1 (ii), for any sequence r = {r;} which converges to 0, up to considering its subsequence, there

gl G LSO | cuch that H(ey, r) = Su(x) and

The Trial Version lu(y + x0) — u(xp) — €xor ° V

lim sup =0.
J=% yeB(0,1) rj
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Since u(y) = e -y € B(0, rp), we have
e—e -(y—x
im o sp  €Tewn 0wl o
7720 ye B(xg,r)NB(0,r) rj

€—€xp.r
e—exyr
that is, e = ey, r. If e — e+ L Xxo, then we can find vectors p € dB(xo,r;) N B(0, Il‘())) OSO| that either w/|w| or
—-w/|w| is exactly %, and hence e = e, . Thus H(e) = Su(x°) and, for any 0 > 0, e € Du)(x°; r; 6) for
sufficiently small r > 0.

We also note that (1.7) implies

[u(y) — u(xo) — e - (y — x0)|z=(Bxo,5) < 20, 1 < H(eg) < 2.

That is, eg € 2(u)(x;5/6;26).

Let v(x) = $[u(Zx + xo) — u(xo)] for x € B(0,6). We see that v € AMp(B(0,6)), [IDvli~n506) < 2R,
e6 € P(v)(0; 1;26) with 1 < H(eg) < 2, and e € Z(v)(0; r; 26) for some sufficiently small » > 0, Sv(0) = H(e).
By Proposition 1.4, if 6 < 6(H, 2R, 26) we know that |eg — e| < €. Thus |eg — e | < € as desired. |

If e—ey,r L xo, then we can find vectors p; € dB(xo, r;)NB(0, ry)) so that p,/|p;| — . Thus le—ey,r| = 0

Using Corollary 6.1 and Theorem 1.1 (ii) we are able to prove Theorem 1.5.

Proof of Theorem 1.5. Step 1. We prove that u is differentiable everywhere and H(Du) = Su everywhere. Let
Ve Up to considering u(- + xg) — u(x%), we may assume that 1% = 0and u(0) = 0. Up to considering %u(rx)
we may assume that B(0,2) c Q.

To see the differentiability of u at 0, it suffices to find a vector e such that for any sequence {r;} ey which
converges to 0 we have

(6.2) lim sup
J=% yeB(0,1)

—u(r]y) —e- y' 0,
rj

and H(e) = Su(0). Thus Du(0) = e. Indeed, if u is not differentiable at 0, then there exists a sequence s; such
that lim_, |lu(sjy) —e- y| > 0.
If Su(0) = 0, by Theorem 1.1 (11) we know that (6.2) holds with e = 0.

If Su(0) > 0, up to considering H= 35 (O)H we may assume that Su(0) = 1. By Theorem 1.1 (ii), for any
sequence r = {r;} jen Which converges to 0, up to considering its subsequence we can find a vector e, such that

1
—u(rjy) —er-y| =0,

Ty

(6.3) lim sup
J=% yeB(0,1)

and H(ey) = Su(0). Let s = {si}xen be any another sequence with vector eg satisfying

(6.4) lim sup
k=00 yep(0,1)

—u(sky) —es-y[=0

Sk

and H(es) = Su(0). To get (6.2), we only need to prove e, = es.
For any j, setv;(y) = %u(rjy/6) for all y € B(0, 6). Note that, for all j € N, we have Sv;(0) = Su(0) and
IH(Dv )llz=0.6)) = IHDWllL=B0.rj)) < IHDWl|L2(B0,1)) =: R < 0.

For any 6 > 0, by (6.3) and (6.4), there exists a js such that e, € Z(v;)(0; 1;6) and es € Z(v;)(0; s¢/r;j; ) for
all ] > js and large k with s, << r;. For any € > 0, applying Corollary 6.1 with 6 < 6(H, R, €), we obtain
By the arbitrariness of €, we have eg = e, as desired.

e (1.10) and hence the continuity of Du.
at the conclusion (1.10) in Theorem 1.5 is not correct. Then there exist kg > 0, €y > 0 so that we

The Trial Version ence {s; > 0} and a family u; C AMy(B(x},2r;)) satisfying s;/r; — 0,

IH(Dupll=B(x;2r;)) < ko,  |Duj(x;) — Duj(y;)l = € for some y; € B(x;, 5)).
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Up to considering rljuj(rjx + x;) — uj(x;) for x € B(0,1) we may assume that x; = 0, #;(0) = 0 r; = 1 and
sj — 0. Since ||H(Duj)||Loo(B(()’2)) < ko implies that ||DMJ'||L°0(B(0,2)) < C(H, k), we know that Uj = Uoo locally
uniformly in B(0,2) as j — oo (up to some subsequence). Note that u,, € AMy(B(0, 2)), u(0) = 0. By Step
1, u is differentiable in B(0, 2), and hence for any 6 > 0, there exists ry > 0 such that we have

