SUITABLE WEAK SOLUTIONS FOR THE CO-ROTATIONAL
BERIS-EDWARDS SYSTEM IN DIMENSION THREE

HENGRONG DU, XIANPENG HU, CHANGYOU WANG

ABSTRACT. In this paper, we establish the global existence of a suitable weak solution
to the co-rotational Beris-Edwards @Q-tensor system modeling the hydrodynamic motion
of nematic liquid crystals with either Landau-De Gennes bulk potential in R® or Ball-
Majumdar bulk potential in T2, a system coupling the forced incompressible Navier-
Stokes equation with a dissipative, parabolic system of Q-tensor @ in R, which is shown
to be smooth away from a closed set ¥ whose 1-dimensional parabolic Hausdorff measure
is zero.
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1. INTRODUCTION

In this paper, we consider in dimension three the so-called Beris-Edwards system ([4]
and [10]) that describes the hydrodynamic motion of nematic liquid crystals, with either
the Landau-De Gennes bulk potential function [8] or the Maire-Saupe (Ball-Majumdar)
bulk potential function [3]. Roughly speaking, this is a system that couples a forced
Navier-Stokes equation for the underlying fluid velocity field v with a dissipative parabolic
system of ()-tensors modeling nematic liquid crystal orientation fields. We are interested
in establishing the existence of certain global weak solutions for such a Beris-Edwards
system that enjoys partial smoothness property, analogous to the celebrated works by
Cafferalli-Kohn-Nirenberg [5] on the Navier-Stokes equation and Lin-Liu [25] and [26] on
the simplified Ericksen-Leslie system modeling nematic liquid crystal flows with variable
gaame{ orientations, which was proposed by Ericksen [12, 13] and Leslie [23] in 1960’s.
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2 HENGRONG DU, XIANPENG HU, CHANGYOU WANG

We begin with the description of this system. Recall that the configuration space of
Q-tensors is the set of traceless, symmetric 3 x 3-matrices, i.e.,

S = {Q eR> . Q=QT, trQ = o}.

For technical reasons, we will consider the one constant approximate form of the Landau-
De Gennes energy functional of @)-tensors, namely,

B(Q) = [ (519QF + Fun(Q) da,

over the Sobolev space H'(€, 863)), where 2 is a three dimensional domain that is assumed
to be either R? or the torus T3 = R3/Z? in this paper. Here L > 0 denotes the elasticity
constant, and Fi,yx (@) denotes the bulk potential function that usually describes the phase
transition among various phase states including isotropic, uniaxial, or biaxial states. We
refer interested readers to Mottram-Newton [30] and Sonnet-Virga [34] for a more detailed
discussion of general Landau-De Gennes energy functionals involving multiple elasticity
constants L;’s. In this paper, we will consider two classes of bulk potential functions:

(i) (Landau-De Gennes bulk potential [8]). Here Fyuk(Q) = Frac(@), and

Frac(Q) = Frac(Q) — mir<l3) Frac(@), (1.1)
Qest
where
Frac(Q) = gtr(QQ) - gtr(Q?’) + itrQ(QQ), (1.2)

where a, b, ¢ > 0 are temperature dependent material constants. It is a well known
fact that if 0 < a < 2%, then Flqc reaches its minimum at Q = sy (d ® d — %13),

where s, = I’Jrivbzc*m and d € S? is a unit vector field.

(ii) (Ball-Majumdar singular bulk potential [3]). Here Fiux(Q) = Fm(Q) is a modi-
fied Maire-Saupe bulk potential introduced by Ball-Majumdar [3], which is defined
as follows. Fpm(Q) = #Gpm(Q) — £|QJ? for some+>6-and £ > 0, and

i 1 if — 1 . 2
G = | i [ o0oss0)ao) it~ 3 <@ <4 )
o0 otherwise,

)

where )\;, j = 1,2, 3, denotes the eigenvalues of @) € 80(3 , and

Ag = {0 <pe L'S%): p(p) = p(-p), /SQ p(p) do(p) = 1,

/52 (pep- %I3)P(P) do(p) = Q}.

t was proven by [3] that Gy is strictly convex and smooth in the interior of the
onvex set

a pdfelement .
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Q-TENSOR 3

It is well-known that the first order variation of the Landau-De Gennes energy functional
E is given by

H = LAQ — fouk(Q), foux(@) = (VFuk(Q)) = VF,uk(Q) — Wfs- (1.4)
In particular, if Fux(Q) = FLac(Q), then
2
Q) = (VFrac(@) = a@ —b[Q” — "2 1) 1 cQur(@?).

For 0 < T < oo, denote Q7 = Q x (0,7]. Let u : Qr — R? denote the fluid velocity
field and Q : Q7 > S denote the director field. Define

1 1 1
S(Vu,Q) = (€D +w)(Q+ 3Ts) + (Q + 3) (6D — w) = 2£(Q + 3 13)tr(QV ),
where ) )
D= (Vu+ (Vu)") and w= 5 (Vu— (Vu)")
are the symmetric part and the antisymmetric part, respectively, of the velocity gradient
tensor Vu, and ¢ € R is a rotational parameter measuring the ratio between the aligning
and tumbling effects to @) by the fluid velocity field.
The Beris-Edwards Q-tensor system modeling the hydrodynamic motion of nematic

liquid crystals reads [16, 31]

0Q+u-VQ — S(Vu,Q)=TH

du+u-Vu+ VP = pAu+div(r + o) (1.5)

divu = 0,
where I' > 0 is a relaxation time parameter, p > 0 is the fluid viscosity constant, and 7 is
the symmetric part of the additional stress tensor given by

b )
o = 6 (Quy + =5 ) Hys — EHor (@ + 37)

da
+26(Qap + 5 ) QyoHas — LO5Qy000Qns, 1< 0 <3,

and o is the antisymmetric part of the additional stress tensor:

0ap = [Q; Hlap :=QaryHyp — Hon@yp, 1 < a, < 3.
Since both frqg(Q) and fm(Q) are isotropic functions of @), we have

[Q, for(Q)] = 0
so that
0 =1[Q,LAQ — foux(Q)] = L[Q, AQ)].

In this paper, we will focus on the co-rotational Beris-Edwards system (1.5), i.e.,

e exact values of L,I', u don’t play roles in our analysis, we will assume for sim-

a pdfelement
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We will also assume the domain €2 to be

0- R® if Fouk(Q) = FLac(Q),
T if Foux(Q) = Fem(Q).

With these assumptions and the following identity:

1
05(05 Q306 Q5) = 0aQr0 Qs + 0a(5VQP),
the system (1.5) reduces to the following form:

XQ +u-VQ — [w, Q] = AQ — fru(Q),
Ju+u-Vu+ VP =Au—VQ - AQ + div[Q, AQ], in 2 x (0,00) (1.6)
divu = 0,

subject to the initial condition

(0, Q)lt=0 = (0, Qo)(x) for =z € Q. (1.7)
A key feature of the Beris-Edwards system (1.6) (or (1.5) in general) is the energy dissi-
pation property, which plays a fundamental role in the analysis of (1.6). More precisely,

if (u,Q) : 2 x (0,00) — R3 x Sé?’) is a sufficiently regular solution of (1.5), then it satisfies
the following energy inequality [31, 32]:

GEQ0) = = [ (VaP +HP) .6 do (1.8
where
B(w. Q) = [ (Gl + 5IVQP + Fun(@)(a.0)do (1.9

is the total energy of the complex fluid consisting of the elastic energy of the director field
@ and the kinetic energy of the underlying fluid u. While the right hand side of (1.8)
denotes the dissipation rate of this system of complex fluid.

Some Notations. For () € 863), we use the Frobenius norm of @, i.e.

’Q| = \/tr(QQ) = \/QaﬁQaﬁy

and the Sobolev spaces of Q-tensors, WP (Q,Sé?’)) (l e Ny and 1 < p < 00), are defined
by

whe(Q,88) = {Q = (Qap) : 2> S Qup € WHP(Q), V1< a,8 < 3}.
When p = 2, we denote W2 (Q,Ség)) by HZ(Q,S(§3)). For A, B € R3*3, we denote
A:B=AupBas, A-B=1tr(AB), |VQ|* = QusQasr: 1AQ> = AQapAQag,
and
(u® u)ag = upug, (VQ ® VQ)ap = VaQ+s5V5Qns.

N\ at A: B=A-Bfor A,B € S(gg). We also use Agym, Aanti to denote the symmetric
symmetric part of A respectively.

a pdfelement
H = Closure of {u € C(Q,R3) : divu = 0} in L2(Q),
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Q-TENSOR 5

and
V = Closure of {u € CP(Q,R3) : divu = 0} in H'(Q).

For 0 < k < 5, Pk denotes the k-dimensional Hausdorff measure on R3 x R, with
respect to the parabolic distance:

5«Lo4%@):nmxgx—yLJu—s@,w%w,@J)6R3xR+

Now we would like to recall the definition of weak solutions of (1.6).

Definition 1.1. A pair of functions (u, Q) : Q x (0,00) +— R3 x 353) is a weak solution
of (1.6) and (1.7), if u € LLL2NLZHL(Q x (0,00)) and Q € LPHL N LIH2(Q x (0,00)),
and for any ¢ € C5° (€ x [0,00),553)) and ¢ € C5°(Q x [0,00),R?), with divy) = 0 in
2 x [0, 00), it holds

/Q o )[—Q'3t¢—AQ-¢—Q-u®V¢+[Q,w]-¢]d:cdt

(1.10)
=—/ m%@%¢Mﬁ+/wa¢uﬁm@
Qx(0,00) Q
and

/ [—u-9p+Vu- V¢ —u®u: V]| dedt =

Qx(0,00)
Lo, [5G0 910 +180.Q) 9] daat

+/ up(z) - ¥(x,0) dz, (1.11)

Q

Paicu-Zarnescu [31] have obtained the existence of global weak solutions to (1.6) and
(1.7) in R3, and the existence of global strong solutions to (1.6) and (1.7) in R?, when the
bulk potential function is Fyqg(Q). Ding-Huang [9] have studied local strong solutions of
(1.6). For non-corotational Beris-Edwards system (i.e. £ # 0), Paicu-Zarnescu [32] have
obtained the existence of global weak solutions to (1.6) and (1.7) in R3 for sufficiently
small || > 0. Later, Cavaterra-Rocca-Wu-Xu [6] have removed the smallness condition
on ¢ for (1.6) and (1.7) in R%. Wilkinson [39] has obtained the existence of global weak
solutions to (1.6) and (1.7) in three dimensional torus T3, when the bulk potential function
is the Ball-Majumdar potential Fpy(Q). The situation of Beris-Edwards system (1.6)
for the De Gennes potential F1qg(Q) on bounded domains, under the initial-boundary
condition, behaves slightly different from that on R3. In fact, Abels-Dolzmann-Liu [1, 2]
have established the well-posedness of (1.5) for any arbitrary constant . See also [15] for
related works on nonisothermal Beris-Edwards system. We also mention an interesting
work on the dynamics of @-tensor system by Wu-Xu-Zarnescu [40]. Interested readers can
refer to Wang-Zhang-Zhang [38] for a rigorous derivation from Landau-De Gennes theory
to Ericksen-Leslie theory. For related works on the existence of global weak solutions to
plified Ericksen-Leslie system, see [27, 28, 29, 19].

. dfel b previous works mentioned above left the question open that if certain weak solu-
m P element (1.5) pose either smoothness or partial smoothness properties. This motivates us
Tha Trial Version both the existence of suitable weak solutions of (1.6) and their partial regularities.
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The notion of suitable weak solutions was first introduced by Caffarelli-Kohn-Nirenberg
[5] and Scheffer [33] for the Navier-Stokes equation, and later extended by Lin-Liu [25, 26|
for the simplified Ericksen-Leslie system with variable degree of orientations. Here we
introduce the notion of suitable weak solutions to the Beris-Edwards system as follows.

Definition 1.2. A weak solution (u, P,Q) € (L¥L2N LZ2H) (2 x (0,00),R3) x L%(Q X
(0,00)) x (LPHINL2H2)(92 % (0, 0), S(()3)) of (1.6) and (1.7) is a suitable weak solution of
(1.6), if, in addition, (u, P, Q) satisfies the local energy inequality: V0 < ¢ € C5°(£2x(0,1]),

/ (uf? + [VQP)o(x, 1) di +2 / (IVul? + |AQP?)é(z, s) duds

t

(|ul®* + |[VQ|?) (8,0 + A¢)(z, s) dzds

t

+ | [(Juf* +2P)u-V¢+2VQ ® VQ : u® Ve|(z, s) drds (1.12)

\\

t

+2 [ (VQ®VQ — |VQI’L3) : V?¢(z, s) drds
Q1
/ (@, AQ] - 1 ® Vé(a, s) duds

2 /Q Q] - (VQV) + V(four(@Q)) - VQO) (x, 5) dads.

The notion of suitable weak solutions turns out to be a necessary condition for the
smoothness of (1.6). In fact, the local energy inequality (1.12) automatically holds for
sufficiently regular solution of (1.5), which can be obtained by multiplying (1.5)2 by u¢,
and taking spatial derivative of (1.5); and multiplying the resulting equation by VQ¢, and
then applying integration by parts, see Lemma 2.2 below for the details. We would like to
point out that in the process of derivation of (1.12), the following cancellation identity:

/ [Q,w]: AQ¢ dx = —/ (Q,AQ)] : Vup dx (1.13)
Q Q

play critical roles.

