
  

  

Abstract—A loss of individuated finger movement affects 

critical aspects of daily activities. There is a need to develop 

neural-machine interface techniques that can continuously 

decode single finger movements. In this preliminary study, we 

evaluated a novel decoding method that used finger-specific 

motoneuron firing frequency to estimate joint kinematics and 

fingertip forces. High-density electromyogram (EMG) signals 

were obtained during which index or middle fingers produced 

either dynamic flexion movements or isometric flexion forces. A 

source separation method was used to extract motor unit (MU) 

firing activities from a single trial. A separate validation trial 

was used to only retain the MUs associated with a particular 

finger. The finger-specific MU firing activities were then used to 

estimate individual finger joint angles and isometric forces in a 

third trial using a regression method. Our results showed that 

the MU firing based approach led to smaller prediction errors 

for both joint angles and forces compared with the conventional 

EMG amplitude based method. The outcomes can help develop 

intuitive neural-machine interface techniques that allow 

continuous single-finger level control of robotic hands. In 

addition, the previously obtained MU separation information 

was applied directly to new data, and it is therefore possible to 

enable online extraction of MU firing activities for real-time 

neural-machine interactions. 

I. INTRODUCTION 

Individuated finger movement is essential for our daily 
activities. Advanced neural decoding techniques now allow us 
to control robotic hands in a dexterous manner, based on 
electroencephalogram (EEG) [1] or electromyography (EMG) 
[2]. Surface EMG (sEMG) is a promising neural-machine 
interface due to its non-invasiveness and versatile applications. 
Previously, pattern recognition approaches are commonly 
used to detect user intent when interacting with robotic devices 
[3]–[5]. Most pattern recognition approaches identify discrete 
states of user intent as a classification problem in gesture 
recognition. Different features, such as EMG mean absolute 
value, root-mean-square (RMS), and medium frequency, are 
extracted from sEMG signals and are fed into different 
classifiers such as support vector machine, linear 
discriminative analysis, and neural networks in order to 
estimate the gesture patterns [5]–[8]. The state-of-the-art 
classifiers on sEMG can reach a classification accuracy above 
90% [9]. Certain algorithms can also be applied in a cross-
subject manner with minimum intra-subject adjustments [10]–
[12]. However, the available number of gestures is usually 
limited to a finite number of predefined gestures, and the actual 
neural control of robotic devices is also not continuous. As a 
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result, these approaches are not intuitive, and hinder the natural 
ability of what the human hand is capable of doing. 

To continuously drive a robotic device, an alternative 
approach is to produce the motor intent estimation based on 
the envelope of the EMG signal amplitude [13]. An initialized 
linear or quadratic regressor can associate the amplitude of 
EMG to fingertip forces or joint kinematics. However, the 
performance of this approach can deteriorate over time due to 
unstable EMG recordings arising from EMG amplitude drift 
[14] or electrode shift [15]. It is also sensitive to unavoidable 
random noise or movement artifact that can lead to abnormal 
and unstable estimation of EMG amplitude. Alternatively, 
since the EMG signals intrinsically comprise motor unit action 
potentials (MUAPs), the decomposed signal sources as motor 
unit (MU) firing activities can be used to estimate the neural 
command to the muscles, which can then be used to estimate 
finger isometric forces or joint kinematics using regression 
functions (termed neural drive method) [16], [17]. This 
method is based on neuron firing event (binary signal) 
frequency, and is less sensitive to the aforementioned 
interferences of EMG signals. The use of finger-labeled MU 
discharge information for individual finger isometric force 
estimation has recently been shown to be feasible [18], where 
a MU pool classification procedure was applied to validate 
whether MUs correspond to a specific finger across different 
trials. However, the feasibility of the classification of MUs in 
dynamic tasks is still unclear. In addition, source separation of 
high-density EMG (HD-EMG) signals, such as using 
independent component analysis [16], is computationally 
intensive, and thus it is not suitable for direct online 
deployment [19]. More efficient calculation is needed to 
enable real-time neural decoding. 

