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Abstract

We consider bandit optimization of a smooth
reward function, where the goal is cumula-
tive regret minimization. This problem has
been studied for α-Hölder continuous (includ-
ing Lipschitz) functions with 0 < α ≤ 1. Our
main result is in generalization of the reward
function to Hölder space with exponent α > 1
to bridge the gap between Lipschitz bandits
and infinitely-differentiable models such as
linear bandits. For Hölder continuous func-
tions, approaches based on random sampling
in bins of a discretized domain suffices as
optimal. In contrast, we propose a class of
two-layer algorithms that deploy misspecified
linear/polynomial bandit algorithms in bins.
We demonstrate that the proposed algorithm
can exploit higher-order smoothness of the
function by deriving a regret upper bound of

Õ(T
d+α
d+2α ) for when α > 1, which matches ex-

isting lower bound. We also study adaptation
to unknown function smoothness over a con-
tinuous scale of Hölder spaces indexed by α,
with a bandit model selection approach ap-
plied with our proposed two-layer algorithms.
We show that it achieves regret rate that
matches the existing lower bound for adap-
tation within the α ≤ 1 subset.

1 Introduction

This paper considers the problem of black-box opti-
mization of a reward function f : X → R, that is
bounded and defined on a compact d-dimensional do-
main X , using active queries. At each round, the
learner chooses an action xt by leveraging the previ-
ously collected data and observes a noisy and zeroth
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order feedback of the function value f(xt). In the ban-
dit setting, the goal is to minimize the cumulative re-
gret with respect to global maxima. This is also known
as the continuum-armed bandit problem. The ban-
dit framework is different from standard global zeroth
order optimization because of its unique exploration-
exploitation dilemma. While in zeroth order optimiza-
tion problems, pure exploration will often suffice since
the performance is measured by simple regret (i.e. dif-
ference between the optimized function value and true
function maxima), in bandit optimization, the queried
function values need to be controlled through the en-
tire optimization process to minimize the cumulative
regret. Therefore, the algorithms require different and
often more careful design.

Most existing works on continuum-armed bandit opti-
mization either assume parametric models such as lin-
ear bandits (Dani et al. (2008); Abbasi-Yadkori et al.
(2011); Rusmevichientong and Tsitsiklis (2010)) for
the reward function, or a black-box model where the
reward function is assumed to be α-Hölder continu-
ous (including Lipschitz) with 0 < α ≤ 1 with re-
spect to some known metric (Kleinberg (2005); Auer
et al. (2007); Kleinberg et al. (2008); Bubeck et al.
(2010, 2011); Locatelli and Carpentier (2018)). The
main purpose of this paper is to extend this assump-
tion to the more general Hölder function space (defi-
nition 1) with exponent α > 1 and exploit the higher
order of function smoothness. Such generalization is
a parallel to Hölder smoothness assumpions appear-
ing in fundamental results in nonparametric regres-
sion (Stone (1982)), which has been used in a variety
of applications such as economics (Yatchew (1998)).
Approaches based on fitting an appropriate function
using random samples in bins of a discretization of
the domain (i.e., exploration) suffice as optimal for
non-parametric regression as well as controlling sim-
ple regret of any Hölder smooth reward functions with
α > 0. They are also worst-case optimal for controlling
cumulative regret for Hölder continuous reward func-
tions with α ≤ 1. In contrast, controlling cumulative
regret for Hölder smooth reward functions with α > 1
requires finer control in bins over the queried values
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via a local exploration-exploitation tradeoff. Thus, in-
stead of using a single layer algorithm that randomly
samples from selected bins, we propose a class of algo-
rithms that use two layers of bandit algorithms - one
multi-armed bandit algorithm operating over the bins,
and another set of misspecified linear/polynomial ban-
dit algorithms operating in each bin to govern the lo-
cal exploration-exploitation tradeoff. We derive regret
bounds for this class of two-layer bandit algorithms
and show that they match the existing lower bounds
apart from log factors.

