
SUITABLE WEAK SOLUTIONS FOR THE CO-ROTATIONAL

BERIS-EDWARDS SYSTEM IN DIMENSION THREE

HENGRONG DU, XIANPENG HU, CHANGYOU WANG

Abstract. In this paper, we establish the global existence of a suitable weak solution
to the co-rotational Beris-Edwards Q-tensor system modeling the hydrodynamic motion
of nematic liquid crystals with either Landau-De Gennes bulk potential in R3 or Ball-
Majumdar bulk potential in T3, a system coupling the forced incompressible Navier-
Stokes equation with a dissipative, parabolic system of Q-tensor Q in R3, which is shown
to be smooth away from a closed set Σ whose 1-dimensional parabolic Hausdorff measure
is zero.
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1. Introduction

In this paper, we consider in dimension three the so-called Beris-Edwards system ([4]
and [10]) that describes the hydrodynamic motion of nematic liquid crystals, with either
the Landau-De Gennes bulk potential function [8] or the Maire-Saupe (Ball-Majumdar)
bulk potential function [3]. Roughly speaking, this is a system that couples a forced
Navier-Stokes equation for the underlying fluid velocity field u with a dissipative parabolic
system of Q-tensors modeling nematic liquid crystal orientation fields. We are interested
in establishing the existence of certain global weak solutions for such a Beris-Edwards
system that enjoys partial smoothness property, analogous to the celebrated works by
Cafferalli-Kohn-Nirenberg [5] on the Navier-Stokes equation and Lin-Liu [25] and [26] on
the simplified Ericksen-Leslie system modeling nematic liquid crystal flows with variable
degree of orientations, which was proposed by Ericksen [12, 13] and Leslie [23] in 1960’s.
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We begin with the description of this system. Recall that the configuration space of
Q-tensors is the set of traceless, symmetric 3 × 3-matrices, i.e.,

S(3)
0 =

{
Q ∈ R3×3 : Q = Q>, trQ = 0

}
.

For technical reasons, we will consider the one constant approximate form of the Landau-
De Gennes energy functional of Q-tensors, namely,

E(Q) =

∫
Ω

(L
2
|∇Q|2 + Fbulk(Q)

)
dx,

over the Sobolev space H1(Ω,S(3)
0 ), where Ω is a three dimensional domain that is assumed

to be either R3 or the torus T3 = R3/Z3 in this paper. Here L > 0 denotes the elasticity
constant, and Fbulk(Q) denotes the bulk potential function that usually describes the phase
transition among various phase states including isotropic, uniaxial, or biaxial states. We
refer interested readers to Mottram-Newton [30] and Sonnet-Virga [34] for a more detailed
discussion of general Landau-De Gennes energy functionals involving multiple elasticity
constants Li’s. In this paper, we will consider two classes of bulk potential functions:

(i) (Landau-De Gennes bulk potential [8]). Here Fbulk(Q) = FLdG(Q), and

FLdG(Q) = F̂LdG(Q)− min
Q′∈S(3)

0

F̂LdG(Q
′), (1.1)

where

F̂LdG(Q) =
a

2
tr(Q2)− b

3
tr(Q3) +

c

4
tr2(Q2), (1.2)

where a, b, c > 0 are temperature dependent material constants. It is a well known

fact that if 0 < a < b2

27c , then F̂LdG reaches its minimum at Q = s+(d⊗ d− 1
3I3),

where s+ = b+
√
b2−24ac
4c and d ∈ S2 is a unit vector field.

(ii) (Ball-Majumdar singular bulk potential [3]). Here Fbulk(Q) = FBM(Q) is a modi-
fied Maire-Saupe bulk potential introduced by Ball-Majumdar [3], which is defined
as follows. FBM(Q) = νGBM(Q)− κ

2 |Q|2 for some ν > 0 and κ > 0, and

GBM(Q) ≡

 min
ρ∈AQ

∫
S2
ρ(p) log ρ(p) dσ(p) if − 1

3 < λj(Q) < 2
3 ,

∞ otherwise,
(1.3)

where λj , j = 1, 2, 3, denotes the eigenvalues of Q ∈ S(3)
0 , and

AQ ≡
{
0 ≤ ρ ∈ L1(S2) : ρ(p) = ρ(−p),

∫
S2
ρ(p) dσ(p) = 1,∫

S2

(
p⊗ p− 1

3
I3
)
ρ(p) dσ(p) = Q

}
.

It was proven by [3] that GBM is strictly convex and smooth in the interior of the
convex set

D =
{
Q ∈ S(3)

0 : −1

3
≤ λi(Q) ≤ 2

3
, i = 1, 2, 3

}
.
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It is well-known that the first order variation of the Landau-De Gennes energy functional
E is given by

H = L∆Q− fbulk(Q), fbulk(Q) = 〈∇Fbulk(Q)〉 = ∇Fbulk(Q)− tr(∇Fbulk(Q))

3
I3. (1.4)

In particular, if Fbulk(Q) = FLdG(Q), then

fbulk(Q) = 〈∇FLdG(Q)〉 = aQ− b
[
Q2 − tr(Q2)

3
I3
]
+ cQtr(Q2).

For 0 < T ≤ ∞, denote QT = Ω × (0, T ]. Let u : QT 7→ R3 denote the fluid velocity

field and Q : QT 7→ S(3)
0 denote the director field. Define

S(∇u, Q) = (ξD + ω)
(
Q+

1

3
I3
)
+
(
Q+

1

3
I3
)
(ξD − ω)− 2ξ

(
Q+

1

3
I3
)
tr(Q∇u),

where

D =
1

2
(∇u+ (∇u)>) and ω =

1

2
(∇u− (∇u)>)

are the symmetric part and the antisymmetric part, respectively, of the velocity gradient
tensor ∇u, and ξ ∈ R is a rotational parameter measuring the ratio between the aligning
and tumbling effects to Q by the fluid velocity field.

The Beris-Edwards Q-tensor system modeling the hydrodynamic motion of nematic
liquid crystals reads [16, 31]

∂tQ+ u · ∇Q− S(∇u, Q) = ΓH

∂tu+ u · ∇u+∇P = µ∆u+ div(τ + σ)

divu = 0,

(1.5)

where Γ > 0 is a relaxation time parameter, µ > 0 is the fluid viscosity constant, and τ is
the symmetric part of the additional stress tensor given by

ταβ = −ξ
(
Qαγ +

δαγ
3

)
Hγβ − ξHαγ

(
Qγβ +

δγβ
3

)
+ 2ξ

(
Qαβ +

δαβ
3

)
QγδHγδ − L∂βQγδ∂αQγδ, 1 ≤ α, β ≤ 3,

and σ is the antisymmetric part of the additional stress tensor:

σαβ = [Q,H]αβ :=QαγHγβ −HαγQγβ , 1 ≤ α, β ≤ 3.

Since both fLdG(Q) and fBM(Q) are isotropic functions of Q, we have

[Q, fbluk(Q)] = 0

so that
σ = [Q,L∆Q− fbulk(Q)] = L[Q,∆Q].

In this paper, we will focus on the co-rotational Beris-Edwards system (1.5), i.e.,

ξ = 0

Since the exact values of L,Γ, µ don’t play roles in our analysis, we will assume for sim-
plicity

L = Γ = µ = 1The Trial Version
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We will also assume the domain Ω to be

Ω =

{
R3 if Fbulk(Q) = FLdG(Q),

T3 if Fbulk(Q) = FBM(Q).

With these assumptions and the following identity:

∂β(∂βQγδ∂αQγδ) = ∂αQγδ∆Qγδ + ∂α(
1

2
|∇Q|2),

the system (1.5) reduces to the following form: ∂tQ+ u · ∇Q− [ω,Q] = ∆Q− fbulk(Q),
∂tu+ u · ∇u+∇P = ∆u−∇Q ·∆Q+ div[Q,∆Q],
divu = 0,

in Ω× (0,∞) (1.6)

subject to the initial condition

(u, Q)|t=0 = (u0, Q0)(x) for x ∈ Ω. (1.7)

A key feature of the Beris-Edwards system (1.6) (or (1.5) in general) is the energy dissi-
pation property, which plays a fundamental role in the analysis of (1.6). More precisely,

if (u, Q) : Ω× (0,∞) 7→ R3×S(3)
0 is a sufficiently regular solution of (1.5), then it satisfies

the following energy inequality [31, 32]:

d

dt
E(u, Q)(t) = −

∫
Ω
(|∇u|2 + |H|2)(x, t) dx (1.8)

where

E(u, Q)(t) =

∫
Ω
(
1

2
|u|2 + 1

2
|∇Q|2 + Fbulk(Q))(x, t) dx (1.9)

is the total energy of the complex fluid consisting of the elastic energy of the director field
Q and the kinetic energy of the underlying fluid u. While the right hand side of (1.8)
denotes the dissipation rate of this system of complex fluid.

Some Notations. For Q ∈ S(3)
0 , we use the Frobenius norm of Q, i.e.

|Q| =
√
tr(Q2) =

√
QαβQαβ ,

and the Sobolev spaces of Q-tensors, W l,p
(
Ω,S(3)

0

)
(l ∈ N+ and 1 ≤ p ≤ ∞), are defined

by

W l,p
(
Ω,S(3)

0

)
=

{
Q = (Qαβ) : Ω 7→ S(3)

0 : Qαβ ∈W l,p(Ω), ∀1 ≤ α, β ≤ 3
}
.

When p = 2, we denote W l,2
(
Ω,S(3)

0

)
by H l(Ω,S(3)

0 ). For A,B ∈ R3×3, we denote

A : B = AαβBαβ , A ·B = tr(AB), |∇Q|2 = Qαβ,γQαβ,γ , |∆Q|2 = ∆Qαβ∆Qαβ ,

and
(u⊗ u)αβ = uαuβ , (∇Q⊗∇Q)αβ = ∇αQγδ∇βQγδ.

Note that A : B = A ·B for A,B ∈ S(3)
0 . We also use Asym, Aanti to denote the symmetric

and antisymmetric part of A respectively.
Define

H = Closure of
{
u ∈ C∞

0 (Ω,R3) : divu = 0
}
in L2(Ω),
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and

V = Closure of
{
u ∈ C∞

0 (Ω,R3) : divu = 0
}
in H1(Ω).

For 0 ≤ k ≤ 5, Pk denotes the k-dimensional Hausdorff measure on R3 × R+ with
respect to the parabolic distance:

δ((x, t), (y, s)) = max
{
|x− y|,

√
|t− s|

}
, ∀(x, t), (y, s) ∈ R3 × R+.

Now we would like to recall the definition of weak solutions of (1.6).

Definition 1.1. A pair of functions (u, Q) : Ω × (0,∞) 7→ R3 × S(3)
0 is a weak solution

of (1.6) and (1.7), if u ∈ L∞
t L

2
x ∩ L2

tH
1
x(Ω× (0,∞)) and Q ∈ L∞

t H
1
x ∩ L2

tH
2
x(Ω× (0,∞)),

and for any φ ∈ C∞
0

(
Ω × [0,∞),S(3)

0

)
and ψ ∈ C∞

0

(
Ω × [0,∞),R3

)
, with divψ = 0 in

Ω× [0,∞), it holds∫
Ω×(0,∞)

[
−Q · ∂tφ−∆Q · φ−Q · u⊗∇φ+ [Q,ω] · φ

]
dxdt

= −
∫
Ω×(0,∞)

fbulk(Q) · φdxdt+
∫
Ω
Q0(x) · φ(x, 0) dx,

(1.10)

and ∫
Ω×(0,∞)

[
− u · ∂tψ +∇u · ∇ψ − u⊗ u : ∇ψ

]
dxdt =∫

Ω×(0,∞)

[
−∆Q(ψ · ∇)Q+ [∆Q,Q] · ∇ψ

]
dxdt

+

∫
Ω
u0(x) · ψ(x, 0) dx, (1.11)

Paicu-Zarnescu [31] have obtained the existence of global weak solutions to (1.6) and
(1.7) in R3, and the existence of global strong solutions to (1.6) and (1.7) in R2, when the
bulk potential function is FLdG(Q). Ding-Huang [9] have studied local strong solutions of
(1.6). For non-corotational Beris-Edwards system (i.e. ξ 6= 0), Paicu-Zarnescu [32] have
obtained the existence of global weak solutions to (1.6) and (1.7) in R3 for sufficiently
small |ξ| > 0. Later, Cavaterra-Rocca-Wu-Xu [6] have removed the smallness condition
on ξ for (1.6) and (1.7) in R2. Wilkinson [39] has obtained the existence of global weak
solutions to (1.6) and (1.7) in three dimensional torus T3, when the bulk potential function
is the Ball-Majumdar potential FBM(Q). The situation of Beris-Edwards system (1.6)
for the De Gennes potential FLdG(Q) on bounded domains, under the initial-boundary
condition, behaves slightly different from that on R3. In fact, Abels-Dolzmann-Liu [1, 2]
have established the well-posedness of (1.5) for any arbitrary constant ξ. See also [15] for
related works on nonisothermal Beris-Edwards system. We also mention an interesting
work on the dynamics of Q-tensor system by Wu-Xu-Zarnescu [40]. Interested readers can
refer to Wang-Zhang-Zhang [38] for a rigorous derivation from Landau-De Gennes theory
to Ericksen-Leslie theory. For related works on the existence of global weak solutions to
the simplified Ericksen-Leslie system, see [27, 28, 29, 19].

These previous works mentioned above left the question open that if certain weak solu-
tions of (1.5) pose either smoothness or partial smoothness properties. This motivates us
to study both the existence of suitable weak solutions of (1.6) and their partial regularities.The Trial Version
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The notion of suitable weak solutions was first introduced by Caffarelli-Kohn-Nirenberg
[5] and Scheffer [33] for the Navier-Stokes equation, and later extended by Lin-Liu [25, 26]
for the simplified Ericksen-Leslie system with variable degree of orientations. Here we
introduce the notion of suitable weak solutions to the Beris-Edwards system as follows.

Definition 1.2. A weak solution (u, P,Q) ∈ (L∞
t L

2
x ∩ L2

tH
1
x)(Ω × (0,∞),R3) × L

3
2 (Ω ×

(0,∞))× (L∞
t H

1
x ∩L2

tH
2
x)(Ω× (0,∞),S(3)

0 ) of (1.6) and (1.7) is a suitable weak solution of
(1.6), if, in addition, (u, P,Q) satisfies the local energy inequality: ∀ 0 ≤ φ ∈ C∞

0 (Ω×(0, t]),∫
Ω
(|u|2 + |∇Q|2)φ(x, t) dx+ 2

∫
Qt

(|∇u|2 + |∆Q|2)φ(x, s) dxds

≤
∫
Qt

(|u|2 + |∇Q|2)(∂tφ+∆φ)(x, s) dxds

+

∫
Qt

[(|u|2 + 2P )u · ∇φ+ 2∇Q⊗∇Q : u⊗∇φ](x, s) dxds (1.12)

+2

∫
Qt

(∇Q⊗∇Q− |∇Q|2I3) : ∇2φ(x, s) dxds

−2

∫
Qt

[Q,∆Q] · u⊗∇φ(x, s) dxds

−2

∫
Qt

[ω,Q] · (∇Q∇φ) +∇(fbulk(Q)) · ∇Qφ
]
(x, s) dxds.

The notion of suitable weak solutions turns out to be a necessary condition for the
smoothness of (1.6). In fact, the local energy inequality (1.12) automatically holds for
sufficiently regular solution of (1.5), which can be obtained by multiplying (1.5)2 by uφ,
and taking spatial derivative of (1.5)1 and multiplying the resulting equation by ∇Qφ, and
then applying integration by parts, see Lemma 2.2 below for the details. We would like to
point out that in the process of derivation of (1.12), the following cancellation identity:∫

Ω
[Q,ω] : ∆Qφdx = −

∫
Ω
[Q,∆Q] : ∇uφdx (1.13)

play critical roles.

Now we are ready to state our main theorem, which is valid for the Beris-Edwards
system associate with both the Landau-De Gennes bulk potential FLdG(Q) in R3 and
Ball-Majumdar bulk potential FBM(Q) in T3. We would like to point out that, due to the
technique involving a L1 → L∞ estimate for the advection-diffusion equation on compact
manifolds, we choose to work on the domain T3, instead of R3, for the Ball-Majumdar
potential FBM.

More precisely, we have

Theorem 1.1. For any u0 ∈ H, if either

(i) Ω = R3, Fbulk(·) = FLdG(·) with c > 0, and Q0 ∈ H1(R3,S(3)
0 ) ∩ L∞(R3,S(3)

0 ), or

(ii) Ω = T3, Fbulk(·) = FBM(·), and Q0 ∈ H1(T3,S(3)
0 ) satisfies Gbulk(Q0) ∈ L1(T3),

then there exists a global suitable weak solution (u, P,Q) : Ω×R+ 7→ R3 ×R×S(3)
0 of theThe Trial Version
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Beris-Edwards system (1.6), subject to the initial condition (1.7). Moreover,

(u, Q) ∈ C∞(Ω× (0,∞) \ Σ),
where Σ ⊂ Ω× R+ is a closed subset with P1(Σ) = 0.

We would like to highlight some crucial steps of the proof for Theorem 1.1:

(1) The existence of suitable weak solutions to (1.6) and (1.7) is obtained by mod-
ifying the retarded mollification technique, originally due to [33] and [5] in the
construction of suitable weak solutions to the Navier-Stokes equation.

(2) For the Landau-De Gennes potential FLdG(Q), we establish a weak maximum
principle of Q for suitable weak solutions (u, P,Q) of (1.6) and (1.7) that bounds
the L∞-norm of Q in R3 × (0,∞) in terms of that of initial data Q0, see also [16].
In particular, ∇l

QfLdG(Q) is also bounded in R3 × (0,∞) for l ≥ 0.

