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Abstract

A number of applications involve sequential
arrival of users, and require showing each user
an ordering of items. A prime example is
the bidding process in conference peer review
where reviewers enter the system sequentially,
each reviewer needs to be shown the list of sub-
mitted papers, and the reviewer then “bids” to
review some papers. The order of the papers
shown has a significant impact on the bids due
to primacy effects. In deciding on the ordering
of the list of papers to show, there are two com-
peting goals: (i) obtaining sufficiently many
bids for each paper, and (ii) satisfying review-
ers by showing them relevant items. In this
paper, we develop a framework to study this
problem in a principled manner. We present
an algorithm called SUPER∗, inspired by the
A∗ algorithm, for this goal. Theoretically, we
show a local optimality guarantee of our algo-
rithm and prove that popular baselines are con-
siderably suboptimal. Moreover, under a com-
munity model for the similarities, we prove
that SUPER∗ is near-optimal whereas the pop-
ular baselines are considerably suboptimal. In
experiments on real data from ICLR 2018 and
synthetic data, we find that SUPER∗ consider-
ably outperforms baselines deployed in exist-
ing systems, consistently reducing the number
of papers with fewer than requisite bids by 50-
75% or more, and is also robust to various real
world complexities.

1 INTRODUCTION

It is well-known that peer review is an essential process
for ensuring the quality and scientific value of research
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(Black et al., 1998; Thurner and Hanel, 2011). A funda-
mental challenge in peer review is matching or assigning
papers to qualified and willing reviewers. Bidding has
emerged as an important mechanism for aiding in and
improving the peer review process under the guise that
active engagement of the reviewer leads to assignments
more aligned with their preferences

In typical peer review process, when the bidding process
opens, reviewers enter the system in an arbitrary sequen-
tial order. Upon entering, a list of papers is shown to
them and they are asked to place bids on papers they
would prefer to review. Following the bidding process,
bids can be incorporated into the reviewer-paper assign-
ment mechanism. It is known that the order of papers
presented to reviewers in the bidding stage can greatly
impact the number of bids that a paper receives (Cabanac
and Preuss, 2013). From the perspective of the platform,
there are two competing goals: (i) ensure that each paper
has a sufficient number of bids, and (ii) ensure individual
reviewer satisfaction by showing relevant papers.

With regard to goal (i), the platform aims to select a dis-
play order for each reviewer such that at the end of the
bidding process, each paper has at least a certain number
of bids. The main objective of ensuring a minimum num-
ber of bids on each paper is to improve review quality
for all papers (Shah et al., 2018b). The well-documented
primacy effect (Murphy et al., 2006) suggests that papers
shown on top of the ordering are the ones on which re-
viewers are more likely to bid. Consequently, this objec-
tive suggests that papers with few bids should be placed
higher in the list (Cabanac and Preuss, 2013).

With regard to goal (ii), the platform aims to display
‘well-matched’ papers to each reviewer. That is, the
set of papers to be displayed is composed of papers on
which the reviewer is most likely to bid. It is gener-
ally assumed that reviewers are more likely to place bids
on papers they are qualified to review (Rodriguez et al.,
2007). Furthermore, reviewers that place positive bids



on papers are more likely to give a review with high con-
fidence and voice sharp opinions of acceptance or rejec-
tion that help guide final decisions on papers (Cabanac
and Preuss, 2013). Failing to display relevant papers to
reviewers can result in several unintended negative con-
sequences. If irrelevant papers are shown early in the
order to a reviewer, it may cause the reviewer to opt-out
and disengage with the system even if further down the
list there was an option that they would have happily bid
on. Similarly, a poorly selected ordering may result in
significantly fewer bids from a reviewer.

In peer review, it is recognized that actively engaging re-
viewers in the paper assignment process via bidding can
greatly improve the review process. If administered inad-
equately, bidding can in fact have a significant negative
impact on the quality of the review process (Rodriguez
et al., 2007). A study on the 2016 Neural Information
Processing Systems (NeurIPS) conference revealed the
distribution of bids arising from a typical bidding pro-
cess leaves significant challenges to match papers with
reviewers (Shah et al., 2018b). It was observed that a
considerable number of reviewers do not place a suffi-
cient number of bids and papers commonly fail to obtain
as many bids as the number of reviewers needed. This
phenomenon is detailed in Shah et al. (2018b) among the
3,200 reviewers and 2,400 papers. The inability to elicit
meaningful bidding information in NeurIPS is far from
an aberration. In a study of the 2005 Joint Conference on
Digital Libraries, 146 out of the 264 submissions did not
obtain any bids (Rodriguez et al., 2007).

Despite the importance of the bidding process in peer
review, there is not yet much fundamental research on
the problem of optimizing the display order during the
bidding process, and much less so in consideration of
the two objectives identified in this paper. In practice,
the display order is typically determined via heuristics
such as a fixed ordering (e.g., order of submission), or
in decreasing order of the relevance of the papers to that
reviewer, or in increasing order of the number of bids
received by the paper until then.

