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Abstract

We consider the issue of strategic behaviour in various peer-
assessment tasks, including peer grading of exams or home-
works and peer review in hiring or promotions. When a peer-
assessment task is competitive (e.g., when students are graded
on a curve), agents may be incentivized to misreport evalua-
tions in order to improve their own final standing. Our focus
is on designing methods for detection of such manipulations.
Specifically, we consider a setting in which agents evaluate a
subset of their peers and output rankings that are later aggre-
gated to form a final ordering. In this paper, we investigate a
statistical framework for this problem and design a principled
test for detecting strategic behaviour. We prove that our test
has strong false alarm guarantees and evaluate its detection
ability in practical settings. For this, we design and conduct
an experiment that elicits strategic behaviour from subjects
and release a dataset of patterns of strategic behaviour that
may be of independent interest. We use this data to run a se-
ries of real and semi-synthetic evaluations that reveal a strong
detection power of our test.

1 Introduction
Ranking a set of items submitted by a group of people (or
ranking the people themselves) is a ubiquitous task that is
faced in many applications, including education, hiring, em-
ployee evaluation and promotion, and academic peer review.
Many of these applications have a large number of submis-
sions, which makes obtaining an evaluation of each item
by a set of independent experts prohibitively expensive or
slow. Peer-assessment techniques offer an appealing alter-
native: instead of relying on independent judges, they dis-
tribute the evaluation task across the fellow applicants and
then aggregate the received reviews into the final ranking
of items. This paradigm has become popular for employee
evaluation (Edwards and Ewen 1996) and grading students’
homeworks (Topping 1998), and is now expanding to more
novel applications of massive open online courses (Kulka-
rni et al. 2013; Piech et al. 2013) and hiring at freelancing
platforms (Kotturi et al. 2020).

The downside of such methods, however, is that review-
ers are incentivized to evaluate their counterparts strategi-
cally to ensure a better outcome of their own item (Huang
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et al. 2019; Balietti, Goldstone, and Helbing 2016; Has-
sidim, Romm, and Shorrer 2018). Deviations from the truth-
ful behaviour decrease the overall quality of the resulted
ranking and undermine fairness of the process. This issue
has led to a long line of work (Alon et al. 2009; Aziz et al.
2016; Kurokawa et al. 2015; Kahng et al. 2018; Xu et al.
2019) on designing “impartial” aggregation rules that can
eliminate the impact of the ranking returned by a reviewer
on the final position of their item.

While impartial methods remove the benefits of manip-
ulations, such robustness may come at the cost of some
accuracy loss when reviewers do not engage in strategic
behaviour. This loss is caused by less efficient data us-
age (Kahng et al. 2018; Xu et al. 2019) and reduction of
efforts put by reviewers (Kotturi et al. 2020). Implementa-
tion of such methods also introduces some additional logis-
tical burden on the system designers; as a result, in many
critical applications (e.g., conference peer review) the non-
impartial mechanisms are employed. An important barrier
that prevents stakeholders from making an informed choice
to implement an impartial mechanism is a lack of tools to
detect strategic behaviour. Indeed, to evaluate the trade off
between the loss of accuracy due to manipulations and the
loss of accuracy due to impartiality, one needs to be able to
evaluate the extent of strategic behaviour in the system. With
this motivation, in this work we focus on detecting strategic
manipulations in peer-assessment processes.

Specifically, in this work we consider a setting where each
reviewer is asked to evaluate a subset of works submitted by
their counterparts. In a carefully designed randomized study
of strategic behaviour when evaluations take the form of rat-
ings, Balietti, Goldstone, and Helbing (2016) were able to
detect manipulations by comparing the distribution of scores
given by target reviewers to some truthful reference. How-
ever, other works (Huang et al. 2019; Barroga 2014) suggest
that in more practical settings reviewers may strategically
decrease some scores and increase others in attempt to mask
their manipulations or intentionally promote weaker submis-
sions, thereby keeping the distribution of output scores un-
changed and making the distribution-based detection inap-
plicable. Inspired by this observation, we aim to design tools
to detect manipulations when the distributions of scores out-
put by reviewers are fixed, that is, we assume that evalu-
ations are collected in the form of rankings. Ranking-based