(3) For the Ball-Majumdar potential FBM(Q), we follow the approximation scheme of
GBM by Wilkinson [39] and use the convexity property of GBM(Q) to bound

‖GBM(Q)‖L∞(T3×[δ,T ]), ∀0 < δ < T <∞,

in terms of ‖FBM(Q0)‖L1(T3), δ, and T . This guarantees that Q is strictly physical

in T3 × [δ, T ], i.e., there exists a small γ > 0, depending on δ, T , such that

−1

3
+ γ ≤ λj(Q(x, t)) ≤ 2

3
− γ, j = 1, 2, 3, ∀(x, t) ∈ T3 × [δ, T ].

In particular, both Q(x, t) and fBM(Q(x, t)) are bounded in T3× [δ, T ] for 0 < δ <
T .

(4) Based on the local energy inequality (1.12), (2), and (3), we perform a blowing up
argument to obtain an ε0-regularity criteria of any suitable weak solution (u, P,Q)
of (1.6), which asserts that if

Φ(z0, r) :=

r−2

∫
Pr(x0,t0)

(|u|3 + |∇Q|3) dxdt+
(
r−2

∫
Pr(x0,t0)

|P |
3
2 dxdt

)2 ≤ ε30,
(1.14)

then (x0, t0) ∈ Ω × (0,∞) is a smooth point of (u, Q). The idea is to show that
(u, P,Q) is well approximated by a smooth solution to a linear coupling system
in the parabolic neighborhood P r

2
(x0, t0) of (x0, t0), which heavily relies on the

local energy inequality (1.12) and interior L
3
2 -estimate of the pressure function P ,

which turns out to solve the following Poisson equation:

−∆P = div2(u⊗ u+ (∇Q⊗∇Q− 1

2
|∇Q|2I3)) in Br(x0). (1.15)

Here the following simple identity plays a crucial role in the derivation of (1.15):

div2[Q1,∆Q2 − fbulk(Q2)] = 0 in Br(x0), (1.16)

for Q1, Q2 ∈ H2(Br(x0),S(3)
0 ). See §2 for its proof.

This blowing up argument implies that for some θ ∈ (0, 1), Φ(x∗,t∗)(r) ≤ Cr3θ

for (x∗, t∗) near (x0, t0) , which can be used to further show that (u,∇Q) are
almost bounded near (x0, t0) by an iterated Reisz Riesz potential estimates in
the parabolic Morrey spaces, see also Huang-Wang [20], Hineman-Wang [18], andThe Trial Version
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Huang-Lin-Wang [19]. Higher order regularity of (u, Q) near (x0, t0) turns out to be
more involved than the usual situations, due to the special nonlinearities. Here we
establish it by performing higher order energy estimates and utilizing the intrinsic
cancellation property, see also [19] for a similar argument on general Ericksen-
Leslie system in dimension two. It is well-known [33] that this step is sufficient to

show that (u, Q) is smooth away from a closed set Σ which has P
5
3 (Σ) = 0.

(5) To obtain P1(Σ) = 0 from the previous step, we adapt the argument by [5] to
show that if

limr→0r
−1

∫
Pr(x0,t0)

(|∇u|2 + |∇2Q|2) dxdt < ε21, (1.17)

then (u, Q) ∈ C∞(P r
2
(x0, t0)). This will be established by extending the so called

A, B, C, D Lemmas in [5] to system (1.6).

The paper is organized as follows. In §2, we derive both the global and local energy
inequality for sufficiently regular solutions of (1.6). In §3, we indicate the construction
of suitable weak solutions to (1.6) and (1.7) for both Landau-De Gennes potential and
Ball-Majumdar potential. In §4, we prove two weak maximum principles for suitable weak
solutions to (1.6) and (1.7): one for Q and the other for GBM(Q). In §5, we prove the first
ε0-regularity of suitable weak solutions to (1.6) and (1.7) in terms of Φ(z0, r). In §6, we
will prove the second ε0-regularity of suitable weak solutions to (1.6) and (1.7) in terms
of (1.17).

2. Global and local energy inequalities

In this section, we will present proofs for both global energy inequality and local energy
inequality for sufficiently regular solutions to the Beris-Edwards system (1.6).

Lemma 2.1. Let (u, Q) ∈ C∞(Ω×(0,∞),R3×S(3)
0 ) be a smooth solution of Beris-Edwards

system (1.6). Then the global energy inequality (1.8) holds.

Proof. The proof is standard, see for instance [31, 39]. �

Next we are going to present a local energy inequality for sufficiently regular solutions
to the system (1.6).

Lemma 2.2. Assume (u, P,Q) ∈ C∞(Ω× (0,∞),R3 × R× S(3)
0 ) is a smooth solution of

(1.6). Then for t > 0 and any nonnegative φ ∈ C∞
0 (Ω × (0, t]), the following inequalityThe Trial Version
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holds on Qt = Ω× [0, t]:∫
Ω

(
|u|2 + |∇Q|2

)
φ(x, t) dx+ 2

∫
Qt

(
|∇u|2 + |∆Q|2

)
φdxds

=

∫
Qt

(
|u|2 + |∇Q|2

)
(∂t +∆)φdxds

+

∫
Qt

[(|u|2 + 2P )u · ∇φ+ 2(∇Q⊗∇Q) : u⊗∇φ] dxds

+ 2

∫
Qt

[(∇Q⊗∇Q− |∇Q|2I3) : ∇2φdxds

− 2

∫
Qt

[Q,∆Q] : u⊗∇φdxds

− 2

∫
Qt

(
[ω,Q] : (∇Q∇φ) +∇(fbulk(Q)) · ∇Qφ

)
dxds.

(2.1)

Proof. Using divu = 0, multiplying the momentum equation (1.6)2 by uφ, integrating the
resulting equation over Ω, and applying integration by parts, we obtain

1

2

d

dt

∫
Ω
|u|2φdx+

∫
Ω
|∇u|2φdx

=
1

2

∫
Ω
|u|2(∂tφ+∆φ)dx+

1

2

∫
Ω
(|u|2 + 2P )u · ∇φdx−

∫
Ω
(u · ∇)Q ·∆Qφdx

−
∫
Ω
[Q,∆Q] : ∇uφdx−

∫
Ω
[Q,∆Q] : u⊗∇φdx.

(2.2)

Taking a spatial derivative of the equation of Q (1.6)1 yields

∂t∂αQ+ u · ∇∂αQ+ ∂αu · ∇Q+ ∂α[Q,ω] = ∆∂αQ− ∂α(fbulk(Q)).

Using again divu = 0, multiplying the equation above by ∂αQφ, integrating the resulting
equation over Ω, and applying integration by parts, and sum over α, we obtain

1

2

d

dt

∫
Ω
|∇Q|2φdx+

∫
Ω
|∆Q|2φdx

=
1

2

∫
Ω
|∇Q|2∂tφdx+

∫
Ω
(u · ∇)Q · (∆Qφ+∇Q∇φ) dx

−
∫
Ω
[ω,Q] : (∆Qφ+∇Q∇φ) dx

−
∫
Ω
∆Q · ∇Q∇φdx−

∫
O
∇(fbulk(Q)) · ∇Qφdx.

(2.3)

By direct calculations, there hold

−
∫
Ω
∆Q · ∇Q∇φdx

=

∫
Ω

1

2
|∇Q|2∆φdx+

∫
Ω
(∇Q⊗∇Q− |∇Q|2I3) : ∇2φdx, (2.4)

The Trial Version
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and ∫
Ω
[ω,Q] :∆Qφdx = −

∫
Ω
[Q,∆Q] : ∇uφdx. (2.5)

Hence, by adding (2.2) and (2.3) together and applying (2.4) and (2.5), we have

1

2

d

dt

∫
Ω

(
|u|2 + |∇Q|2

)
φdx+

∫
Ω

(
|∇u|2 + |∆Q|2

)
φdx

=
1

2

∫
Ω

(
|u|2 + |∇Q|2

)
(∂t +∆)φdx+

1

2

∫
Ω
(|u|2 + 2P )u · ∇φdx

+

∫
Ω
(u · ∇)Q · ∇Q∇φdx−

∫
Ω
[Q,∆Q] : u⊗∇φdx

−
∫
Ω
[ω,Q] : ∇Q∇φdx−

∫
Ω
∇(fbulk(Q)) · ∇Qφdx

+

∫
Ω
(∇Q⊗∇Q− |∇Q|2I3) : ∇2φdx.

This, after integrating over [0, t], yields the local energy inequality (2.1). �

We close this section by giving a proof of the identity (1.16). More precisely, we have

Lemma 2.3. For Ω = R3 or T3, if Q1, Q2 ∈ H2(Ω,S(3)
0 ), then

div2[Q1,∆Q2 − fbulk(Q
2)] = 0 in Ω, (2.6)

in the sense of distributions.

Proof. For any φ ∈ C∞
0 (Ω), we see that∫

Ω
div2[Q1,∆Q2 − fbulk(Q

2)](φ) =

∫
Ω
[Q1,∆Q2 − fbulk(Q

2)]αβ
) ∂2φ

∂xα∂xβ
dx.

Set

Aαβ = [Q1,∆Q2 − fbulk(Q
2)]αβ , ∀1 ≤ α, β ≤ 3,

and

Bαβ =
∂2φ

∂xα∂xβ
, ∀1 ≤ α, β ≤ 3.

Since Q1 and Q2 are symmetric, it is easy to check that

Aαβ = −Aβα, Bαβ = Bβα, ∀1 ≤ α, β ≤ 3.

We recall the following matrix contraction:

A : B = Asym : Bsym +Aanti : Banti.

Hence (2.6) follows. �The Trial Version
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3. Global existence of suitable weak solutions

This section is devoted to the construction of suitable weak solutions to the Beris-
Edwards system (1.6). The idea is motived by the “retarded mollification technique”
originally due to [33] and [5] in the context of Navier-Stokes equations. Since the proce-
dure for Ball-Majumdar potential FBM(Q) is somewhat different from that for Landau-De
Gennes potential FLdG(Q), we will describe them in two separate subsections.

We explain the construction of suitable weak solutions in the spirit of [5]. For f : R4 → R
and 0 < θ < 1, define the “retarded mollifier” Ψθ(f) of f by

Ψθ[f ](x, t) =
1

θ4

∫
R4

η
(y
θ
,
τ

θ

)
f̃(x− y, t− τ) dydτ,

where

f̃(x, t) =

{
f(x, t) t ≥ 0,

0 t < 0,

and the mollifying function η ∈ C∞
0 (R4) satisfies

η ≥ 0 and

∫
R4

η dxdt = 1,

supp η ⊂
{
(x, t) : |x|2 < t, 1 < t < 2

}
.

It follows from Lemma A.8 in [5] that for θ ∈ (0, 1] and 0 < T ≤ ∞,

divΨθ[u] = 0 if divu = 0,

sup
0≤t≤T

∫
R3

|Ψθ[u]|2(x, t) dx ≤ C sup
0≤t≤T

∫
R3

|u|2(x, t) dx∫
R3×[0,T ]

|∇Ψθ[u]|2(x, t) dxdt ≤ C

∫
R3×[0,T ]

|∇u|2(x, t) dxdt.

Now we proceed to find the existence of suitable weak solutions of (1.6) and (1.7) as
follows.

3.1. The Landau-De Gennes potential Fbulk(Q) = FLdG(Q) and Ω = R3 . With the

mollifier Ψθ[u] ∈ C∞(R4), we introduce an approximate version of the Beris-Edwards
system (1.6), namely,

∂tQ
θ + uθ · ∇Ψθ[Q

θ]− [ωθ,Ψθ[Q
θ]] = ∆Qθ − fLdG(Q

θ),

∂tu
θ +Ψθ[u

θ] · ∇uθ +∇P θ

= ∆uθ −∇(Ψθ[Q
θ]) ·

(
∆Qθ − fLdG(Q

θ)
)

+div[Ψθ[Q
θ],∆Qθ − fLdG(Q

θ)],

divuθ = 0.

in QT (3.2)

subject to the initial condition (1.7). Here ωθ = ω(uθ) = ∇uθ−(∇uθ)>

2 .
The idea behind the construction of suitable weak solutions to (3.2) is as follows. For a

fixed large N ≥ 1, set θ = T
N ∈ (0, 1], we want to find u = uθ, P = P θ, and Q = Qθ solving

(3.2) and (1.7). Since Ψθ[u] and Ψθ[Q] are smooth, and their values at time t depend onlyThe Trial Version
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on the values of u and Q at times prior to t− θ, solving (3.2) and (1.7) involves iteratively
solving (3.2) in the interval [mθ, (m+ 1)θ], subject to the initial condition

(u, Q)
∣∣
t=mθ

= (uθ, Qθ)(·,mθ) in R3,

for 0 ≤ m ≤ N−1. This amounts to solving a system that couples a semi-linear parabolic-
like equation for Q and a Stokes-like equation for u, in which all the coefficient functions
are given smooth functions.

We can verify, by the classical Faedo-Garlekin method, the existence of (uθ, Qθ, P θ)
inductively on each time interval (mθ, (m+1)θ) for all 0 ≤ m ≤ N − 1. Indeed for m = 0,
according to the definition of Ψθ, Ψθ(u

θ) = Ψθ(Q
θ) = 0, and the system (3.2) reduces to

a linear system 
∂tQ

θ = ∆Qθ − fLdG(Q
θ)

∂tu
θ +∇P θ = ∆uθ

divuθ = 0

(uθ, Qθ)|t=0 = (u0, Q0)

(3.3)

in R3× [0, θ]. For the system (3.3), Qθ and uθ are decouple, and uθ can be found according
to the standard theory of Stokes equations, while the equation of Qθ is a semi-linear
parabolic equation which can be solved by the standard method for parabolic equations.

Suppose now that the system (3.2) has been solved for some 0 ≤ k < N − 1. We are
going to solve the system (3.2)

∂tQαβ + u · ∇Q̃αβ − [ω, Q̃]αβ = ∆Qαβ − fLdG(Q)αβ

∂tuα + ũ · ∇uα + ∂αP = ∆uα − ∂αQ̃βγ(∆Q− fLdG(Q))βγ

+∂β [Q̃,∆Q− fLdG(Q)]αβ

divu = 0.

(3.4)

in the time interval [kθ, (k + 1)θ] with the initial data

(u, Q)|t=kθ = (uθ, Qθ)(·, kθ) in R3, (3.5)

and

Q̃ = Ψθ[Q
θ] and ũ = Ψθ[u

θ].

Note that ũ and Q̃ are smooth functions in [kθ, (k + 1)θ]× R3.
The existence of (u, Q) in (3.4) may be solved by using the Faedo-Galerkin method.

Indeed for a pair of smooth test functions (ψ, φ) ∈ H2(R3,S(3)
0 ) × V, the system (3.4)

turns to be

d

dt

∫
R3

(∇Q,∇ψ) dx−
∫
R3

(u · ∇Q̃,∆ψ) dx−
∫
R3

([−ω, Q̃]αβ ,∆ψαβ) dx

= −
∫
R3

(∆Qαβ − fLdG(Q)αβ ,∆ψαβ) dx,

(3.6)

The Trial Version
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and

d

dt

∫
R3

(u, φ) dx+

∫
R3

(ũ · ∇u, φ) dx+

∫
R3

(∇u,∇φ) dx

= −
∫
R3

(
∂αQ̃βγ(∆Q− fLdG(Q))βγ , φα

)
dx

−
∫
R3

(
[Q̃,∆Q− fLdG(Q)]αβ , ∂βφα

)
dx,

(3.7)

in the sense of distributions. The system of first order ODE equations (3.6)-(3.7) can be

solved when the test function (ψ, φ) are taken to be the basis of H2(R3,S(3)
0 ) ×V up to

a short time interval [kθ, kθ + T0]. Performing the energy estimate for (3.4) as for the
original system, we get that for kθ ≤ t ≤ kθ + T0,

sup
t≥kθ

∫
R3

(
|uθ|2 + |∇Qθ|2 + FLdG(Q

θ)
)
dx+

∫ t

kθ

∫
R3

(
|∇uθ|2 + |∆Q− fLdG(Q

θ)|2
)
dxds

≤
∫
R3

(
|uθ|2 + |∇Qθ|2 + FLdG(Q

θ)
)
(x, kθ) dx.

Hence T0 can be extended up to θ.
Let (uθ, P θ, Qθ) be the global weak solution of (3.2) and (1.7) in QT . Then

uθ ∈ L∞
t L

2
x ∩ L2

tH
1
x(QT ), Q

θ ∈ L∞
t H

1
x ∩ L2

tH
2
x(QT ), P

θ ∈ L2(QT ).

Observe that

[ωθ,Ψθ[Q
θ]] : (∆Qθ − fLdG(Q

θ)) := −[Ψθ[Q
θ],∆Qθ − fLdG(Q

θ)] : ∇uθ.