Additionally, we study the problem of adaptation
to smoothness exponent α for a continuous scale of
Hölder spaces. Unlike the simple regret minimiza-
tion setting where this adaptation comes at no cost in
terms of the minimax rates, it was shown by Locatelli
and Carpentier (2018) that it is generally impossible
to achieve minimax adaptation under cumulative re-
gret. We propose a procedure with regret bound that
matches the existing adaptive lower bound with only
access to the range of the unknown parameter α. We
start by describing related works, followed by a sum-
mary of our contributions.

1.1 Related Works

Continuum-armed Bandit. In continuum-armed
bandit problems, the domain X is allowed to be a
measurable space and the set of arms is therefore infi-
nite. Previous works in continuum-armed bandit usu-
ally assumes global smoothness (Kleinberg (2005)) of
the reward function or local smoothness (e.g. Auer
et al. (2007)) around the global maxima. The smooth-
ness condition, in particular, is defined as Lipschitz
continuity with respect to some metrics (Kleinberg
(2005); Kleinberg et al. (2008)) or dissimilarity func-
tions (Kleinberg et al. (2008); Bubeck et al. (2010)), or
α-Hölder continuity with 0 < α ≤ 1 (Kleinberg (2005);
Auer et al. (2007)). Worst-case lower bound under the
Lipschitz assumption is presented in Kleinberg et al.
(2008) and that under the Hölder continuity assump-
tion in Locatelli and Carpentier (2018).

Existing works rarely consider generalization to Hölder
spaces. Recently, Hu et al. (2020) studied contextual
bandit with reward functions in Hölder spaces, how-
ever, the reward function is assumed to be smooth
with respect to the observed contexts and the ac-
tion set is finite. For non-contextual continuum-
armed bandits, Akhavan et al. (2020) focus on the
strongly convex subset of functions in Hölder spaces
with α ≥ 2. They use projected gradient-like algo-
rithms. Grant and Leslie (2020) analyze Thompson
sampling (TS), a Bayesian method, on Hölder spaces
with integer-valued exponents and derive a subopti-
mal upper bound based on complexity of the function

space1. They also derive lower bound on regret in
one-dimension setting, but as we later remark in this
paper, the lower bounds can be implied by Wang et al.
(2018) in a more general setting.

Adaptivity to Smoothness of the Reward Func-
tions. An intriguing problem is whether an algo-
rithm that is oblivious to the Hölder exponent α can
simultaneously achieve minimax rates for a range of
values for α. For non-contextual continuum-armed
bandits, this has been discussed only under the Hölder
continuous(α ≤ 1) setting. In particular, Locatelli and
Carpentier (2018) state that generally, such minimax
adaptation to α is impossible by providing a worst-
case lower bound for adaptation between two Hölder-
continuous function spaces. Additionally, they pro-
pose conditions under which it would become possible.
(For the contextual finite-armed bandit studied in Hu
et al. (2020), Gur et al. (2019) provide lower bounds
with similar rates and the extra conditions as well.)
However, it remains unclear that, without the extra
conditions, whether an algorithm can achieve the lower
bound when adapting to a continuous scale of general
Hölder spaces.