evaluation is used in practice (Hazelrigg 2013) and has some
theoretical properties that make it appealing for peer grad-
ing (Shah et al. 2013; Caragiannis, Krimpas, and Voudouris
2014) which provides additional motivation for our work.
Contributions In this work we present two sets of results.
• Theoretical. First, we propose a non-parametric test for

detection of strategic manipulations in peer-assessment
setup with rankings. Second, we prove that our test has
a reliable control over the false alarm probability (prob-
ability of claiming existence of the effect when there is
none). Conceptually, we avoid difficulties associated to
dealing with rankings as covariates by carefully account-
ing for the fact that each reviewer is “connected” to their
submission(s); therefore, the manipulation they employ is
naturally not an arbitrary deviation from the truthful strat-
egy, but instead the deviation that potentially improves the
outcome of their works.

• Empirical. On the empirical front, we first design and
conduct an experiment that incentivizes strategic be-
haviour of participants. This experiment yields a novel
dataset of patterns of strategic behaviour that can be use-
ful for other researchers (the dataset is attached in sup-
plementary materials)1. Second, we use the experimental
data to evaluate the detection power of our test on answers
of real participants and in a series of semi-synthetic sim-
ulations. These evaluations demonstrate that our test has
a non-trivial detection power, while not making strong as-
sumptions on the manipulating strategies.

Related work Despite motivation for this work comes
from studies of Balietti, Goldstone, and Helbing (2016)
and Huang et al. (2019), an important difference between
rankings and ratings that we highlight in Section 2.2
makes the models considered in these works inapplica-
ble to our setup. Several other papers (Thurner and Hanel
2011; Cabotà, Grimaldo, and Squazzoni 2013; Paolucci and
Grimaldo 2014) specialize on the problem of strategic be-
haviour in peer review and perform simulations to explore its
detrimental impact on the quality of published works. These
works are orthogonal to the present paper because they do
not aim to detect the manipulations.

In this paper, we formulate the test for strategic behaviour
as a test for independence of rankings returned by reviewers
from their own items. Classical statistical works (Lehmann
and Romano 2005) for independence testing are not di-
rectly applicable to this problem due to the absence of low-
dimensional representations of items. To avoid dealing with
unstructured items, one could alternatively formulate the
problem as a two-sample test and obtain a control sample of
rankings from non-strategic reviewers. This approach, how-
ever, has two limitations. First, past work suggests that the
test and control rankings may have different distributions
even under the absence of manipulations due to misalign-
ment of incentives (Kotturi et al. 2020). Second, existing
works (Mania et al. 2018; Gretton et al. 2012; Jiao and Vert
2018; Rastogi et al. 2020) on two-sample testing with rank-
ings ignore the authorship information that is crucial in our

1Supplementary materials and appendices are on the first au-
thor’s website.

case as we show in the sequel (Section 2.2).
This paper also falls in the line of several recent works

in computer science on the peer-evaluation process that in-
cludes both empirical (Tomkins, Zhang, and Heavlin 2017;
Sajjadi, Alamgir, and von Luxburg 2016; Kotturi et al. 2020)
and theoretical (Wang and Shah 2018; Stelmakh, Shah, and
Singh 2018; Noothigattu, Shah, and Procaccia 2018) stud-
ies. Particularly relevant works are recent papers (Tomkins,
Zhang, and Heavlin 2017; Stelmakh, Shah, and Singh 2019)
that consider the problem of detecting biases (e.g., gen-
der bias) in single-blind peer review. Biases studied therein
manifest in reviewers being harsher to some subset of sub-
missions (e.g., authored by females), making the methods
designed in these works not applicable to the problem we
study. Indeed, in our case there does not exist a fixed subset
of works that reviewers need to put at the bottom of their
rankings to improve the outcome of their own submissions.

2 Problem Formulation
In this section we present our formulation of the
manipulation-testing problem.

2.1 Preliminaries
In this paper, we operate in the peer-assessment setup in
which reviewers first conduct some work (e.g., homework
assignments) and then judge the performance of each other.
We consider a setting where reviewers are asked to provide a
total ranking of the set of works they are assigned to review.