A key reason that bidding can fail is that papers are sub-
optimally displayed to the reviewers. Consider a paper
that is not an ideal match for any reviewer in the sys-
tem. If papers are ranked for display simply by how well-
matched they are to reviewers, this particular paper may
be shown far down in the list to each reviewer and hence,
not receive many, if any, bids. The risk of this scenario
is elevated for interdisciplinary research, which is know
to face significant impediments as a consequence of the
lack of ideally matched peers (Porter and Rossini, 1985).

On the other hand, if papers are inversely ranked by the
number of bids they have obtained, then papers with

fewer bids are more likely to be shown higher on the list
regardless of how well-matched they are to a reviewer.
This display order may cause reviewer dissatisfaction,
which in the worst case could result in zero bids. Simi-
larly, ordering heuristics that are based on a fixed base-
line may lead to bias in the review process. In a study of
42 peer-reviewed Computer Science conferences, it was
observed that under a fixed ordering (based on the sub-
mission time), the number of bids on papers is heavily
influenced by the order of paper submission times (Ca-
banac and Preuss, 2013). It was concluded that the later
the paper is submitted, the fewer bids it will receive.

Given the flaws of existing peer review bidding systems,
we study the important problem of selecting the ordering
of papers to display to each arriving reviewer.

1.1 CONTRIBUTIONS

The key contributions of this paper are now summarized.

Problem identification and formulation (Section 2).
The bidding process is highly consequential, yet one
of the most understudied components of the conference
peer-review process. We identify a key source of unfair-
ness and inefficiency in the bidding process, and develop
principled methods to address it. A key challenge is suit-
ably formalizing this problem in the peer review bidding
process, for which to the best of our knowledge there are
no prior formulations. We formulate an objective func-
tion that captures the competing goals of the platform
while reflecting the underlying decision-making process
of reviewers. The general framework developed in this
paper to analyze the problem is an important step toward
future improvements on bidding systems.

Algorithm design (Section 3). We present a sequential
decision-making algorithm called SUPER∗ to address
this problem. The algorithm takes as input the “simi-
larities” between each reviewer-paper pair and the bids
made by all past reviewers, and outputs the ordering of
papers to show to any current reviewer.

Theoretical results (Section 4). We show two sets of
theoretical results. We first consider a notion of ‘lo-
cal’ performance: the performance with respect to a sin-
gle reviewer. We prove that SUPER∗ is locally optimal
whereas all popular baselines are considerably subopti-
mal. Our second set of theoretical results are based on
a community model, where we theoretically show that
SUPER∗ is near-optimal (globally) whereas all popular
baselines are considerably suboptimal.

Experiments on real and synthetic data (Section 5).
We run extensive experiments using similarity scores
from ICLR 2018 and on synthetic data. The experi-



ments reveal that the SUPER∗ algorithm outperforms all
popular baselines. For instance, it consistently reduces
the number of papers with fewer than requisite bids by
50-75% while maintaining individual reviewer satisfac-
tion. In addition, we observe that SUPER∗ is robust to
model mismatches and complexities of the real-world re-
view process. The code for the algorithm is available at
github.com/fiezt/Peer-Review-Bidding.

1.2 RELATED WORK

The paper ordering problem for the bidding process in
peer review bears a strong resemblance to the learn-
ing to rank problem (Singh and Joachims, 2019; Yadav
et al., 2019; Aslanyan and Porwal, 2019). The objec-
tive of finding a ranking most suitable for an arriving re-
viewer during the bidding process is analogous to learn-
ing to rank methods that consider the utility of rank-
ings for users along with the impact on the items being
ranked (Singh and Joachims, 2019; Yadav et al., 2019).
Moreover, the bidding model considered in this work is
motivated from that which is commonly adopted in learn-
ing to rank models (Aslanyan and Porwal, 2019). The
problem is also abstractly similar to online recommenda-
tion systems similarly facing competing objectives (Ro-
driguez et al., 2012; Agarwal et al., 2011; Jambor and
Wang, 2010), where often the multi-objective problem is
converted to a constrained optimization problem.

The objective in the peer review problem as formulated
in this paper presents unique challenges not addressed in
the aforementioned works on learning to rank and recom-
mendation systems. Notably, it is not separable between
the reviewers since it depends nonlinearly on the number
of bids on each paper after each reviewer has arrived and
placed bids on the papers. It is worth mentioning that
in bandits with knapsacks (Badanidiyuru et al., 2018),
the observation model can include both immediate user
reward feedback and itemwise feedback that couples de-
cisions such as in our model. However, there is not a
way to encode the goal of ensuring a minimum amount
of consumption on each of the items in the constraints, so
our work cannot fit into the aforementioned framework.