To this end, we implemented the decomposition-
validation-estimation method for finger joint angle estimation 
in a dynamic task, and also evaluated the performance of the 
same method on the finger isometric force estimation in this 
preliminary study. Our approach first extracted the MU firing 
activities from earlier trials in an offline manner, and the 
validated separation information was then directly applied to 
new HD-EMG signals. Since the second matrix operation 
process is computationally efficient, the source separation can 
be performed in an online manner, which allows real-time 
control of assistive devices. A conventional EMG amplitude-
based method (termed EMG amp method) was also performed 
as a comparison. The results showed that the neural drive 
method using cross-trial separation matrix can estimate the 
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joint angle or fingertip isometric flexion force more accurately 
than the EMG amp method. 

II. METHODS 

A. Participants 

Three subjects with no neurological diseases were 
recruited in the study. All participants gave informed consent 
via protocols approved by the Institutional Review Board of 
the University of North Carolina at Chapel Hill.  

B. Data acquisition 

The subjects were seated in front of a desk with their right 
arm supported by a large foam pad on the desk. They were 
instructed to adjust the height of the chair to avoid discomfort 
before the experiment. To record the index and middle finger 
forces, two miniature load cells (SM-200N, interface) were 
pre-installed to the desk held by a metal frame and horizontally 
aligned to these two fingers when the subject’s forearm and 
hand were in the neutral position. The force recording was 
sampled at 1000 Hz. To record joint kinematics of the 
metacarpophalangeal joints of the index and middle fingers, 
subjects wore a custom-made sensor glove with two individual 
angle sensors, and the angle data were obtained at 100 Hz. An 
8×16 HD-EMG electrode array (OT Bioelettronica) was 
attached to the flexor side of the subjects’ forearm with 
double-sided adhesive pads (Figure 1 (A)). The HD-EMG 
electrode array has a 10 mm inter-electrode distance and 3 mm 
electrode diameter. The amplifier EMG-USB2+ (OT 
Bioelettronica) sampled the signals at 2048 Hz and band-
passed at 10-900 Hz. 

 

Figure 1: Experimental setup for the data acquisition. (A) The placement of 

the HD-EMG electrode array on the flexor muscles in the forearm and load 

cells for isometric finger flexion force measurements. (B) Trajectory for the 

isometric finger flexion task. (C) Custom-made sensor glove to record joint 

kinematics in the dynamic task. 

Two tasks were performed by the subjects under the 
guidance of the experimenter. Prior to the main tasks, the 
maximum voluntary contraction (MVC) was recorded for each 
finger. First, the subjects followed a trapezoid trajectory 
(Figure 1 (B)) in the isometric finger flexion task using their 
index or middle fingers, respectively. The trapezoid trajectory 
started to rise at 2 seconds of the trial, ramped up linearly, and 
peaked at 40% MVC at 3 seconds. The plateau of 40% MVC 
was held for 8 seconds, and then ramped down to 0% MVC 
linearly. Each isometric trial lasted for 12 seconds, and was 
repeated three times. Then, the dynamic finger movement task 
was performed also using the index or middle finger, 

respectively. Aided by a 1 Hz metronome, the subjects 
repetitively flexed the finger (index or middle) from the neutral 
(maximum extension) position to the maximum range of 
motion and opened back to the neutral position until the end of 
the trial at 24 seconds. Each of the closing and opening 
movements lasted for 1 second, and the 24-second trial was 
repeated three times as well. The index and middle finger 
testing trials were randomized across subjects. 

C. Motor unit extraction 

The decomposition of motor units in this study was based 
on the fast independent component analysis (FastICA) 
algorithm [20]. Before performing the convolutive blind 
source separation on HD-EMG signals, motion artifact was 
removed using the method as described in [21]. The EMG 
decomposition procedure followed the procedure described in 
[16], [22]. In brief, the procedure comprises extending the raw 
EMG signal channels by a factor of 𝑓𝑒 , whitening the 
extended channels, and obtaining the decomposed signal 
sources via a fixed-point iteration algorithm. The MUs were 
separated from the background signal sources using the 
Kmeans++ algorithm by setting the number of clusters to be 
2. The decomposed MUs were in the form of separation 
vectors which can be applied to different segments of EMG 
signals. This matrix multiplication resulted in the 
decomposed source signals, which were then used to derive 
the MU discharge events. For each trial, 60 channels with the 
highest RMS values in that trial were selected among the 128 
HD-EMG signals for decomposition. The 60 channel number 
was based on our earlier work [23]. The separation matrices 
of each finger were applied to other trials to obtain new MU 
firing activities (termed cross-trial MUs). 