We let R = {1, 2, . . . ,m} and W = {1, 2, . . . , n} de-
note the set of reviewers and works submitted for review,
respectively. We let matrix C ∈ {0, 1}m×n represent con-
flicts of interests between reviewers and submissions, that
is, (i, j)th entry of C equals 1 if reviewer i is in conflict
with work j and 0 otherwise. Matrix C captures all kinds
of conflicts of interest, including authorship, affiliation and
others, and many of them can be irrelevant from the ma-
nipulation standpoint (e.g., affiliation may put a reviewer at
conflict with dozens of submissions they are not even aware
of). We use A ∈ {0, 1}m×n to denote a subset of “rele-
vant” conflicts — those that reviewers may be incentivized
to manipulate for — identified by stakeholders. For the ease
of presentation, we assume that A represents the authorship
conflicts, as reviewers are naturally interested in improving
the final standing of their own works, but in general it can
capture any subset of conflicts. For each reviewer i ∈ R,
non-zero entries of the corresponding row of matrix A indi-
cate submissions that are (co-)authored by reviewer i. We let
C(i) and A(i) ⊆ C(i) denote possibly empty sets of works
conflicted with and authored by reviewer i, respectively.

Each work submitted for review is assigned to λ non-
conflicting reviewers subject to a constraint that each re-
viewer gets assigned µ works. For brevity, we assume that
parameters n,m, µ, λ are such that nλ = mµ so we can
assign exactly µ works to each reviewer. The assignment
is represented by a binary matrix M ∈ {0, 1}m×n whose
(i, j)th entry equals 1 if reviewer i is assigned to work j
and 0 otherwise. We call an assignment valid if it respects
the (submission, reviewer)-loads and does not assign a re-
viewer to a conflicting work. Given a valid assignment M



of works W to reviewers R, for each i ∈ R, we use M(i)
to denote a set of works assigned to reviewer i. Π

[
M(i)

]
denotes a set of all |M(i)|! total rankings of these works
and reviewer i returns a ranking πi ∈ Π

[
M(i)

]
. The rank-

ings from all reviewers are aggregated to obtain a final or-
dering Λ(π1, π2, . . . , πm) that matches each work j ∈ W
to its position Λj(π1, π2, . . . , πm), using some aggregation
rule Λ known to all reviewers. The grades or other re-
wards are then distributed according to the final ordering
Λ(π1, π2, . . . , πm) with authors of higher-ranked works re-
ceiving better grades or rewards.

In this setting, reviewers may be incentivized to behave
strategically because the ranking they output may impact the
outcome of their own works. The focus of this work is on de-
signing tools to detect strategic behaviour of reviewers when
a non-impartial aggregation rule Λ (e.g., a rule that theoret-
ically allows reviewers to impact the final standing of their
own submissions) is employed.

2.2 Motivating Example
To set the stage, we start from highlighting an important dif-
ference between rankings and ratings in the peer-assessment
setup. To this end, let us consider the experiment conducted
by Balietti, Goldstone, and Helbing (2016) in which review-
ers are asked to give a score to each work assigned to them
for review and the final ranking is computed based on the
mean score received by each submission. It is not hard to
see that in their setting, the dominant strategy for each ratio-
nal reviewer who wants to maximize the positions of their
own works in the final ranking is to give the lowest possible
score to all submissions assigned to them. Observe that this
strategy is fixed, that is, it does not depend on the quality of
reviewer’s work — irrespective of position of their work in
the underlying ordering, each reviewer benefits from assign-
ing the lowest score to all submissions they review.

Similarly, Huang et al. (2019) in their work also operate
with ratings and consider a fixed model of manipulations
in which strategic agents increase the scores of low-quality
submissions and decrease the scores of high-quality submis-
sions, irrespective of the quality of reviewers’ works.

In contrast, when reviewers are asked to output rankings
of submissions, the situation is different and reviewers can
no longer rely on fixed strategies to gain the most for their
own submission. To highlight this difference, let us consider
a toy example of the problem with 5 reviewers and 5 submis-
sions (m = n = 5), authorship and conflict matrix given by
an identity matrix (C = A = I), and three works (review-
ers) assigned to each reviewer (work), that is, λ = µ = 3.
In this example, we additionally assume that: (i) assignment
of reviewers to works is selected uniformly at random from
the set of all valid assignments, (ii) aggregation rule Λ is the
Borda count, that is, the positional scoring rule with weights
equal to positions in the ranking,2 (iii) reviewers are able
to reconstruct the ground-truth ranking of submissions as-
signed to them without noise, and (iv) all but one reviewers
are truthful.