Now we are ready to state our main theorem, which is valid for the Beris-Edwards
system associate with both the Landau-De Gennes bulk potential Fiqq(Q) in R? and
Ball-Majumdar bulk potential Fgy(Q) in T3. We would like to point out that, due to the
technique involving a L' — L™ estimate for the advection-diffusion equation on compact
manifolds, we choose to work on the domain T3, instead of R3, for the Ball-Majumdar
potential Fy.

More precisely, we have

Theorem 1.1. For any ug € H, if either
R3, Foux(-) = Frag(-) with ¢ > 0, and Qo € H(R3, 8y n Lo (®3,8Y), or
gl S LECCR T3 1, (1) = Fiu (), and Qo € HY(T3,8)) satisfies Guu(Qo) € Ll(T3)
The Trial Version re exists a global suitable weak solution (0, P,Q): Q x Ry + R3 x R x 8 of the
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Beris-Edwards system (1.6), subject to the initial condition (1.7). Moreover,
(u7 Q) € COO(Q X (0,00) \ 2)7
where ¥, C Q x Ry is a closed subset with P*(X) = 0.

We would like to highlight some crucial steps of the proof for Theorem 1.1:

(1) The existence of suitable weak solutions to (1.6) and (1.7) is obtained by mod-
ifying the retarded mollification technique, originally due to [33] and [5] in the
construction of suitable weak solutions to the Navier-Stokes equation.

(2) For the Landau-De Gennes potential F14c(Q), we establish a weak maximum
principle of @ for suitable weak solutions (u, P, @) of (1.6) and (1.7) that bounds
the L>-norm of @ in R3 x (0,00) in terms of that of initial data Qq, see also [16].
In particular, Vlede,(Q) is also bounded in R? x (0, 00) for I > 0.

(3) For the Ball-Majumdar potential Fpy(Q), we follow the approximation scheme of
Gpm by Wilkinson [39] and use the convexity property of Gpm(Q) to bound

GeM (@) oo (T3 % [5,77), VO <6 <T < o0,

in terms of || Fenm(Qo)| 1 (rsy, 6, and T This guarantees that @ is strictly physical
in T3 x [0, T], i.e., there exists a small v > 0, depending on 6, 7T, such that

1 2
_g +'7 S A](Q(x’t)) S g -7, ] = 1)2735 V(.’L’,t) € T3 X [57T]
In particular, both Q(z,t) and fgm(Q(x,t)) are bounded in T3 x [§, T] for 0 < § <

T.

(4) Based on the local energy inequality (1.12), (2), and (3), we perform a blowing up
argument to obtain an eg-regularity criteria of any suitable weak solution (u, P, Q)
of (1.6), which asserts that if

D(2,1) =

7"_2/ (lul* +|VQP®) dwdt + (7“_2/ |P|? dadt)? < &3,
Pr(l‘o,to) P

r(xO 7t0)

(1.14)

then (xo,t0) € 2 x (0,00) is a smooth point of (u,@). The idea is to show that
(u, P,Q) is well approximated by a smooth solution to a linear coupling system
in the parabolic neighborhood ]P’%(l’o,to) of (zo,to), which heavily relies on the

local energy inequality (1.12) and interior L>-estimate of the pressure function P,
which turns out to solve the following Poisson equation:

~AP =div’(u®u+ (VQ ® VQ — %\VQPI;;)) in B,(z0). (1.15)

Here the following simple identity plays a crucial role in the derivation of (1.15):

diVZ[Ql, AQQ — fbulk(QQ)] =0in BT(CL'()), (1.16)

for Q1,Q2 € HQ(Br@?o),SO(S)). See §2 for its proof.

This blowing up argument implies that for some 6 € (0,1), ®(,, ;,)(r) < Cr3?
TN t or (z4,t) near (zg,tg) , which can be used to further show that (u,VQ) are
m Pdrelemen nlmost bounded near (xo,tp) by an iterated Reisz Riesz potential estimates in
The Trial Version he parabolic Morrey spaces, see also Huang-Wang [20], Hineman-Wang [18], and
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Huang-Lin-Wang [19]. Higher order regularity of (u, Q) near (zg, tg) turns out to be
more involved than the usual situations, due to the special nonlinearities. Here we
establish it by performing higher order energy estimates and utilizing the intrinsic
cancellation property, see also [19] for a similar argument on general Ericksen-
Leslie system in dimension two. It is well-known [33] that this step is sufficient to
show that (u, @) is smooth away from a closed set ¥ which has 73%(2) =0.

(5) To obtain P'(X) = 0 from the previous step, we adapt the argument by [5] to
show that if

limr_mrl/ (IVul? + |V2QJ?) dzdt < €7, (1.17)
Py (20,t0)

then (u,Q) € C*(Pz(xo,%0)). This will be established by extending the so called
A, B, C, D Lemmas in [5] to system (1.6).

The paper is organized as follows. In §2, we derive both the global and local energy
inequality for sufficiently regular solutions of (1.6). In §3, we indicate the construction
of suitable weak solutions to (1.6) and (1.7) for both Landau-De Gennes potential and
Ball-Majumdar potential. In §4, we prove two weak maximum principles for suitable weak
solutions to (1.6) and (1.7): one for @ and the other for Ggm(Q). In §5, we prove the first
go-regularity of suitable weak solutions to (1.6) and (1.7) in terms of ®(zp,7). In §6, we

will prove the second eq-regularity of suitable weak solutions to (1.6) and (1.7) in terms
of (1.17).

2. GLOBAL AND LOCAL ENERGY INEQUALITIES

In this section, we will present proofs for both global energy inequality and local energy
inequality for sufficiently regular solutions to the Beris-Edwards system (1.6).

Lemma 2.1. Let (u, Q) € C*°(2x (0, 00), R3 xSég)) be a smooth solution of Beris-Edwards
system (1.6). Then the global energy inequality (1.8) holds.

Proof. The proof is standard, see for instance [31, 39]. O

Next we are going to present a local energy inequality for sufficiently regular solutions

||
| pdfelement 2.2. Assume (0, P,Q) € C®°(2 x (0,00),R? x R x S(()g)) s a smooth solution of
The Trial Version hen for t > 0 and any nonnegative ¢ € C3°(Q2 x (0,t]), the following inequality
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holds on Q¢ = 2 x [0,]:

/(]u|2+|VQ]2)¢(x,t)dx+2/ (IVuP + |AQP) o drds
Q

Q1

= [ (1 +1VQP) @+ A)odads

Qt

+/ [(Ju]?> + 2P)u- V¢ +2(VQ ® VQ) : u® V¢| dzds
t (2.1)
+2/ (VQ® VQ — |VQ|*I3) : V¢ dxds

- 2/ [Q,AQ]: u® Vpdrds

=2 [ (1015 (VQVE) + V(foik(Q)) - VQ8) dads,

Proof. Using divu = 0, multiplying the momentum equation (1.6)2 by ug, integrating the
resulting equation over (2, and applying integration by parts, we obtain

1d 2 2
- u (ﬁ dx + Vul“¢dx

=5 [ 1P @0+ Aoyda+ 5 [ (uP 2Py Vode— [ (w-9)Q-AQds  (22)

—/ Q,AQ)] : Vu¢dw—/ [Q,AQ] :u® Vodz.
Q Q
Taking a spatial derivative of the equation of @ (1.6); yields

ataaQ +u- vaaQ + O0,u- VQ + 8&[Q7W] = AaaQ - aa(fbulk(Q))'

Using again divu = 0, multiplying the equation above by 0,Q¢, integrating the resulting
equation over €2, and applying integration by parts, and sum over «, we obtain
1d
2dt
1
—; [ Iv@Pasds+ [ (w910 (2o + VQVY) do
Q Q

/ |vc22¢dm+/ AQ%p du
Q Q

- /Q Q] : (AQ6 + VQV&) da
- / AQ - VQVoda / V(foute(Q)) - VQodz.
Q O

By direct calculations, there hold

—/ AQ -VQVédax
Q

a pdfelement

- / %|VQ‘2A¢ dz + / (VQ® VQ — [VQPLs) : V¢ da, (2.4)
Q Q

The Trial Version
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and
| 0.@8@ode =~ [ 1Q.0Q): Vuode. (2.5)
Hence, by adding (2.2) and (2.3) together and applying (2.4) and (2.5), we have
%% i (Juf? + |VQ*) ¢ dz + /Q (IVul® + |AQ*) ¢ dx

= ;/Q (Juf* + |[VQ?) (0 + A) ¢ dz + % /Q(|u|2 +2P)u- Védz
+/(u -V)Q - VQVodx —/ Q,AQ] : u® Vodr
Q Q
- [ Q) VQV6ds ~ [ V(fi(Q) - VQods
Q Q
+ / (VQ®&VQ — |VQI’IL;) : V¢ dx.
Q
This, after integrating over [0, ¢], yields the local energy inequality (2.1). O

We close this section by giving a proof of the identity (1.16). More precisely, we have
Lemma 2.3. For Q =R? or T3, if Q',Q? € H2(Q,SY), then
divi[Q', AQ* — foux(Q*)] =0 in Q, (2.6)
in the sense of distributions.

Proof. For any ¢ € C5°(£2), we see that

. 0?
| @101 80 = un(@](0) = [ 10180 ~ fun(Q@)) 5y —
Set
Aaﬁ - [Q17AQ2 - fbulk(Qz)]a57 v1 S awB S 37
and
_ 0%
Baﬁ—m, v1§0[7/8§3

Since Q' and Q? are symmetric, it is easy to check that
Aa,B = 7Aﬁon Baﬂ = Bﬁoca Vi<a,p<3.

We recall the following matrix contraction:

.- Pdfe|ement A:B= ASym : Bsym + Aanti * Banti-

The Trial Version 2‘6) follows. 0
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3. GLOBAL EXISTENCE OF SUITABLE WEAK SOLUTIONS

This section is devoted to the construction of suitable weak solutions to the Beris-
Edwards system (1.6). The idea is motived by the “retarded mollification technique”
originally due to [33] and [5] in the context of Navier-Stokes equations. Since the proce-
dure for Ball-Majumdar potential Fpy(Q) is somewhat different from that for Landau-De
Gennes potential F1qq(Q), we will describe them in two separate subsections.

We explain the construction of suitable weak solutions in the spirit of [5]. For f : R* — R
and 0 < 6 < 1, define the “retarded mollifier” Wy(f) of f by

Wilfl(e.t) = g [ (5. 5) Fla vt =) dyar

where

fa.t) = {g(””’t) o

and the mollifying function n € C§°(R?) satisfies

n>0 and ndxdt =1,
R4
supp 1 C {(az,t) rP<t, 1<t< 2}.
It follows from Lemma A.8 in [5] that for 6 € (0,1] and 0 < T' < o0,
divWy[u] =0 if divu=0,

sup / |Wg[u]|?(z,t)de < C sup / lu?(z,t) de
0<t<T JR3 0<t<T JR3

/ IVUg[u]|?(x,t) dedt < C \Vul|?(z,t) dadt.
R3x[0,T R3x[0,T

Now we proceed to find the existence of suitable weak solutions of (1.6) and (1.7) as
follows.

3.1. The Landau-De Gennes potential |}, (Q) = Fiag(Q) and Q = R3|. With the

mollifier Wg[u] € C®(R?*), we introduce an approximate version of the Beris-Edwards
system (1.6), namely,

9,Q% +u? - VI, [Q] — [wf, Up[Q%]] = AQ? — frac(QY),
o’ + Ty[u?] - vul + vP?

;

= Au’ — V(¥4[Q%)) - (AQ? — frac(Q?)) in Qr (3.2)
+div[¥g[Q%), AQY — frac(Q)],
divu? = 0.

to the initial condition (1.7). Here w’ = w(u?) = w.

TN dea behind the construction of suitable weak solutions to (3.2) is as follows. For a
m P element ge N > 1, set 0 = % € (0, 1], we want to findu=u’, P = P? and Q = Q? solving
The Trial Version (1.7). Since ¥g[u] and ¥y[Q)] are smooth, and their values at time ¢ depend only
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on the values of u and @ at times prior to ¢ — 6, solving (3.2) and (1.7) involves iteratively
solving (3.2) in the interval [mé, (m + 1)6], subject to the initial condition

(117 Q)‘t:mg = (u07Q9)('7m0) iIl ]Rga

for 0 < m < N —1. This amounts to solving a system that couples a semi-linear parabolic-
like equation for @) and a Stokes-like equation for u, in which all the coefficient functions
are given smooth functions.

We can verify, by the classical Faedo-Garlekin method, the existence of (ue,Qe,PG)
inductively on each time interval (m#, (m+ 1)) for all 0 < m < N — 1. Indeed for m = 0,
according to the definition of Wy, ¥y(u?) = ¥y(Q%) = 0, and the system (3.2) reduces to
a linear system

0Q% = AQY — frac(Q?)
ou? + VP? = Au?
divu? =0

(u?,Q%))t=0 = (uo, Qo)

(3.3)

in R? x [0, 0]. For the system (3.3), Q% and u’ are decouple, and u’ can be found according
to the standard theory of Stokes equations, while the equation of QY is a semi-linear
parabolic equation which can be solved by the standard method for parabolic equations.