Model Selection for Bandits. Another relevant
line of work is more broadly model selection in ban-
dit settings, which we will leverage in bandit opti-
mization of Hölder-smooth functions as well as adap-
tation to the smoothness. In this problem, given a
set of base algorithms on possibly different domains,
the learner needs to adapt to the best one in an on-
line fashion. The goal is to achieve cumulative regret
comparable to the best base algorithm if it were run
solely. Bubeck et al. (2011) study the model selection
problem for adapting to the unknown Lipschitz con-
stant of functions. Foster et al. (2019) study adapting
to the unknown policy dimension in contextual lin-
ear bandits by estimating the gap between two policy
classes. Agarwal et al. (2016) develop a general al-
gorithm named Corral for bandit model selection un-
der adversarial feedback. It uses online mirror descent
to balance between base algorithms. For stochastic
feedback particularly, Pacchiano et al. (2020) modify
the Corral algorithm to relax requirements on base-
algorithms and improve the result on some problem
instances (including the one in Foster et al. (2019)).
Another relevant issue addressed in Krishnamurthy
et al. (2019) which study contextual continuum-armed
bandits with Lipschitz continuous reward functions, is
their use of the original Corral algorithm applied with
EXP4 for adaptation to unknown Lipschitz constant.
UCB-type algorithm for corralling base-algorithms is

1They comment that the reason could be either the
analysis being suboptimal or the nature of TS.



Yusha Liu, Yining Wang, Aarti Singh

used in Arora et al. (2020) under the assumption that
the base-algorithms are finite-armed, and only one of
them has access to the best arm.

1.2 Our Contributions

We study bandit optimization of functions in general
Hölder spaces. This paper furthers the previous works
in the following two main aspects:

1. We propose a novel class of two-layer ban-
dit algorithms, where a carefully-chosen Meta-
algorithm deploys misspecified bandit algorithms
as arms. Our algorithms show explicitly how to
exploit higher-order smoothness in achieving opti-
mal exploration-exploitation tradeoff. We derive
worst-case regret bound for this algorithm that
matches the existing lower bound except for log
factors, for functions in Hölder space including
when α > 1. Our results bridges the gap between
Lipschitz smooth bandits where the Hölder expo-
nent is α = 1 and infinitely-differentiable prob-
lems such as linear bandits where the Hölder ex-
ponent is α =∞.

2. We study adaptation to a sequence of Hölder
spaces indexed by a continuous but unknown
variable of exponent α. We propose a strategy
with theoretical guarantee, which uses the bandit
model selection algorithm Corral from Pacchiano
et al. (2020) applied with versions of our proposed
two-layer algorithms. The derived regret bound is
to our knowledge the first result on upper bounds
when adapting to a continuous scale of Hölder
spaces in continuum-armed bandit optimization.

The rest of this paper is organized as follows: In sec-
tion 2 we introduce the problem formulation and as-
sumptions. We present the two-layer Meta-algorithms
and theoretical guarantees in section 3. In section 4
we study the adaptation to unknown smoothness and
conclude the paper in section 5 with some open ques-
tions.

2 Problem Formulation

In this paper, we consider bandit optimization of
smooth functions in Hölder space

∑
(α,L) with α > 1.

The Hölder space is defined formally in definition 1.
Some works also study benign problem instances with
additional “growth” conditions than the smoothness
to characterize the difficulty of finding global maxima,
for improvements in regret bounds. For example, Auer
et al. (2007) use a parameter to model the growth rate
of Lebesgue measure of the near-optimal arms set as a

function of the threshold. The near-optimality dimen-
sion in Bubeck et al. (2010) uses packing number but
has similar meaning. Their proposed HOO algorithm
employs a tree-based adaptive discretization algorithm
to exploit when the near-optimality dimension is small.
In this paper we will focus solely on worst-case regret
to preserve simplicity and leave adaptation to benign
cases as a future direction. The performance of the
learner is measured by cumulative pseudo-regret as
stated below where x∗ ∈ arg maxx∈X f(x). Through-
out this paper we will simply refer to the pseudo-regret
as regret.

R(T ) =

T∑
t=1

[f(x∗)− f(xt)]. (1)

To formally define Hölder spaces, we first introduce
some notations. Define the following notions for a vec-
tor s = (s1 . . . sd): let |s| = s1 + · · ·+ sd, s! = s1! . . . sd

and xs = xs11 . . . xsdd . And define Ds = ∂|s|

∂x
s1
1 ...∂x

sd
d

.