2We use the variant without tie-breaking — tied submissions
share the same position in the final ordering.

Figure 1: Comparison of fixed deterministic strategies avail-
able to a single strategic reviewer depending on position of
their work in the true underlying ranking.

Under this simple formulation, we qualitatively analyze
the strategies available to the strategic reviewer, say reviewer
i∗. Specifically, following the rating setup, we consider the
fixed deterministic strategies that do not depend on the work
created by reviewer i∗. Such strategies are limited to permu-
tations of the ground-truth ranking of submissions inM(i∗).
Figure 1 represents an expected gain of each strategy as
compared to the truthful strategy for positions 2–4 of the
work authored by reviewer i∗ in the ground-truth ranking,
where the expectation is taken over randomness in the as-
signment. The main observation is that there does not exist
a fixed strategy that dominates the truthful strategy for every
possible position of the reviewer’s work. Therefore, in setup
with rankings strategic reviewers need to consider how their
own work compares to the works they rank in order to im-
prove the outcome of their submission.

2.3 Problem Setting
With the motivation given in Section 2.2, we are ready to
present the formal hypothesis-testing problem we consider
in this work. When deciding on how to rank the works, the
information available to reviewers is the content of the works
they review and the content of their own works. Observe that
while a truthful reviewer does not take into account their
own submissions when ranking works of others, the afore-
mentioned intuition suggests that the ranking output by a
strategic agent should depend on their own works. Our for-
mulation of the test for manipulations as an independence
test captures this motivation.

Problem 1 (Testing for strategic behaviour). Given a non-
impartial aggregation rule Λ, assignment of works to review-
ers M , rankings returned by reviewers {πi, i ∈ R}, conflict
matrix C, authorship matrix A and set of works submitted
for reviewW , the goal is to test the following hypotheses:
Null (H0) : ∀i ∈ R s.t. A(i) 6= ∅ πi ⊥ A(i).

Alternative (H1) : ∃i ∈ R s.t. A(i) 6= ∅ πi 6⊥ A(i).

In words, under the null hypothesis reviewers who have
their submissions under review do not take into account their
own works when evaluating works of others and hence are



not engaged in manipulations that can improve the outcome
of their own submissions. In contrast, under the alternative
hypothesis some reviewers choose the ranking depending on
how their own works compare to works they rank, suggest-
ing that they are engaged in manipulations.
Assumptions Our formulation of the testing problem makes
two assumptions about the data-generation process to ensure
that association between works authored by reviewer i and
ranking πi may be caused only by strategic manipulations
and not by some intermediate mediator variables.
(A1) Random assignment. We assume that the assignment

of works to reviewers is selected uniformly at random
from the set of all assignments that respect the conflict
matrix C. This assumption ensures that the works au-
thored by a reviewer do not impact the set of works
assigned to them for review. The assumption of ran-
dom assignment holds in many applications, including
peer grading (Freeman and Parks 2010; Kulkarni et al.
2013) and NSF review of proposals (Hazelrigg 2013).

(A2) Independence of ranking noise. We assume that un-
der the null hypothesis of absence of strategic be-
haviour, the reviewer identity is independent of the
works they author, that is, the noise in reviewers’
evaluations (e.g., the noise due to subjectivity of the
truthful opinion) is not correlated with their submis-
sions. This assumption is satisfied by various popular
models for generation of rankings, including Plackett-
Luce model (Luce 1959; Plackett 1975) and more gen-
eral location family random utility models (Soufiani,
Parkes, and Xia 2012).

Of course, the aforementioned assumptions may be vio-
lated in some practical applications.3 For example, in con-
ference peer review, the reviewer assignment is performed
in a manner that maximizes the similarity between papers
and reviewers, and hence is not independent of the content of
submissions. While the test we design subsequently does not
control the false alarm probability in this case, we note be-
low that the output of our test is still meaningful even when
these assumptions are violated.

3 Testing Procedure
In this section, we introduce our testing procedure. Before
we delve into details, we highlight the main intuition that de-
termines our approach to the testing problem. Observe that
when a reviewer engages in strategic behaviour, they tweak
their ranking to ensure that their own works experience bet-
ter outcome when all rankings are aggregated by the rule Λ.
Hence, when successful strategic behaviour is present, we
may expect to see that the ranking returned by a reviewer in-
fluences position of their own works under aggregation rule
Λ in a more positive way than other works not reviewed by
this reviewer. Therefore, the test we present in this work at-
tempts to identify whether rankings returned by reviewers
have a more positive impact on the final standing of their
own works than what would happen by chance.