Suppose now that the system (3.2) has been solved for some 0 < k < N — 1. We are
going to solve the system (3.2)

01Qap + - VQap — [w,Qlap = AQap — fLac(Q)as
8tuoa +u- vua + aaP = Aua - aaQBy(AQ - deG(Q))B’y

- 3.4)
510,50 ~ fuac (@)l (
divu = 0.
in the time interval [k6, (k 4 1)0] with the initial data
(u’ Q)‘t:kﬁ = (u97 QG)('7 ke) in Rga (35)

and
Q="y[Q% and 1u= Ty

Note that @ and @ are smooth functions in [k, (k + 1)6] x R3.
The existence of (u,Q) in (3.4) may be solved by using the Faedo-Galerkin method.

Indeed for a pair of smooth test functions (v, ¢) € HZ(R:)’,S((]B)) x V, the system (3.4)

turns to be
& [ wevode- [ @ vQade— [ (-0 Qlus Aas) da
a pdfelement . . .

(3.6)
| (8Qus = fLac(Qlas M) do

The Trial Version
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and
(Z/Rs(u,gb) dac+/Rs(ﬁ-Vu,QS)dx—F/RS(Vu,ng) dx
== [ (0uQ5 (8@~ frac( @000 d (37)
- [ (2.8 - fuac(@las 0104 e

in the sense of distributions. The system of first order ODE equations (3.6)-(3.7) can be

solved when the test function (1, ¢) are taken to be the basis of H?(R3, 863)) X V up to
a short time interval [k, k6 + Tp]. Performing the energy estimate for (3.4) as for the
original system, we get that for k6 <t < k6 + Ty,

sup /RS (|u9|2 + |VQ9|2 +FLdG(Q9)> dr + /k; /R3 (yvueyQ +1AQ - deG(Q€)|2> deds

t>k0

< [ (WP +19Q"P + Fiac(@") (2. k6) da.

RS

Hence T can be extended up to 6.
Let (u?, PY, Q%) be the global weak solution of (3.2) and (1.7) in Q7. Then

w e LPL2NLIH(Qr), QY € LHL N LIHZ(Qr), PP € L*(Q7).
Observe that
W? We[Q7] - (AQY — frac(Q?)) := —[¥4[Q%), AQ® — frac(Q?)] : Vu’.

Hence, by calculations similar to Lemma 2.1, we deduce that (u?, Q) satisfies the global
energy inequality: for 0 <t < T

E(u’,Q%)(t) + / (V0”2 4 1AQ° — frac(Q¥)P?) dadt
< B(u’,Q)(0) = /R (luof* + §|VQ0|2+FLdG(Qo>>(m,t> de.  (38)
Direct calculations show that
80" fuac(@) s
_ 92 ;. 9124012 , 1 0\21 (2
—a [ IVQPdo—c [ (QUPIQF + 3IVe(@P)) do

+b/ v((Q%)?* - tlr((Q;)?)I?,) vVQ dx
RB

a pdfelement

C
The Trial Version 4

/ (IVQPIQ + L 1vir((@")2) de + Cla,b.0) / VQ' P da.
R3 2 R3
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This, combined with the assumption ¢ > 0 and estimate (3.8), gives

di oo (21 + IVQP + Frac (@) (2, 1) d +-2 / (IVu’f* +|AQ") da
t R3
: / (IVQPIQP + §I9tr(Q))) da (39)
R3
<C(a,b,c)/ ]VQelzdx.
R3

Therefore we deduce from (3.9) and Gronwall’s inequality that

sup / (102 + [VQP + Fraa(Q))(a, t) da
0<t<T JR3

+/ (IVu’? + |AQ° ) dedt (3.10)
R3x[0,7]
< Cla b, ¢, T)(|[woll72 sy + 1Qoll7r1 (rs))-
From (1.1), we know that there exists a My > 0, depending on a, b, ¢, such that
c .
Flaa(@Q) = 51QI%, ¥Q € 8 with Q| = Mo.

This, combined with (3.10) and Fpqg(Q) > 0, implies that

sup [ Q2 )| de

0<t<T J{zeR3: |QO (z,t)|>Mo}

S — sup / Frac(Q")(z,t) dx (3.11)
C 0<t<T

< C(a,b,c, T)(HUOHLQ(RB) +11QollF1 oy ) -

From (3.11), we can conclude that for any compact set K C R3,

sup / Q2. 0)[* da

0<t<T JK

< sup IQ"(x,t)l4dx+/ Q(w,t) dx} (312)

0<t<T { /{xGK: |Qf (2,t)| < Mo} {z€K: QO (z,t)|>Mo}
< |K|Mg + C(a,b, ¢, T)(|[uol|72msy + QoI 71 ms)) -

From (3.10) and (3.12), we have that u? is uniformly bounded in L?H}(R3 x [0, T]), Q7 is
uniformly bounded in L? H2(K x [0, T]) for any compact set K C R?, and VQ? is uniformly
bounded in L?H}(R3 x [0, T]). Therefore, after passing to a subsequence, we may assume
that as & — 0 (or equivalently N — o0), there exist u € L{°L2 N LZHL(R? x [0,T7)),
Q € Np>o L L(Br x [0,T)), with VQ € L°L2 N L7HL(R3 x [0,T]), such that

Q" —Q in - L*([0,T], L*(R?)),
B pdfelement VQY =~ VvQ in L([0,T)], H\(R3)), (3.13)
The Trial Version u9 —u in LQ([OvT]le(Rg))'
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Hence by the lower semicontinuity and (3.8) we have that

E(w, Q) + /IRB 0.4] (IVu]* +|AQ — fLac(Q)[?) dudt

B.Q)0) = [ Gl + 5IVQuP + Fuac(Qu)(.)de  (314)

holds for 0 < ¢t <T.

Now we want to estimate the pressure function P?. Taking divergence of (3.2)s gives

—AP? = div}(Ty[u’] @ u’) + div(V(T6[Q%]) - (AQ? — frac(Q?)))
— div?([%6[Q"], AQ” ~ fLac(Q)]) (3.15)
= div*(¥p[u’] @ u’) + div(V(¥[Q"]) - (AQ’ — frac(Q’))) in R®.
Here we have used in the last step the fact that
div’[Pg[Q"], AQ” — frac(@")] =0 in R,

which follows from (1.16).

For P?, we claim that P? in L3 (R3 x [0,7]) and

H QHLS ®x[0.7]) < C(a, b,c,T, HuQ”Lz(R:s), ||Q0||H1(]R3))7 Vo € (0, 1]. (3.16)

To see this, first observe that (3.10) implies V(Wy[Q%]) € L L2NL2HL(R? x [0, T]). Hence
by the Sobolev interpolation inequality we have that

0 0
HV(‘PG[Q ])HL}OL%(R3X[O,T}) < CHV(\I’G[Q DHL;”L%QL%H%(R?’X[O,T})
< C(a, b, C, T, Hu0||L2(R3), ||Q0HH1(R3))
By Holder’s inequality we then have that
V(6[Q%) - (AQ’ )
[V (@6[Q°) - (AQ” — frac(Q”) HL3L14 R3><[0T})
6 0
< HV(\IJG[Q ])HL%OLi—g(R?’X[O,T])H Q - deG HL2(R3><[O,T]) (3'17)
< C(CL, b, C, T, HuOHL2(R3)7 ”QOHHI(R:”))

By Calderon-Zygmund’s LP-estimate [35] {4}, we conclude that P? ¢ Lg([(), T] x R3), and

H 6HL3 0T]><R3)
< O|[[wa) o ] 5

5 15
L3 LI (R3x [O,T])}

+ [V (a[Q°)) - (AQY — frac(@?))]

L3 (R3x[0,T7)
0 0 0

< O[04 o + V(0@ (A7 — frac(@ M3 08 ooy

< Cla,b, ¢, T, gl L2 (rs), [|Qoll 11 (r3)) -

- s from (3.16) that we may assume that there exists P € Lg(R3 x [0,T]) such that
pdfrelement

The Trial Version Pe — P in L%(R3 X [07T])' (318)
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From (3.2) and the bounds (3.10) and (3.11), we have that
o’ = —Ty[u’] - vu’ — VP + Au’ — V(4[Q7) - (AQ? — frac(Q?))

+div([Te[Q7], AQ? — deG(QO)])

€ Li (R x [0,T]) + L3 ([0, T], W + () LA(0,7), W3 (Bg)),
R>0

and for any 0 < R < oo,

or’|
H L% @oxio+23 (0w 8 @)+ L2011, w13 (Br)) (3.19)
< C(CL, b, C, R, T, ”110||L2(]R3), ||Q0HH1(]R3))7 Vo € (0, ].]

Similarly, it follows from (3.2); and the bounds (3.10) and (3.11) that 9,Q% € L%(RS X
0, 7)) + Niso L2(0, T, L# (BR)), and

o] < O(ab.e, BT, Juoll 2wy, |Qollmss)). (3:20)

3 (R3%[0,T))+L2([0,T],L3 (Br))
for all 0 < R < oo and 6 € (0, 1].

By (3.10), (3.11), (3.19), and (3.20), we can apply Aubin-Lions’ compactness Lemma
([36]) to conclude that for any 0 < R < oo,

(u, Q% vQ’) = (0,Q,VQ) in L3(Bgrx[0,T]), as 6 — 0. (3.21)

On the other hand, it follows from Fpqq(Q?) > 0 in R? x [0, T and (3.10) that

sup IVQ?*(z,t) dw < C(a,b,c, T, ol r2(rs), | Qoll m (gs))-
0<t<T JR3

Hence by (3.21) we also have that for any 1 < p; <6 and 1 < ps < 13—0,
Q° = Qin LP' (Br x [0,T]); u’ = u in LP2(Bg x [0,T]) as 6 — 0. (3.22)
With the convergences (3.13), (3.18), and (3.21), it is not hard to show that the limit
(u, P, Q) is a weak solution of (1.6) and (1.7), i.e., it satisfies the system (1.6) and (1.7) in

the sense of distributions (see also [31] Proposition 3). We leave the details to interested
readers, besides pointing out that in the sense of distributions, as 8 — 0,

VP! — V(¥[Q°) - frac(Q’) = VP —VQ - frac(Q) = V(P — FLac(Q)).

. dfel ow that (u, P, @) is a suitable weak solution of (1.6), observe that, as in Lemma 2.2,
pdfelement est equations of u? in (3.2) by u?¢, and taking a spatial derivative of the equation
The Trial Version (3.2) and then testing it by VQ%¢ for any nonnegative ¢ € C$°(R? x (0,1]), to
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obtain the following local energy inequality
t
/ (0’1 + VQY)?) p(a, t) dx + 2/ / (IVu’? + |AQ% ) ¢ dxds
R3 0 R3
t
_ / / (W + [VQ12) (016 + A9) +2VWe[Q°] 2 VQ” - u 2 V| duds
/ / (02U 0] - Vo + 2P0 - Vi + 2V (W9[Q"]) - frac(Q")u’) dads
+2 / / [W0[Q7], frac(Q%)]) : Vu’e duds
+2/ / (VQ' @ VQ’ - |[VQ°’L3)) : V¢ dxds
0 JR3
t
—2/ / [Wg[Q%], AQ? — fLac(Q%))) : v’ ® Vo dxds
R3
)] / / 0 Wy[Q0)] : VQIV dxds
R3
2 [ [ Vrac@)- Vs ards (323)
0 JR
Taking the limit in (3.23) as # — 0, we see by the lower semicontinuity that it holds
t
/ (Juf? + |VQ[*) (. t) da:—i—Z/ / (IVul® + |AQ[*) ¢ dzds
R3 0 JR3
.. 0,2 02
< limint [/R (0P + VQY1?)(x, ) do
t
+2/ / (|vu9|2+|AQ9|2)¢dxds]
0 JR3

While it follows from (3.21) and (3.22) that

éir% Right hand side of (3.23)
t
_ 2 2
_/0 /RS (|uy +|VQ )(ﬁtgb—l—Aqﬁ)dxdt
t
+ /0 /R (P + [VQP +2(P ~ Frag(@)u - V6) +2YQ @ VQ - u @ Vo drds
t
+2/ / (VQ ®VQ — |VQ*I3] : V¢ dads

// [Q,AQ] : u® V¢drds

B pdfelement

/ / (wWQ — Qw) : VQV ¢ drds — 2 / / V(frac(Q)) - VQo duds.

The Trial Version
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Here we have used the following convergence result

t t
/ VU[Q]) - frac(Q®)u’e duds — / / VQ - fric(Q)ud deds
0 R3 0 R3

t

= / /3 V(FLd(;(Q))u¢ dxds (3.24)

o JR

t

= —/ / FLdG(Q)qubd:nds.
o JRr3

Putting these together yields the desired local energy inequality (1.12) for (u, P, Q). This
completes the proof of the existence of suitable weak solution in the first case. O

In the next subsection, we will indicate how to construct a suitable weak solution of
(3.2) for the Ball-Majumdar potential function.

3.2. The Ball-Majumdar potential | Fi,,ii(Q) = Fem(Q) and Q = T3 |. Since Gpy,
given by (1.3), is singular outside the physical domain

1 2
D= {Q 6883) P o3 < Ai(Q) < 3

we need to regularize it. For this part, we follow the scheme by Wilkinson [39] (Section

3) very closely. First we regularize it by using the Yosida-Moreau regularization of convex
analysis [37] [11]: For m € N, define

Giv(Q) == inf {m|A - QP+ GBM(A)}, vQ € S(()?’).
Aes{?