Our work also contributes to a growing literature on im-
proving the peer review process including reviewer as-
signment (Charlin and Zemel, 2013; Stelmakh et al.,
2019b; Kobren et al., 2019), biases (Tomkins et al., 2017;
Stelmakh et al., 2019a), subjectivity (Noothigattu et al.,
2018), miscalibration (Wang and Shah, 2019), strategic
behavior (Xu et al., 2019), among others (Lawrence and
Cortes, 2014; Shah et al., 2018a; Jecmen et al., 2020;
Ding et al., 2020; Stelmakh et al., 2020a,b). This paper
addresses the bidding process in conference peer review,
which has largely been unexplored in past literature.

2 PROBLEM FORMULATION

Consider d ≥ 2 papers and n ≥ 2 reviewers indexed
as {1, . . . , d} and {1, . . . , n} respectively.1 For each
reviewer-paper pair, we have access to a similarity score
that captures the similarity between the reviewer and the
paper. We use Si,j ∈ [0, 1] to denote the given similarity
between any reviewer i ∈ [n] and paper j ∈ [d]. A higher
similarity score indicates a greater relevance of the paper
to that reviewer. There are several systems in use today
that compute similarities (Charlin and Zemel, 2013), and
in our work, we treat them as being given.

In the bidding period, reviewers sequentially arrive into
the system and place bids on the papers. In our work, for
any reviewer and paper, we only consider the existence of
a bid or not, and do not consider the possibility of multi-
ple bidding options. Moreover, we assume for simplicity
that all n reviewers arrive exactly once, and that a re-
viewer arrives after the previous reviewer has completed
their bidding. The problem is to determine the ordering
of papers to show each reviewer on arrival in the interest
of influencing the papers they decide to bid on while en-
suring individual satisfaction. When deciding the paper
ordering for any reviewer, the bids made by all reviewers
who arrived in the past along with the paper orderings
presented to them are known, but the bids made by the
current or future reviewers are unknown. Let Πd denote
the set of all possible d! permutations of the d papers. In
what follows, for any reviewer i ∈ [n], we let πi ∈ Πd

denote the ordering (permutation) of the papers shown to
reviewer i. We also use the notation πi(j) to denote the
position of paper j ∈ [d] in the ordering πi.

Gain function (objective). Any algorithm to determine
the ordering of papers must trade-off between two com-
peting objectives: ensuring each paper receives a suffi-
cient number of bids and ensuring each reviewer gets to
see relevant papers early in the ordering. A combination
of the objectives comprise our “gain function,” which is
the objective we aim to optimize. We begin by discussing
each objective component separately.

Paper-side gain: The paper-side gain is associated with
a given function γp : R≥0 → R≥0. At the end of the
entire bidding process, the paper-side gain Gp is

Gp =
∑

j∈[d]
γp(gj),

where gj is the number of bids received by paper j ∈ [d].
We assume the function γp is non-decreasing and con-
cave. The non-decreasing property represents an im-
proved gain if there are more bids, and the concavity

1Henceforth, for any positive integer κ, we will use the stan-
dard shorthand [κ] to denote the set {1, . . . , κ}.
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property captures diminishing returns.2 An example of a
choice for the paper-side gain is the square-root function
γp(x) =

√
x. This function is increasing, smooth, and

captures the diminishing returns property. The reader
may keep this function in mind as a running example for
concreteness. A second example is γp(x) = min{x, r}
for a given parameter r ≥ 1, which emphasizes having
at least r bids per paper.

Reviewer-side gain: This objective captures the desider-
atum that the reviewers should be shown papers with
high relevance early in the paper ordering. The reviewer-
side gain is associated with some predetermined func-
tion γr : [d] × [0, 1] → R≥0. Given this function, the
reviewer-side gain Gr is defined as:

Gr =
∑

i∈[n]

∑
j∈[d]

γr(πi(j), Si,j).

The function γr is assumed to be non-increasing in the
position (its first argument) and non-decreasing in the
similarity (its second argument). One example choice
of this function, which the reader may choose to keep
in mind as a running example, is the Discounted Cu-
mulative Gain or DCG used commonly in data min-
ing (Järvelin and Kekäläinen, 2000). After taking the
“relevance” parameter in DCG to be the similarity Si,j ,
the function we consider is given by

γr(πi(j), Si,j) = (2Si,j − 1)/(log2(πi(j) + 1)). (1)

Overall gain function: Finally, we assume there is a
trade-off parameter λ ≥ 0, chosen by the program chairs,
which trades off between these two objectives so that the
overall gain function is given by

G = Gp + λGr. (2)

The goal is to determine the orderings of papers to show
each reviewer to maximize the expected overall gain,
E
[
G
]
, where the expectation is taken over the random-

ness in the bids made by the reviewers (see reviewer bid-
ding model below) and any randomness in the algorithm.

Reviewer bidding model. An important aspect of any
system that displays a list to users is the presence of pri-
macy effects. In the context of our problem, the primacy
effect means a reviewer is more likely to bid on a pa-
per shown at the top of the list rather than later (Murphy
et al., 2006). A second aspect of bidding is that a re-
viewer is more likely to bid on papers with greater sim-
ilarity, although the reviewer may not bid on exactly the

2Our algorithm easily adapts to paper-side gains that may
also be a function of the similarity scores of the reviewers who
bid; for example, a higher gain for bids from expert reviewers.
We omit this detail for sake of brevity.

papers with the highest similarity since the similarities
are noisy representations of their reviewing interests.