3Assumption (A1) can be relaxed (Appendix B) to allow for as-
signments of any fixed topology. We examine the behaviour of our
test under realistic violation of Assumption (A2) in Appendix A.2

For any reviewer i ∈ R, let Ui be a uniform distribu-
tion over rankings Π

[
M(i)

]
of works assigned to them for

review. With this notation, we formally present our test as
Test 1 below. Among other arguments, our test accepts the
optional set of rankings {π∗i , i ∈ R}, where for each i ∈ R,
π∗i is a ranking of works M(i) assigned to reviewer i, but is
constructed by an impartial agent (e.g., an outsider reviewer
who has no work in submission). For the ease of exposition,
let us first discuss the test in the case when the optional set
of rankings is not provided (i.e., the test has no supervision)
and then we will make a case for usefulness of this set.

In Step 1, the test statistic is computed as follows: for each
reviewer i ∈ R and for each work j ∈ A(i) authored by this
reviewer, we compute the impact of the ranking returned by
the reviewer on the final standing of this work. To this end,
we compare the position actually taken by the work (first
term in the inner difference in Equation 1) to the expected
position it would take if the reviewer would sample the rank-
ing of works M(i) uniformly at random (second term in the
inner difference in Equation 1). To get the motivation be-
hind this choice of the test statistic, note that if a reviewer i
is truthful then the ranking they return may be either better
or worse for their own submissions than a random ranking,
depending on how their submissions compare to works they
review. In contrast, a strategic reviewer may choose the rank-
ing that delivers a better final standing for their submissions,
biasing the test statistic to the negative side.

Having defined the test statistic, we now understand its
behaviour under the null hypothesis to quantify when its
value is too large to be observed under the absence of ma-
nipulations for a given significance level α. To this end, we
note that for a given assignment matrix M , there are many
pairs of conflict and authorship matrices (C ′, A′) that (i) are
equal to the actual matrices C and A up to permutations of
rows and columns and (ii) do not violate the assignment M ,
that is, do not declare a conflict between any pair of reviewer
i and submission j such that submission j is assigned to re-
viewer i in M . Next, observe that under the null hypothe-
sis of absence of manipulations, the behaviour of reviewers
would not change if matrixAwas substituted by another ma-
trix A′, that is, a ranking returned by any reviewer i would
not change if that reviewer was an author of works A′(i)
instead of A(i). Given that the structure of the alternative
matrices C ′ and A′ is the same as that of the actual matrices
C and A, under the null hypothesis of absence of manipu-
lations, we expect the actual test statistic to have a similar
value as compared to that under C ′ and A′.

The aforementioned idea drives Steps 2-4 of the test. In
Step 2 we construct the set of all pairs of conflict and au-
thorship matrices of the fixed structure that do not violate
the assignment M . We then compute the value of the test
statistic for each of these authorship matrices in Step 3 and
finally reject the null hypothesis in Step 4 if the actual value
of the test statistic τ appears to be too extreme against values
computed in Step 3 for the given significance level α.

If additional information in the form of impartial rank-
ings is available (i.e., the test has a supervision), then our
test can detect manipulations better. The idea of supervision
is based on the following intuition. In order to manipulate



Test 1 Test for strategic behaviour
Input: Reviewers’ rankings {πi, i ∈ R}

Assignment M of works to reviewers
Conflict and authorship matrices (C,A)
Significance level α, aggregation rule Λ

Optional Argument: Impartial rankings {π∗i , i ∈ R}
1. Compute the test statistic τ as

τ =
∑
i∈R

∑
j∈A(i)

(
Λj(π

′
1, π
′
2, . . . , πi, . . . , π

′
m)− Eπ̃∼Ui

[
Λj(π

′
1, π
′
2, . . . , π̃, . . . , π

′
m)
] )
, (1)

where π′i, i ∈ R, equals π∗i if the optional argument is provided and equals πi otherwise.
2. Compute a multiset P(M) as follows. For each pair (pm, pn) of permutations of m and n items, respectively, apply permu-

tation pm to rows of matrices C and A and permutation pn to columns of matrices C and A. Include the obtained matrix A′
to P(M) if it holds that for each i ∈ R:

A′(i) ⊆ C ′(i) ⊂ W\M(i).