Hence, by calculations similar to Lemma 2.1, we deduce that (uθ, Qθ) satisfies the global
energy inequality: for 0 ≤ t ≤ T ,

E(uθ, Qθ)(t) +

∫
R3×[0,t]

(
|∇uθ|2 + |∆Qθ − fLdG(Q

θ)|2
)
dxdt

≤ E(uθ, Qθ)(0) =

∫
R3

(
1

2
|u0|2 +

1

2
|∇Q0|2 + FLdG(Q0))(x, t) dx. (3.8)

Direct calculations show that∫
R3

∆Qθ · fLdG(Qθ) dx

= −a
∫
R3

|∇Qθ|2 dx− c

∫
R3

(
|∇Qθ|2|Qθ|2 + 1

2
|∇tr((Qθ)2)|2

)
dx

+ b

∫
R3

∇
(
(Qθ)2 − tr((Qθ)2)

3
I3
)
· ∇Qθ dx

≤ − c
4

∫
R3

(
|∇Qθ|2|Qθ|2 + 1

2
|∇tr((Qθ)2)|2

)
dx+ C(a, b, c)

∫
R3

|∇Qθ|2 dx.
The Trial Version
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This, combined with the assumption c > 0 and estimate (3.8), gives

d

dt

∫
R3

(|uθ|2 + |∇Qθ|2 + FLdG(Q
θ))(x, t) dx+ 2

∫
R3

(
|∇uθ|2 + |∆Qθ|2

)
dx

+ c

∫
R3

(
|∇Qθ|2|Qθ|2 + 1

2
|∇tr((Qθ)2)|2

)
dx

≤ C(a, b, c)

∫
R3

|∇Qθ|2 dx.

(3.9)

Therefore we deduce from (3.9) and Gronwall’s inequality that

sup
0≤t≤T

∫
R3

(|uθ|2 + |∇Qθ|2 + FLdG(Q
θ))(x, t) dx

+

∫
R3×[0,T ]

(
|∇uθ|2 + |∆Qθ|2

)
dxdt

≤ C(a, b, c, T )
(
‖u0‖2L2(R3) + ‖Q0‖2H1(R3)

)
.

(3.10)

From (1.1), we know that there exists a M0 > 0, depending on a, b, c, such that

FLdG(Q) ≥ c

2
|Q|4, ∀Q ∈ S(3)

0 with |Q| ≥M0.

This, combined with (3.10) and FLdG(Q) ≥ 0, implies that

sup
0≤t≤T

∫
{x∈R3: |Qθ(x,t)|≥M0}

|Qθ(x, t)|4 dx

≤ 2

c
sup

0≤t≤T

∫
R3

FLdG(Q
θ)(x, t) dx

≤ C(a, b, c, T )
(
‖u0‖2L2(R3) + ‖Q0‖2H1(R3)

)
.

(3.11)

From (3.11), we can conclude that for any compact set K ⊂ R3,

sup
0≤t≤T

∫
K
|Qθ(x, t)|4 dx

≤ sup
0≤t≤T

{∫
{x∈K: |Qθ(x,t)|≤M0}

|Qθ(x, t)|4 dx+

∫
{x∈K: |Qθ(x,t)|>M0}

|Qθ(x, t)|4 dx
}

≤ |K|M4
0 + C(a, b, c, T )

(
‖u0‖2L2(R3) + ‖Q0‖2H1(R3)

)
.

(3.12)

From (3.10) and (3.12), we have that uθ is uniformly bounded in L2
tH

1
x(R3× [0, T ]), Qθ is

uniformly bounded in L2
tH

2
x(K×[0, T ]) for any compact set K ⊂ R3, and ∇Qθ is uniformly

bounded in L2
tH

1
x(R3 × [0, T ]). Therefore, after passing to a subsequence, we may assume

that as θ → 0 (or equivalently N → ∞), there exist u ∈ L∞
t L

2
x ∩ L2

tH
1
x(R3 × [0, T ]),

Q ∈ ∩R>0L
∞
t L

4
x(BR × [0, T ]), with ∇Q ∈ L∞

t L
2
x ∩ L2

tH
1
x(R3 × [0, T ]), such that

Qθ ⇀ Q in L2([0, T ], L2(R3)),

∇Qθ ⇀ ∇Q in L2([0, T ], H1(R3)),

uθ ⇀ u in L2([0, T ], H1(R3)).

(3.13)
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Hence by the lower semicontinuity and (3.8) we have that

E(u, Q)(t) +

∫
R3×[0,t]

(
|∇u|2 + |∆Q− fLdG(Q)|2

)
dxdt

≤ E(u, Q)(0) =

∫
R3

(
1

2
|u0|2 +

1

2
|∇Q0|2 + FLdG(Q0))(x, t) dx (3.14)

holds for 0 ≤ t ≤ T .
Now we want to estimate the pressure function P θ. Taking divergence of (3.2)2 gives

−∆P θ = div2(Ψθ[u
θ]⊗ uθ) + div

(
∇(Ψθ[Q

θ]) · (∆Qθ − fLdG(Q
θ))

)
− div2

(
[Ψθ[Q

θ],∆Qθ − fLdG(Q
θ)]

)
= div2(Ψθ[u

θ]⊗ uθ) + div
(
∇(Ψθ[Q

θ]) · (∆Qθ − fLdG(Q
θ))

)
in R3.

(3.15)

Here we have used in the last step the fact that

div2[Ψθ[Q
θ],∆Qθ − fLdG(Q

θ)] = 0 in R3,

which follows from (1.16).

For P θ, we claim that P θ in L
5
3 (R3 × [0, T ]) and∥∥P θ

∥∥
L

5
3 (R3×[0,T ])

≤ C
(
a, b, c, T, ‖u0‖L2(R3), ‖Q0‖H1(R3)

)
, ∀θ ∈ (0, 1]. (3.16)

To see this, first observe that (3.10) implies ∇(Ψθ[Q
θ]) ∈ L∞

t L
2
x∩L2

tH
1
x(R3×[0, T ]). Hence

by the Sobolev interpolation inequality we have that∥∥∇(Ψθ[Q
θ])

∥∥
L10
t L

30
13
x (R3×[0,T ])

≤ C
∥∥∇(Ψθ[Q

θ])
∥∥
L∞
t L2

x∩L2
tH

1
x(R3×[0,T ])

≤ C
(
a, b, c, T, ‖u0‖L2(R3), ‖Q0‖H1(R3)

)
.

By Hölder’s inequality we then have that∥∥∇(Ψθ[Q
θ]) · (∆Qθ − fLdG(Q

θ))
∥∥
L

5
3
t L

15
14
x (R3×[0,T ])

≤
∥∥∇(Ψθ[Q

θ])
∥∥
L10
t L

30
13
x (R3×[0,T ])

∥∥∆Qθ − fLdG(Q
θ)
∥∥
L2(R3×[0,T ])

≤ C
(
a, b, c, T, ‖u0‖L2(R3), ‖Q0‖H1(R3)

)
.

(3.17)

By Calderon-Zygmund’s Lp-estimate [35] [14], we conclude that P θ ∈ L
5
3 ([0, T ]×R3), and∥∥P θ

∥∥
L

5
3 ([0,T ]×R3)

≤ C
[∥∥Ψθ[u

θ]⊗ uθ
∥∥
L

5
3 (R3×[0,T ])

+
∥∥∇(Ψθ[Q

θ]) · (∆Qθ − fLdG(Q
θ))

∥∥
L

5
3
t L

15
14
x (R3×[0,T ])

]
≤ C

[∥∥uθ
∥∥2
L

1
3 (R3×[0,T ])

+
∥∥∇(Ψθ[Q

θ]) · (∆Qθ − fLdG(Q
θ))

∥∥
L

5
3
t L

15
14
x (R3×[0,T ])

]
≤ C

(
a, b, c, T, ‖u0‖L2(R3), ‖Q0‖H1(R3)

)
.

It follows from (3.16) that we may assume that there exists P ∈ L
5
3 (R3× [0, T ]) such that

as θ → 0,

P θ ⇀ P in L
5
3 (R3 × [0, T ]). (3.18)The Trial Version
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From (3.2)2 and the bounds (3.10) and (3.11), we have that

∂tu
θ = −Ψθ[u

θ] · ∇uθ −∇P θ +∆uθ −∇(Ψθ[Q
θ]) · (∆Qθ − fLdG(Q

θ))

+div([Ψθ[Q
θ],∆Qθ − fLdG(Q

θ)])

∈ L
5
4 (R3 × [0, T ]) + L

5
3 ([0, T ],W−1, 5

3 (R3)) +
⋂
R>0

L2([0, T ],W−1, 4
3 (BR)),

and for any 0 < R <∞,∥∥∥∂tuθ
∥∥∥
L

5
4 (R3×[0,T ])+L

5
3 ([0,T ],W−1, 53 (R3))+L2([0,T ],W−1, 43 (BR))

≤ C
(
a, b, c, R, T, ‖u0‖L2(R3), ‖Q0‖H1(R3)

)
, ∀θ ∈ (0, 1].

(3.19)

Similarly, it follows from (3.2)1 and the bounds (3.10) and (3.11) that ∂tQ
θ ∈ L

5
3 (R3 ×

[0, T ]) +
⋂

R>0 L
2([0, T ], L

4
3 (BR)), and∥∥∥∂tQθ

∥∥∥
L

5
3 (R3×[0,T ])+L2([0,T ],L

4
3 (BR))

≤ C
(
a, b, c, R, T, ‖u0‖L2(R3), ‖Q0‖H1(R3)

)
, (3.20)

for all 0 < R <∞ and θ ∈ (0, 1].
By (3.10), (3.11), (3.19), and (3.20), we can apply Aubin-Lions’ compactness Lemma

([36]) to conclude that for any 0 < R <∞,(
uθ, Qθ,∇Qθ

)
→

(
u, Q,∇Q

)
in L3(BR × [0, T ]), as θ → 0. (3.21)

On the other hand, it follows from FLdG(Q
θ) ≥ 0 in R3 × [0, T ] and (3.10) that

sup
0≤t≤T

∫
R3

|∇Qθ|2(x, t) dx ≤ C
(
a, b, c, T, ‖u0‖L2(R3), ‖Q0‖H1(R3)

)
.

Hence by (3.21) we also have that for any 1 < p1 < 6 and 1 < p2 <
10
3 ,

Qθ → Q in Lp1(BR × [0, T ]); uθ → u in Lp2(BR × [0, T ]) as θ → 0. (3.22)

With the convergences (3.13), (3.18), and (3.21), it is not hard to show that the limit
(u, P,Q) is a weak solution of (1.6) and (1.7), i.e., it satisfies the system (1.6) and (1.7) in
the sense of distributions (see also [31] Proposition 3). We leave the details to interested
readers, besides pointing out that in the sense of distributions, as θ → 0,

∇P θ −∇(Ψθ[Q
θ]) · fLdG(Qθ) → ∇P −∇Q · fLdG(Q) = ∇(P − FLdG(Q)).

To show that (u, P,Q) is a suitable weak solution of (1.6), observe that, as in Lemma 2.2,
we can test equations of uθ in (3.2) by uθφ, and taking a spatial derivative of the equation
of Qθ in (3.2) and then testing it by ∇Qθφ for any nonnegative φ ∈ C∞

0 (R3 × (0, t]), toThe Trial Version
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obtain the following local energy inequality∫
R3

(
|uθ|2 + |∇Qθ|2

)
φ(x, t) dx+ 2

∫ t

0

∫
R3

(
|∇uθ|2 + |∆Qθ|2

)
φdxds

=

∫ t

0

∫
R3

[(
|uθ|2 + |∇Qθ|2

)
(∂tφ+∆φ) + 2∇Ψθ[Q

θ]⊗∇Qθ : uθ ⊗∇φ
]
dxds

+

∫ t

0

∫
R3

(|uθ|2Ψθ[u
θ] · ∇φ+ 2P θuθ · ∇φ+ 2∇(Ψθ[Q

θ]) · fLdG(Qθ)uθφ) dxds

+2

∫ t

0

∫
R3

(
[Ψθ[Q

θ], fLdG(Q
θ)]

)
: ∇uθφdxds

+2

∫ t

0

∫
R3

(
∇Qθ ⊗∇Qθ − |∇Qθ|2I3

)
) : ∇2φdxds

−2

∫ t

0

∫
R3

([Ψθ[Q
θ],∆Qθ − fLdG(Q

θ)]) : uθ ⊗∇φdxds

−2

∫ t

0

∫
R3

[ωθ,Ψθ[Q
θ]] : ∇Qθ∇φdxds

−2

∫ t

0

∫
R3

∇(fLdG(Q
θ)) · ∇Qθφdxds. (3.23)

Taking the limit in (3.23) as θ → 0, we see by the lower semicontinuity that it holds∫
R3

(
|u|2 + |∇Q|2

)
φ(x, t) dx+ 2

∫ t

0

∫
R3

(
|∇u|2 + |∆Q|2

)
φdxds

≤ lim inf
θ→0

[ ∫
R3

(
|uθ|2 + |∇Qθ|2

)
φ(x, t) dx

+ 2

∫ t

0

∫
R3

(
|∇uθ|2 + |∆Qθ|2

)
φdxds

]
.

While it follows from (3.21) and (3.22) that

lim
θ→0

Right hand side of (3.23)

=

∫ t

0

∫
R3

(
|u|2 + |∇Q|2

)
(∂tφ+∆φ) dxdt

+

∫ t

0

∫
R3

(|u|2 + |∇Q|2 + 2(P − FLdG(Q)))u · ∇φ) + 2∇Q⊗∇Q : u⊗∇φdxds

+ 2

∫ t

0

∫
R3

[
∇Q⊗∇Q− |∇Q|2I3

]
: ∇2φdxds

− 2

∫ t

0

∫
R3

[Q,∆Q] : u⊗∇φdxds

− 2

∫ t

0

∫
R3

(
ωQ−Qω

)
: ∇Q∇φdxds− 2

∫ t

0

∫
R3

∇(fLdG(Q)) · ∇Qφdxds.
The Trial Version



18 HENGRONG DU, XIANPENG HU, CHANGYOU WANG

Here we have used the following convergence result∫ t

0

∫
R3

∇(Ψθ[Q
θ]) · fLdG(Qθ)uθφdxds→

∫ t

0

∫
R3

∇Q · fLdG(Q)uφdxds

=

∫ t

0

∫
R3

∇(FLdG(Q))uφdxds

= −
∫ t

0

∫
R3

FLdG(Q)u∇φdxds.

(3.24)

Putting these together yields the desired local energy inequality (1.12) for (u, P,Q). This
completes the proof of the existence of suitable weak solution in the first case. �

In the next subsection, we will indicate how to construct a suitable weak solution of
(3.2) for the Ball-Majumdar potential function.

3.2. The Ball-Majumdar potential Fbulk(Q) = FBM(Q) and Ω = T3 . Since GBM,

given by (1.3), is singular outside the physical domain

D =
{
Q ∈ S(3)

0 : −1

3
< λi(Q) <

2

3
, i = 1, 2, 3

}
,

we need to regularize it. For this part, we follow the scheme by Wilkinson [39] (Section
3) very closely. First we regularize it by using the Yosida-Moreau regularization of convex
analysis [37] [11]: For m ∈ N+, define

G̃m
BM(Q) := inf

A∈S(3)
0

{
m|A−Q|2 +GBM(A)

}
, ∀Q ∈ S(3)

0 .

Then smoothly mollify G̃m
BM through the standard mollifications:

Gm
BM(Q) :=

∫
S(3)
0

G̃m
BM(Q−R)Φm(R) dR,

where Φm(R) = m5Φ (mR), and Φ ∈ C∞
0 (S(3)

0 ) is nonnegative and satisfies

supp Φ ⊂
{
Q ∈ S(3)

0 : |Q| < 1
}
,

∫
S(3)
0

Φ(R) dR = 1.

As in [39] Proposition 3.1, Gm
BM satisfies the following properties:

(G0) Gm
BM is an isotropic function of Q.

(G1) Gm
BM ∈ C∞(S(3)

0 ) is convex on S(3)
0 .

(G2) There exists a constant g0 > 0, independent of m, such that for any m ∈ N+,

Gm
BM(Q) ≥ −g0 holds for all Q ∈ S(3)

0 .

(G3) Gm
BM(Q) ≤ Gm+1

BM (Q) ≤ GBM(Q) on S(3)
0 for all m ≥ 1.

(G4) Gm
BM → GBM and ∇QG

m
BM → ∇QGBM in L∞

loc(D), as m→ ∞.
(G5) There exist α(m), β(m), γ(m) > 0 such that

α(m)|Q| − β(m) ≤
∣∣〈∇QG

m
BM(Q)〉

∣∣ ≤ γ(m)(1 + |Q|), ∀Q ∈ S(3)
0 .

(G6) For k ≥ 2, there exists C(m, k) > 0 such that∣∣〈∇k
QG

m
BM(Q)〉

∣∣ ≤ C(m, k)(1 + |Q|2), ∀Q ∈ S(3)
0 .The Trial Version
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For our purpose in this paper, we also need the following estimate on Gm
BM.

Lemma 3.1. For any m ∈ N+, Gm
BM satisfies

Gm
BM(Q) ≥ m

4
|Q|2 − g0, ∀Q ∈ S(3)

0 with |Q| ≥ 11, (3.25)

where g0 > 0 is the same constant given by (G2).

Proof. Since GBM(Q) = ∞ for Q 6∈ D, it follows from the definition of G̃m
BM and (G2) that

G̃m
BM(Q) = inf

A∈D

{
m|A−Q|2 +GBM(A)

}
≥ inf

A∈D

{
m|A−Q|2

}
− g0

= mdist2
(
Q,D

)
− g0.

Thus for any Q ∈ S(3)
0 with |Q| ≥ 10, we have

G̃m
BM(Q) ≥ m(|Q| − 2√

3
)2 − g0 ≥ m

( |Q|√
2

)2 − g0 =
m

2
|Q|2 − g0.

It is not hard to see that this estimate, along with the definition of Gm
BM, yields (3.25).

The proof is now complete. �

Now we set

Fm
BM(Q) = νGm

BM(Q)− κ

2
|Q|2, ∀Q ∈ S(3)

0 ,

and

fmBM(Q) = ν
〈
∇QG

m
BM(Q)

〉
− κQ, ∀Q ∈ S(3)

0 .

Observe that the convexity of Gm
BM on S(3)

0 yields that

tr∇Qf
m
BM(Q)(∇Q,∇Q) = tr∇2

QF
m
BM(Q)(∇Q,∇Q) ≥ −κ|∇Q|2, (3.26)

for all Q ∈ H1(Ω,S(3)
0 ).