D. Motor unit validation  

In order to accurately estimate the finger kinematics or 
forces using cross-trial MUs, the MUs extracted from any trial 
were validated on a second validation trial before they were 
applied on the third testing trial. Specifically, the separation 
matrix derived via decomposition from the first trial (dynamic 
motion and isometric force trials) was applied on the second 
validation trial, resulting in an 𝑀𝑖 × 𝐾𝑗  spike trains array, 

where M is the length of EMG samples in the second trial and 
K is the number of spike trains (the number of the 
decomposed MUs) in the first trial. A moving average 
window (window size=0.5s, step size=0.1s) was applied to 
the individual spike trains to smooth the discharge frequency 
before a Kalman filter was applied on the smoothed firing 
frequency. The Kalman filter was used to remove sporadic 
and large-amplitude fluctuations [14]. A regression analysis 
was then performed between the filtered firing frequency and 
the measured joint angle or isometric force. The regression 
function was linear in the isometric trial, and was quadratic in 
the dynamic trial [17]. This process provided 𝐾𝑗 number of R2 

values, indicating how well a specific MU estimated the 
motor output in the validation trials. Then, a cross-validation 
was performed, where the MUs from the second trial were 
validated on the first trial and resulting in an 𝑀𝑗 × 𝐾𝑖 spike 

train. Similarly, 𝐾𝑖 number of R2 values were provided in the 
second validation process. The MUs from the first trial and 
the second trial were concatenated together. The 𝐾𝑖 + 𝐾𝑗 
number of R2 values were then sorted in a descending order, 
and the top N largest R2 values’ indexes were used to select N 



  

MUs from the concatenated separation matrix for the third 
testing trial. Removal of duplicate MUs was conducted, given 
there were likely common MUs from the first two trials. The 
number N was empirically selected to be 10 as a reasonable 
choice based on our pilot testing. A three-fold validation was 
then performed. Namely, each trial was used as the testing 
trial and the other two trials of the same finger and same 
motion type (dynamic or isometric) were used for 
decomposition and validation. 

E. Finger joint angle/force estimation 

The estimation of individual finger forces or joint angles 
was derived from the extracted and validated MUs from two 
trials and applying on the third testing trial. The same moving 
window average and Kalman filter were used for smoothing 
the spike trains as in the validation. For the conventional 
EMG amp method as a comparison, the top 60 channels with 
the maximum amplitude were found using the training and 
validation trials, since the RMS distribution of the highest 
amplitude channels were unknown (blinded) for the testing 
trial. The average RMS across the 60 channels were 
calculated using a 0.5-second sliding window with a step size 
of 0.1 second. The same Kalman filter was applied to the 
RMS values. Regression analysis was performed for both the 
neural drive method and the EMG amp method, where the 
order of the regression was linear for the isometric force trials, 
and was quadratic for the dynamic trials. The root mean 
square error (RMSE) between the estimated values (force or 
angle) and the measured values were calculated to evaluate 
the estimation performance. 

III. RESULTS 

An example joint angle estimation and an example 
isometric force estimation are shown in Figure 2 The results 
showed that the neural drive method had a better estimation 
of both joint angle and isometric force, in comparison with 
the EMG amplitude method. 

 

 
Figure 2: (A) An example trial of the estimation for the joint angle movement. 

(B) An example trial of the estimation for the isometric force. 

To better illustrate the MU discharge information, an 
example of spike trains for neural drive estimation is shown 
in Figure 3. It showed that when the finger flexed (measured 

joint angle increased), the MUs of the flexor muscles were 
recruited. 

 
Figure 3: The spike trains in a dynamic validation trial using the MUs 

decomposed from two other trials after the validation procedure. The trace 

shows the estimated neural drive. The MUs were not ordered based on 

recruitment order. 

The averaged RMSE values across the three subjects are 
shown in Figure 4. The preliminary results showed that the 
neural drive method was more accurate than the EMG amp 
method in both the dynamic task and the isometric task. The 
neural drive method revealed a smaller estimation error 
(RMSE=8.76 (°), standard error (SE)=0.87) than the EMG 
amp method (RMSE=19.56, SE=2.06) in the dynamic 
condition. Similarly, the neural drive method also showed a 
smaller estimation error (RMSE=3.05 (% MVC), SE=0.67) 
than the EMG amp method (RMSE=3.88, SE=0.32) in the 
isometric task. 