0
6.6) SUp  Jiteo(x) = Diteo(0) - x| < 22, |Duj(y;) - Du(0)] = &.
xeB(0,rp) 2 '
Therefore there exists a sufficiently large js > 0 such that
c26| (6.7) sup |uj(x) — Dus(0) - x| < 6ro, Vj= js.
x€B(0,rp)

This implies that for j > js, we have

c27| (6.8) luj(x) — uj(y) — Dus(0) - (y — x)| < 26r9, VYx,y € B(0,rp).
In particular, for j > js, we have
c28| (6.9) sup  |uj(x +y;) —uj(y;) — Dus(0) - x| < 26ry.
x€B(0,r9/2)

If Dus(0) = 0, by (6.6) we have
uj(x) < 6rg = dlx| < CLE(x)  Vx € dB(0, ro)

and hence by Corollary 3.8, u;(x) < ‘?a”gs(x) Vx € B(0,rg). This implies that H(Du;(0)) = Su;(0) < Cé.
Similarly, by (6.9), one has H(Du;(y;)) = Suj(y;)) < C6. If 6 << ¢, this leads to a contraction with
|H(Duj(y;)) — H(Du;(0))| > €.

If Dus,(0) # 0, up to considering H =
that for any € > 0,

|Duj(y;) — Dus(0)| < Ce, |Duj(0) — Dus(0)| < Ce for sufficiently large j.

If this is correct, letting € < €/4C we get contradiction with |[H(Du(y;)) — H(Du;(0))| > €.

Below we only verify [Duj(y;) — Dus(0)] < Ce for large j; the proof of [Du;(0) — Du(0)] < Ce for
large j is similar and easier. Let v;(x) = %u(rox/ 12 +y;). We have [|[H(Dv)||.=B0.6)) < ko. Moreover, (6.9)
implies Duw(0) € Z(v;)(0;1;206) for j > jo. Since v; is differentiable at 0, we know that Du(y;) = Dv;(0) €
2(v;)(0; r;26) for sufficiently small > 0. For any € > 0, applying Corollary 6.1 with 6 < 6(H, ko, €) we know
that |Du(y;) — Duc(0)| < Ce. Thus we complete proof of the Theorem 1.5. |

mH we may assume that H(Du(0)) = 1. It suffices to show

Withe the aid of Theorem 1.5 we prove (i) < (iii) and (i) & (iv) in Theorem 1.1 as below.

Proof of (i) & (iii) and (i) & (iv) in Theorem 1.1. As clarified in the introduction, we only need to prove The-
orem 1.1 under the assumption (1.4).

Proof of (i) = (iii). This follows from Theorem 1.5 directly.

Proof of (i) = (iv). Let u € AMy(R") and assume that there exists some constant K > 1 such that
lu(x)] < K(1 + |x]) for all x € R". By Theorem 1.5, u € C'(R™. Moreover we have |H(Du)||po@®ny < oo.
Indeed, since Lemma 2.5 implies H(Du(x)) = Su(x) < S;u(x) for any t > 0 and x € R", it suffices to show
Su(x) < C(K) whenever ¢ is sufficiently large for any given x € R". By |u(y)| < K(1 + [y|]) for all y € R”, if
t > (1 + |x|), we have

_ sup [u(y) — u(x) _L(y—x)] < 2K + sup [Kly—XI _L(y—X)} = 2K + sup [K|z| = L(2)] .
t yeR” t ! €R"

a pdfelement

STu(x) <2K + sup [K|z| - L(z)] < 2K + KRg
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Write k = ||[H(Du)||;=(z2). For any R > 0 let ug(x) = u(Rx)/R for all x € R". Then ug € AMy(R*) N C'(R?)
and ||H(Dug)|| ~rz2) = k. By Theorem 1.5 again,

|Du(x) — Du(0)| = lim sup
R— o0
This implies that Du = Du(0) and hence u(x) = u(0) + Du(0) - x for all x € R".

Proofs of (iii) or (vi) = (i). Assume that H™' (k) = [a,b] with a # b for some k > 0. It suffices to show
that (iii) and (iv) fail.

Let f and uy be as in the proof of (ii) = (i). Obviously, uy ¢ C'(R") and hence (iii) fails. This gives
(iii) = (7). Note also that ||[H(Duy)l|;=® = k implies that ||[Duy||;~®" < oo and hence u; enjoys a linear
growth. But, obviously, uy is not a linear function and hence (iv) fails. This gives (iv) = (i). The proof of
Theorem 1.1 is complete. |

Dug (%) - Du(O)‘ < lim sup py (%l) =0 VxeR-Y

R—o0
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