Note that if we view a function on T3 as a Z3- periodic function on R3, then the “re-
tarded” mollification procedure given in the previous subsection can be directly performed
on functions defined in T3.

Similar to the subsection 3.1, we can introduce an approximate system of (3.2) for the
Ball-Majumdar potential as follows. For T > 0 and a fixed large N ∈ N+, let θ = T

N ∈
(0, 1]. Then we seek (uθ,m, P θ,m, Qθ,m) that solves

∂tQ
θ,m + uθ,m · ∇Ψθ[Q

θ,m]− [ωθ,m,Ψθ[Q
θ,m]]

= ∆Qθ,m − fmBM(Qθ,m),
∂tu

θ,m +Ψθ[u
θ,m] · ∇uθ,m +∇P θ,m

= ∆uθ,m −∇(Ψθ[Q
θ,m]) ·

(
∆Qθ,m − fmBM(Qθ,m)

)
+div

(
[Ψθ[Q

θ,m],∆Qθ,m − fmBM(Qθ,m)]
)
,

divuθ,m = 0,

(3.27)

in T3×[0, T ], subject to the initial condition (1.7). Here ωθ,m = ω(uθ,m) = ∇uθ,m−(∇uθ,m)>

2 .The Trial Version



20 HENGRONG DU, XIANPENG HU, CHANGYOU WANG

Since the system (3.27) is simply the system (3.2) with fLdG replaced by fmBM, we can

argue as in the subsection 3.1 to find a global weak solution (uθ,m, P θ,m, Qθ,m) of (3.27)
and (1.7) in QT = T3 × [0, T ] such that

uθ,m ∈ L∞
t L

2
x ∩ L2

tH
1
x(QT ), Q

θ,m ∈ L∞
t H

1
x ∩ L2

tH
2
x(QT ), P

θ,m ∈ L2(QT ).

Moreover, by calculations similar to Lemma 2.1, we deduce that (uθ,m, Qθ,m) satisfies the
global energy inequality: for 0 ≤ t ≤ T ,

E(uθ,m, Qθ,m)(t) +

∫
T3×[0,t]

(
|∇uθ,m|2 + |∆Qθ,m − fmBM(Qθ,m)|2

)
dxdt

= E(uθ,m, Qθ,m)(0) ≤
∫
T3

(
1

2
|u0|2 +

1

2
|∇Q0|2 + FBM(Q0))(x) dx. (3.28)

It follows from (3.28) and (3.26) that

∫
T3×[0,t]

|∆Qθ,m − fmBM(Qθ,m)|2 dxdt

=

∫
T3×[0,t]

(
|∆Qθ,m|2 + |fmBM(Qθ,m)|2 − 2∆Qθ,m · fmBM(Qθ,m)

)
dxdt

=

∫
T3×[0,t]

(
|∆Qθ,m|2 + |fmBM(Qθ,m)|2 + 2tr∇Qf

m
BM(Qθ,m)(∇Qθ,m,∇Qθ,m)

)
dxdt

≥
∫
T3×[0,t]

(
|∆Qθ,m|2 + |fmBM(Qθ,m)|2 − κ|∇Qθ,m|2) dxdt.

Substituting this into (3.28) and applying Gronwall’s inequality, we obtain that for any
0 ≤ t ≤ T ,

E(uθ,m, Qθ,m)(t) +

∫
T3×[0,t]

(
|∇uθ,m|2 + |∆Qθ,m|2 + |fmBM(Qθ,m)|2

)
dxdt

≤ eCT

∫
T3

(
1

2
|u0|2 +

1

2
|∇Q0|2 + FBM(Q0))(x) dx. (3.29)

It follows from (3.28) that

sup
0≤t≤T

∫
T3

Fm
BM(Qθ,m)(x, t) dx ≤

∫
T3

(
1

2
|u0|2 +

1

2
|∇Q0|2 + FBM(Q0)

)
(x) dx.

The Trial Version
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This, combined with (G2) and (3.25), implies that there exists a sufficiently large m0 =
m0(ν,κ, g0) ∈ N+ such that for all m ≥ m0,(mν

8
− κ

2

) ∫
{x∈T3: |Qθ,m(x,t)|≥11}

|Qθ,m|2(x, t) dx

≤
∫
{x∈T3: |Qθ,m(x,t)|≥11}

[
ν(
m

4
|Qθ,m|2 − g0)−

κ

2
|Qθ,m|2

]
(x, t) dx

≤
∫
{x∈T3: |Qθ,m(x,t)|≥11}

Fm
BM(Qθ,m)(x, t) dx

=

∫
T3

Fm
BM(Qθ,m)(x, t) dx−

∫
{x∈T3: |Qθ,m(x,t)|≤11}

Fm
BM(Qθ,m)(x, t) dx

=

∫
T3

Fm
BM(Qθ,m)(x, t) dx

−
∫
{x∈T3: |Qθ,m(x,t)|≤11}

[
ν
(
Gm

BM(Qθ,m) + g0
)
− κ

2
|Qθ,m|2 − νg0

]
(x, t) dx

≤
∫
T3

Fm
BM(Qθ,m)(x, t) dx+

∫
{x∈T3: |Qθ,m(x,t)|≤11}

(νg0 +
κ

2
|Qθ,m|2(x, t)) dx

≤
∫
T3

(
1

2
|u0|2 +

1

2
|∇Q0|2 + FBM(Q0)

)
(x) dx+ (νg0 +

121κ

2
)|T3|

holds for any 0 ≤ t ≤ T . Therefore we conclude that for m ≥ m0, it holds that

sup
0≤t≤T

∫
T3

|Qθ,m|2(x, t) dx

≤ C
(
‖u0‖L2(T3), ‖Q0‖H1(T3), ‖FBM(Q0)‖L1(T3), ν, g0, κ

)
.

(3.30)

As in subsection 3.1, the pressure function P θ,m solves

−∆P θ,m

= div2
(
Ψθ[u

θ,m]⊗ uθ,m
)
+ div

(
∇(Ψθ[Q

θ,m]) · (∆Qθ,m − fmBM(Qθ,m))
) in T3. (3.31)

We can apply the same argument as in the previous subsection to conclude that P θ,m ∈
L

5
3 (T3 × [0, T ]), and∥∥P θ,m

∥∥
L

5
3 (T3×[0,T ])

≤ C
(
‖u0‖L2(T3), ‖Q0‖H1(T3), ‖FBM(Q0)‖L1(T3), ν, g0, κ

)
. (3.32)

With estimates (3.32) and (3.29), we can utilize the system (3.27) to obtain that∥∥∥∂tuθ,m
∥∥∥
L2([0,T ],W−1,4(T3))

≤ C
(
‖u0‖L2(R3), ‖Q0‖H1(R3), ‖FBM(Q0)‖L1(T3), ν, g0, κ

)
,

(3.33)

∥∥∥∂tQθ,m
∥∥∥
L2([0,T ],L

3
2 (T3))

≤ C
(
‖u0‖L2(R3), ‖Q0‖H1(R3), ‖FBM(Q0)‖L1(T3), ν, g0, κ

)
, (3.34)

uniformly for θ ∈ (0, 1] and m ≥ m0.The Trial Version
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For each fixed m ≥ m0, we can assume without loss of generality that there exists

(um, Pm, Qm) ∈ L∞
t L

2
x ∩ L2

tH
1
x(QT )× L

5
3 (QT )× L∞

t H
1
x(QT )

such that as θ → 0,

uθ,m ⇀ um in L2
tH

1
x(QT ),

uθ,m → um in Lp(QT ) ∀1 < p < 10
3 ,

P θ,m ⇀ Pm in L
5
3 (QT ),

Qθ,m ⇀ Qm in L2
tH

2
x(QT ),

Qθ,m → Qm in Lr
tL

s
x(QT ), ∀1 < r, s <∞,

∆Qθ,m − fmBM(Qθ,m)⇀ ∆Qm − fmBM(Qm) in L2(QT ),

Fm
BM(Qθ,m) → Fm

BM(Qm) in L1(QT ).

As in subsection 3.1, we can now verify that (um, Pm, Qm) is a weak solution of
∂tQ

m + um · ∇Qm − [ωm, Qm] = ∆Qm − fmBM(Qm),
∂tu

m + um · ∇um +∇(Pm − Fm
BM(Q))

= ∆um −∇Qm ·∆Qm+div[Qm,∆Qm],
divum = 0,

(3.35)

in T3 × [0, T ], subject to the initial condition (1.7).
By the lower semicontinuity the following global energy inequality holds: for 0 ≤ t ≤ T ,∫

T3

(
1

2
|um|2 + 1

2
|∇Qm|2 + Fm

BM(Qm))(x, t) dx

+

∫
T3×[0,t]

(
|∇um|2 + |∆Qm − fmBM(Qm)|2

)
dxdt

≤
∫
T3

(
1

2
|u0|2 +

1

2
|∇Q0|2 + FBM(Q0))(x) dx, (3.36)

and

E(um, Qm)(t) +

∫
T3×[0,t]

(
|∇um|2 + |∆Qm|2 + |fmBM(Qm)|2

)
dxdt

≤ eCT

∫
T3

(
1

2
|u0|2 +

1

2
|∇Q0|2 + FBM(Q0))(x) dx, ∀t ∈ [0, T ]. (3.37)

Also it follows from (3.30), (3.32), (3.33), and (3.37) that

max
{∥∥Qm

∥∥
L∞
t L2(QT )

,
∥∥Pm

∥∥
L

5
3 (QT )

,
∥∥∂tum

∥∥
L2
tW

−1,4
x (QT )

,
∥∥∂tQm

∥∥
L2
tL

3
2
x (QT )

}
≤ C

(
‖u0‖L2(T3), ‖Q0‖H1(T3), ‖FBM(Q0)‖L1(T3), ν, g0, κ

)
. (3.38)

Furthermore, we can check that (um, Pm, Qm) is a suitable weak solution of (3.35) by
verifying that it satisfies the local inequality (1.12) with fbulk replaced by fmBM.

To show that as m → ∞, (um, Pm, Qm) gives rise to a suitable weak solution of (3.2),
we need to first show that Qm lies in a strictly physical subdomain of the physical domain
D, since GBM(Q) blows up as Q ∈ D tends to ∂D. This amounts to establishing an L∞-
estimate of GBM(Q) in terms of the L1-norm of GBM(Q0), which was previously shown by
Wilkinson [39] in a slightly different setting.The Trial Version
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More precisely, we need the following version of a generalized maximum principle.

Lemma 3.2. There exist m0 ∈ N+ and a positive constant C0, independent of m, such
that for all m ≥ m0,∥∥Gm

BM(Qm)(·, t)
∥∥
L∞(T3)

≤ C0t
− 5

2

∥∥GBM(Q0)
∥∥
L1(T3)

+ C0, ∀0 < t < T. (3.39)

For now we assume Lemma 3.2, which will be proved in §4 below. We may assume
without loss of generality that there exists

(u, P,Q) ∈ L∞
t L

2
x ∩ L2

tH
1
x(QT )× L

5
3 (QT )× L∞

t H
1
x ∩ L2

tH
2
x(QT )

such that 

um ⇀ u in L2
tH

1
x(QT ),

um → u in Lp(QT ), ∀1 < p < 10
3 ,

Pm ⇀ P in L
5
3 (QT ),

Qm ⇀ Q in L2
tH

2
x(QT ),

Qm → Q in Lr
tL

s
x(QT ), ∀1 < r, s <∞.

From (3.39), we can also deduce that for any 0 < δ < T ,∥∥GBM(Q)
∥∥
L∞(T3×[δ,T ])

≤ (Cδ−
5
2 + eT )

∥∥GBM(Q0)
∥∥
L1(T3)

+ κ2eT . (3.40)

By the logarithmic divergence of GBM as Q ∈ D → ∂D and (3.40), we conclude that for
any δ > 0, there exists ε0 = ε0(δ, T ) > 0 such that

Q(x, t) ∈ Dε0 , ∀(x, t) ∈ T3 × [δ, T ], (3.41)

where

Dε0 :=
{
Q ∈ D : −1

3
+ ε0 ≤ λi(Q(x, t)) ≤ 2

3
− ε0, i = 1, 2, 3

}
. (3.42)

From (3.39) and the quadratic growth property of Gm
BM, we also see that there exists

C0 > 0, independent of m, such that for m ≥ m0,

|Qm(x, t)| ≤ C0, (x, t) ∈ T3 × [δ, T ]. (3.43)

We now claim that

fmBM(Qm)⇀ fBM(Q) in L2(T3 × [δ, T ]), as m→ ∞. (3.44)

To see this, first observe that (3.37) yields that fmBM(Qm) is uniformly bounded in L2(T3×
[0, T ]). Thus there exists a function f̄ ∈ L2(T3 × [0, T ]) such that

fmBM(Qm)⇀ f̄ ∈ L2(T3 × [0, T ]).

Now we want to identify f̄ . It follows from Qm → Q in L2(T3 × [0, T ]) that there exists
Em ⊂ T3 × [0, T ], with |Em| → 0, such that

Qm → Q, uniformly in T3 × [0, T ] \ Em,

which, combined with Q(T3 × [δ, T ]) ⊂ Dε0 , yields that for sufficiently large m,

Qm(T3 × [δ, T ] \ Em) ⊂ D ε0
2
.

Since fmBM → fBM in W 1,∞(D ε0
2
), we conclude that

fmBM(Qm) → fBM(Q), uniformly in T3 × [δ, T ] \ Em.The Trial Version
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Therefore f̄ = fBM(Q) for a.e. (x, t) ∈ T3 × [0, T ], and (3.44) holds.
From (3.44) and ∆Qm ⇀ ∆Q in L2(T3 × [0, T ]), as m→ ∞, we see that

∆Qm − fmBM(Qm)⇀ ∆Q− fBM(Q) in L2(T3 × [0, T ]), as m→ ∞,

With all the estimates at hand, it is rather standard to show that passing to the limit in
(3.35), as m→ ∞ first and δ → 0 second, yields that (u, P,Q) is a weak solution of (3.2).
While passing to the limit in the local inequality for (um, Pm, Qm), as m → ∞ first and
then δ → 0, we can also verify that (u, P,Q) satisfies the local energy inequality (1.12)
with fbulk(Q) replaced by fBM(Q). �

4. Maximum principles

In this section, we will show the maximum principles for any weak solution (u, Q) of
(1.6) and (1.7) in R3 with the Landau-De Gennes potential function FLdG(Q), see also
[16, 17], and in T3 with the Ball-Majumdar potential function FBM(Q), see also [39]. These
will play important roles in the proof of partial regularity of suitable weak solutions to
(1.6) in the sections 5 and 6 below.

Lemma 4.1. For (u0, Q0) ∈ H × H1(R3,S(3)
0 ), let (u, Q) ∈ L2

tH
1
x(R3 × R+,R3) ×

L2
tH

2
x(R3 ×R+,S(3)

0 ) be a weak solution of (1.6)-(1.7). If, in addition, Q0 ∈ L∞(R3, S(3)0 )
and c > 0, then there exists a constant C > 0, depending on ‖Q0‖L∞(R3) and a, b, c, such
that

|Q(x, t)| ≤ C, ∀(x, t) ∈ R3 × R+. (4.1)

Proof. This is a well-known fact. The readers can find the proof in [16, 17] or [31]. �

Next we will give a proof of Lemma 3.2, which guarantees that Q lies inside a strictly
physical subdomain Dε0 so that FBM(Q) becomes regular and hence fBM(Q) is bounded.

Proof of Lemma 3.2. It follows from the chain rule and the equation (3.35)1 that G
m
BM(Qm)

satisfies in the weak sense

∂t(G
m
BM(Qm)) + um · ∇(Gm

BM(Qm))

= ∆(Gm
BM(Qm))− tr∇2

QG
m
BM(Qm)(∇Qm,∇Qm)− fmBM(Qm)〈∇QG

m
BM(Qm)〉,

≤ ∆(Gm
BM(Qm))− (ν〈∇QG

m
BM(Qm)− κQm)〈∇QG

m
BM(Qm)

≤ ∆(Gm
BM(Qm)) +

κ2

2ν
|Qm|2,

(4.2)

in T3× (0, T ]. Indeed, this can be obtained by multiplying (3.35)1 by 〈∇QG
m
BM(Qm)〉 and

using the fact Gm
BM is a smooth convex function. Therefore Gm

BM(Qm) ∈ L∞
t H

1
x(T3×[0, T ])

satisfies in the weak sense

∂t(G
m
BM(Qm)) + um · ∇(Gm

BM(Qm)) ≤ ∆(Gm
BM(Qm)) +

κ2

2ν
|Qm|2, in T3 × (0, T ]. (4.3)

It follows from (3.36) and (3.38) that Qm ∈ L2
tH

2
x(T3× [0, T ]). In particular, by Sobolev’s

embedding theorem, we have that∥∥Qm
∥∥
L2
tL

∞
x (T3×[0,T ])

≤ C
(
‖u0‖L2(T3), ‖Q0‖H1(T3), ‖FBM(Q0)‖L1(T3), ν, g0, κ

)
. (4.4)

Since the drifting coefficient um in (4.3) is not smooth and Qm is not bounded in
T3 × [0, T ], we can not directly apply the argument of §8 in [39] to prove 3.39. HereThe Trial Version
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we proceed it by first considering an auxiliary equation with mollifying um as the drifting
coefficient. More precisely, let um

ε be a standard ε-mollification on T3×[0, T ] for 0 < ε < 1.
Then um

ε ∈ C∞(T3 × [0, T ]) satisfies divum
ε = 0 and

um
ε → um in L2

tH
1
x(T3 × [0, T ]), as ε→ 0.