 
Figure 4: The RMSE for the neural drive method and the EMG amp method. 

The error bar represents standard error. (A) RMSE in the dynamic task. (B) 

RMSE in the isometric task. 

IV. DISCUSSION 

In the current study, we presented a preliminary 
investigation using cross-trial MUs (labeled to specific 
fingers) for the estimation of finger dynamic movements and 
isometric forces. We first performed offline MU 
decomposition on two trials separately. Then, we cross-
validated the MUs between these two trials. We then retained 
the finger-specific MUs with strong associations with the 
motor output (joint angle or isometric force) of a particular 
finger. The retained MU information (separation matrix) was 
applied to the third trial for validation testing. We found that 
the cross-trial MUs can accurately estimate both dynamic 
movement and isometric force tasks. The estimation was 
more accurate than the conventional EMG amplitude method 
in terms of overall RMSE, across three subjects and finger-
specific evaluations. 

Since the decomposition of HD-EMG signals is 
computationally intensive, it is not feasible for real-time 
computation for human-robot interactions. One potential 
solution is to decompose the MUs during an offline 
initializing period of the trial, and since the actual source 
separation is time consuming, these calculation steps are 
performed offline. After the separation matrix is available, we 
can then apply the separation matrix to a new data set in a 

        
   

   

   

   

 

 
 
 
  

 
  
  

                        

         
        

 

  

  

  

  

  

 
  

 
 

            

       

     

   

   

       

         

        

   

   

   

   

   

   

   

        

               

           
 

 

  

  

  

  

 
 
 
  

 
  
  

                   

              

           
 

 

 

 

 

 

 
  

 
 

                   

      



  

real-time manner [14]. This is based on the assumption that a 
common set of MUs are recruited across different muscle 
activation trials. The results showed that this approach can 
accurately estimate the dynamic and isometric finger tasks.  

There is substantial estimation error (~ 20 degrees) in the 
EMG amp method during dynamic movements, compared 
with a smaller error (~7-8 degrees) in the neural drive method. 
The results indicate that the EMG amplitude during dynamic 
movement is not a reliable estimate of motor output. This 
finding is consistent with a previous study, where the 
estimation error of the EMG amp method is larger than the 
neural drive method in finger extension angle estimation [17]. 
It is potentially due to residual motion artifacts and muscle 
fiber shift beneath the electrodes, which could lead to 
variations of the EMG amplitude. As shown in Figure 2, the 
peak EMG amplitude drifted over time in the dynamic trial, 
and the EMG amplitude during the plateau segment also 
drifted over time in the isometric trial. The binary spike train 
of the neural drive method is less affected by those variations. 
Prior to the EMG amplitude calculation, potential motion 
artifact has been removed using a source separation method 
[21]. Without this removal method, we expect even larger 
estimation errors of the EMG amp method. Although the 
extraction of MUs during dynamic movement is more 
challenging than the isometric condition, we still found that 
the neural drive method during dynamic movement 
performed better than the EMG amp method. 

The difference in estimation error between the neural 
drive and the EMG amp method is smaller in the isometric 
condition. A possible reason is that each isometric trial is 
merely 12 seconds, and the performance of the EMG 
amplitude usually degrades over time due to possible fatigue. 
An earlier study has shown that the EMG amp and neural 
drive methods exhibit similar performance in the first 200 s 
of contraction, but beyond that, the EMG amplitude tends to 
show a drift [14]. On the other hand, the neural drive is a more 
robust method since it does not rely on the amplitude of the 
EMG signals.  

In future studies, the optimal number of selected MUs 
during validation can be further investigated to achieve a 
more accurate estimation. Only three subjects were recruited 
in this preliminary study, we plan to recruit more subjects to 
systematically evaluate the neural decoding performance in 
future work. Lastly, in the current study, MU decomposition 
was performed separately for the dynamic and isometric 
tasks. We plan to explore whether it is feasible to estimate 
neural drive (composite MU firing frequency) directly using 
neural network approaches [24] across tasks, which would be 
more efficient and could further facilitate real-time decoding. 
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