1:1,2,3},

Then smoothly mollify éELM through the standard mollifications:

GEv(Q) == | Gin(Q — R)®y(R) dR,

s
where ®,,,(R) = m°® (mR), and ® € C§° (883)) is nonnegative and satisfies
supp ® C {Q es?: Q| < 1}, /5(3> ®(R)dR = 1.
0

As in [39] Proposition 3.1, G\, satisfies the following properties:
(GO0) GByp is an isotropic function of Q.
(G1) GBy € C°°(8(§3)) is convez on Ség).
(G2) There exists a constant go > 0, independent of m, such that for any m € NT,
GI(Q) > —go holds for all Q € S,
(G3) GEL(Q) < GIEYQ) < Geum(Q) on 8 for all m > 1.
(G4) GEy — Gewm and VoGEy — VoGeum in LS. (D), as m — oo.

loc

(Gb) There exist a(m), B(m),y(m) > 0 such that

a(m)|Q] — Bm) < [(VoGEu(Q))] < (m)(1+1Q)), ¥Q € 5.
.- pdfelement or k > 2, there exists C'(m, k) > 0 such that

The Trial Version (VEGE(Q)] < Clm, k)1 +[Q%), vQ e 8.
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For our purpose in this paper, we also need the following estimate on G3y;-

Lemma 3.1. For any m € N*, G\, satisfies
m 3) .
B(Q) = IR — 0. vQ € S with [Q| > 11, (3.25)
where go > 0 is the same constant given by (G2).

Proof. Since Gam(Q) = oo for Q ¢ D, it follows from the definition of é]g”M and (G2) that
~m — _ 2
Ba(Q) = inf {mlA— QP + Gou(4)}
. . 2 _
> inf {MIA Q| } 90
= mdist? (Q,@) — go-

Thus for any Q € 883) with |@] > 10, we have

~m 2 1o Ql\2 m, A2
>m ——)—go=>m(—%=)" —go=— — go-
B (@) = m(|Q| \/3) 90 = (\/5) 90 =3 QI — g0
It is not hard to see that this estimate, along with the definition of GJ;, yields (3.25).
The proof is now complete. O

Now we set
Fi(Q) =GB (Q) - 51Q%, vQ € 577,
and
Fia(Q) = (VoG (Q) — #Q, vQ € 8.
Observe that the convexity of G§,; on 8(53) yields that

trVo En(Q)(VQ, VQ) = ' VH Fi(Q)(VQ, VQ) > —k|VQP, (3.26)

for all Q € HL(Q, 8.
Note that if we view a function on T? as a Z3- periodic function on R3, then the “re-
tarded” mollification procedure given in the previous subsection can be directly performed
on functions defined in T3.
Similar to the subsection 3.1, we can introduce an approximate system of (3.2) for the

Ball-Majumdar potential as follows. For T > 0 and a fixed large N € N, let 0 % €
(0,1]. Then we seek (u?™, P%™ Q%™) that solves
( 8tQ0’m 4 u@,m . V\IIH[QQ,WZ] _ [wé’,m7 \I,Q[QG,m”
~s0m @,
Opa ol ] W AV (3.27)

= Aulm = V(0[] - (AQM — f,(Q"™)
v ((26[Q""], AQ™ — fi3,(Q")]).

divu?™ = 0,

a pdfelement .
Vue,m _(VUG,m)T

The Trial Version , T, subject to the initial condition (1.7). Here w®™ = w(u?™) = 5
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Since the system (3.27) is simply the system (3.2) with frag replaced by fg}, we can
argue as in the subsection 3.1 to find a global weak solution (u?™, P%™ Q%™) of (3.27)
and (1.7) in Q7 = T3 x [0, 7] such that

um e L2 N L2HNQr), QY™ e L°HL N L2H%(Qr), P*™ e L*(Qr).

Moreover, by calculations similar to Lemma 2.1, we deduce that (uevm, Q97m) satisfies the
global energy inequality: for 0 <t < T,

B Q@)+ [ (Va4 1AQM — fi(@™) ) dade
T3 x[0,4]

= B Q"0 < [ (Gl + 5IVQf + P @) @) de. (328)

It follows from (3.28) and (3.26) that

[ 180" = (@

>< b

= [, (AQT R IAR@I ™ —28Q"™ (@) dei
>< b

= /T _— (1AQ™™* + | fE(Q"™)? + 20V o fia (Q7™)(VQ™™, V Q™)) dadt

> [ (1AQU QU — K1V QP ) dadr.
T3 x[0,t]

Substituting this into (3.28) and applying Gronwall’s inequality, we obtain that for any
0<t<T,

Bl Q)+ [ (VO IAQPT ¢ L QO e
%[0,

< [ Gl + 519l + Fone(@0) () d (329)

It follows from (3.28) that

a pdfelement

1 1
swp [ F(@ (et de < [ (GluoP + 5I9QuP + Foni(@0) o) d
The Trial Version 0<t<T JT3 T3
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This, combined with (G2) and (3.25), implies that there exists a sufficiently large mg =
mo(#5k, go) € NT such that for all m > my,

my K m

-9 [ Q"™ () da

8 27 Jiwers: |QOm (20|11}

< 1R = g0) = S1Q™ ] (z,t) da

/{xew: QO (a,1)] 211}

<

/ FIA(QO™) (x, 1) da
{zeT3: |QV™ (x,t)|>11}

- / FR(QP™) (2, t) da — / Fif(Q"™)(x,t) dw
T3

{2€T3: QO (2,0)|<11}

= [, Bt da

KR
-, [#(GE@"™) + ) = 510" — ] (a.1)
{z€T3: Q¥ (x,t)|<11} 2

< [ F@ i de s [

K
(vg0 + 21Q"™ (1)) dx
{2€T3: |Q0m (a,t)|<11}

121k
2

holds for any 0 < ¢ < T. Therefore we conclude that for m > my, it holds that

)IT?|

< [ Gl + 519Quf + Fons(Qu)) &) o + (o0 +

sup | QU (w,t) dx
0<t<T JT3 (3.30)

< C(JJuoll 2z, | Qollars x| Fisna Qo) 1 29y, 0, 1)

As in subsection 3.1, the pressure function P%™ solves

— ApPP™
in T3.  (3.31)
= div? (Tp[u”™] @ u™) + div(V(Le[Q™™]) - (AQ™™ — fE(Q™™)))
We can apply the same argument as in the previous subsection to conclude that P?™ e
L3(T3 x [0,T)), and

Hpe’mHLg(TSX{QTD < C(HHOHL2(’H‘3)= 1Qoll 1 (73), [ FBa(Qo) [l 21 (), # go,ﬂ>~ (3.32)

With estimates (3.32) and (3.29), we can utilize the system (3.27) to obtain that

ot

LQ([OVTLW_IA(TS)) (333)

< C(HUOHLQ(RS)v 1Qoll zr1 sy | FBM(Qo) [l L1 (13Y, #, 90, fi),

,m‘

.- pdfelement < C(HUOHL?(R3)7 [Qoll et sy 1 FBM(Q0) || L1 (135 #4 90, /@), (3.34)

The Trial Version y for 0 € (0, 1] and m > mg.

L£2(/0,7,L3 (T3))
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For each fixed m > mg, we can assume without loss of generality that there exists
(™, P, Q™) € LFL2 N LH(Qr) x L3 (Qr) x L*Hy(Qr)
such that as 6 — 0,
(w/" —~u™ in LZHNQr),
u’m™ 5 u™ in LP(Qr) Vi<p< 1*30,
pPém s pmoin L3 (Qr),
QU™ — Q™ in LIHZ(Qr),
Q'™ — Q™ in LiL3(Qr), V1 <1 s < oo,
AQP™ — [ (QP™) — AQ™ — fE(Q™) in L*(Qr),
( FRa(QY™) = Fiy(@™) i LY(Qr).
As in subsection 3.1, we can now verify that (u™, P™, Q™) is a weak solution of
9QM +u™ - VQ" — [w", Q"] = AQ™ — fE(Q™),
ou™ +u™ - vVu™ + V(P — F,(Q))
=Au” —VQ™ - AQ™+div[Q™, AQ™],
divu™ = 0,

in T2 x [0, T, subject to the initial condition (1.7).
By the lower semicontinuity the following global energy inequality holds: for 0 <¢ < T,

1 1
LGB + 5IVQE + P @) (w0 do

(3.35)

4 / (VU™ + |AQ™ — 4 (Q™)?) dadt
T3 x[0,t]

1 1
< [ (GluoP + 5I7QuP + Fia(@0) () (3.36)
and

B QO+ [ (V0 IAQTE ¢ g (@) dev

1 1
< €T /3(2\110\2 + 5 IVQu? + Fint(Qu))(w) da, ¥ € 0,7). (3.37)
T
Also it follows from (3.30), (3.32), (3.33), and (3.37) that
max { Q" 121, 12715 @y 1900 gy HatQmHLfL§<QT>}

< C(HUOHLZ(’E?’)7 1Qoll &1 (13), [ FBM(Q0) | 1 (73), #5 9o, H)- (3.38)

Furthermore, we can check that (u™, P™, Q") is a suitable weak solution of (3.35) by
verifying that it satisfies the local inequality (1.12) with fix replaced by fgi;-

To show that as m — oo, (u™, P™, Q™) gives rise to a suitable weak solution of (3.2),
to first show that Q™ lies in a strictly physical subdomain of the physical domain
TR GpMm(Q) blows up as @ € D tends to dD. This amounts to establishing an L°°-
m pPdfelement > of Gy (Q) in terms of the L'-norm of Gpy(Qo), which was previously shown by
The Trial Version bn [39] in a slightly different setting.
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More precisely, we need the following version of a generalized maximum principle.

Lemma 3.2. There exist mg € NT and a positive constant Cy, independent of m, such
that for all m > my,

HGTBnM(Qm)(vt)HLOO(Ts) < Cﬂtig HGBM(QO)HLI(T;a) + Co, VO <t <T. (339)

For now we assume Lemma 3.2, which will be proved in §4 below. We may assume
without loss of generality that there exists

(w,P.Q) € L¥Ly N LIH}(Qr) x L3 (Qr) x L*H} N LFH}(Qr)
such that
u™ —~u in L?HXQr),
u” —-u in LP(Qr), V1<p< 13—0,
P™ P in L3(Qr),
Q™ —Q in LHZ(Qr),
Q™ — Q in LiL3(Qr), V1 <r,s < oo.
From (3.39), we can also deduce that for any 0 < 6 < T,

1GEM@)| oo (3 517y < (Co75 + e[| Gent(Qo) | 1 sy + K€ (3.40)

By the logarithmic divergence of Gpy as Q € D — 9D and (3.40), we conclude that for
any 0 > 0, there exists eg = €¢(9,7") > 0 such that

Q(x,t) € Doy, Y(x,t) € T? x [6,T], (3.41)

where ) 0
D., = {Q €D: 3 +e0 < MQ ) <5 —eo, i = 1,2,3}. (3.42)

From (3.39) and the quadratic growth property of Gf,;, we also see that there exists
Cy > 0, independent of m, such that for m > my,

Q™ (z,t)] < Chy, (x,t) € T3 x [0, T]. (3.43)
We now claim that
fBM(Q™) = fam(Q) in L*(T? x [6,T)), as m — oo. (3.44)

To see this, first observe that (3.37) yields that fgi;(Q™) is uniformly bounded in L*(T? x
[0,T]). Thus there exists a function f € L?(T? x [0, T]) such that

fEn(Q™) — [ e LA(T° x [0, T)).

Now we want to identify f. It follows from Q™ — @ in L?(T3 x [0,T]) that there exists
En C T3 x [0,T)], with |E,,| — 0, such that

Q™ — Q, uniformly in T3 x [0, T]\ Ep,
which, combined with Q(T? x [, T]) C D.,, yields that for sufficiently large m,
Q™(T3 x [6,T]\ Em) C Dsy.

.- pdfelement i — fBM in W17°°(D%o), we conclude that

The Trial Version f]gnM(Qm) — fBM(Q)v uniformly in TS X [5’ T] \ En.
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Therefore f = fpm(Q) for a.e. (z,t) € T3 x [0,7], and (3.44) holds.
From (3.44) and AQ™ — AQ in L*(T? x [0,T]), as m — oo, we see that
AQ™ - fEn(Q™) = AQ — fam(Q) in L*(T* x [0,T]), as m — oo,
With all the estimates at hand, it is rather standard to show that passing to the limit in
(3.35), as m — oo first and 0 — 0 second, yields that (u, P, Q) is a weak solution of (3.2).

While passing to the limit in the local inequality for (u™, P™, Q™), as m — oo first and
then § — 0, we can also verify that (u, P,Q) satisfies the local energy inequality (1.12)

with fouk(@) replaced by fem(Q). O
4. MAXIMUM PRINCIPLES

In this section, we will show the maximum principles for any weak solution (u, @) of
(1.6) and (1.7) in R3 with the Landau-De Gennes potential function Fiqg(Q), see also
[16, 17], and in T3 with the Ball-Majumdar potential function Fgp(Q), see also [39]. These
will play important roles in the proof of partial regularity of suitable weak solutions to
(1.6) in the sections 5 and 6 below.