3. For each matrix A′ ∈ P(M) define ϕ(A′) to be the value of the test statistic (1) if we substitute A with A′, that is, ϕ(A′) is
the value of the test statistic if the authorship relationship was represented by A′ instead of A. Let

Φ =
{
ϕ(A′), A′ ∈ P(M)

}
(2)

denote the multiset that contains all these values.
4. Reject the null if τ is strictly smaller than the (

⌊
α|Φ|

⌋
+ 1)th order statistic of Φ.

successfully, strategic reviewers need to have some infor-
mation about the behaviour of others. In absence of such
information, it is natural (and this idea is supported by data
we obtain in the experiment in Section 4) to choose a ma-
nipulation targeted against the truthful reviewers, assuming
that a non-trivial fraction of agents behave honestly. The op-
tional impartial rankings allow the test to use this intuition:
for each reviewer i ∈ R the test measures the impact of re-
viewer’s ranking on their submissions as if this reviewer was
the only manipulating agent, by complementing the ranking
πi with impartial rankings {π∗1 , . . . , π∗i−1, π∗i+1 . . . , π

∗
m}. As

we show in Section 4, availability of supervision can signif-
icantly aid the detection power of the test.

The following theorem combines the above intuitions and
ensures a reliable control over the false alarm probability for
our test (a proof is given in Appendix C).
Theorem 1. Suppose that assumptions (A1) and (A2) spec-
ified in Section 2.3 hold. Then, under the null hypothe-
sis of absence of manipulations, for any significance level
α ∈ (0, 1) and for any aggregation rule Λ, Test 1 (both with
and without supervision) is guaranteed to reject the null with
probability at most α. Therefore, Test 1 controls the false
alarm probability at the level α.
Remark. 1. In Section 4 we complement the statement of
the theorem by demonstrating that our test has a non-trivial
detection power.

2. In practice, the multiset P(M) may takeO (m!n!) time
to construct which is prohibitively expensive even for small
values of m and n. The theorem holds if instead of using the
full multiset P(M), when defining Φ, we only sample some
k authorship matrices uniformly at random from the multiset

P(M). The value of k should be chosen large enough to
ensure that (

⌊
α|Φ|

⌋
+ 1) is greater than 1. The sampling can

be performed by generating random permutations using the
shuffling algorithm of Fisher and Yates (1965) and rejecting
samples that lead to matrices A′ /∈ P(M).

3. The impartial set of rankings {π∗i , i ∈ R} need not
necessarily be constructed by a separate set of m reviewers.
For example, if one has access to the (noisy) ground-truth
(for example, to the ranking of homework assignments con-
structed by an instructor), then for each i ∈ R the ranking π∗i
can be a ranking of M(i) that agrees with the ground-truth.

Effect size In addition to controlling for the false alarm
probability, our test offers a measure of the effect size de-

fined as ∆ = τ ·
[∑

i∈R |A(i)|
]−1

. Each term in the test
statistic τ defined in (1) captures the impact of the rank-
ing returned by a reviewer on the final standing of the cor-
responding submission and the mean impact is a natural
measure of the effect size. Negative values of the effect
size demonstrate that reviewers in average benefit from the
rankings they return as compared to rankings sampled uni-
formly at random. Importantly, the value of the effect size
is meaningful even when the assumptions (A1) and (A2) are
violated. Indeed, while in this case we cannot distinguish
whether the observed effect is caused by manipulations or is
due to some spurious correlations, the large absolute value of
the effect size still suggests that some authors benefit, while
perhaps not engaging in manipulations, from simultaneously
being reviewers which potentially indicates unfairness in the
system towards the authors who have their work in submis-
sion, but do not review.



4 Experimental Evaluation
In this section, we empirically evaluate the detection power
of our test. We first design a game that incentivizes players
to behave strategically and collect a dataset of strategies em-
ployed byN = 55 attendees of a graduate-level AI course at
Carnegie Mellon University who participated in our exper-
iment. We then evaluate our test in a series of runs on real
and semi-synthetic data.