Also let gmε be ε-mollifications of |Qm|2 in T3×[0, T ], and hmε be ε-mollifications ofGm
BM(Q0)

in T3. Then it follows from (4.4) that for all m ≥ m0,∥∥gm∥∥
L2
tL

∞
x (T3×[0,T ])

≤
∥∥Qm

∥∥2
L2
tL

∞
x (T3×[0,T ])

,∥∥hmε ∥∥
L1(T3)

≤
∥∥GBM(Q0)

∥∥
L1(T3)

,

and
gmε → |Qm|2 in L3(T3 × [0, T ]), hmε → Gm

BM(Q0) in L
1(T3), as ε→ 0.

Now let vmε ∈ C∞(T3 × [0, T ]) be the unique solution of∂tvmε + um
ε · ∇vmε = ∆vmε +

κ2

2ν
gmε in T3 × [0, T ],

vmε = hmε on T3 × {0}.
(4.5)

For vmε , we will modify the argument as illustrated in [39], §8, to achieve that for 0 < t < T ,∥∥vmε (·, t)
∥∥
L∞(T3)

≤ Ct−
5
2

∥∥GBM(Q0)
∥∥
L1(T3)

+ C0. (4.6)

To show (4.6), decompose vmε = v1 + v2, where v1 solves∂tv1 + um
ε · ∇v1 = ∆v1, in T3 × [0, T ],

v1 = hmε −
∫
T3

hmε , on T3 × {0},
(4.7)

and v2 solves 
∂tv2 + um

ε · ∇v2 = ∆v2 +
κ2

2ν
gmε , in T3 × [0, T ],

v2 =

∫
T3

hmε , on T3 × {0}.
(4.8)

For v1, we can apply the L1 → L∞ estimate for advection-diffusion equations on compact
manifold [7] as in Lemma 8.1 of [39] to conclude that∥∥v1(·, t)∥∥L∞(T3)

≤ Ct−
5
2

∥∥hmε −
∫
T3

hmε
∥∥
L1(T3)

≤ Ct−
5
2

∥∥GBM(Q0)
∥∥
L1(T3)

, (4.9)

for 0 < t < T .
While for v2, we can multiply (4.8)1 by |v2|p−2v2, p > 2, and integrate the resulting

equation over T3 to get

1

p

d

dt

∥∥v2(t)∥∥pLp(T3)
≤ κ2

2ν

∥∥gmε (t)
∥∥
Lp(T3)

∥∥v2(t)∥∥p−1

Lp(T3)

≤ κ2

2ν

∣∣T3
∣∣ 1p∥∥gmε (t)

∥∥
L∞(T3)

∥∥v2(t),
so that

d

dt

∥∥v2(t)∥∥Lp(T3)
≤ κ2

2ν

∣∣T3
∣∣ 1p∥∥gmε (t)

∥∥
L∞(T3)

,
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and hence∥∥v2(t)∥∥Lp(T3)
≤

∥∥v2(0)∥∥Lp(T3)
+
κ2

2ν

∣∣T3
∣∣ 1p ∫ T

0

∥∥gmε (t)
∥∥
L∞(T3)

dt, ∀0 < t ≤ T.

Sending p→ ∞ and applying (4.4), we obtain that for 0 < t < T ,∥∥v2(t)∥∥L∞(T3)

≤ C‖hmε ‖L1(T3) +
κ2

2ν

∫ T

0

∥∥Qm(t)
∥∥2
L∞(T3)

dt

≤
∥∥GBM(Q0)

∥∥
L1(T3)

+ C
(
‖u0‖L2(T3), ‖Q0‖H1(T3), ‖FBM(Q0)‖L1(T3), ν, g0, κ

)
.

(4.10)

Putting (4.9) and (4.10) together yields (4.6).
It is not hard to see that as ε → 0, there exists vm ∈ L∞

t L
2
x ∩ L2

tH
1
x(T3 × [0, T ]) such

that vmε → vm in L2(T3 × [0, T ]). Passing to the limit in the equation (4.5), we see that
vm is a weak solution of∂tvm + um · ∇vm = ∆vm +

κ2

2ν
|Qm|2 in T3 × [0, T ],

vm = Gm
BM(Q0) on T3 × {0}.

(4.11)

Moreover, passing to the limit of (4.6), we have that for any 0 < t < T ,∥∥vm(·, t)
∥∥
L∞(T3)

≤ Ct−
5
2

∥∥GBM(Q0)
∥∥
L1(T3)

+ C0. (4.12)

Now observe that by the comparison principle on (4.3), we know that for m ≥ m0, it
holds.

Gm
BM(Qm)(x, t) ≤ vm(·, t) ≤ Ct−

5
2

∥∥GBM(Q0)
∥∥
L1(T3)

+ C0,

for all (x, t) ∈ T3 × [0, T ]. This, combined with (G2), yields (3.39). �
Note that passing to the limit in (3.39), the suitable weak solution (u, P,Q) to (3.2),

constructed in §3.2, satisfies that for any 0 < δ < T ,∥∥GBM(Q)
∥∥
L∞(T3×[δ,T ])

≤ C0δ
− 5

2

∥∥GBM(Q0)
∥∥
L1(T3)

+ C0. (4.13)

This completes the proof of Lemma 3.2. �

5. Partial regularity, Part I

This section is devoted to establishing an ε0-regularity for suitable weak solutions (u, Q)
of (1.6) in Ω× (0,∞) in terms of renormalized L3-norm of (u, Q). The argument we will
present is based on a blowing up argument, motivated by that of Lin [24] on the Navier-
Stokes equation, which works equally well for both the Landau-De Gennes potential FLdG

and the Ball-Majumdar potential FBM. More precisely, we want to establish the following
property.

Lemma 5.1. For any M > 0, there exist ε0 > 0, 0 < τ0 <
1
2 , and C0 > 0, depending on

M , such that if (u, Q, P ) is a suitable weak solution of (1.6) in Ω× (0,∞), which satisfies,
for z0 = (x0, t0) ∈ Ω× (r2,∞) and r > 0,{

|Q| ≤M if Fbulk = FLdG and Ω = R3,

|GBM(Q)| ≤M if Fbulk = FBM and Ω = T3,
in Pr(z0), (5.1)
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and

r−2

∫
Pr(z0)

(|u|3 + |∇Q|3) dxdt+
(
r−2

∫
Pr(z0)

|P |
3
2 dxdt

)2
≤ ε30, (5.2)

then

(τ0r)
−2

∫
Pτ0r(z0)

(|u|3 + |∇Q|3) dxdt+
(
(τ0r)

−2

∫
Pτ0r(z0)

|P |
3
2 dxdt

)2

≤ 1

2
max

{
r−2

∫
Pr(z0)

(|u|3 + |∇Q|3) dxdt+
(
r−2

∫
Pr(z0)

|P |
3
2 dxdt

)2
, C0r

3
}
. (5.3)

Proof. We prove it by contradiction. Suppose that the conclusion were false. Then there
exists M0 > 0 such that for any τ ∈ (0, 12), we can find εi → 0, Ci → ∞, and ri > 0, and

zi = (xi, ti) ∈ R3 × (r2i ,∞) such that{
|Q| ≤M0 if Fbulk = FLdG,

|GBM(Q)| ≤M0 if Fbulk = FBM,
in Pri(zi), (5.4)

and

r−2
i

∫
Pri (zi)

(|u|3 + |∇Q|3) dxdt+
(
r−2
i

∫
Pri (zi)

|P |
3
2 dxdt

)2
= ε3i , (5.5)

but

(τri)
−2

∫
Pτri (zi)

(|u|3 + |∇Q|3) dxdt+
(
(τri)

−2

∫
Pτri (zi)

|P |
3
2 dxdt

)2
>

1

2
max

{
ε3i , Cir

3
i

}
.

(5.6)

From (5.6), we see that

Cir
3
i ≤ 2(τri)

−2

∫
Pτri (zi)

(|u|3 + |∇Q|3) dxdt+ 2
(
(τri)

−2

∫
Pτri (zi)

|P |
3
2 dxdt

)2
≤ 2τ−4

{
r−2
i

∫
Pri (zi)

(|u|3 + |∇Q|3) dxdt+
(
r−2
i

∫
Pri (zi)

|P |
3
2 dxdt

)2}
= 2τ−4ε3i

so that

ri ≤
( 2ε3i
Ciτ4

) 1
3 → 0.

Also from (5.4), we know that there exist C0 > 0 and δ0 > 0 such that in the case
Fbulk = FBM,

Q(z) ∈ Dδ0 and |fBM(Q(z))|+ |∇QfBM(Q(z))| ≤ C0, ∀z ∈ Pri(zi). (5.7)

Define a rescaled sequence of maps

(ui, Qi, Pi)(x, t) =
(
riu, Q, r

2
i P

)
(xi + rix, ti + r2i t), ∀x ∈ R3, t > −1.

Then (ui, Qi, Pi) is a weak solution of the scaled Beris-Edwards system:
∂tQi + ui · ∇Qi − [ω(ui), Qi] = ∆Qi − r2i fbulk(Qi),

∂tui + ui · ∇ui +∇Pi = ∆ui −∇Qi·∆Qi − div[∆Qi, Qi],

divui = 0,

(5.8)
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where

ω(ui) =
∇ui − (∇ui)

T

2
.

Moreover, (ui, Qi, Pi) satisfies∫
P1(0)

(|ui|3 + |∇Qi|3) dxdt+
( ∫

P1(0)
|Pi|

3
2 dxdt

)2
= ε3i , (5.9)

and

τ−2

∫
Pτ (0)

(|ui|3 + |∇Qi|3) dxdt+
(
τ−2

∫
Pτ (0)

|Pi|
3
2 dxdt

)2
>

1

2
max

{
ε3i , Cir

3
i

}
. (5.10)

Define the blowing-up sequence (ûi, Q̂i, P̂i) : P1(0) 7→ R3 × S3
0 × R, of (ui, Qi, Pi), by

letting

(ûi, Q̂i, P̂i)(z) =
( ui

εiεi
,
Qi −Qi

εiεi
,
Pi

εiεi

)
(z), ∀z = (x, t) ∈ P1(0),

where

Qi =
1

|P1(0)|

∫
P1(0)

Qi

denotes the average of Qi over P1(0). Then (ûi, Q̂i, P̂i) satisfies

∫
P1(0)

Q̂i = 0,∫
P1(0)

(|ûi|3 + |∇Q̂i|3) dxdt+
( ∫

P1(0)
|P̂i|

3
2 dxdt

)2
= 1,

τ−2

∫
Pτ (0)

(|ûi|3 + |∇Q̂i|3) dxdt+
(
τ−2

∫
Pτ (0)

|P̂i|
3
2 dxdt

)2
>

1

2
max

{
1, Ci

r3i
ε3i

}
,

(5.11)

and (ûi, Q̂i, P̂i) is a suitable weak solution of the following scaled Beris-Edwards equation:
∂tQ̂i + εiûi · ∇Q̂i − [ω(ûi), Qi] = ∆Q̂i −

r2i
εi
fbulk(Qi),

∂tûi + εiûi · ∇ûi +∇P̂i = ∆ûi − εi∇Q̂i∆Q̂i + div[Qi,∆Q̂i]

divûi = 0,

(5.12)

From (5.11), we assume that there exists

(û, Q̂, P̂ ) ∈ L3(P1(0))× L3
tW

1,3
x (P1(0))× L

3
2 (P1(0))

such that, after passing to a subsequence,

(ûi, Q̂i, P̂i)⇀ (û, Q̂, P̂ ) in L3(P1(0))× L3
tW

1,3
x (P1(0))× L

3
2 (P1(0)).

It follows from (5.11) and the lower semicontinuity that∫
P1(0)

(|û|3 + |∇Q̂|3) +
( ∫

P1(0)
|P̂ |

3
2
)2 ≤ 1. (5.13)

Moreover, we claim that∥∥ûi

∥∥
L∞
t L2

x(P 1
2
(0))∩L2

tH
1
x(P 1

2
(0))

+
∥∥∇Q̂i

∥∥
L∞
t L2

x(P 1
2
(0))∩L2

tH
1
x(P 1

2
(0))

≤ C <∞. (5.14)
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To show (5.14), choose a cut-off function φ ∈ C∞
0 (P1(0)) such that

0 ≤ φ ≤ 1, φ ≡ 1 on P 1
2
(0), and |∂tφ|+ |∇φ|+ |∇2φ| ≤ C.

Define

φi(x, t) = φ
(x− xi

ri
,
t− ti
r2i

)
, ∀(x, t) ∈ R3 × (0,∞).

Applying Lemma 2.2 with φ replaced by φ2i and applying Hölder’s inequality, we would
arrive at

sup

ti−
r2
i
4
≤t≤ti

∫
Bri (xi)

(|u|2 + |∆Q|2)φ2i dx+

∫
Pri (zi)

(|∇u|2 + |∇2Q|2)φ2i dxdt

≤ C
[ ∫

Pri (zi)
(|u|2 + |∇Q|2)|(∂t +∆)φ2i | dxdt

+

∫
Pri (zi)

(|u|2 + |∇Q|2 + |P |)|u||∇φ2i | dxdt+
∫
Pri (zi)

|∇Q|2||∇2(φ2i )|

+

∫
Pri (zi)

(|∆Q|+ |fbulk(Q)|)|u||∇φ2i |+ |∇Qfbulk(Q)||∇Q|2φ2i dxdt
]
.

Observe that∫
Pri (zi)

|∆Q||u||∇φ2i | dxdt ≤
1

2

∫
Pri (zi)

|∆Q|2φ2i dxdt+ C

∫
Pri (zi)

|u|2|∇φi|2 dxdt.

Substituting this into the above inequality and performing rescaling, we obtain that

sup
− 1

4
≤t≤0

∫
B 1

2
(0)

(|ûi|2 + |∆Q̂i|2) dx+

∫
P 1

2
(0)

(|∇ûi|2 + |∇2Q̂i|2) dxdt

≤ C
[ ∫

P1(0)
(|ûi|2 + |∇Q̂i|2) + (εi|ûi|2 + εi|∇Q̂i|2 + |P̂i|)|ûi| dxdt

]
+C

[ ∫
P1(0)

r2i
εi
|ûi| dxdt+ r2i

∫
P1(0)

|∇Q̂i|2 dxdt
]

≤ C(1 +
r2i
εi

+ r2i ) ≤ C. (5.15)

This yields (5.14). From (5.14), we may also assume that

(ûi, Q̂i)⇀ (û, Q̂) in L2
tH

1
x(P 1

2
(0))× L2

tH
2
x(P 1

2
(0)). (5.16)

Since ri ≤ εi and by (5.7) |Qi| ≤M0 and |fbulk(Qi)|+ |∇Qfbulk(Qi)| ≤ C0 in P1(0), there

exists a constant Q ∈ S(3)
0 , with |Q| ≤M0, such that, after passing to a subsequence,

Qi → Q in L3(P 1
2
(0)),

and
r2i
εi
fbulk(Qi) → 0 in L∞(P 1

2
(0)).
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Hence (û, Q̂, P̂ ) : P 1
2
(0) 7→ R3 × S(3)

0 × R solves the linear system:
∂tQ̂−∆Q̂ = [ω(û), Q],

∂tû−∆û+∇P̂ = div([Q,∆Q̂]),

divû = 0,

(5.17)

Applying Lemma 5.2 and (5.13), we know that

(û, Q̂) ∈ C∞(P 1
4
), P̂ ∈ L∞([−(

1

4
)2, 0], C∞(B 1

4
(0)))

satisfies

τ−2

∫
Pτ (0)

(|û|3 + |∇Q̂|3) dxdt+
(
τ−2

∫
Pτ (0)

|P̂ |
3
2 dxdt

)2
≤ Cτ3

∫
P 1

2
(0)

(|û|3 + |∇Q̂|3) dxdt+
( ∫

P1(0)
|P̂ |

3
2
)2

≤ Cτ3, ∀ τ ∈ (0,
1

8
). (5.18)

We now claim that

(ûi,∇Q̂i) → (û,∇Q̂) in L3(P 3
8
(0)). (5.19)

To prove (5.19), first observe that (5.15) and the equation (5.12) imply that

∂tûi ∈
(
L2
tH

−1 + L2
tL

6
5
x + L

3
2
t W

−1, 3
2

x

)(
P 3

8
(0)

)
; ∂tQ̂i ∈ L

3
2
t L

3
2
x (P 3

8
(0)),

enjoy the following uniform bounds:∥∥∂tûi

∥∥(
L2
tH

−1
x +L2

tL
6
5
x +L

3
2
t W

−1, 32
x

)
(P 3

8
(0))

≤ C
[
‖ûi‖L∞

t L2
x(P 1

2
(0)) + ‖∇ûi‖L2

tL
2
x(P 1

2
(0)) + ‖∇Q̂i‖2L3(P 1

2
(0)) + ‖∇2Q̂i‖L2(P 1

2
(0))

]
≤ C,

and ∥∥∂tQ̂i

∥∥
L

3
2 (P 3

8
(0))

≤ C
[
‖Q̂i‖L2

tH
1
x(P 1

2
(0)) + ‖∇ûi‖L2(P 1

2
(0)) + ‖∇Q̂i‖L3(P 1

2
(0)) + ‖ûi‖L3(P 1

2
(0))

]
≤ C.

Thus we can apply Aubin-Lions’ compactness Lemma to conclude the L3-strong conver-
gence as in (5.19).