Thus in order to model reviewer bidding, we revert to
literature on position-based click models that have a
nearly identical setting (where clicks are analogous to
our bids). We model the bidding via a given func-
tion f : [d] × [0, 1] → [0, 1], where f(πi(j), Si,j)
is non-increasing in the position that a paper is shown
(the first argument) and non-decreasing in the similar-
ity score (the second argument). Any reviewer i ∈ [n]
bids on paper j ∈ [d] independently with probability
pi,j = f(πi(j), Si,j). As a running example through-
out the paper, note that in position-based click models,
the click probability decomposes into a product of rele-
vance and position bias (Chuklin et al., 2015). Moreover,
the literature considers the click probability to decay log-
arithmically as a function of the position (Aslanyan and
Porwal, 2019). The translation of these models into our
setting gives rise to the example bidding function

f(πi(j), Si,j) = Si,j/ log2(πi(j) + 1). (3)

Baselines. We consider the following three methods of
ordering papers as baselines.

Random baseline (RAND): A commonplace prac-
tice (Cabanac and Preuss, 2013) is to show papers to re-
viewers in some fixed order, such as in order of submis-
sion of the papers. As a baseline, we consider a better
variant of this practice, in which each reviewer is shown
an independently and randomly selected paper ordering.

Similarity baseline (SIM): A second common practice,
followed in several conference management systems to-
day, is to order the papers according to their similarities.
In other words, any reviewer i ∈ [n] is shown the papers
in order of the values in {Si,j}j∈[d] (where the paper with
maximum similarity is shown at the top, and so on). Any
ties are broken by showing papers with fewer bids higher,
and further ties are broken uniformly at random.

Bid baseline (BID): A third baseline shows papers to
greedily optimize the minimum bid count. Each reviewer
is shown papers in increasing order of the number of bids
received so far from reviewers who arrived previously.
Any ties are broken in favor of the paper with a higher
similarity, and then uniformly at random.

3 ALGORITHM

The key challenge in designing a suitable algorithm for
the problem at hand stems from the fact that the paper-
side gain is coupled (non-separable) across the orderings
of papers presented to all reviewers so the impact of each
individual paper ordering cannot be fully realized un-



til the entire bidding process is complete. Conversely,
the reviewer-side gain is decoupled (separable) across re-
viewers. This means the reviewer-side gain that can be
obtained from any given reviewer is independent of the
ordering of papers presented to any other reviewer. Thus,
an algorithm for this problem is required to make local
decisions, where the effect of the decision on the global
gain (or cost) is only partially known. This perspective
is reminiscent of the classical A∗ algorithm (Hart et al.,
1968), and using A∗ as an inspiration, we now present an
algorithm which we call SUPER∗ for our problem3.

The A∗ algorithm operates with a goal of finding the
minimum cost path between a pair of vertices in a cost-
weighted graph. For any node in consideration, it con-
siders two functions: a function which captures the cost
so far and a second function—called the “heuristic”—
which captures some estimate of the cost from the cur-
rent node to the destination. The A∗ algorithm then finds
a path based on these two functions. Before moving to
a description of SUPER∗, we discuss such a heuristic in
the context of the problem at hand.

3.1 HEURISTIC FOR FUTURE BIDS

In a manner analogous to the A∗ algorithm, at any point
in time SUPER∗ keeps track of the gains so far and
also takes as input a heuristic that captures the “unseen”
events. The heuristic in A∗ provides, for every vertex in
the given graph, an estimate of the cost incurred in the fu-
ture. Analogously, the heuristic in SUPER∗ provides, for
every arrival of a reviewer, an estimate of the number of
bids each paper will receive in the future. Formally, let us
index the reviewers as i ∈ [n] in the order of arrival (note
that this order is unknown a priori). The heuristic com-
prises a collection of vectors {h1, . . . , hn}, where each
hi ∈ [0, n − i]d represents an estimate of the number of
bids each of the d papers will receive from all future re-
viewers {i+ 1, . . . , n}. The vector hi is provided to the
SUPER∗ algorithm on arrival of the ith reviewer. Two
examples of heuristic functions that we consider in the
subsequent narrative are described as follows.

• Zero heuristic: hi = 0 for every i ∈ [n].

• Mean heuristic: This function computes the expected
number of bids each paper will receive if the permu-
tations shown to all future reviewers are chosen inde-
pendently and uniformly at random. Formally: hi,j =
1
d

∑n
i′=i+1

∑
j′∈[d] f(j′, Si′,j) ∀ i ∈ [n− 1], j ∈ [d].

We set hn = 0 for any heuristic, implying no bids are
placed after the last reviewer. This is analogous to setting
the heuristic value to zero for the target vertex in A∗.