Lemma 4.1. For (ug,Qo) € H x Hl(R3,S(()3)), let (w,Q) € L?HL(R? x R;,R3) x
L?H2(R3 x R+,Sé3)) be a weak solution of (1.6)-(1.7). If, in addition, Qo € LOO(]R?’,Ség))
and ¢ > 0, then there exists a constant C > 0, depending on ”QOHLOO(RB) and a,b,c, such

that
|Q(x,1)] < C, Y(z,t) € R® x Ry. (4.1)

Proof. This is a well-known fact. The readers can find the proof in [16, 17] or [31]. O

Next we will give a proof of Lemma 3.2, which guarantees that @ lies inside a strictly
physical subdomain D, so that Fgm(Q) becomes regular and hence fgy(Q) is bounded.

Proof of Lemma 3.2. It follows from the chain rule and the equation (3.35); that G (Q™)
satisfies in the weak sense

% (Gpm(Q@™)) +u™ - V(G (Q™))
= A(GEW(Q™)) — tVHGEM(Q™)(VQ™, VQ™) — fi(Q™)(VoGEnm(Q™)),
< A(GEu(Q™)) = (H(VeGEMm(Q™) = k™) (VGEm(Q™) (4.2)
2
< A(GE(Q™) + 5 1Q™
in T3 x (0, 7. Indeed, this can be obtained by multiplying (3.35)1 by (VoGE(Q™)) and

using the fact Gy is a smooth convex function. Therefore G (Q™) € L HL (T3 x[0,T7)
satisfies in the weak sense

1‘62 :
O/(GE(Q™) +u™ - V(GE(Q™) < AGEW(Q™) + 5 |Q"*, in T2 x (0.T]. (43)

It follows from (3.36) and (3.38) that Q™ € L?H2(T3 x [0,T]). In particular, by Sobolev’s
embedding theorem, we have that

“L?Lgo(Tg’X[O,T}) < C(”“OHLQ(TS)’ ||Q0”H1(']T3)7 ||FBM(Q0)||L1(T3)7H7 90, ’%) . (44)

a pdfelement

the drifting coefficient u™ in (4.3) is not smooth and @™ is not bounded in
The Trial Version T], we can not directly apply the argument of §8 in [39] to prove 3.39. Here
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we proceed it by first considering an auxiliary equation with mollifying u™ as the drifting
coefficient. More precisely, let u™ be a standard e-mollification on T3 x [0, 7] for 0 < € < 1.
Then u™ € C*(T? x [0, T]) satisfies divu™ = 0 and

u™ — u™ in LZHNT? % [0,7)), as e — 0.
Also let g™ be e-mollifications of |Q™[? in T®>x[0, T, and " be e-mollifications of G\ (Qo)
in T3. Then it follows from (4.4) that for all m > my,

HQmHLng;o(T3 [0,71) —HQmHLQLw(TB [0,71)’

1] 1 sy < 11 Gmat(@0) | 1 s,
and
g™ — |Q™* in L3(T3 x [0,T]), h™ — G\ (Qo) in LY(T?), as e — 0.
Now let v € C°°(T? x [0,T]) be the unique solution of

2
Bpu™ + U™ - Vot = Av™ + g™ in T3 x [0, 7],

2 (4.5)
= h" on T3 x {0}.
For v, we will modify the argument as illustrated in [39], §8, to achieve that for 0 < t < T,
_5
HUT('J)HLW(W) <Ct 2 HGBM(QO)HLl(T3) + Co. (4-6)
To show (4.6), decompose v = v; + v, where vy solves
o1 +ul’ - Vo = Avy, in T3 x [0, 7],
4.7
vlth—/ R, on T3 x {0}, (47)
T3
and vy solves
2
Oy + 1" - Vg = Avg + igzn, in T3 x [0,T],
2% (4.8)
vy = / h, on T3 x {0}.
T3

For vy, we can apply the L' — L estimate for advection-diffusion equations on compact
manifold [7] as in Lemma 8.1 of [39] to conclude that

_5 m m
01+ )| oo ey < CE 3[R — /T |y < OF 2|1 Con(@0) gy (49)

forO0<t<T.
While for vy, we can multiply (4.8)1 by |v2[P~2ve, p > 2, and integrate the resulting
equation over T? to get
2
HU? HLP(T3) < 5“96 HLp T3) o2 (1)) Lp(T3)

IN

K281 m
a5l T 17 198" )] o s [l o2()

B pdfelement

The Trial Version %HQ&(t)HLP(T?’) < g}’]rﬂgugzn(t)‘l[,oom?,)a




26 HENGRONG DU, XIANPENG HU, CHANGYOU WANG

and hence

k2, o1 (T
Jex Ol oy < O oy + ST [ 20 ot O < <7
Sending p — oo and applying (4.4), we obtain that for 0 <t < T,
HvQ(t)HLOO(’]l‘3)

. K2 T
<Ol + 5, [ 10" Oy (410)
0

< HGBM(QO)HLl(’ﬂ‘3) + C(||u0”L2(’JI‘3)v 1Qoll 1 (13, [ FBM(Q0) || £ (73), #, G0, fi)-

Putting (4.9) and (4.10) together yields (4.6).
It is not hard to see that as e — 0, there exists v™ € L{°L2 N LZH(T? x [0,T]) such
that v — v™ in L?(T3 x [0,7]). Passing to the limit in the equation (4.5), we see that

v™ is a weak solution of
2

8tvm+um-va:Avm+g—H\Qm|2 in T3 x [0, 7], (a11)
V™ = G (Qo) on T3 x {0}.
Moreover, passing to the limit of (4.6), we have that for any 0 <t < T,
_5
H’Um(.’ t)HLOO(’]I‘B) < (Ct 2 HGBM(QO)HLl(T?’) + Cp. (412)
Now observe that by the comparison principle on (4.3), we know that for m > my, it

holds. )
B (@) (@, 1) < 0™(1) < Ct3(|Gni(Q0) | 1 sy + Co,
for all (z,t) € T3 x [0,T]. This, combined with (G2), yields (3.39). O
Note that passing to the limit in (3.39), the suitable weak solution (u, P, @) to (3.2),
constructed in §3.2; satisfies that for any 0 < 6 < T,

_5
HGBM(Q)HLOO(TSX[(S,TD < Cpd™2 HGBM(QO)HLl(TS) + Co. (4'13)
This completes the proof of Lemma 3.2. 0

5. PARTIAL REGULARITY, PART I

This section is devoted to establishing an eg-regularity for suitable weak solutions (u, Q)
of (1.6) in £ x (0, 00) in terms of renormalized L3-norm of (u, Q). The argument we will
present is based on a blowing up argument, motivated by that of Lin [24] on the Navier-
Stokes equation, which works equally well for both the Landau-De Gennes potential F1q¢
and the Ball-Majumdar potential Fyr. More precisely, we want to establish the following

property.
Lemma 5.1. For any M > 0, there exist eg > 0, 0 < 19 < %, and Cy > 0, depending on
M, such that if (u,Q, P) is a suitable weak solution of (1.6) in Qx (0, 00), which satisfies,
(wo,t0) € Q x (r?,00) and r > 0,

a pdfelement {]Q| <M if Fou = Frac and Q = R3,

‘ PT’ ) 5.1
’GBM(Q)’ < M if Fbulk = FBM and ) = P]I‘37 n (ZO) ( )

The Trial Version
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and
2
r_2/ (|u|3+\VQ|3)d:cdt~|—(r_2/ P} dedt)” < < (5.2)
PT(ZO) IP]'r‘(ZO)
then
2
(TOT)Z/ (uf? + |VQ[?) dadt + ((Tor)2/ (P} drdt)
PTQT(ZO) PTQT‘(ZO)
1 2
< puax{r? [ (P VQPdedr (2 [ (PR dadt)’ i} (53)
2 P, (20) P, (20)

Proof. We prove it by contradiction. Suppose that the conclusion were false. Then there
exists My > 0 such that for any 7 € (0, %), we can find ¢; — 0, C; — oo, and r; > 0, and
2 = (2i,t;) € R® x (r?,00) such that

< M, if Foue = Frag, .
QI < My 1 bulk LG, P, (z), (5.4)
|GeMm(Q)| < My if Fouk = Fu,
and
rﬁ/ ([u]® + |VQI?) dzdt + (rﬁ/ |P|2 dzdt)” = €, (5.5)
P (2 P, (2:)
but

(m)—Q/ ([uf® + |VQP) dwdt + ((m-)—2/ \P|} dedt)’
]P)T’!Z (Zz) IP)T’V',L' (Zz) (56)

1
> 5 max {6?, CZ-?"?}.

From (5.6), we see that

Cirf < 2(Tri)2/ (]u|3 + |VQ]3) dxdt + 2((77“2-)2/ |P|% da:dt)2
IP’TTZ. 2 P

T, (Zz)

< 27—4{772/ ([uf + [VQP®) dwdt + (7‘[2/ \Plgdwdt)z}
]P'ri(zi)

Pr; (2i)
= 27743
so that 08 1
ry < (7;4) 3 — 0.
Also from (5.4), we know that there exist Cp > 0 and dp > 0 such that in the case
Fruix = Faum,
Q(2) € D5, and | fm(Q(2)) + [Vofem(Q(2))] < Co, Vz € Pr,(2:). (5.7)

Define a rescaled sequence of maps
(u;, Qi, P)(z,t) = (riu, Q,T?P) (z; + iz, t; +1r2t), Vo € R, ¢ > —1.
Then (u;, Q;, P;) is a weak solution of the scaled Beris-Edwards system:
- Qi+ - VQ; — [w(wi), Qs] = AQ;i — 7 fou(Qi),
m pdfelement O +u; - Vu; + VP = Au; — VQi-AQ; — div[AQ;, Qil, (5.8)
divu; = 0,

The Trial Version
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where
Vui — (Vui)T

w(ui) = B

Moreover, (u;, Q;, P;) satisfies

/ (lw® +|VQi[*) dzdt + (/ P2 dedt)® = &2, (5.9)
]P’l(O) Pl(O)
and
1
72/ (Jw® +|VQi|?) dadt + (7'2/ ]Pz]% dxdt)2 > —max {e},Cir?}.  (5.10)
P-(0) P (0) 2
Define the blowing-up sequence (ﬁi,@i,ﬁi) : P1(0) = R? x S x R, of (w;,Q;, P;), by
letting
~ A B u Qi—Q; P
) i?Pi = 77727 7v = 7t P 07
(@0 P)() = (S5, 22 )6, v = () e B(0)
where

1
_ Qi
P1(0)] Jpy0)
denotes the average of Q; over P1(0). Then (u;, Q\i, ﬁl) satisfies

(

Qi

@’i - 07
P1(0)
/ (6if? + VO, ?) dadt + (/ B3 dudt)? = 1, (5.11)
PP1(0) P1(0) 3
7'2/ (Jag] + |V@z]3) dzdt + (7'2/ ]ﬁllg dxdt)2 > }max{l,Ci%},
( -(0) P, (0) 2 i

and (u;, @i, ﬁl) is a suitable weak solution of the following scaled Beris-Edwards equation:

~ . ~ R ~ r2

0Q; + & - VQ; — [w(U;), Q] = AQi — 2 foux(@i),

o; +e;u; - Vu; + VP, = Au; — ,VQ;AQ; + diV[Qi, AQl] (5.12)

divu; = 0,
From (5.11), we assume that there exists

(8,Q. P) € L}(B1(0)) x L}W, A (B1(0)) x L2 (B1(0))
such that, after passing to a subsequence,
(@1, Qi B) — (8,Q, P) in L*(P1(0)) x LIW}3(P1(0)) x L3 (P1(0)).

It follows from (5.11) and the lower semicontinuity that
[ qapevan+ ([ e (5.13)
P1(0) P1(0)

er, we claim that

a pdfelement

e iHL;’OLg(IP%(O))ﬂL%H;(P%(O)) + HinHL?"L%(P%(O))mLfH;(]P’%(0)) < C<oo (5.14)
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To show (5.14), choose a cut-off function ¢ € C§°(IP1(0)) such that
0<¢ <1, ¢=1onPi(0), and [9g] + [Vo| +|V?¢| < C.

Define
gilat) = o2 _Qti), V(z,t) € R® x (0, 00).

r; ’I”i

Applying Lemma 2.2 with ¢ replaced by ¢? and applying Hélder’s inequality, we would
arrive at

< C[/ (Jul? 4+ |VQ|*)|(0; + A)p?| dxdt

(25
T4 (1

+ / (a2 + [VQP + | P[)[u]| V?| dudt + / VQPIV(?)
Pr, (2

IPTZ. 2

[ 18Q1+ o@Dl + [V fouQ)IIVQI 7 dad].