It follows from the L3-strong convergence property (5.19) that for any τ ∈ (0, 18),

τ−2

∫
Pτ (0)

(|ûi|3 + |∇Q̂i|3) = τ−2

∫
Pτ (0)

(|û|3 + |∇Q̂|3) + τ−2o(1) ≤ Cτ3 + τ−2o(1), (5.20)

where o(1) stands for a quantity such that lim
i→∞

o(1) = 0.
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Now we need to estimate the pressure P̂i. First, by taking divergence of the second

equation (5.8)2, we see that P̂i solves

∆P̂i = −εidiv2
[
ûi ⊗ ûi + (∇Q̂i ⊗∇Q̂i −

1

2
|∇Q̂i|2I3)

]
in B1, (5.21)

where we have applied Lemma 2.3 to guarantee

div2[Qi,∆Q̂i] = 0 in B1.

We need to show that

τ−2

∫
Pτ (0)

|P̂i|
3
2 dxdt ≤ Cτ−2(εi + o(1)) + Cτ, ∀i ≥ 1. (5.22)

To prove (5.22), let η ∈ C∞
0 (B1(0)) be a cut-off function such that η ≡ 1 in B 3

8
(0),

0 ≤ η ≤ 1. For any −(38)
2 ≤ t ≤ 0, define P̂

(1)
i (·, t) : R3 → R by letting

P̂
(1)
i (x, t) =

∫
R3

∇2
xG(x− y)η(y)εi[ûi ⊗ ûi + (∇Q̂i ⊗∇Q̂i −

1

2
|∇Q̂i|2I3)](y, t) dy, (5.23)

where G(·) is the fundamental solution of −∆ in R3. Then it is easy to check that

P̂
(2)
i (·, t) = (P̂i − P̂

(1)
i )(·, t) satisfies

−∆P̂
(2)
i (·, t) = 0 in B 3

8
(0). (5.24)

For P̂
(1)
i , we can apply the Calderon-Zygmund theory to show that∥∥P̂ (1)

i

∥∥
L

3
2 (R3)

≤ Cεi
[
‖ûi‖2L3(B1(0))

+ ‖∇Q̂i‖2L3(B1(0))

]
(5.25)

so that ∥∥P̂ (1)
i

∥∥
L

3
2 (P 1

3
(0))

≤ Cεi(‖ûi‖2L3(P1(0))
+ ‖∇Q̂i‖2L3(P1(0))

)

≤ C(εi + o(1)). (5.26)

From the standard theory on harmonic functions, P̂
(2)
i (·, t) ∈ C∞(B 1

2
(0)) satisfies: for any

0 < τ < 1
4 ,

τ−2

∫
Pτ (0)

|P̂ (2)
i |

3
2 ≤ Cτ

∫
P 1

3
(0)

|P̂ (2)
i |

3
2 ≤ Cτ

[ ∫
P 1

3
(0)

(
|P̂i|

3
2 + |P̂ (1)

i |
3
2
)

≤ Cτ(1 + εi + o(1)). (5.27)

Putting (5.26) and (5.27) together, we obtain (5.22).
It follows from (5.20) and (5.22) that there exist sufficiently small τ0 ∈ (0, 14) and

sufficiently large i0, depending on τ0, such that for any i ≥ i0, it holds that

τ−2
0

∫
Pτ0 (0)

(|ûi|3 + |∇Q̂i|3) dxdt+
(
τ−2
0

∫
Pτ0 (0)

|P̂i|
3
2 dxdt)2 ≤ 1

4
.

This contradicts to (5.11). The proof of Lemma 5.1 is completed. �

We now need to establish the smoothness of the limit equation (5.17), namely,The Trial Version
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Lemma 5.2. Assume that (û, Q̂) ∈ (L∞
t L

2
x ∩ L2

tH
1
x)(P 1

2
) × (L∞

t H
1
x ∩ L2

tH
2
x)(P 1

2
) and

P̂ ∈ L
3
2 (P 1

2
) is a weak solution of the linear system (5.17), then (û, Q̂) ∈ C∞(P 1

4
), and

the following estimate

θ−2

∫
Pθ

(|û|3 + |∇Q̂|3 + |P̂ |
3
2 ) ≤ Cθ3

∫
P 1

2

(|û|3 + |∇Q̂|3 + |P̂ |
3
2 ) (5.28)

holds for any θ ∈ (0, 18).

Proof. The regularity of the limit equation (5.17) doesn’t follow from the standard theory

of linear parabolic equations in [21], since the source term div(Q∆Q̂−∆Q̂Q) in the second

equation of (5.17) depends on third order derivatives of Q̂. It is based on higher order
energy methods, for which the cancellation property, as in the derivation of local energy
inequality for suitable weak solutions of (1.6), plays a critical role.

For nonnegative multiple indices α, β, and γ such that α = β + γ and γ is of order 1,

it is easy to see that (∇αQ̂,∇βû,∇βP̂ ) satisfies
∂t(∇αQ̂)−∆(∇αQ̂) = [ω(∇αû), Q],

∂t(∇βû)−∆(∇βû) +∇(∇βP̂ ) = div[Q,∆(∇βQ̂)],

div(∇βû) = 0,

(5.29)

Now we want to derive an arbitrarily higher order local energy inequality for (5.29).

For any given φ ∈ C∞
0 (P 1

2
(0)), multiplying the first equation of (5.29) by ∇αQ̂φ2 and

integrating over R3, we obtain that by summing over all γ,

d

dt

∫
R3

1

2
|∇(∇βQ̂)|2φ2 +

∫
R3

|∇2(∇βQ̂)|2φ2

=

∫
R3

1

2
|∇(∇βQ̂)|2(∂t +∆)φ2

+

∫
R3

[Q,ω(∇βû)] : (∆(∇βQ̂)φ2 +∇(∇βQ̂) · ∇φ2). (5.30)

While, by multiplying the second equation of (5.17) by ∇βûφ2 and integrating over R3,
we obtain that

d

dt

∫
R3

1

2
|∇βû|2φ2 +

∫
R3

|∇(∇βû)|2φ2

=

∫
R3

1

2
|∇βû|2(∂t +∆)φ2 +

∫
R3

∇βP̂∇βû · ∇φ2

+

∫
R3

[Q,∆(∇βQ̂)] : (∇(∇βû)φ2 +∇βû⊗∇φ2). (5.31)

As in above, we observe that∫
R3

[[Q,ω(∇βû)] : ∆(∇βQ̂)φ2 + [Q,∆(∇βQ̂)] : ∇(∇βû)φ2] = 0.

By integration by parts we have that∫
R3

∇βP̂∇βû · ∇φ2 = (−1)|β|
∫
R3

û · ∇β(∇βP̂∇φ2). (5.32)
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It follows from the second equation of (5.17) that P̂ solves

∆P̂ = div2[Q,∆Q̂] = 0, in B 1
2
(0),

where we have applied Lemma 2.3. Hence by the standard regularity theory of harmonic
functions, ∫

B 3
8 (0)

|∇lP̂ |
3
2 ≤ C

∫
B 1

2
(0)

|P̂ |
3
2 , l = k, k + 1, ..., 2k, (5.33)

so that by Young’s inequality we can derive from (5.32) and (5.33) that∣∣∣∣∫
R3

∇βP̂∇βû · ∇φ2
∣∣∣∣ ≤ C

∫
B 1

2
(0)

(|û|3 + |P̂ |
3
2 ).

Hence, by adding (5.30) and (5.31) together and then taking summation over all β’s with
|β| = k ≥ 0, we obtain that

d

dt

∫
R3

1

2
(|∇kû|2 + |∇k+1Q̂|2)φ2 +

∫
R3

(|∇k+1û|2 + |∇k+2Q̂|2)φ2

≤
∫
R3

1

2
(|∇kû|2 + |∇k+1Q̂|2)(|∂t(φ2)|+ |∇2(φ2)|)

+C

∫
B 1

2
(0)

(|û|3 + |P̂ |
3
2 )

+C

∫
R3

(
|∇k+1û||∇k+1Q̂|+ |∇kû||∇k+2Q̂|

)
|∇φ2|

≤
∫
R3

1

2
(|∇kû|2 + |∇k+1Q̂|2)(|∂t(φ2)|+ |∇2(φ2)|)

+C

∫
B 1

2
(0)

(|û|3 + |P̂ |
3
2 )

+
1

2

∫
R3

(|∇k+1û|2 + |∇k+2Q̂|2)φ2 + C

∫
R3

(
|∇kû|2 + |∇k+1Q̂|2

)
|∇φ|2,

which implies that

d

dt

∫
R3

(|∇kû|2 + |∇k+1Q̂|2)φ2 +
∫
R3

(|∇k+1û|2 + |∇k+2Q̂|2)φ2

≤ C

∫
R3

(|∇kû|2 + |∇k+1Q̂|2)(|∂t(φ2)|+ |∇2(φ2)|)

+C

∫
B 1

2
(0)

(|û|3 + |P̂ |
3
2 )

+C

∫
R3

(
|∇kû|2 + |∇k+1Q̂|2

)
|∇φ|2. (5.34)
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By choosing suitable test functions φ, it is not hard to see that (5.34) implies that for
k ≥ 0,

sup
− 1

16
≤t≤0

∫
B 1

4
(0)

(|∇kû|2 + |∇k+1Q̂|2) +
∫
P 1

4
(0)

(|∇k+1û|2 + |∇k+2Q̂|2

≤ C

∫
P 3

8
(0)

(|∇kû|2 + |∇k+1Q̂|2) + C

∫
P 1

2
(0)

(|û|3 + |P̂ |
3
2 ). (5.35)

It is clear that with suitable adjustment of radius, applying (5.35 inductively on k yields
that

sup
− 1

16
≤t≤0

∫
B 1

4
(0)

(|∇kû|2 + |∇k+1Q̂|2) +
∫
P 1

4
(0)

(|∇k+1û|2 + |∇k+2Q̂|2)

≤ C

∫
P 3

8
(0)

(|∇û|2 + |∇2Q̂|2 + C

∫
P 1

2
(0)

(|û|3 + |P̂ |
3
2 ), ∀k ≥ 1. (5.36)

With (5.36), we can apply the regularity theory for both the linear Stokes equation and

the linear parabolic equation to conclude that (û, Q̂) ∈ C∞(P 1
4
(0)). Furthermore, applying

the elliptic estimate for the pressure equation (5.21) we see that ∇kP̂ ∈ C0(P 1
4
(0)) for

any k ≥ 1. For l ≥ 1, taking t-derivative ∂lt of both sides of (5.21), we can also see that

∇k∂ltP̂ ∈ C0(P 1
4
(0)). Therefore (û, Q̂, P̂ ) ∈ C∞(P 1

4
(0)) and the estimate (5.28) holds.

This completes the proof of Lemma 5.2. �

Now we can iterate Lemma 5.1 and utilize the Reisz Riesz potential estimates in Morrey
spaces to obtain the following ε0-regularity.

Lemma 5.3. For any M > 0, there exists ε0 > 0, depending on M , such that if (u, Q, P )
is a suitable weak solution of (1.6) in Ω × (0,∞), which satisfies, for z0 = (x0, t0) ∈
Ω× (r20,∞) and{

|Q| ≤M if Fbulk = FLdG and Ω = R3,

|GBM(Q)| ≤M if Fbulk = FBM and Ω = T3,
in Pr0(z0), (5.37)

and

r−2
0

∫
Pr0 (z0)

(|u|3 + |∇Q|3) dxdt+
(
r−2
0

∫
Pr0 (z0)

|P |
3
2 dxdt

)2
≤ ε30, (5.38)

then for any 1 < p <∞, (u, P,∇Q) ∈ Lp(P r0
4
(z0)) and∥∥(u, P,∇Q)

∥∥
Lp(P r0

4
(z0))

≤ C(p, ε0,M). (5.39)

Proof. From (5.38), we have(r0
2

)−2
∫
P r0

2
(z)

(|u|3 + |∇Q|3) dxdt+
((r0

2

)−2
∫
P r0

2
(z)

|P |
3
2 dxdt

)2
≤ 8ε30 (5.40)
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holds for any z ∈ P r0
2
(z0). By applying Lemma 5.1 repeatedly on P r0

2
(z) for z ∈ P r0

2
(z0),

there are C0 > 0 and τ0 ∈ (0, 12) that for any k ≥ 1,

(τk0 r0)
−2

∫
P
τk0 r0

(z)
(|u|3 + |∇Q|3) dxdt+

(
(τk0 r0)

−2

∫
P
τk0 r0

(z)
|P |

3
2 dxdt)2 (5.41)

≤ 2−k max
{
(
r0
2
)−2

∫
P r0

2
(z)

(|u|3 + |∇Q|3) dxdt+
(
(
r0
2
)−2

∫
P r0

2
(z)

|P |
3
2 dxdt

)2
,

C0r
3
0

1− 2τ30

}
.

Therefore for θ0 =
ln 2

3| ln τ0| ∈ (0, 13), it holds that for any 0 < s < r0
2 and z ∈ P r0

2
(z0)

s−2

∫
Ps(z)

(|u|3 + |∇Q|3 + |P |
3
2 ) dxdt ≤ C(1 + ε30)

( s
r0

)3θ0 . (5.42)

By (5.37) and Lemma 3.2, there exists C > 0, depending on M , such that

|Q|+ |fbulk(Q)|+ |∇Qfbulk(Q)| ≤ C in Pr0(z0). (5.43)

Now we can apply the local energy inequality (1.12) for (u, P,Q) on P r0
2
(z), for z ∈ P r0

2
(z0),

to get that for 0 < s < r0
2 ,

s−1

∫
Ps(z)

(|∇u|2 + |∆Q|2) dxdt

≤ C
[
(2s)−3

∫
P2s(z)

(|u|2 + |∇Q|2) + (2s)−2

∫
P2s(z)

(|u|3 + |∇Q|3 + |P |
3
2 )

+ (2s)−2

∫
P2s(z)

|u|+ (2s)−1

∫
P2s(z)

|∇Q|2
]

≤ C(1 + ε30)
( s
r0

)2θ0 .
(5.44)

Next we employ the estimate of Riesz potentials in Morrey spaces to prove the smooth-
ness of (u, P,Q) near z0, analogous to that by Huang-Wang [20], Hineman-Wang [18], and
Huang-Lin-Wang [19].

For any open set U ⊂ R3 × R, 1 ≤ p < ∞, and 0 ≤ λ ≤ 5, define the Morrey space
Mp,λ(U) by

Mp,λ(U) :=
{
f ∈ Lp

loc(U) :
∥∥f∥∥p

Mp,λ(U)
= sup

z∈U,r>0
rλ−5

∫
Pr(z)

|f |p dxdt <∞
}
.

It follows from (5.42) and (5.44) that there exists α ∈ (0, 1) such that

(u,∇Q) ∈M3,3(1−α)
(
P r0

2
(z0)

)
, P ∈M

3
2
,3(1−α)

(
P r0

2
(z0)

)
, (∇u,∇2Q) ∈M2,4−2α

(
P r0

2
(z0)

)
.

Write (3.2)1 as

∂tQ−∆Q = f, f ≡ −u · ∇Q+ [ω,Q]− fbulk(Q) ∈M
3
2
,3(1−α)

(
P r0

2
(z0)

)
. (5.45)The Trial Version
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Let η ∈ C∞
0 (R4) be a cut off function of P r0

2
(z0) such that 0 ≤ η ≤ 1, η = 1 in P r0

2
(z0),

|∂tη|+|∇2η| ≤ Cr−2
0 , Set w = η2(Q−Qz0,r0), where Qz0,r0 is the average of Q over P r0

2
(z0).

Then

∂tw −∆w = F, F := η2f + (∂tη
2 −∆η2)(Q−Qz0,r0)−∇η2 · ∇Q. (5.46)

We can check that F ∈M
3
2
,3(1−α)(R4) and satisfies∥∥F∥∥

M
3
2 ,3(1−α)(R4)

≤ C(1 + ε0). (5.47)

Let Γ denote the heat kernel in R3. Then

|∇Γ|(x, t) ≤ Cδ−4((x, t), (0, 0)), ∀(x, t) 6= (0, 0),

where δ(·, ·) denotes the parabolic distance on R4. By the Duhamel formula, we have that

|w(x, t)| ≤
∫ t

0

∫
R3

|∇Γ(x− y, t− s)||F (y, s)| dyds ≤ CI1(|F |)(x, t), (5.48)

where Iβ is the Reisz Riesz potential of order β on R4, β ∈ [0, 4], defined by

Iβ(g)(x, t) =
∫
R4

|g(y, s)|
δ5−β((x, t), (y, s))

dyds, ∀g ∈ L1(R4).

Applying the Riesz potential estimates (see [20] Theorem 3.1), we conclude that ∇w ∈
M

3(1−α)
1−2α

,3(1−α)(R4) and∥∥∥∇w∥∥∥
M

3(1−α)
1−2α ,3(1−α)

(R4)
≤ C

∥∥∥F∥∥∥
M

3
2 ,3(1−α)(R4)

≤ C(1 + ε0). (5.49)

Since lim
α↑ 1

2

3(1− α)

1− 2α
= ∞, we conclude that for any 1 < p <∞, ∇w ∈ Lp(Pr0(z0)) and∥∥∇w∥∥

Lp(Pr0 (z0))
≤ C(p, r0, ε0). (5.50)

Since Q− w solves

∂t(Q− w)−∆(Q− w) = 0 in P r0
2
(z0),

it follows from the theory of heat equations that for any 1 < p <∞, ∇Q ∈ P r0
2
(z0) and∥∥∇Q∥∥

Lp(P r0
2
(z0))

≤ C(p, r0, ε0). (5.51)

We now proceed with the estimation of u. Let v : R3 × (0,∞) 7→ R3 solve the Stokes
equation:

∂tv −∆v +∇P
= −div

[
η2
(
u⊗ u+ (∇Q⊗∇Q− 1

2 |∇Q|2I3)
)]

+ div
[
η2[Q,∆Q]

]
in R4

+,

divv = 0 in R4
+,

v(·, 0) = 0 in R3.