3The name SUPER∗ stands for SUperior PERmutations and
also indicates the inspiration from A∗.

3.2 INTUITION BEHIND THE ALGORITHM

We first provide some intuition about the SUPER∗ al-
gorithm, and subsequently present a formal description.
Since a primary impediment to designing an algorithm is
the inability to fully realize the impact of a paper order-
ing on the paper-side gain until the end of the bidding
process, we begin by considering the scenario where
(n−1) reviewers have already departed, and the problem
is to determine the ordering of papers to show the final
reviewer. In this scenario, we have access to the bids of
all (n−1) reviewers that have already arrived and the or-
derings of papers presented to them. We use the notation
gn−1,j ∈ {0, . . . , n − 1} to denote the number of bids
received by any paper j ∈ [d] at the time of arrival of
the last reviewer. The values {gn−1,1, . . . , gn−1,d} are
thus known at the time when the final reviewer arrives.
As a result, we can formulate an optimization problem
for the final reviewer n to maximize the expected gain
from (2) in the following manner. For every j ∈ [d],
let Bn,j denote a Bernoulli random variable with mean
pi,j = f(πn(j), Sn,j), independent of all else. The ran-
dom variable Bn,j represents the bid of the final reviewer
on paper j ∈ [d]. The optimization problem is then

max
πn∈Πd

∑
j∈[d]

E[γp(gn−1,j + Bn,j)]

+ λ
∑

j∈[d]
γr(πn(j), Sn,j),

(4)

where the expectation is taken over the distribution of the
random variables Bn,1, . . . ,Bn,d.

Observe that the constraint set for the optimization prob-
lem in (4) is the set Πd of all permutations. This set
is, in general, not very well behaved (Ailon et al., 2008;
Shah et al., 2016), which makes even this one-step op-
timization a challenge. As we discuss later in the for-
mal algorithm description along with Theorem 1 and its
proof, SUPER∗ for the final reviewer optimally solves (4)
and it is computationally efficient manner. The afore-
mentioned subproblem forms the starting point for the
SUPER∗ algorithm. Now that we know to handle a sin-
gle (last) reviewer in an optimal fashion, we now de-
scribe the SUPER∗ algorithm for a general reviewer, say,
i ∈ [n]. When reviewer i arrives, we have access to the
number of bids made by all past reviewers on any paper
j ∈ [d], which we denote by gi−1,j ∈ {0, . . . , i− 1}.
We now recall the A∗ algorithm: for any vertex, A∗ con-
siders the cost “g” so far and a heuristic estimate “h” of
the subsequent cost. Then, considering the cost of any
vertex as “g + h”, the A∗ algorithm takes the one-step
optimal action given by selecting the neighboring vertex
with the smallest value of “g+h”. In an analogous fash-
ion, SUPER∗ considers the number of bids so far (gi−1)
and takes as input a heuristic (hi) for the number of bids



Algorithm 1: SUPER∗

Input: γp : R≥0 → R≥0, paper-side gain
γr : [d]× [0, 1]→ R≥0, reviewer-side gain
f : [d]× [0, 1]→ [0, 1], bidding model
λ ≥ 0, trade-off parameter
S ∈ [0, 1]n×d, similarity matrix.

Algorithm:

1. Initialize bids on each paper to zero: g0 ← 0d

2. For each reviewer arrival i ∈ [n]

(a) Compute or input heuristic hi ∈ [0, n− i]d
(b) πi ← FindPaperOrder
(c) Present papers in the order πi
(d) Observe vector of bids bi ∈ {0, 1}d
(e) Update paper bid counts: gi = gi−1 + bi

in the future. Then, considering the number of bids from
all other reviewers as “gi−1 + hi”, SUPER∗ takes the ac-
tion which is the one-step optimal action. In other words,
SUPER∗ solves for each paper ordering using:

max
πi∈Πd

∑
j∈[d]

E[γp(gi−1,j + hi,j + Bi,j)]

+λ
∑

j∈[d]
γr(πi(j), Si,j)

(5)

where Bi,j is a Bernoulli random variable with mean
pi,j = f(πi(j), Si,j) and independent of all else. As for
the final reviewer, SUPER∗ is efficient for any reviewer.

3.3 FORMAL ALGORITHM DESCRIPTION

The SUPER∗ algorithm is presented in Algorithm 1.
To determine a paper ordering to show any reviewer,
SUPER∗ calls a procedure to efficiently solve (5). We
give a general method in Algorithm 2 and a faster method
in Algorithm 3 that is applicable for a special class of
reviewer-side gain and bidding functions.