Observe that

1
/ |AQ||u||V¢?| dzdt < 2/ |AQ|*¢? dadt 4 C lu|?| Vs |* dzdt.
Pri Zi ]Pri Zi

Py, (i)

Substituting this into the above inequality and performing rescaling, we obtain that

Sup/ (\ﬁi]2—|—]A@¢\2)dag+/ (V&2 + V20, 2) dadt
B1(0) P, (0)

1
—l<i<o

1
2 2

< C[/P (0)(|ﬁi|2 +VQil?) + (et ? + | VQil* + | i) |6 dmdt}
1

2 ~
+C[/ ”|ﬁi|dxdt+r$/ |VQi12dxdt}
P1(0) €i P1(0)

2
<o+ Z— +r?) < (5.15)

This yields (5.14). From (5.14), we may also assume that
(@, Qi) = (@, Q) in LFH,(P1(0)) x L7H(P1(0)). (5.16)
Since r; < g and by (5.7) |Q;| < My and | fou(Qs)| + [V foui(Qs)| < Co in P1(0), there

(3) , with |Q| < Mj, such that, after passing to a subsequence,

Qi—Q in L*P:(0).

exists a constant Q € S

9
T .
ﬁfbulk(Qi) —0 in L™

]

(0))-

1
2
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(0) = R3 x 863) X R solves the linear system:

Q- AQ=[w@,Q),
od — Au + VP = div([Q, AQ)), (5.17)
diva = 0,

Applying Lemma 5.2 and (5.13), we know that

(@,Q) € Cx(By), Pe 1%(-(1)%0L,C%(B, (1))

1
4

NI

satisfies

[ V@ st s (-t [P ety
P~ (0) P~ (0)

3073/ (|ay3+yv@|3)da:dt+(/ PJ3)?
P, (0) P (0)

1
2

<C7, vV 71e(032). (5.18)

We now claim that
(@, VQi) = (8, VQ) in L*(P5(0)). (5.19)

To prove (5.19), first observe that (5.15) and the equation (5.12) imply that
6 3 g3 ~ 3 3
O € (LIH ™' + L2LG + LEW, 2 (P2(0)); 2:Qi € Lf L (P3(0)),
enjoy the following uniform bounds:

(e (LgH;1+L§L§+Lt%W;L%)(P%(O))
< Ol g2 e

o) + IVUill 22, 0 + ||V@i”%3(1p%(o)) + Hv2@i”L2(P% )

NI
NI

— )

and

16,30, 0
< C[“@i||LfH;(IP%(O)) + HVGZ'HLQ(]P’%(O)) + Hv@i”Li”(P%(O)) + HﬁiHLi”(]‘P’%(O))]
<(C.

Thus we can apply Aubin-Lions’ compactness Lemma to conclude the L3-strong conver-
gence as in (5.19).
It follows from the L3-strong convergence property (5.19) that for any 7 € (0, §),

(@l +[VQif*) = 7_2/ ([° +[VQI®) +7%0(1) < O7° + 7 %0(1), (5.20)
) pdfelement & P+ (0)
1) stands for a quantity such that lim o(1) = 0.

1—00
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Now we need to estimate /‘Ehe pressure IA’Z First, by taking divergence of the second
equation (5.8)2, we see that P; solves
AP = —div?[t; @ G + (VQ; © VQ; — %|V@i|2f3)] in B, (5.21)
where we have applied Lemma 2.3 to guarantee
diV2[Qi,A@i] =0 in Bj.
We need to show that

7—2/ |B)|2 dwdt < Cm2(ci + 0o(1)) + Cr, Vi > 1. (5.22)
-(0)

To prove (5.22), let n € C§°(B1(0)) be a cut-off function such that n = 1 in Bs(0),
8
0 <n < 1. For any —(%)2 <t <0, define Pi(l)(-,t) :R3 — R by letting

N L N 1
Pi(l)(% t) = o ViG(z — y)n(y)eilt; @ 4; + (VQi @ VQ; — §|VQ1'|213)](3/7 t)dy, (5.23)

where G(-) is the fundamental solution of —A in R3. Then it is easy to check that
PO (. t) = (P, — PY)(-, ) satisfies

(2

~APP(#)=0 in B:(0). (5.24)

o]

For ]31.(1) , we can apply the Calderon-Zygmund theory to show that

. R R
|1 )HL%(H@) < Ceifl[illZs s, (o)) + IVQill L, 0)] (5.25)

so that
. ) A
12V < Ceilllills, o)) + IIVQ: 1356, 0p)

< COei+o(1)). (5.26)

L3, (0)

From the standard theory on harmonic functions, ]32-(2) (,t) € C>*(B
0<t< i,

1

3

7_2/ <l
P.(0)
< Cr(1+e+o(1)). (5.27)

Putting (5.26) and (5.27) together, we obtain (5.22).
It follows from (5.20) and (5.22) that there exist sufficiently small 75 € (0,1) and

(0)) satisfies: for any

1
2

[

< or [ BPEsor] [ (BE+IPOR)
P1(0) IF’%(O)

4
sufficiently large g, depending on 7y, such that for any i > ig, it holds that
~ ~ _ ~ 3 1
70_2/ (18 + |VQil*) dzdt + (702/ IP? dadt)? < .
Prq (0) P, (0)
.- pdfe|ement tradicts to (5.11). The proof of Lemma 5.1 is completed. 0

The Trial Version bw need to establish the smoothness of the limit equation (5.17), namely,
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Lemma 5.2. Assume that (4,Q) € (LL2N L}H;)(Py) x (L°Hy N L HZ)(P
Pe L%(]P’%) is a weak solution of the linear system (5.17), then (1,Q) € C*°(P

the following estimate

~ A~ /\§ ~ ~ A~
6~ : ([af +[VQP +|P[2) §C93/P (6P +VQP +|P|
6 1
2

) and
), and

N

1
1

3
2

) (5.28)

holds for any 6 € (0, 3).
Proof. The regularity of the limit equation (5.17) doesn’t follow from the standard theory
of linear parabolic equations in [21], since the source term div(@A@ - A@@) in the second
equation of (5.17) depends on third order derivatives of @ It is based on higher order
energy methods, for which the cancellation property, as in the derivation of local energy
inequality for suitable weak solutions of (1.6), plays a critical role.
For nonnegative multiple indices «, 3, and v such that « = 8 + « and -~y is of order 1,
it is easy to see that (Va@, vAa, Vﬁﬁ) satisfies
2(VeQ) — A(VQ) = [w(Vi), Q],
8,(VAT) — A(VPA) + V(VPP) = div[Q, A(VFQ)), (5.29)
div(VAa) = 0,
Now we want to derive an arbitrarily higher order local energy inequality for (5.29).
For any given ¢ € C3°(P 1 (0)), multiplying the first equation of (5.29) by VO‘@QSQ and
integrating over R3, we obtain that by summing over all 7,
d

- 1 BOYI2H2 27812 42
% LV Qre+ [ v eiaks

= [ IV QR+ 2)6?
R3

+ [ QTR (ATPQ) + V(VIQ) - V). (5.30)

While, by multiplying the second equation of (5.17) by V71i¢? and integrating over R3,
we obtain that

d 1o N
pr 2|Vﬂu\2¢2+/ IV(VPa)|?¢?
R3 R3

= [ 5IvPaP@ 2y + [ VAPVIE. v
R3 2 R3
+/ [Q, A(VPQ)] : (V(VPR)$? + VP © Vo?). (5.31)
R3
As in above, we observe that
/R [[@.w(VAa)]: AVPQ)9* +[Q. AVIQ)) : V(VFm)$*] = 0.

rration by parts we have that

a pdfelement

VAPVAG - ve? = (-1)IPl [ 1. VA(VPPVe?). (5.32)
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It follows from the second equation of (5.17) that P solves
AP = div’[Q,AQ] =0, in B,
5(0)

where we have applied Lemma 2.3. Hence by the standard regularity theory of harmonic
functions,

/ yv’ﬁyggc/ P35, l=kk+1,..2k (5.33)

B B1(0
g0 1@

so that by Young’s inequality we can derive from (5.32) and (5.33) that

VA PVPAa - Vo?

R3

< c/ (G +|P]3).
B1(0)
2
Hence, by adding (5.30) and (5.31) together and then taking summation over all 3’s with
|3] = k > 0, we obtain that

d
dt

< / SV + [VEHQR(0(6)] + 92(P)
R3

S (THGR 4 [VHIGP) + / (IVFHEP 1 [VH20)2) 82

e / (G +1P)3)
B1(0)

e / (IV*HG][VHH0] + [VFE(VH20)) [V e?|
R3

< [ Lovr e wapiae + )
R3

+C (|6 +|P|2)
B (0)
2
1

+5 [T HGR 4V 2QR 0 € [ (9GE + [9EHQR) Ve
R3

which implies that

d
dt

<c / (VF8P? + [VHHQ2)(101(6%)] + |92 (62)))

+C/ (6P + | P|?)
1
2

/ (VG + [VFHQ )6 + /R (IVFHEP 1 [VH202) 2

B pdfelement

+C [ (V4GP + 9GP VP, (5.34)
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By choosing suitable test functions ¢, it is not hard to see that (5.34) implies that for
k>0,

sup / (V562 + [V*H1OP) + / (IVFHGP 4 [7R20)2
(0) P1O

_L<t<o

4

< c/ VR \vk“@y?wc/]? (0)(ya\3+ P}, (5.35)
1
2

It is clear that with suitable adjustment of radius, applying (5.35 inductively on k yields
that

sup / (IVFal* + |Vk+1@!2)+/ (IVEF1G[2 + | VEF2QP)
B (0) P4 (0)

1
— = <t<0

N

<C (VAP + [V2QP +C (18] + | P|
]P’%(O) P%(O)

), Vk > 1. (5.36)

With (5.36), we can apply the regularity theory for both the linear Stokes equation and
the linear parabolic equation to conclude that (u, Q) € C°(P 1 (0)). Furthermore, applying
the elliptic estimate for the pressure equation (5.21) we see that VEP € CO(P1(0)) for

4

any k > 1. For [ > 1, taking t-derivative 0} of both sides of (5.21), we can also see that
VkOLP € C’O(IP% (0)). Therefore (u,Q,P) € COO(P% (0)) and the estimate (5.28) holds.
This completes the proof of Lemma 5.2. 0

Now we can iterate Lemma 5.1 and utilize the Reisz Riesz potential estimates in Morrey
spaces to obtain the following eg-regularity.

Lemma 5.3. For any M > 0, there exists g > 0, depending on M, such that if (u,Q, P)
is a suitable weak solution of (1.6) in Q x (0,00), which satisfies, for zg = (xo,ty) €

Q x (T07 ) and
<M if Fouk = F dQ=R?
9] < o T hae A 5 in Py (20), (5.37)
|Gem(Q)| < M if Fyyx = Fpm and Q = T,
and
2
7’02/ (luf® + [VQP) dadt + (TOZ/ P|2 dxdt) <&l (5.38)
Py, (20) Pry (20)
then for any 1 < p < o0, (u, P,VQ) € LP(P% (20)) and
(0, P.VQ)| 113, o)) S C(p, 0, M). (5.39)
rom (5.38), we have
|| 9
POiSCiRu 20)_2/ (Iu\3+|VQ| ) dzdt + (( )‘2/ yP|%dxdt) < 8¢ (5.40)
Pro( Prq (2)
2

The Trial Version
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holds for any z € IP’%o(zo). By applying Lemma 5.1 repeatedly on IP’%O( z) for z € IP’?O( 20),
there are Cp > 0 and 79 € (0, 1) that for any k > 1,

(Tg;ro)—2/ (Jul® + [VQP) dudt + (<T(’;r0)—2/ Pl dedt)?  (5.41)
P ) P i (2)
6T

§2_kmax{(r20)_2/ (luf + |VQP) dzdt + ((7;])—2/ |P|? dudt)®,
P%(z) %(z)

C()’r’g }
1-23)

Therefore for 0y = 3|1111112TO‘ € (0, ) it holds that for any 0 < s < % and z € IP’70( 20)

3—2/ (luf + |[VQJ® +|P|2) dedt < C(1 + 58)(;)390. (5.42)
Ps(2) 0
By (5.37) and Lemma 3.2, there exists C' > 0, depending on M, such that

1Q + [fouk(Q)| + V@ fouk(Q)] < C in Pry(20). (5.43)

Now we can apply the local energy inequality (1.12) for (u, P, Q) on IP’%O (2), for z € IP’%O (20),
to get that for 0 < s < 3

sl/ ([Vul® + |AQ|?) dxdt
5(2)

<cle)® [ (uP+IveP + @9 [ (uf+ [Vl + P
Pas(2) Pas(2) (544)

v [ e [ (var]
Pos(2) Pas(2)
< O(1 4 e3) ()%,
_C( +€0)(7"0)

Next we employ the estimate of Riesz potentials in Morrey spaces to prove the smooth-
ness of (u, P, Q) near zg, analogous to that by Huang-Wang [20], Hineman-Wang [18], and
Huang-Lin-Wang [19].