(5.52)

By using the Oseen kernel (see Leray [22]), an estimate of v can be given by

|v(x, t)| ≤ CI1(|X|)(x, t), ∀(x, t) ∈ R3 × (0,∞), (5.53)The Trial Version
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where

X = η2
[
u⊗ u+ (∇Q⊗∇Q− 1

2
|∇Q|2I3) + [Q,∆Q]

]
.

As above, we can check that X ∈M
3
2
,3(1−α)(R4) and∥∥X∥∥

M
3
2 ,3(1−α)(R4)

≤ C
[
‖u‖2

M3,3(1−α)(P r0
2
(z0))

+ ‖∇Q‖2
M3,3(1−α)(P r0

2
(z0))

+ ‖∆Q− fbulk(Q)‖M3,3(1−α)(P r0
2
(z0))

]
≤ C(1 + ε0).

Hence we conclude that v ∈M
3(1−α)
1−2α

,3(1−α)(R4) and∥∥∥v∥∥∥
M

3(1−α)
1−2α ,3(1−α)

(R4)
≤ C

∥∥∥X∥∥∥
M

3
2 ,3(1−α)(R4)

≤ C(1 + ε0). (5.54)

As α ↑ 1
2 , we conclude that for any 1 < p <∞, v ∈ Lp(Pr0(z0)) and∥∥v∥∥

Lp(Pr0 (z0))
≤ C(p, r0, ε0). (5.55)

Note that u− v solves the linear homogeneous Stokes equation in P r0
2
(z0):

∂t(u− v)−∆(u− v) +∇P = 0, div(u− v) = 0 in P r0
2
(z0).

Then u− v ∈ L∞(P r0
4
(z0)). Therefore for any 1 < p <∞, u ∈ Lp(P r0

4
(z0)) and∥∥u∥∥

Lp(P r0
4
(z0)

≤ C(p, r0, ε0). (5.56)

For P , since it satisfies the Poisson equation: for t0 −
r20
4 ≤ t ≤ t0,

−∆P = div2
[
u⊗ u+ (∇Q⊗∇Q− 1

2
|∇Q|2I3)

]
in B r0

2
(x0). (5.57)

Hence P ∈ Lp(P r0
4
(z0)) and satisfies the (5.39). The proof is now complete. �

The higher order regularity of (3.2) does not follow from the standard theory, since
the equation for u involves ∇3Q and the equation for Q involves ∇u. It turns out the
higher order regularity of (3.2) can be obtained through higher oder energy methods.
Roughly speaking, if (u, P,∇Q) is in Lp for any 1 < p <∞, then (3.2) can be viewed as a
perturbed version of the linear equation (5.17) with controllable error terms. Here higher
order versions of the cancellation properties (1.13) and (1.16) in the local energy inequality
(1.12) also plays an important role. This kind of idea has been previously employed by
Huang-Lin-Wang (see [19] Lemma 3.4) for general Ericksen-Leslie systems in dimension
two. More precisely, we have
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Lemma 5.4. Under the same assumptions as Lemma 5.3, we have that for any k ≥ 0,
(∇ku,∇k+1Q) ∈

(
L∞
t L

2
x ∩ L2

tH
1
x

)
(P 1+2−(k+1)

2
r0
(z0)) and the following estimates hold

sup

t0−
(

(1+2−(k+1))
2

r0
)2

≤t≤t0

∫
B

1+2−(k+1)

2 r0

(x0)
(|∇ku|2 + |∇k+1Q|2) dx

+

∫
P

1+2−(k+1)

2 r0

(z0)
(|∇k+1u|2 + |∇k+2Q|2 + |∇kP |

5
3 ) dxdt

≤ C(k, r0, )ε0.

(5.58)

In particular, (u, Q) is smooth in P r0
4
(z0).

Proof. For simplicity, assume z0 = (0, 0) and r0 = 8. (5.58) can be proved by an induction
on k. It is clear that when k = 0, (5.58) follows directly from the local energy inequality
(1.12). Here we indicate how to prove (5.58) for k = 1. First, recall from Lemma 5.3 that
for any i ∈ N+ and 1 < p <∞,∥∥Q∥∥

L∞(P2)
+

∥∥∇ifbulk(Q)
∥∥
L∞(P2)

≤ C(i, ε0),
∥∥(u, P,∇Q)

∥∥
Lp(P2)

≤ C(p)ε0. (5.59)

Taking spatial derivative of (1.6)1, we have

∂tQα + u · ∇Qα + uα · ∇Q− [ωα, Q]− [ω,Qα]

= ∆Qα − (fbulk(Q))α,

∂tuα + u · ∇uα + uα · ∇u+∇Pα

= ∆uα −∇Q·∆Qα −∇Qα·∆Q+ div[Q,∆Q]α,

divuα = 0,

in P1. (5.60)

Here ωα = ω(uα). Let η ∈ C∞
0 (B2) be such that

0 ≤ η ≤ 1, η ≡ 1 in B1+2−2 , η ≡ 0 out B1+2−1 , |∇η|+ |∇2η| ≤ 16.

Taking ∇ of (5.60)1 and multiplying it by ∇Qαη
2, and multiplying (5.60)2 by ∇uαη

2, and
then integrating resulting equations over B2

2, we obtain that

1

2

d

dt

∫
Ω
|∇2Q|2η2 −

∫
R3

(uα · ∇)Q ·∆Qαη
2 −

∫
Ω
(u · ∇)Qα · (∆Qαη

2 +∇Qα∇η2)

−
∫
Ω
(uα · ∇)Q · ∇Qα∇η2 −

∫
Ω
[Q,ωα] · (∆Qαη

2 +∇Qα∇η2)

=

∫
Ω

[
[Qα, ω]− (∆Qα − (fbulk(Q))α)

]
· (∆Qαη

2 +∇Qα∇η2),

1Strictly speaking, we need to take finite quotient Dj
h of (1.6) (j = 1, 2, 3) and then sending h → 0

2strictly speaking, we need to multiply ∆(Dj
hQ)η2 and ∇(Dj

hu)η
2 and then sending h → 0The Trial Version
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and

1

2

d

dt

∫
Ω
|∇u|2η2 −

∫
Ω

|∇u|2

2
u · ∇η2 +

∫
Ω
(uα · ∇)u · uαη

2 −
∫
Ω
Pαuα · ∇η2

= −
∫
Ω
(|∇2u|2η2 − |∇u|2

2
∆η2)−

∫
Ω
((uα · ∇)Q ·∆Qαη

2 + (uα · ∇)Qα ·∆Qη2)

−
∫
Ω
[Qα,∆Q] · (∇uαη

2 + uα ⊗∇η2)−
∫
Ω
[Q,∆Qα] · (∇uαη

2 + uα ⊗∇η2).

Adding these two equations together and regrouping terms, and using the cancellation
identity ∫

Ω
[Q,ωα] ·∆Qαη

2 =

∫
Ω
[Q,∆Qα] · ∇uαη

2,

we arrive at
1

2

d

dt

∫
Ω
(|∇u|2 + |∇2Q|2)η2 +

∫
Ω
(|∇2u|2 + |∆∇Q|2)η2

=

∫
Ω
[(u · ∇)Qα · (∆Qαη

2 +∇Qα∇η2) + (uα · ∇)Q · ∇Qα∇η2]

+

∫
Ω
([Q,ωα]−∆Qα) : ∇Qα∇η2

+

∫
Ω

(
[Qα, ω] + (fbulk(Q))α

)
: (∆Qαη

2 +∇Qα∇η2)

+

∫
Ω
[
|∇u|2

2
(∆η2 + u · ∇η2)− uα · (∇u · uα +∇Qα : ∆Q)η2 + Pαuα · ∇η2]

−
∫
Ω
[Qα,∆Q] : (∇uαη

2 + uα ⊗∇η2)−
∫
Ω
[Q,∆Qα] : uα ⊗∇η2

:=
6∑

i=1

Ai.

We can estimate Ai’s separately as follows.

|A6| ≤
1

16

∫
Ω
|∆∇Q|2η2 + C

∫
Ω
(|∇Q|2η2 + |∇u|2(η2 + |∇η|2),

|A5| ≤
1

16

∫
Ω
|∇2u|2η2 + C

∫
Ω
|∇Q|2|∆Q|2η2 + C

∫
Ω
|∇u|2|∇η|2,

|A4| ≤
1

8

∫
Ω
(|∇2u|2 + |∆∇Q|2)η2 + C

∫
Ω
[|∇u|2|∆η2|+ |u|2(|∇u|2 + |∆Q|2)η2]

+ C

∫
Ω
(|∇u|2 + |∆Q|2)|∇η|2 + C

∫
Ω
(|P |2|∇η|2 + |P ||∇u||∆η2|),

|A3| ≤
1

16

∫
Ω
|∆∇Q|2η2 + C

∫
Ω
|∇Q|2(|∇u|2 + |∆Q|2)η2

+ C

∫
Ω
(|∇Q|2η2 + |∇u|2|∇η|2),

|A2| ≤
1

16

∫
Ω
|∆∇Q|2η2 + C

∫
Ω
(|∇u|2 + |∆Q|2)|∇η|2,
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|A1| ≤
1

16

∫
Ω
|∆∇Q|2η2 + C

∫
Ω
[(|u|2|+ |∇Q|2)∆Q|2η2 + (|∇u|2 + |∆Q|2)|∇η|2].

Substituting these estimates on Ai’s into the above inequality, we obtain that

d

dt

∫
Ω
(|∇u|2 + |∇2Q|2)η2 +

∫
Ω
(|∇2u|2 + |∆∇Q|2)η2

≤ C

∫
B1+2−1

(|u|2 + |∇Q|2 + |∇u|2 + |∆Q|2 + |P |2)

+C

∫
Ω
(|u|2|∇u|2 + |u|2|∆Q|2 + |∇Q|2|∆Q|2 + |∇Q|2|∇u|2)η2.

Now we want to estimate the second term in the right hand side. By Sobolev-interpolation
inequalities, we have∫

Ω
|u|2|∇u|2η2

≤ ‖∇uη‖L2(Ω)‖∇uη‖L3(Ω)‖u‖2L12(B1+2−1 )

≤ C‖∇uη‖L2(Ω)‖∇uη‖
1
2

L2(Ω)
‖∇(∇uη)‖

1
2

L2(Ω)
‖u‖2L12(B1+2−1 )

≤ C‖∇uη‖L2(Ω)‖∇(∇uη)‖L2(Ω)‖u‖2L12(B1+2−1 )

≤ 1

8

∫
Ω
|∇2u|2η2 + C

∫
B1+2−1

|∇u|2 + C‖u‖4L12(B1+2−1 )

∫
Ω
|∇u|2η2,

∫
Ω
|u|2|∆Q|2η2 ≤ 1

8

∫
Ω
|∆∇Q|2η2 + C

∫
B1+2−1

|∆Q|2

+ C‖u‖4L12(B1+2−1 )

∫
Ω
|∆Q|2η2,∫

Ω
|∇Q|2|∆Q|2η2 ≤ 1

8

∫
Ω
|∆∇Q|2η2 + C

∫
B1+2−1

|∆Q|2

+ C‖∇Q‖4L12(B1+2−1 )

∫
Ω
|∆Q|2η2,

and ∫
Ω
|∇Q|2|∇u|2η2 ≤ 1

8

∫
Ω
|∇u|2η2 + C

∫
B1+2−1

|∇u|2

+ C‖∇Q‖4L12(B1+2−1 )

∫
Ω
|∇u|2η2.

Substituting these estimates into the above inequality, we would arrive at

d

dt

∫
Ω
(|∇u|2 + |∇2Q|2)η2 +

∫
Ω
(|∇2u|2 + |∆∇Q|2)η2

≤ C

∫
B1+2−1

(|u|2 + |∇Q|2 + |∇u|2 + |∆Q|2 + |P |2)

+C(1 + ‖(u,∇Q)‖12L12(B1+2−1 )
)

∫
Ω
(|∇u|2 + |∇2Q|2)η2. (5.61)
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From (5.59), we can apply Gronwall’s inequality to (5.61) to show that (5.58) holds for
k = 1. For k ≥ 2, we can perform an induction argument as in [19] Lemma 3.4. We leave
the details to interested readers.

It is readily seen that by the Sobolev embedding theorem, Lemma 5.3 implies that
(∇ku,∇k+1Q) ∈ L∞(P r0

4
(z0)) for any k ≥ 1. This, combined with the theory of linear

Stokes equation and heat equation, would imply the smoothness of (u, Q) in P r0
4
(z0). This

completes the proof. �

Applying Lemma 5.3, we can prove a weaker version of Theorem 1.1.

Proposition 5.1. Under the same assumptions as in Theorem 1.1, there exists a closed

subset Σ ⊂ Ω× (0,∞), with P
5
3 (Σ) = 0, such that (u, Q) ∈ C∞(Ω× (0,∞) \ Σ).

Proof. First it follows from Lemma 4.1 and Lemma 3.2 that for any δ > 0, Q and fBM(Q)
are bounded in Ω× (δ,∞). Define

Σδ =
{
z ∈ Ω×(δ,∞) : lim inf

r→0
r−2

∫
Pr(z)

(|u|3+|∇Q|3) dxdt+
(
r−2

∫
Pr(z)

|P |
3
2 dxdt

)2
> ε30

}
.

From Lemma 5.3, we know that Σδ is closed and (u, Q) ∈ C∞(Ω × (δ,∞) \ Σδ). Since
δ > 0 is arbitrary, we have that (u, Q) ∈ C∞(Ω× (0,∞) \ ∪δ>0Σδ).

Since u ∈ L∞
t L

2
x ∩ L2

tH
1
x(Ω × (0,∞)) and ∇Q ∈ L∞

t H
1
x ∩ L2

tH
2
x(Ω × (0,∞)), we see

that (u,∇Q) ∈ L
10
3 (Ω × (0,∞)). Moreover, since P solves the Poisson equation (??) in

Ω× (0,∞), we conclude that P ∈ L
5
3 (Ω× (0,∞)). By Hölder’s inequality, we see that Σδ

is a subset of

Sδ =
{
z ∈ Ω× (δ,∞) : lim inf

r→0
r−

5
3

∫
Pr(z)

(|u|
10
3 + |∇Q|

10
3 ) dxdt

+
(
r−

5
3

∫
Pr(z)

|P |
5
3 dxdt

)2
> ε

10
3
0

}
.

A simple covering argument implies that P
5
3 (Sδ) = 0, see [33]. Hence Σ = ∪δ>0Σδ has

P
5
3 (Σ) = 0. This completes the proof. �

6. Partial regularity, part II

In this section, we will utilize the results from the previous section and the Sobolev
inequality to first show the so-called A-B-C-D Lemmas (see [5] and [24]) and then establish
an improved ε1-regularity property for suitable weak solutions to (1.6).

Theorem 6.1. Under the same assumptions as in Theorem 1.1, there exists ε1 > 0 such

that if (u, Q) : Ω× (0,∞) 7→ R3×S(3)
0 is a suitable weak solution of (1.5), which satisfies,

for z0 ∈ Ω× (0,∞),

lim sup
r→0

1

r

∫
Pr(z0)

(
|∇u|2 + |∇2Q|2

)
dxdt < ε21, (6.1)

then (u, Q) is smooth near z0.The Trial Version
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For simplicity, we assume z0 = (0, 0) ∈ Ω× (0,∞). To streamline the presentation, we
introduce the following dimensionless quantities:

A(r) := sup
−r2≤t≤0

r−1

∫
Br(0)×{t}

(|u|2 + |∇Q|2) dx,

B(r) :=
1

r

∫
Pr(0,0)

(|∇u|2 + |∇2Q|2) dxdt,

C(r) :=
1

r2

∫
Pr(0,0)

(|u|3 + |∇Q|3) dxdt,

D(r) := r−2

∫
Pr(0,0)

|P |
3
2 dxdt.

Also set

(u)r(t) :=
1

|Br(0)|

∫
Br(0)

u(x, t) dx, (∇Q)r(t) :=
1

|Br(0)|

∫
Br(0)

∇Q(x, t) dx.

We also let A . B to denote A ≤ cB for some universal positive constant c > 0.
We recall the following interpolation Lemma, whose proof can be found in [5].

Lemma 6.1. For v ∈ H1(R3),∫
Br(0)

|v|q(x, t) dx .
( ∫

Br(0)
|∇v|2(x, t) dx

) q
2
−a( ∫

Br(0)
|v|2(x, t) dx

)a
+r3

(
1− q

2

)( ∫
Br(0)

|v|2(x, t) dx
) q

2 . (6.2)

for every Br(0) ⊂ R3, 2 ≤ q ≤ 6, a = 3
2

(
1− q

6

)
.

Applying Lemma 6.1, we can have

Lemma 6.2. For any u ∈ L∞([−ρ2, 0], L2(Bρ(0))) ∩ L2([−ρ2, 0], H1(Bρ(0))), and Q ∈
L∞([−ρ2, 0], H1(Bρ(0))) ∩ L2([−ρ2, 0], H2(Bρ(0))), it holds that for any 0 < r ≤ ρ,

C(r) .
(r
ρ

)3
A

3
2 (ρ) +

(ρ
r

)3
A

3
4 (ρ)B

3
4 (ρ). (6.3)

Proof. From (6.1) with q = 3, a = 3
4 , we obtain that for any v ∈ H1(Bρ(0)),∫

Br(0)
|v|3(x, t) dx .