General version. In the general version of SUPER∗, Al-
gorithm 2 is called to return a paper ordering that is a so-
lution to (5) each time a reviewer arrives. In the proof of
Theorem 1, we show that the optimization problem over
the set of permutations given in (4) to find the optimal
paper ordering for the final reviewer can be reformulated
as an integer linear programming problem with a totally
unimodular constraint set. The totally unimodular prop-
erty of the constraint set guarantees that the solution of
a relaxed linear program is in fact the integer optimal
solution. The application of this reduction from an opti-
mization problem over permutations to a linear program-
ming problem for any given reviewer forms the tech-
nique given in Algorithm 2 to efficiently obtain a solution
to (5). Finally, the per-reviewer time complexity of the

Algorithm 2: FindPaperOrder

1. Compute weight matrix w ∈ Rd×d such that

wj,k = λγr(k, Si,j)+

f(k, Si,j)(γp(gi−1,j + hi,j + 1)− γp(gi−1,j + hi,j))

2. Solve linear program to obtain x∗ ∈ Rd×d with
ties broken arbitrarily between maximizing solutions:

x∗ ∈ arg max
x∈[0,1]d×d

∑
j∈[d]

∑
k∈[d]

wj,kxj,k

s.t.
∑
k∈[d]

xj,k = 1 ∀ j ∈ [d],
∑
j∈[d]

xj,k = 1 ∀ k ∈ [d]

3. πi(j) = k such that x∗j,k = 1 for each j ∈ [d]

Output: πi

Algorithm 3: FindPaperOrderEfficient

1. Compute weights for each j ∈ [d]:

αi,j = λγSr (Si,j)+

fS(Si,j)(γp(gi−1,j + hi,j + 1)− γp(gi−1,j + hi,j))

2. πi = σ(αi), where σ : Rd → [d]d returns the rank
from maximum to minimum of each input in place and
breaks ties arbitrarily.

Output: πi

general version of SUPER∗ given the evaluations of the
heuristic is O(d3) (see Proposition 1 in Appendix B.1).

Faster specialized version. Given a bidding func-
tion that can be decomposed into f(πi(j), Si,j) =
fS(Si,j)f

π(πi(j)) where fS : [0, 1] → [0, 1] is non-
decreasing and fπ : [d]→ [0, 1] is non-increasing, along
with a reviewer-side gain function that can be decom-
posed as γr(πi(j), Si,j) = γSr (Si,j)f

π(πi(j)) where
γSr : [0, 1] → R≥0 is non-decreasing, SUPER∗ calls Al-
gorithm 3 to return a paper ordering that is a solution
to (5) each time a reviewer arrives. In the proof of Propo-
sition 1 in Appendix B.1, we show for this model class
that the problem from (4) to find the optimal paper order-
ing for the final reviewer after evaluating the expectation
can be reformulated as

max
πn∈Πd

∑
j∈[d]

αn,jf
π(πn(j)) (6)

for some non-negative weights {αn,j}j∈[d]. The problem
in (6) admits a simple solution: fπ is non-increasing on
the domain, so the objective is maximized by presenting



papers in decreasing order of the weights {αn,j}j∈[d].
Obtaining this solution only requires sorting the weights,
which has a time complexity of O(d log(d)). The appli-
cation of this problem reformulation for the given model
class and any reviewer forms the technique given in Al-
gorithm 3 to obtain a solution to (5).

Before moving on to present our theoretical results, we
comment on the relevance of this model class. Impor-
tantly, the DCG reviewer-side gain function and bidding
model f(Si,j , πi(j)) = Si,j/ log2(πi(j) + 1), which we
have mentioned as running examples that can be kept
in mind, satisfy the decomposition for which SUPER∗

is computationally efficient. This choice of functions
is standard in the past literature on ranking models and
click behavior (Järvelin and Kekäläinen, 2000; Aslanyan
and Porwal, 2019), meaning that the time complexity re-
sult for this model class is quite relevant.

4 Theoretical Results

We now present the main theoretical results of this paper.
Complete proofs of all results are in Appendix A.

4.1 LOCAL OPTIMALITY

The property of local optimality, as the name suggests,
means that the algorithm is optimal with respect to the
reviewer under consideration. Achieving even a good lo-
cal performance in a computationally efficient manner
is challenging due to the optimization over permutations
in (4). The following results show that SUPER∗, which
is computationally efficient, is locally optimal.

The result is first presented in terms of the final re-
viewer for simplicity and extended to a general reviewer
subsequently. In the following theorem, since we con-
sider only the final reviewer, note that the heuristic for
SUPER∗ is irrelevant because the heuristic value for the
final reviewer is always set to zero.

Theorem 1. Given any history of paper orderings and
bids from reviewers that arrived previously, the paper or-
dering given by SUPER∗ to the final reviewer maximizes
the expected gain conditioned on the history.

In other words, the expected amount by which the gain
is increased from the final reviewer is maximized. To
generalize the previous result to a local optimality result
for any reviewer, let the immediate gain from a reviewer
be defined as the difference between the gain after and
before the reviewer arrived.

Corollary 1. Given any history of paper orderings and
bids from reviewers that arrived previously, the paper
ordering given to any reviewer by SUPER∗ with zero

heuristic maximizes the expected immediate gain from
that reviewer conditioned on the history.