4.1 Data Collection
The goal of our experiment is to understand what strategies
people use when manipulating their rankings of others. A
real peer grading setup (i.e., homework grading) possesses
an ethical barrier against cheating and hence many subjects
of the hypothetical experiment would behave truthfully, re-
ducing the efficiency of the process. To overcome this issue,
we use gamification and organize the experiment as follows
(game interface is attached in supplementary materials).

We design a game for m = 20 players and n = 20 hy-
pothetical submissions. First, a one-to-one authorship rela-
tionship A is sampled uniformly at random from the set of
permutations of 20 items and each player becomes an “au-
thor” of one of the submissions. Each submission is associ-
ated to a unique value v ∈ {1, 2, . . . , 20} and this value is
privately communicated to the respective player; therefore,
players are associated to values and in the sequel we do not
distinguish between a player’s value and their “submission”.
We then communicate values of some µ = 4 other contes-
tants to each player subject to the constraint that a value of
each player becomes known to λ = 4 counterparts. To do
so, we sample an assignment M from the set of assignments
respecting the conflict matrix C = A uniformly at random.
Note that players do not get to see the full assignment and
only observe the values of players assigned to them. The
rest of the game replicates the peer grading setup: partici-
pants are asked to rank their peers (the truthful strategy is
to rank by values in decreasing order) and the rankings are
aggregated using the Borda count aggregation rule (tied sub-
missions share the position in the final ordering).

For the experiment, we create 5 rounds of the game,
sampling a separate authorship matrix Ak and assignment
Mk, k ∈ {1, 2, . . . , 5}, for each of the rounds. Each of the
N = 55 subjects then participates in all 5 rounds, imperson-
ating one (the same for all rounds) of the 20 game players.4
Importantly, subjects are instructed that their goal is to ma-
nipulate their ranking to improve their final standing. Ad-
ditionally, we inform participants that in the first 4 rounds
of the game their competitors are truthful bots who always
rank players by their values. In the last round, participants
are informed that they play against other subjects who also
engage in manipulations.

To help participants better understand the rules of the
game and properties of the aggregation mechanism, after
each of the first four rounds, participants are given feedback
on whether their strategy improves their position in the ag-
gregated ordering. Note that the position of the player in the

4We sample a separate authorship matrix for each round so par-
ticipants get different values between rounds.

final ordering depends on the complex interplay between (i)
the strategy they employ, (ii) the strategy employed by oth-
ers, and (iii) the configuration of the assignment. In the first
four rounds of the game, participants have the information
about (ii), but do not get to see the third component. To make
feedback independent of (iii), we average it out by comput-
ing the mean position over the randomness in the part of the
assignment unobserved by the player and give positive feed-
back if their strategy is in expectation better than the rank-
ing sampled uniformly at random. Finally, after the second
round of the game, we give a hint that additionally explains
some details of the game mechanics.

The data we collect in the first four rounds of the game
allows us to understand what strategies people use when
they manipulate in the setup when (most) other reviewers
are truthful. In the last round, we remove the information
about the behaviour of others and collect data about manip-
ulations in the wild (i.e., when players do not know other
players’ strategies). Manual inspection of the collected data
reveals that 53 participants attempted manipulations in each
round and the remaining 2 subjects manipulated in all but
one round each, hence, we conclude that the data is collected
under the alternative hypothesis of the presence of manipu-
lations. Appendix A contains a thorough exploratory analy-
sis of collected data, documents strategies employed by sub-
jects and has evaluations of the test in addition to those we
perform in the next section.

4.2 Evaluation of the Test
We now investigate the detection power of our test (Test 1).
We begin from analysis of real data and execute the follow-
ing procedure. For each of the 1,000 iterations, we uniformly
at random subset 20 out of the 55 participants such that to-
gether they impersonate all 20 game players. We then apply
our test (with and without supervision) to rankings output
by these participants in each of the 5 rounds, setting signif-
icance level at α = 0.05 and sampling k = 100 authorship
matrices in Step 3 of the test. The impartial rankings for test-
ing with supervision comprise ground truth rankings.