For any open set U C R xR, 1 < p < 00, and 0 < X < 5, define the Morrey space
MPAU) by

M) = {1 € L) |y = s 7 [ 1o < o

It follows from (5.42) and (5.44) that there exists a € (0,1) such that

(0, VQ) € M3301-a) (Pro

(20)), P € M2301-9) (Pro (20)), (Vu, V2Q) € M2 (Pro (20))-

.2)1 as

B pdfelement 3
The Trial Version ) — AQ = f7 f =-u: VQ + [w, Q] - fbulk(Q) € M§,3(1—01) (IP%) (20)) (545)
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Let 7 € C5°(R*) be a cut off function of Pro (z0) such that 0 < n < 1,7 =1 in Pr(29),

|0m|+|V2n| < Ory?, Set w = n?(Q— szo) where Q) r, is the average of ) over P;( 0)-
Then
Ow —Aw =F, F:=nf+ (0" — Ap*)(Q — Qzry) — VI - VQ. (5.46)
We can check that F' € M2-3(1-2) (R*) and satisfies
[ral < C(1+ &) (5.47)

M3:30-0)(Ra)

Let I' denote the heat kernel in R3. Then
VT (2,t) < C6~*((2,1),(0,0)), V(z,t) # (0,0),

where §(-, ) denotes the parabolic distance on R*. By the Duhamel formula, we have that

wia.) < [ [ 9T =yt = 9)lIPy.5) dyds < CTL (a1, (5.48)

where Z3 is the Reisz Riesz potential of order 8 on R*, 8 € [0,4], defined by

Zs(g)(x,t) = /R4 55_5(’(93%;;)(’1/,3)) dyds, Vg € L'(R%).

Applying the Riesz potential estimates (see [20] Theorem 3.1), we conclude that Vw €
3(1—a)
M 123170 (R4) and

¥l o0, = P s

Mm B1—0) (gay T

R o) () = < C(1+ &p). (5.49)

3(1 —
Since lim M
atd 1 -2«

= 00, we conclude that for any 1 < p < oo, Vw € LP(P,,(z0)) and
vaHLP(IPTO(ZO)) < C(p, 7o, €0)- (5.50)

Since @ — w solves
8t(Q — 'U)) — A(Q — w) =0 in ]P)Lo (Zo)
it follows from the theory of heat equations that for any 1 < p < oo, VQ € P~ o (2 (z0) and

HVQHLP P&(zo) < C(p,ro,€0). (5.51)
We now proceed with the estimation of u. Let v : R3 x (0,00) — R3 solve the Stokes
equation:
v —Av+ VP
— _div[n2 _1 2 o2 T4
= —div [77 (u Ru+(VQeVQ - 35/VQ| Ig))] + div [77 Q, AQ]] in RY, (5.52)
divv =0 in RY, '
0)=0 in R3.

L pdfe|ement b the Oseen kernel (see Leray [22]), an estimate of v can be given by
The Trial Version |V(:C,t)’ < CIl(|X’)($’t)’ V(m,t) € R3 X (0’00)7 (5'53)
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where

1
X =Pluout (VQ©VQ -~ LIVQPL) + (@, AQ]).
As above, we can check that X € M330-0) (R*) and

HXH < C[”“”%ﬁﬁ(l—a)( )) + HVQH?V[&?,@—Q)(IP

M3:30-0) (R Prg (20 7o (20))
2 2

F1AQ — foun (@)l 13,30 -0y (20))
2
< O(1+ ¢p).

3(1—a)
Hence we conclude that v € M 1-2a 3(1=9(R4) and

< C(l +60). (5.54)

Bl ) = CHXHM%’3(1—C“)(R4)

“v“MIQ(x’3(1_a)(R4
As a1 3, we conclude that for any 1 < p < 0o, v € LP(P,,(20)) and

HVHLP(]P’TO(;;O)) < C(p, 70, 0). (5.55)

Note that u — v solves the linear homogeneous Stokes equation in IP’%O (20):
(u—v)—A(u—v)+VP =0, divilu—v) =0 in ]P’%o(zo).
Then u—v e LOO(]P’%O (20)). Therefore for any 1 < p < oo, u € Lp(]P’%o(zO)) and

HuHLp(PTO (20) < C(p,70,0). (5.56)
a

2
For P, since it satisfies the Poisson equation: for ¢y — %0 <t <ty,

—AP =div’lu®u+ (VQ®VQ — %]VQFIg)] in Bro(z). (5.57)

2

Hence P € L? (]P’%o (20)) and satisfies the (5.39). The proof is now complete. O

The higher order regularity of (3.2) does not follow from the standard theory, since
the equation for u involves V3(Q and the equation for @ involves Vu. It turns out the
higher order regularity of (3.2) can be obtained through higher oder energy methods.
Roughly speaking, if (u, P, VQ) is in LP for any 1 < p < oo, then (3.2) can be viewed as a
perturbed version of the linear equation (5.17) with controllable error terms. Here higher
order versions of the cancellation properties (1.13) and (1.16) in the local energy inequality
so plays an important role. This kind of idea has been previously employed by
in-Wang (see [19] Lemma 3.4) for general Ericksen-Leslie systems in dimension
bre precisely, we have

a pdfelement
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Lemma 5.4. Under the same assumptions as Lemma 5.3, we have that for any k > 0,
(VFu, VF1Q) € (L L2 N LIHY) (P, w41y (20)) and the following estimates hold
2 o

e (|V*ul? + |V*Q)?) dx
t07((1+2%(k+1))740)2§t§to me(mo)

+/ (V5 La)? + [VEF2Q2 + [V P|3 ) dedt (5.58)
P-4 (20)
2] T

< C(ka To, )50-

In particular, (u,Q) is smooth in ]P’%o

(20)-

Proof. For simplicity, assume zy = (0,0) and o = 8. (5.58) can be proved by an induction
on k. It is clear that when k = 0, (5.58) follows directly from the local energy inequality
(1.12). Here we indicate how to prove (5.58) for k = 1. First, recall from Lemma 5.3 that
forany i € NT and 1 < p < oo,

HQHLOO(P2) + Hvifbulk(Q)||Loo(P2) < C(i)50)7 ‘(u7 P, VQ < C(p)EO- (559)

)”LP(PQ)

Taking spatial derivative of (1.6)!, we have

athz +u- an + Uy - VQ - [wou Q] - [wv Qa]
= AQa — (fouk(Q))as

Oiuy +u-Vu, +u,-Vu+ VE, in Py. (5.60)
= Au, — VQ-AQy — VQo AQ + diV[Q7 AQ]aa
\divua =0,

Here wy = w(u,). Let n € C§°(B2) be such that
0<n<1,np=1in B9z, n=0out By,o1, |Vy|+|V?y| < 16.

Taking V of (5.60); and multiplying it by VQan?, and multiplying (5.60)2 by Vu,n?, and
then integrating resulting equations over Bo?, we obtain that

1d

3E

- / (o - V)Q - VQu Vi / Qo] - (AQur? + VQuVir?)
Q Q

/ V2QP - / (U - V)Q - AQur? — / (- V)Qu - (AQui? + VO V1)
Q R3 Q

— /Q [[Qarr] — (AQa — (fourc(@)a)] - (AQur® + VQuVr?),

|
| pdfelement ly speaking, we need to take finite quotient D7 of (1.6) (j = 1,2,3) and then sending h — 0
Tihe Trial Versien ly speaking, we need to multiply A(D?Q)n? and V(D7 u)n? and then sending h — 0
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and

2
2dt/’v|22 /|V| Vn—k/(ua-V)uuan—/Pua Vn?

= vt =T [ (00 )@ 50w + (09100 20)
Q Q

_/ [Qa, AQ] - (VuaUQ + Uy ® V772) - / (@, AQq] - (Vuan2 T Uq ® V772)-
Q
Adding these two equations together and regrouping terms, and using the cancellation

identity
/Q[vaa] : AQan2 = /Q [Q» AQ&] : Vua772a

we arrive at

d
! [(u +9%QR)? + / (IV2ul? + |AVQ?)?

2.dt
- /Q (- V)Qu - (AQui + VQuVI) + (ta - V)Q - VQu V]

+ /Q (1Qswal — AQa) : VQuVif?
+ / (1Qus ] + (fourc(@))a) : (AQur? + VQuVr?)

Yu 2
+/[| 2’ (An? +u-Vn?) —uy - (Vu-u, + VQq : AQ)N? + Pou, - VY
Q

- / Qs AQ : (Vuan? + ua © Vi) - / Q) AQ] : 1o ® Vi
0 Q

6
i=1
We can estimate A;’s separately as follows.

1
40l < 75 [ 1AVQPIR +C [ (VQPs? +[Vul? + VP,

1
45l < 5 [ IVaPe? +C [ IVQPIAQRE +C [ [VuPlval,

1
Al < 5 [ (VPP +1AVQR)? +C [ [VuPIA7? + [aP( VP +AQPR))
+C [ (VuP + |AQR)TA? +C [ (PRIVAE + |PVulan?),

4l < 15 [ 1AVQRSR +C [ [VQR(VuP +]aQP)

e / (IV QP + [Vul2[Vnl2),

B pdfelement
22l < 55 [ 1AVQPA? +C [ (VuP +]aQP) VAP,
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4] < 55 [ 1AVQPA? +C [ [(ufl + [VQPAQRH + (Tl + [AQP) V)
Q Q

Substituting these estimates on A;’s into the above inequality, we obtain that

d
= [ (Vul* + [V2QP)n* + / (IV2uf? +[AVQ[*)y?

<C [ (P IVQP+[VaP + |AQR + |PP)
B

1421
+C [ (WPI9uf + [ AQP + [VQPIAQE + [VQP Vul)r,
Q

Now we want to estimate the second term in the right hand side. By Sobolev-interpolation
inequalities, we have

/ 2| Va2
Q

< IVl 2| Yl sy s, )

1 1
< OV unll (@) Vw9l 70y IV (V0 gy 2o,

< C|Vunl| 2 IV (Vun) | 2y 172 5

1
< / |v2u12n2+c/
8 Ja By 51

1
| Piarer < ¢ [ 1avepi+c [ aQP

B1+2—1

1+2*1)

2 4 2. 2
Val + Cllullgs,, ) [ 1V,

—i—CHqu‘;u(BHQI)/QmQ‘? 2

1
/|VQ|2|AQ|%2§8/ |AVQ\2n2+0/ AQP?
Q Q B

1421

+CIVQl s, ) [ 16QP,

and

1
/!VQ\Q\VHI%Q < / !Vu|2n2+0/ [Vul®
Q 8 Ja B

1421
+ CHVQH%12(31+271) /Q ’Vu‘2?72_

Substituting these estimates into the above inequality, we would arrive at

d
= [ (IVul* + [V2QP)n* + / (IV2uf? + [AVQ[)y?

<c / ([uf? + [VQI? + |Vul? + |AQ[? + [P]?)
B

1421

O+ (W VO P, , ) /Q (IVul? + |V2QI)n”. (5.61)

a pdfelement
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From (5.59), we can apply Gronwall’s inequality to (5.61) to show that (5.58) holds for
k = 1. For k > 2, we can perform an induction argument as in [19] Lemma 3.4. We leave
the details to interested readers.

It is readily seen that by the Sobolev embedding theorem, Lemma 5.3 implies that
(VEu, VEHLQ) € LOO(P%)(ZQ)) for any k£ > 1. This, combined with the theory of linear
Stokes equation and heat equation, would imply the smoothness of (u, @) in P o (z0). This
completes the proof. O

Applying Lemma 5.3, we can prove a weaker version of Theorem 1.1.

Proposition 5.1. Under the same assumptions as in Theorem 1.1, there exists a closed
subset ¥ C Q x (0,00), with Pg(E) =0, such that (u,Q) € C*°(Q x (0,00) \ X).

Proof. First it follows from Lemma 4.1 and Lemma 3.2 that for any 6 > 0, @ and fpnm(Q)
are bounded in  x (4, 00). Define

r—0

Y5 = {z € Ox(9,00) : liminfr_Q/P ( )(|u|3—|—|VQ|3)d:Edt+(r_2/P | ]P|% alxalt)2 > 6%}.

r(z

From Lemma 5.3, we know that s is closed and (u,Q) € C®(Q x (§,00) \ Xs). Since
d > 0 is arbitrary, we have that (u, Q) € C*®°(Q x (0,00) \ Us>02s)-

Since u € L¥L2 N L?HL(Q x (0,00)) and VQ € L¥HL N L?H2(Q x (0,00)), we see
that (u,VQ) € LI?O(Q x (0,00)). Moreover, since P solves the Poisson equation (?7) in

2 x (0,00), we conclude that P € Lg(Q x (0,00)). By Holder’s inequality, we see that X5
is a subset of

r—0

+ (rg/ |p|§ d:cdt)2 > 5(?}.
Pr(z)

SJZ{ZGQX((S,OO): liminfrg/( (\u|%+]VQ|L’o‘O)dmdt
P.(z

A simple covering argument implies that P%(S(;) = 0, see [33]. Hence ¥ = Us~oXs has
P%(E) = 0. This completes the proof. O

6. PARTIAL REGULARITY, PART II

In this section, we will utilize the results from the previous section and the Sobolev
inequality to first show the so-called A-B-C-D Lemmas (see [5] and [24]) and then establish
an improved e;-regularity property for suitable weak solutions to (1.6).

Theorem 6.1. Under the same assumptions as in Theorem 1.1, there exists €1 > 0 such

that if (0, Q) : Q x (0,00) — R3 x Ség) is a suitable weak solution of (1.5), which satisfies,
for zp € Q x (0,00),

1
lim sup / (IVu* + |V2Q|?)dzdt < 7, (6.1)
a pdfelement r=0 T JP (20
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For simplicity, we assume zy = (0,0) € 2 x (0,00). To streamline the presentation, we
introduce the following dimensionless quantities:

A(r) = sup 1! / ([l + |VQP2) do
B, (0)x{t}

—r2<t<0

1
B(r) ;:T/( )(|Vu\2+|V2Q\2)dxdt,

1
C(r) = 2/ ([ul® + [VOQI®) dadt,
™ JP.(0,0)

D(r) := 7“_2/ |P|% dzxdt.
P,(0,0)

Also set

(u)(t) : ol /s u(z,t)dz, (VQ)(t |/ dzx.