The property of local optimality also implies optimality
of SUPER∗ (with any heuristic) when the paper-side gain
function is linear. We refer the reader to Appendix B.2
for more details. We now show that an analogous local
optimality statement cannot be made regarding the other
baseline methods. In fact, in contrast to SUPER∗, all the
popular baselines are considerably suboptimal.

Theorem 2. Consider a model with the paper-side gain
function γp(gj) =

√
gj , reviewer-side gain function

γr(πi(j), Si,j) = (2Si,j − 1)/ log2(πi(j) + 1), and bid-
ding function f(πi(j), Si,j) = Si,j/ log2(πi(j) + 1).
There exists a constant c > 0 such that for every d ≥ 2
and λ ≥ 0, in the worst case for the final reviewer:
SIM, BID, and RAND are suboptimal by additive fac-
tors of at least cd/ log2

2(d), cdmax{1, λ}/ log2
2(d), and

cdmax{1, λ}/ log2
2(d), respectively.

Theorems 1 and 2 in tandem show that SUPER∗ not only
is locally optimal but can outperform currently popular
algorithms by a wide margin.

4.2 GLOBAL OPTIMALITY UNDER A
COMMUNITY MODEL

We now transition to consider the global performance of
the algorithms. Given our focus on the application of
peer review, we are motivated to give guarantees on the
performance of SUPER∗ for similarity matrix classes that
would be encountered in a real conference.

A common characteristic of networks is community
structure (Newman and Girvan, 2004), where nodes can
be grouped into clusters and links between groups are
not as common. Pertinent to this work, empirical inves-
tigations have revealed community structures in scien-
tific collaboration networks (Newman, 2001). Given this
close connection, and the fact that scientific research is
highly specialized, it is intuitive that communities exist
in major conferences pertaining to different subtopics.

We explore the possible existence of such structure in
the ICLR 2018 similarity matrix that was reconstructed
by Xu et al. (2019) and is of size n = 2435 and d = 935.
To begin, we investigate the spectral properties of the
similarity matrix from ICLR 2018, and in particular,
whether it is low rank. We plot the singular values of the
similarity matrix in Figure 1a, where the (heuristic) el-
bow method suggests a low rank (≈ 10). In Figure 1b we
plot the entries of the similarity matrix after permuting its
rows and columns according to the spectral co-clustering
algorithm (Dhillon, 2001). The result suggests the ICLR
2018 similarity matrix exhibits some characteristics of a
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Figure 1: (a) The 50 singular values (excluding the maxi-
mum singular value) of the ICLR 2018 similarity matrix,
which shows low-rank structure. (b) Similarity scores of
the permuted ICLR matrix as a heatmap indicating the
block diagonal structure.

noisy block diagonal structure.

We now perform an associated theoretical analysis of the
algorithms under such community structures of the sim-
ilarity matrix. We begin by proposing a simple model
which we call the ‘noiseless community model’.

Noiseless community model. Informally, the noiseless
community model we study is a set of similarity matrices
that up to a permutation of rows and columns belong to a
subclass of block diagonal matrices. Formally, let 0q×q
and 1q×q denote q × q matrices of all zeros and all ones
respectively. Define an mq ×mq block matrix B as:

B =


1q×q 0q×q · · · 0q×q
0q×q 1q×q · · · 0q×q

...
...

. . .
...

0q×q 0q×q · · · 1q×q

 .
Finally, denote by Pmq×mq the set of all mq ×mq per-
mutation matrices. The noiseless community model is
defined as the following set of similarity matrices for
m ≥ 2 and q ≥ 2:

{S = P (sB)P̃ : s ∈ [0.01, 1], P, P̃ ∈ Pmq×mq}. (7)

The number of reviewers is given by n = mq and the
number of papers by d = mq. In words, this is the set of

all similarity matrices obtained via a permutation of the
rows and columns of the block matrix B.

We begin by showing that under the noiseless commu-
nity formulation, both SUPER∗ and SIM are optimal,
whereas BID and RAND fare poorly.

Theorem 3. Consider a model with the paper-side gain
function γp(gj) =

√
gj , reviewer-side gain function

γr(πi(j), Si,j) = (2Si,j − 1)/ log2(πi(j) + 1), and
f(πi(j), Si,j) = 1{πi(j) = 1}1{Si,j > s/2} as the
bidding function. Then, under the noiseless community
model from (7), for all m ≥ 2, q ≥ 2 and λ ≥ 0:
SUPER∗ with zero heuristic and SIM are optimal. In
contrast, there exists a constant c > 0 such that for all
m ≥ 2, q ≥ 2 and λ ≥ 0: BID and RAND are subopti-
mal by additive factors of at least cλmq/ log2

2(mq) and
cmq, respectively.

Although SIM is optimal in the noiseless community
model, this optimality is quite brittle. As we show below,
even an infinitesimally small amount of noise makes SIM
considerably suboptimal. In contrast, SUPER∗ is robust
enough and suffers by only a small amount.