After performing all iterations, for each round we com-
pute the mean detection rate and represent these values in
Table 1. The results suggest that our test provided with the
impartial set of rankings has a strong detection power, re-
liably detecting manipulations in the first 4 rounds. On the
other hand, performance of our test without supervision is
modest. The reason behind the difference in performance is
that our test aims at detecting successful manipulations (i.e.,
those that improve the outcome of a player). In the first 4
rounds of the game, subjects were playing against truthful
competitors and hence the test provided with the additional
set of impartial rankings (which is targeted at detecting re-
sponses to the truthful strategy) has a good performance.
However, the test without supervision is not able to detect
such manipulations, because it evaluates success using rank-
ings of other participants who also engage in manipulations
and the response to the truthful strategy is not necessarily
successful in this case. As for the round 5, we will show in a
moment that poor performance of our test appears to be due
to random chance (i.e., the choice of the assignment which



ROUND 1 ROUND 2 ROUND 3 ROUND 4 ROUND 5

WITH SUPERVISION 0.61 0.57 0.87 1.00 0.09
WITHOUT SUPERVISION 0.17 0.02 0.16 0.01 0.08

Table 1: Detection rates of our test.

(a) With supervision (b) Without supervision

Figure 2: Expected power of our test for different allocations of strategic agents to strategies and different fractions of truthful
agents. The black horizontal line is a baseline power achieved by a test that rejects the null with probability α=0.05 irrespective
of the data. Error bars are too small to show.

is hard for detection) and not due to any systematic issue.
Note that performance of our test depends not only on the

strategies employed by players, but also on the assignment
M realized in a particular round. Some realizations of ran-
dom assignment make successful manipulations (and their
detection) easier while under other realizations most of the
players cannot improve their position even if they use the
best strategy (and therefore our test cannot detect manipula-
tions). To remove the impact of the specific assignments we
used in the experiment, we now proceed to semi-synthetic
trials. Specifically, we manually annotate the strategies used
by participants in each round (see Appendix A and Table 2
therein for the summary of strategies) and create artificial
agents who follow these strategies, replicating proportions
learned from real data. We then repeat our experiment with
m = 20 artificial agents, simulating 1,000 assignments for
each round of the game and computing the expectation of
the power of our test over randomness of the assignment.
Additionally, we enhance the set of synthetic agents with
truthful agents and study how the detection power of our
test changes with the fraction of truthful agents. Figure 2
displays the expected power of our test for various fractions
of truthful players. Note that when all players are truthful
(rightmost points of both plots), the data is generated under
the null hypothesis of absence of strategic behaviour, and the
plots empirically verify the guarantee of Theorem 1 that our
test indeed caps the false alarm rate at α = 0.05.

Figure 2a shows that our test provided with optional rank-
ings has a non-trivial power in every round, including the
last round in which participants were playing against each
other. Note that as game proceeds and participants under-
stand the rules better (and find ways to manipulate effi-
ciently), the power of the test increases. A surprising suc-
cess of the test with supervision in round 5 is explained by
the combination of two factors: (i) the majority of partici-

pants resorted to the response to the truthful strategy even in
round 5 and (ii) a strategy that constitutes a response to the
response to the truthful strategy is still a good response to
the truthful strategy. Hence, our test provided with impartial
rankings can detect manipulations even in case when partic-
ipants play against each other.

Figure 2b shows that the test without supervision has con-
siderably lower (but still non-trivial) power. We note, how-
ever, that the main feature of the test without supervision is
that it can be readily applied to purely observational data and
the power can be accumulated over multiple datasets (e.g., it
can be applied to multiple iterations of a university course).
An interesting feature of the test without supervision is the
non-monotonicity of power with respect to the fraction of
truthful reviewers, caused by an interplay between the frac-
tion of truthful agents and the strategies employed by ma-
nipulating agents that determines success of manipulations.

5 Discussion
In this work, we design a test for detection of strategic
behaviour in the peer-assessment setup with rankings. We
prove that it has a reliable control over the false alarm prob-
ability and demonstrate its non-trivial detection power on
data we collected in a novel experiment. Our approach is
conceptually different from the past literature which consid-
ers ratings (Balietti, Goldstone, and Helbing 2016; Huang
et al. 2019) as it does not assume any specific parametric
model of manipulations and instead aims at detecting any
successful manipulation of rankings, thereby giving flexibil-
ity of non-parametric tests. This flexibility, however, does
not extend to the case when agents try to manipulate but do it
unsuccessfully (see Appendix A for demonstration). There-
fore, an interesting problem for future work is to design a
test that possesses flexibility of our approach but is also able
to detect any (and not only successful) manipulations.
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