( ∫
Br(0)

|∇v|2(x, t) dx
) 3

4
( ∫

Br(0)
|v|2(x, t) dx

) 3
4

+r−
3
2
( ∫

Br(0)
|v|2(x, t) dx

)3/2
. (6.4)
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Applying Poincaré’s inequality, we obtain that for 0 < r ≤ ρ,∫
Br(0)

(|u|2 + |∇Q|2) dx

.
∫
Br(0)

(∣∣|u|2 − (|u|2)ρ
∣∣+ ∣∣|∇Q|2 − (|∇Q|2)ρ

∣∣) dx+
(r
ρ

)3 ∫
Bρ(0)

(|u|2 + |∇Q|2) dx

. ρ

∫
Bρ(0)

(|u||∇u|+ |∇Q||∇2Q|) dx+
(r
ρ

)3 ∫
Bρ(0)

(|u|2 + |∇Q|2) dx

. ρ
3
2
(
ρ−1

∫
Bρ(0)

(|u|2 + |∇Q|2) dx
) 1

2
( ∫

Bρ(0)
(|∇u|2 + |∇2Q|2) dx

) 1
2

+
(r
ρ

)3 ∫
Bρ(0)

(|u|2 + |∇Q|2) dx

. ρ
3
2A

1
2 (ρ)

( ∫
Bρ(0)

(|∇u|2 + |∇2Q|2) dx
) 1

2 +
(r
ρ

)3
ρA(ρ).

Substituting this estimate into the second term of the right hand side of the previous
inequality, we conclude that∫

Br(0)

(
|u|3 + |∇Q|3

)
dx

. ρ
3
4
( ∫

Br(0)

(
|∇u|2 + |∇2Q|2

)
dx

) 3
4
(
ρ−1

∫
Br(0)

(|u|2 + |∇Q|2)(x, t) dx
) 3

4

+ r−
3
2
( ∫

Br(0)
(|u|2 + |∇Q|2)(x, t) dx

) 3
2

. ρ
3
4A

3
4 (ρ)

( ∫
Br(0)

(|∇u|2 + |∇2Q|2)(x, t) dx
) 3

4

+ r−
3
2
( ∫

Br(0)
(|u|2 + |∇Q|2)(x, t) dx

) 3
2

.
(
ρ

3
4 +

ρ
9
4

r
3
2

)( ∫
Br(0)

(|∇u|2 + |∇2Q|2) dx
) 3

4A
3
4 (ρ) +

(r
ρ

)3
A

3
2 (ρ).

Integrating this inequality over [−r2, 0], by Hölder’s inequality we have

C(r) =
1

r2

∫
Pr(0,0)

(|u|3 + |∇Q|3) dx

.
(r
ρ

)3
A

3
2 (ρ) +

(
ρ

3
4 +

ρ
9
4

r
3
2

) ∫ 0

−r2

( ∫
Br(0)

(|∇u|2 + |∇2Q|2) dx
) 3

4 dtA
3
4 (ρ)

.
(r
ρ

)3
A

3
2 (ρ) + r−

3
2 ρ

3
4
(
ρ

3
4 +

ρ
9
4

r
3
2

)
A

3
4 (ρ)B

3
4 (ρ)

.
(r
ρ

)3
A

3
2 (ρ) +

[(ρ
r

) 3
2 +

(ρ
r

)3]
A

3
4 (ρ)B

3
4 (ρ)

.
(r
ρ

)3
A

3
2 (ρ) +

(ρ
r

)3
A

3
4 (ρ)B

3
4 (ρ).
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This completes the proof of (5.2). �

Next we want to estimate the pressure function.

Lemma 6.3. Under the same assumption with Lemma 6.2, it holds for any 0 < r ≤ ρ
2

D(r) .
r

ρ
D(ρ) +

(ρ
r

)2
A

3
4 (ρ)B

3
4 (ρ). (6.5)

Proof. From the scaling invariance of all quantities, we only need to consider the case
ρ = 1, 0 < r ≤ 1

2 . By taking divergence of the equation (1.5)1, we obtain

−∆P = div2 [u⊗ u+∇Q⊗∇Q]

= div2 [(u− (u)1)⊗ (u− (u)1) +∇Q⊗∇Q]

= div2[(u− (u)1)⊗ (u− (u)1) + (∇Q− (∇Q)1)⊗ (∇Q− (∇Q)1)]

+div2[(∇Q)1 ⊗ (∇Q− (∇Q)1) + (∇Q− (∇Q)1)⊗ (∇Q)1]. (6.6)

Let η ∈ C∞
0 (R3) be a cut off function of B 1

2
(0) such that

η = 1, in B 1
2
(0),

η = 0, in R3 \B1(0),
0 ≤ η ≤ 1, |∇η| ≤ 8.

(6.7)

Define the following auxillary function

P1(x, t) = −
∫
R3

∇2
yG(x− y) : η2(y)

[
(u− (u)1)⊗ (u− (u)1)

+ (∇Q− (∇Q)1)⊗ (∇Q− (∇Q)1) + (∇Q− (∇Q)1)⊗ (∇Q)1

+ (∇Q)1 ⊗ (∇Q− (∇Q)1)
]
(y, t) dy,

Then we have

−∆P1 = div2 [(u− (u)1)⊗ (u− (u)1) +∇Q⊗∇Q] in B 1
2
(0),

and
−∆(P − P1) = 0 in B 1

2
(0).

For P1, we apply the Calderon-Zygmund theory to deduce

‖P1‖
3
2

L
3
2 (R3)

.
∥∥η2|u− (u)1|2

∥∥ 3
2

L
3
2 (R3)

+
∥∥η2|∇Q− (∇Q)1|2

∥∥ 3
2

L
3
2 (R3)

+
∥∥η2|(∇Q)1||∇Q− (∇Q)1|

∥∥ 3
2

L
3
2 (R3)

.
∫
B1(0)

(|u− (u)1|3 + |∇Q− (∇Q)1|3) dx

+|(∇Q)1|
3
2

∫
B1(0)

|∇Q− (∇Q)1|
3
2 dx. (6.8)

Since P − P1 is harmonic in B 1
2
(0), we get

1

r2
‖P − P1‖

3
2

L
3
2 (Br(0))

. r ‖P − P1‖
3
2

L
3
2 (B1(0))

. r
(
‖P‖

3
2

L
3
2 (B1(0))

+ ‖P1‖
3
2

L
3
2 (B1(0))

)
.
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Integrating it over [−r2, 0] and applying (5.8), we can show that

1

r2

∫
Pr(0,0)

|P |
3
2 dxdt

. r

∫
P1(0,0)

|P |
3
2 dxdt+

1

r2

∫
P1(0,0)

(|u− (u)1|3 + |∇Q− (∇Q)1|3) dxdt

+
1

r2
(

sup
−1≤t≤0

|(∇Q)1(t)|
) 3

2

∫
P1(0,0)

|∇Q− (∇Q)1|
3
2 dxdt

. r

∫
P1(0,0)

|P |
3
2 dxdt+

1

r2

∫
P1(0,0)

(|u− (u)1|3 + |∇Q− (∇Q)1|3) dxdt

+
1

r2
A

3
4 (1)

∫
P1(0,0)

|∇Q− (∇Q)1|
3
2 dxdt.

This, combined with the interpolation inequality∫
P1(0,0)

(|u− (u)1|3 + |∇Q− (∇Q)1|3) dxdt

. sup
−1≤t≤0

( ∫
B1(0)

(|u|2 + |∇Q|2) dx
) 3

4 ×
( ∫

P1(0,0)
(|∇u|2 + |∇2Q|2) dxdt

) 3
4 ,

and Hölder’s inequality∫
P1(0,0)

|∇Q− (∇Q)1|
3
2 dxdt .

( ∫
P1(0,0)

|∇Q− (∇Q)1|2 dxdt
) 3

4 ,

implies that

D(r) . rD(1) +
1

r2
A

3
4 (1)B

3
4 (1).

This, after scaling back to ρ, yields (6.5). The proof is now complete. �

Proof of Theorem 6.1. For θ ∈ (0, 12) and ρ ∈ (0, 1), let ϕ ∈ C∞
0 (Pθρ(0, 0)) be a function

such that

ϕ = 1 in P θρ
2
(0, 0), |∇ϕ| . 1

θρ
, |∇2ϕ|+ |ϕt| . (

1

θρ
)2.

Applying the local energy inequality in Lemma 2.2, the maximum principles Lemmas 4.1
and 3.2, and the integration by parts, we obtain that

sup
−(θρ)2≤t≤0

∫
Ω
(|u|2 + |∇Q|2)ϕ2 dx+

∫
Ω×[−(θρ)2,0]

(|∇u|2 + |∇2Q|2)ϕ2 dxdt

.
∫
Ω×[−(θρ)2,0]

(|u|2 + |∇Q|2)(|ϕt|+ |∇ϕ|2 + |∇2ϕ|) dxdt

+

∫
Ω×[−(θρ)2,0]

[(|u|2 − (|u|2)θρ) + (|∇Q|2 − |∇Q|2)θρ) + |P |]|u||∇ϕ| dxdt

+

∫
Ω×[−(θρ)2,0]

|∇Q|2ϕ2 dxdt+

∫
Ω×[−(θρ)2,0]

(|∇u||∇Q|+ |u||∆Q|)|ϕ||∇ϕ| dxdt.
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This, with the help of Young’s inequality:∫
Ω×[−(θρ)2,0]

(|∇u||∇Q|+ |u||∆Q|)|ϕ||∇ϕ| dxdt

≤ 1

2

∫
Ω×[−(θρ)2,0]

(|∇u|2 + |∇2Q|2)ϕ2 dxdt

+ 4

∫
Ω×[−(θρ)2,0]

(|u|2 + |∇Q|2)|∇ϕ|2 dxdt,

implies that

A(
1

2
θρ) +B(

1

2
θρ)

= sup
−( θρ

2
)2≤t≤0

2

θρ

∫
B θρ

2
(0)

(|u|2 + |∇Q|2) dx+
2

θρ

∫
P θρ

2
(0,0)

(|∇u|2 + |∇2Q|2) dxdt

. sup
−(θρ)2≤t≤0

1

θρ

∫
R3

(|u|2 + |∇Q|2)ϕ2 dx+
1

θρ

∫
R3×[−(θρ)2,0]

(|∇u|2 + |∇2Q|2)ϕ2 dxdt

.
1

θρ

∫
R3×[−(θρ)2,0]

(|u|2 + |∇Q|2)(|ϕt|+ |∇ϕ|2 + |∇2ϕ|) dxdt

+
1

θρ

∫
R3×[−(θρ)2,0]

[(|u|2 − (|u|2)θρ) + (|∇Q|2 − (|∇Q|2)θρ) + |P |]|u||∇ϕ| dxdt

+
1

θρ

∫
R3×[−(θρ)2,0]

|∇Q|2ϕ2 dxdt

.
1

(θρ)3

∫
Pθρ(0,0)

(|u|2 + |∇Q|2) dxdt+ 1

(θρ)2

∫
Pθρ(0,0)

|P ||u| dxdt

+
1

(θρ)2

∫
Pθρ(0,0)

(
||u|2 − (|u|2)θρ|+ ||∇Q|2 − (|∇Q|2)θρ|

)
|u| dxdt

= I1 + I2 + I3.

It is not hard to see that

|I1| .
( 1

(θρ)2

∫
Pθρ(0,0)

(|u|3 + |∇Q|3) dxdt
) 2

3 . C
2
3 (θρ),

|I2| .
( 1

(θρ)2

∫
Pθρ(0,0)

|u|3 dxdt
) 1

3
( 1

(θρ)2

∫
Pθρ(0,0)

|P |
3
2 dxdt

) 2
3 . C

1
3 (θρ)D

2
3 (θρ),

while, by employing Hölder’s and Poincaré’s inequalities,

|I3| .
1

(θρ)2

∫ 0

−(θρ)2

∫
Bθρ(0)

(|u||∇u|+ |∇Q||∇2Q|)
( ∫

Bθρ(0)
|u|3 + |∇Q|3

) 1
3 dt

. A
1
2 (θρ)B

1
2 (θρ)C

1
3 (θρ).The Trial Version
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Putting together all the estimates, we have

A(
1

2
θρ) +B(

1

2
θρ) .

[
C

2
3 (θρ) +A

1
2 (θρ)B

1
2 (θρ)C

1
3 (θρ) + C

1
3 (θρ)D

2
3 (θρ)

]
.

[
C

2
3 (θρ) +A(θρ)B(θρ) +D

4
3 (θρ)

]
so that

A
3
2 (
1

2
θρ) .

[
C(θρ) +A

3
2 (θρ)B

3
2 (θρ) +D2(θρ)

]
.

While

D2(θρ) . θ2
[
D2(ρ) + θ−6A

3
2 (ρ)B

3
2 (ρ)

]
,

and

C(θρ) . θ3A
3
2 (ρ) + θ−3A

3
4 (ρ)B

3
4 (ρ).

Also note that

A
3
2 (θρ)B

3
2 (θρ) ≤ θ−3A

3
2 (ρ)B

3
2 (ρ).

Therefore we conclude that for 0 < θ0 <
1
2 ,

A
3
2 (
1

2
θ0ρ) +D2(

1

2
θ0ρ)

≤ c[θ20D
2(ρ) + (θ−3

0 + θ−4
0 )A

3
2 (ρ)B

3
2 (ρ) + θ30A

3
2 (ρ) + θ−3

0 A
3
4 (ρ)B

3
4 (ρ)]

≤ c[θ20(D
2(ρ) +A

3
2 (ρ)) + θ−8

0 A
3
2 (ρ)B

3
2 (ρ) + θ20]

≤ c(θ20 + θ−8
0 B

3
2 (ρ))(A

3
2 (ρ) +D2(ρ)) + cθ20.

For ε1 > 0 given by Theorem 5.1, let θ0 ∈ (0, 12) such that

cθ20 = min
{1
4
,
1

2
ε21
}
.

From (6.1), we know that

lim sup
ρ→0

B(ρ) ≤ ε21,

hence there exists ρ0 > 0 such that

cθ−8
0 B

3
2 (ρ) ≤ 1

4
, ∀0 < ρ < ρ0.

Therefore we conclude that there exist θ0 ∈ (0, 12) and ρ0 > 0 such that

A
3
2 (
1

2
θ0ρ) +D2(

1

2
θ0ρ) ≤

1

2
(A

3
2 (ρ) +D2(ρ)) +

1

2
ε21, ∀0 < ρ < ρ0.

Iterating this inequality yields that

A
3
2 ((

1

2
θ0)

kρ) +D2((
1

2
θ0)

kρ) ≤ 1

2k
(A

3
2 (ρ) +D2(ρ)) + ε21 (6.9)

holds for all 0 < ρ < ρ0 and k ≥ 1.The Trial Version



48 HENGRONG DU, XIANPENG HU, CHANGYOU WANG

Employing (5.2) and (6.9), we obtain that

C((
1

2
θ0)

kρ) ≤ c
[
(
1

2
θ0)

3A
3
2 ((

1

2
θ0)

k−1ρ) + (
1

2
θ0)

−3A
3
4 ((

1

2
θ0)

k−1ρ)B
3
4 ((

1

2
θ0)

k−1ρ)
]

≤ c
[
(
1

2
θ0)

3 + (
1

2
θ0)

−3ε
3
2
1

][ 1

2k−1
(A

3
2 (ρ) +D2(ρ)) + ε21

]
(6.10)

holds for all 0 < ρ < ρ0 and k ≥ 1.
Putting (6.9) and (6.10) together, we obtain that

lim sup
k→∞

[
C((

1

2
θ0)

kρ) +D2((
1

2
θ0)

kρ)
]
≤ c

[
1 + (

1

2
θ0)

3 + (
1

2
θ0)

−3ε
3
2
1 ]ε

2
1 ≤

1

2
ε30, (6.11)

holds for all ρ ∈ (0, ρ0), provided ε1 = ε1(θ0, ε0) > 0 is chosen sufficiently small. Therefore,
by Lemma 5.4 (u, Q, P ) is smooth near (0, 0). This completes the proof. �

Theorem 1.1 can be proved by the following covering argument. Let Σ be the singular
set of suitable weak solutions (u, Q, P ). If (x, t) ∈ Σ, then by the theorem 6.1,

lim sup
r→0

1

r

∫
Pr(x,t)

(|∇u|2 + |∇2Q|2) dxdt ≥ ε1. (6.12)

Let V be a neighborhood of Σ and δ > 0 such that for all (x, t) ∈ Σ, we can find r < δ
such that Pr(x, t) ⊂ V and

1

r

∫
Pr(x,t)

(
|∇u|2 + |∇2Q|2

)
dxdt ≥ ε1.

By Vitali’s covering lemma, ∃(xi, ti) ∈ V, 0 < ri < δ such that {Pri(xi, ti)}
∞
i=1 are pairwise

disjoint and

Σ ⊂
∞⋃
i=1

P5ri(xi, ti).

Hence

P1
5δ(Σ) ≤

∞∑
i=1

5ri ≤
5

ε1

∞∑
i=1

∫
Pri (xi,ti)

(
|∇u|2 + |∇2Q|2

)
dxdt

≤ 5

ε1

∫
∪iPri (xi,ti)

(
|∇u|2 + |∇2Q|2

)
dxdt

≤ 5

ε1

∫
V

(
|∇u|2 + |∇2Q|2

)
dxdt <∞.

We can conclude that Σ is of zero Lesbegue measure. Then we can choose |V | to be
arbitrarily small, from the fact that∫ ∞

0

∫
Ω

(
|∇u|2 + |∇2Q|2

)
dxdt =

∫ ∞

0

∫
Ω

(
|∇u|2 + |∆Q|2

)
dxdt <∞

and the absolute continuity of integral, we have

lim
|V |→0

∫
V

(
|∇u|2 + |∇2Q|2

)
dxdt→ 0.

Hence
P1(Σ) = lim

δ→0
P1
5δ(Σ) = 0,
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This completes the proof of Theorem 1.1. �
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