Noisy community model. We first define a ‘noisy com-
munity model’. Under this model, we assume that the
similarity matrix is generated by first selecting any simi-
larity matrix S′ from the noiseless community model de-
fined in (7), and then adding noise to its entries as:

Si,j =

{
s− νi,j if S′i,j = s

νi,j if S′i,j = 0,
(8)

where νi,j is drawn independently and uniformly from
(0, ξ) for each reviewer-paper pair, for some small value
ξ to be defined subsequently. The next result shows that
even under an arbitrarily small perturbation ξ from a
noiseless community model, the baselines become sig-
nificantly suboptimal. In contrast, SUPER∗ is robust to
the noise and is near-optimal.

Theorem 4. Consider the gain and bidding functions
from Theorem 3 and the noisy community model given
in (8) with any noise bound satisfying ξ ≤ (1 +
λ)−1e−emq . Then, for every m ≥ 2, q ≥ 2, and λ ≥ 0:
SUPER∗ with zero heuristic is within at least an additive
factor of 0.0001 of the optimal. In contrast, there exists a
constant c > 0 such that for allm ≥ 2, q ≥ 2 and λ ≥ 0,
with respect to SUPER∗ with zero heuristic: SIM, BID,
and RAND are suboptimal by additive factors of at least
cmq, cλmq/ log2

2(mq), and cmq, respectively.

This result thus establishes the global optimality of
SUPER∗ for the community model, while in contrast all
popular baselines are considerably suboptimal.
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Figure 2: ICLR 2018 similarity matrix experiment.

5 EXPERIMENTAL RESULTS

We now empirically evaluate SUPER∗ (with zero and
mean heuristics) and compare it with the baselines SIM,
BID, and RAND (discussed earlier in Section 2). The
experimentation methodology is as follows for any cho-
sen set of model parameters. Given a fixed similarity
matrix, we shuffle the rows of the matrix to randomize
the sequence of reviewer arrivals and simulate each of
the algorithms. Then, for each algorithm, we record the
gain along with the number of papers that end up with
bid counts in the intervals {0, 1, 2}, {3, 4, 5}, {6, 7, 8},
and {9+}. We repeat this process 20 times for a given
similarity matrix. To evaluate performance, we show the
means of the relative gains (additive gains relative to the
gain of a baseline) across the runs and include error bars
representing the standard error of the mean. Moreover,
we present the mean number of papers across the re-
peated simulations that finish with bid counts in each of
the previously given bid count intervals. The code and
data to reproduce each of the experiments is available at
github.com/fiezt/Peer-Review-Bidding.

We perform evaluations on the ICLR 2018 similarity ma-
trix. The model we consider has a paper-side gain func-
tion γp(gj) = min{gj , 6}, reviewer-side gain function
γr(πi(j), Si,j) = (2Si,j − 1)/ log2(πi(j) + 1), and bid-
ding function f(πi(j), Si,j) = Si,j/ log2(πi(j) + 1).
We remark that the paper-side gain function is a natu-
ral choice given that conferences often assign three re-
viewers to each paper and as such they may seek twice
the number of bids per paper. Moreover, recall that for
this pair of reviewer-side gain and bidding functions, the
efficient routine in Algorithm 3 can be called in place
of Algorithm 2 in SUPER∗ to retrieve a paper ordering,
which is what we implement.

The results of the experiment are presented in Figure 2.

In Figures 2a–2b we compare SUPER∗ to each base-
line and in Figures 2c–2d we zoom in and only show
the results for SUPER∗ and SIM. In terms of the gain
results shown in Figures 2a and 2c, each version of
SUPER∗ outperforms the baseline algorithms, while BID
outperforms SIM when minimal weight λ is given to
the reviewer-side gain and vice versa when a significant
amount of weight λ is given to the reviewer-side gain. In
Figures 2b and 2d, the distribution of the bid counts ob-
tained for the algorithms are shown with λ = 0.8, which
was chosen since this parameter choice gave nearly equal
paper-side and weighted reviewer-side gain for RAND.

While BID has a similar number of papers with fewer
than the minimum number of desired bids as each ver-
sion of SUPER∗, the gain demonstrates why it is not a
generally adopted method. As a result of showing papers
of limited relevance early in the paper orderings to elicit
bids on papers with few bids, the overall gain is signifi-
cantly smaller than SIM and SUPER∗ since the reviewer-
side gain is worse. The distributions of the bid counts
on the papers illustrate that SUPER∗ reduces the number
of papers that end with fewer than the desired minimum
number of bids by 60% compared to SIM and RAND.

In Appendix C, we present experiments on the ICLR
2018 similarity matrix with variations of the model pa-
rameters and under real-world complexities such as bid
probability mismatch, reviewers failing to arrive, and re-
viewers arriving simultaneously. Moreover, we simulate
several synthetic similarity score structures. We observe
that SUPER∗ consistently outperforms the baselines in
terms of the gain and reduces the number of papers with
fewer than requisite bids by 50-75% or more.
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