We also let A < B to denote A < ¢B for some universal positive constant ¢ > 0.
We recall the following interpolation Lemma, whose proof can be found in [5].

Lemma 6.1. For v € HY(R?),

(z,t) de of?(z,t) dz) " v*(z,t) dz)”
/BT(O)M (z,t)dz S (/BT(O)W *(2,t) da) (/BT(O)‘ 2(x, 1) dx)
+r3(1—g)(/ ]v\z(m,t)dx)%. (6.2)
B (0)

for every B,(0) CR3,2<¢<6,a=3(1-1).
Applying Lemma 6.1, we can have

Lemma 6.2. For any u € L>([—p?, 0], L*(B,(0))) N L*([—p*,0], H(B,(0))), and Q €
L>([—p?, 0], HY(B,(0))) N L*([—p?, ],HZ(Bp(O))), it holds that for any 0 < r < p,

C(r) S (5)*A3 () + (£)* A% (0) B (p). (6.3)

Proof. From (6.1) with ¢ = 3,a = 2, we obtain that for any v € H'(B,(0)),
1 p

/ o (2, ) dz < (/ |Vv\2(x,t)da:)‘3‘(/ |v|2(x,t)dm)%
B:(0) B (0) B.-(0)

+7~—3(/ ol (z, ) da) /2. (6.4)
B,(0)

B pdfelement
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Applying Poincaré’s inequality, we obtain that for 0 < r < p,

/ (luf? + [VQP) da
B,(0)

2 2 2 T3 2 2
S [ U = (uPyl 4908 — (9@ det () [ (uf + 9GP de

(0

< 2 2 2
Np/( (af[Vu| +[VQIIV Ql)dw+(p) / ()(\UI +1VQ[7) dz

< ph(p! / (P + QP ) ([ (9uf? + [72QP) do)?
B,(0 (0
f 3 2 2y4
¢ /B (lu? + |VQP) de
< p3A}(p)( /B (Ao + V2Q) o)+ (5)*pA(p).

Substituting this estimate into the second term of the right hand side of the previous
inequality, we conclude that

[l +I19QP) da

B,(0)

SoH([(VaP 4 92QP) do) (ot [ (a4 VP (w0 de)
7‘(0) BT(O)

W

3
2

+ 7«3(/ (lu] + |VQ|)(x, t) dx)
B(0)

5,,2,42(,))(/ )(ywm|v2¢2\2)(a:,1t)dfbf')Z

3
2

+r3(/ ([uf? + [VQP)(z,t) d)
B(0)

9
3 4 3 3 r 3
S ([ (uP QP ) Lt + (5) At (o).
r2 B, (0) P
Integrating this inequality over [—r2, 0], by Holder’s inequality we have
1
)= [ (uff +[VQP)ds
IP’I‘(0,0)
T\3 43 piy [0 2 22 T
SCPat+ e+ %) [ ([ (vul+ QP dr)Earale)
p rz J—r2? ~(0)
< () 30+t (oF + 2 4t (0)BE ()
r2
T\3 ,3 P2 P\3 3
S CPatin + (&) + (914t ()i )
Hl hdfclement T3 3 5 s
i S (Pt + (B atpBie)
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This completes the proof of (5.2). O
Next we want to estimate the pressure function.

Lemma 6.3. Under the same assumption with Lemma 6.2, it holds for any 0 < r < g

D(r) £ - D(p) + () A% (0) B (p).

—~
_cn
ot

N—

Proof. From the scaling invariance of all quantities, we only need to consider the case
p=10<r< % By taking divergence of the equation (1.5)1, we obtain

—~AP =divi[u®@u+ VQ ® VQ)]
= div?[(u— (w)1) @ (u— (w)1) + VQ ® VQ)]
div?[(u — (w)1) @ (u = (Wh) + (VQ = (VQ)1) ® (VQ — (VQ)1)]
+div?[(VQ)1 @ (VQ — (VQ)1) + (VQ — (VQ)h) ® (VQ)1]. (6.6)
Let n € C§°(R?) be a cut off function of B%(O) such that
{ n=1, in B1(0),

n=0, in R\ B1(0), (6.7)
0<n<1, |Vnl <8

Define the following auxillary function

/v2 r— 1) () [(u— (1) ® (u— (u))

—(VQ)1) ® (VQ — (VQ)1) + (VQ — (VQ)1) ® (V@)1
+ (VQ)1 (VQ — (VQ)1)] (. t) dy,
Then we have
—AP; =div?[(u — (u);) ® (u— (u);) + VQ ® VQ] in B%(O),

and
—A(P—-P)=0in B%(O).

For P;, we apply the Calderon-Zygmund theory to deduce

2 < 2.0 2
Y e OO S e
+rv@nlive - vanlll .,
S [ (e @il +VQ - (VQn ) ds

B1(0)
3 3

HEVQUE [ 9@~ (vQnltd. (6.5)

B1(0)
— P is harmonic in B% (0), we get
B pdfelement 5 s
, ‘ [P — P2, S|P — P2, Sr(IIP)? + | 1”2 )-
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Integrating it over [—r2,0] and applying (5.8), we can show that

12/ |P|? dadt
™ JP.(0,0)
1
< 7«/ \P|3 dudt + — (Ju= (w)* + [VQ — (VO ) dudt
P1(0,0) 7 JP1(0,0)
1 3 3
5w [(VQUOD? [ (9~ (VQu[H daas
e _1<t<0 P1(0,0)
1
< 7«/ \P\gda;dt—i—Z/ (Ju— (hf + VO — (YOI ) dudt
P1(0,0) 7 JP1(0,0)
1 s
+T2A4(1)/1

)

IVQ — (VQ)1|? dwdt.
)
This, combined with the interpolation inequality

/ (Ju— (W12 4 |VQ — (VQ)1|?) dadt
]P’l(0,0)

S sup (/ ([l + |VQP) dz) * x (/ (IVul® + [V2QP) dadt) &,
B1(0) P1(0,0)

~1<t<0

and Holder’s inequality

Y

[ ve-vantwas ([ v~ (vouPdn)’,
P1(0,0)

P1(0,0)

implies that
1
D(r) SrD(1) + 5 AT(1)Bi(1).
T

This, after scaling back to p, yields (6.5). The proof is now complete. (|
Proof of Theorem 6.1. For § € (0,3) and p € (0,1), let ¢ € C§°(Py,(0,0)) be a function
such that
1 1
=1i < 2 < ()2
¥ 1111]?97:0(070)’ |V(’D|N0p’ |v (10|+|90t|w(9p) :

Applying the local energy inequality in Lemma 2.2, the maximum principles Lemmas 4.1
and 3.2, and the integration by parts, we obtain that

sup / (luf’ + [VQI?)o d + / (IVul? + |V?Q[?) dudt
—(0p)2<t<0J0 Qx[—(09)2,0]

< / ([l + [VQP) (il + [Vl + [V2g|) dudt
QX[—(G/))Q,O]

" / [(Jul? = ([u*)g,) + (IVQP = [VQ[*)gp) + |P[JJul| V| ddt
Qx[—(0p)2,0]

[
NCRCU |  voptaas [ (Vulval+ mlaQ)iAVeldrdt
Qx[—(6p)?,0] Qx[=(6p)%,0]
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This, with the help of Young’s inequality:

/ (IVul[VQ| + [u]|AQ]) |||V dzdt
Qx[—(8p)?,0]

1

< / (|Vul? + |V2Q[?)¢? dxdt
2 Jax[~(9p)2,0]

v (Juf? + [VQP) [ Vipf? v,
Qx[—(0p)2,0]
implies that

AGo0) + B(lem

2
s 2 |u]2+]VQ|2)da:+/ (IVul? + [V2Q[?) dadt
‘9P 2<t<0 Bg Hp Py, (0,0
1 1
< sup (|u|2+!VQ| )¢? d + = (IVul® + [V?QP*)¢” dzdt
—(0p)2<t<0 Op 0p Jr3x[—(0p)2,0]
1
so (a2 + [VQP2) (g + [Vpl2 + V2 dadt
P JR3x[—(6p)2,0]
1
v | (P~ (JaP)op) + (IVQI ~ (IVQP)ay) + | Pllul|Vep| dodr
P JR3x[—(6p)2,0]

+1/ IVQ|*¢? dadt
Op Jrsx(—(0p)2,0]

7 0 0+ V0 o+ G |
< u|* + |VQ|*) dedt + —= Pl|lu|dzdt
(0p)3 Py, (0 0)(| | | ) (0p)? Py, (0 0)’ I

p\Y

+(9,))2/W )(Hu\Q — ([uP)gol + [IVQP = (IVQ)g,|) u| dzdt

:Il+I2+13.

It is not hard to see that

1
(0p)?

2
3

win

L] < ( < O

/ (luf® + |VQP) dedt)? < CF(8p),
[P’gp(0,0)

1

1 1 2 1
L ul? dzdt)? / P|3 dedt) < C5(6p)D
(0p)? /199,,(0,0) o ) ((99)2 Py, (0,0) d ) (6p)

while, by employing Holder’s and Poincaré’s inequalities,

wlro

1I2] < ( (0p),

1 1
< 2 3 3
S Gp /W/B (7l 9QIV?Q( [ + [QP) a

By, (0

B pdfelement

A

AZ(0p) B (0p)C3 ().
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Putting together all the estimates, we have

(0p) + AZ(0p)BZ (0p)C'5 (9p) + C'3 (9p) D5 (6p)]

wlo

AG00) + B(300) 5 [C

< [C3(8p) + A(6p) B(9p) + D5 (6p))]
so that
A3(360) £ [C(0p) + A3 (8p) B2 (60) + D*(6p)].
While
D*(0p) < 02[D*(p) + 6~° A2 (p) B (p)),
and

C0p) < 0P A% (p) + 07> A1 (p) B (p).

Also note that
A% (0p)B2(0p) < 0733 (p) B2 (p).

Therefore we conclude that for 0 < 0y < %,

Njw

A3 (360p) + D (5000)
clB3D%(p) + (6> + 651 A2 (p) B2 (p) + 63 A3 (p) + 6,2 A% (p) B1(p)]
clB3(D(p) + A% (p) + 075 A% (p) B2 (p) + 03]

< (63 + 05" B2 (p))(A% (p) + D(p)) + 6.

3 3
2 2

IN

IN

For 1 > 0 given by Theorem 5.1, let 6y € (0, %) such that

chf = min{i, %5%}

From (6.1), we know that

hence there exists pp > 0 such that
05 B2 (p) <

Therefore we conclude that there exist 6y € ) and pp > 0 such that

31 1 1, 3 1
A2 (S00p) + D*(500p) < 5(A%(p) + D*(p)) + 51, Y0 < p < po.

Iterating this inequality yields that

—_ =

=
D=

= L dfelement NG00 0) + D2 ((500)9) <

The Trial Version rall 0 < p<poandk > 1.
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Employing (5.2) and (6.9), we obtain that

C((500)*p) < e[(500° A3 (5601 0) + (58024 (GH0)* ) B (60) )]
< c[(3600)° + (360) et ) [y (A3 (o) + D(0)) + &3] (6.10)

holds for all 0 < p < pp and k > 1.
Putting (6.9) and (6.10) together, we obtain that

1 1 1 1 3 1
tim sup [C((200)°0) + DA(500)°0)] < e[1 + (300" + (200 Pedle? < b (6.11)
PR 2 2 2 2 2
holds for all p € (0, pg), provided 1 = 1(6p,€0) > 0 is chosen sufficiently small. Therefore,
by Lemma 5.4 (u, @, P) is smooth near (0,0). This completes the proof. O

Theorem 1.1 can be proved by the following covering argument. Let ¥ be the singular
set of suitable weak solutions (u, @, P). If (z,t) € 3, then by the theorem 6.1,

r—0 T

1
lim sup / (IVul? + [V2Q[?) dadt > e1. (6.12)
r(z,t)

Let V' be a neighborhood of ¥ and § > 0 such that for all (z,¢) € X, we can find r < §
such that P,(x,t) C V and

1
/ (IVul? + |V2Q?) dedt > 1.

T JP(x,t)

By Vitali’s covering lemma, 3(x;,t;) € V,0 < r; < 0 such that {P,,(x;,t;)};-, are pairwise
disjoint and

o
¥ C U P5f,~i (xi, tz‘).
i=1
Hence

Pss() < 25?% < 5512/
i1 i—1

)
— (IVul? + |V?Q|?) dzdt
€1 JUiPy, (i ts)

)

<= [ (|Vul* +|V?Q|?) dzdt < cc.
&1 Jv

(IVul® + |V?Q|?) dzdt
)

s (Tt

IN

We can conclude that ¥ is of zero Lesbegue measure. Then we can choose |V| to be
arbitrarily small, from the fact that

/ / (IVul? + |V?Q|?) dadt = / / (IVul® + |AQJ?) dxdt < oo
0 Q 0 Q
and the absolute continuity of integral, we have

lim [ (|Vul®>+|V?Q|?) dzdt — 0.
[V]—=0 Jv

a pdfelement

PL(E) = lim PLs(%) = 0,
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This completes the proof of Theorem 1.1. a
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