Definition 1 (Tsybakov (2008)). The Hölder space∑
(α,L) on domain X ∈ Rd is defined as the set of

functions f : X → R that are l = bαc times dif-
ferentiable and have continuous derivatives2. l is the
largest integer that is strictly smaller than α. A func-
tion f in

∑
(α,L) satisfies the following inequality3 for

∀x, y ∈ X .

Dsf(x)−Dsf(y) ≤ L‖x− y‖α−l∞ , ∀s s.t.|s| = l.

In particular, a function in
∑

(α,L) is close to its Tay-
lor approximation:

|f(x)− T ly(x)| ≤ L‖x− y‖α∞,∀x, y ∈ X .

We use T ly to denote the l-degree Taylor polynomial

around y, T ly(x) =
∑
|s|≤l

(x−y)s

s! Dsf(y).

Assumptions We specify the assumptions that are
used throughout this paper.

G1. The input domain X is a hypercube [0, 1]d. For
simplicity assume the reward function is bounded:
‖f‖∞ ≤ 1.

G2. The function f belongs to Hölder space
∑

(α,L)
with some constant L > 0 4.

2Only when referring to the order of Hölder smooth
functions’ derivatives do we denote b·c as the largest integer
strictly less than input. In other places in this paper it
denotes less or equal to input.

3We use l∞ norm as in some works on adaptive confi-
dence bands and optimization (Low et al. (1997); Tsybakov
(2008); Hoffmann et al. (2011); Wang et al. (2018)).

4In this paper, for simplicity, we assume L is some con-
stant that satisfies assumption G1.
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G3. The observations are noisy: y = f(x) + η where
the noise η is drawn from i.i.d zero mean sub-
gaussian distribution with parameter σ.

3 Meta-algorithm and Analysis

A commonly used method for continuum-armed ban-
dits is fixed discretization, which divides the continu-
ous input domain into finite number of bins, to trans-
form the problem into finite-armed bandit. Previ-
ous works mostly consider Hölder-continuous (α ≤ 1)
functions. For example Auer et al. (2007) study the
α-Hölder continuous functions with α ≤ 1 for one-
dimension domain, followed by Bubeck et al. (2010)
who generalize it to d-dimensional domain and pro-
pose the HOO algorithm with adaptive discretization5.
In these works, it suffices to perform random sam-
pling (Auer et al. (2007); Bubeck et al. (2010)) or
midpoint sampling (Kleinberg (2005)) inside each bin.
The worst-case regret bound for Lipschitz space of

Õ(T
d+1
d+2 ) are matched by the general lower bound of

Ω(T
d+α
d+2α )(Auer et al. (2007); Bubeck et al. (2010); Lo-

catelli and Carpentier (2018); Bubeck et al. (2011))
apart from log factors. However, if we apply the same
methods of random sampling on fixed discretization
(Auer et al. (2007)) on functions with Hölder expo-

nent α > 1, the regret incurred is Õ(T
d+1
d+2 ) since the

Hölder space with exponent α > 1 is a subset of the
Lipschitz function space. It prompts us to ask the
question of whether a better rate that matches the
dependence on α can be achieved for functions that
are smoother than Lipschitz. An extreme is when
α reaches infinity, where the reward model will be
infinitely-differentiable, for example the stochastic lin-
ear bandit which enjoys Õ(T

1
2 ) regret even on contin-

uous domain (Dani et al. (2008); Abbasi-Yadkori et al.
(2011)).

3.1 Algorithm Overview

We keep to fixed discretization of the domain since
we consider only the worst-case regret. We divide
X = [0, 1]d into n equal-sized hypercubes, leaving n
as a parameter of the algorithm. As shown in defini-
tion 1, the function is locally well-approximated by
Taylor polynomial which reduces to a linear model
in some feature representation of x. It is equivalent
to observing a misspecified linear model inside each
bin, the equivalence formally quantified in Lemma 2.
Therefore, local exploration-exploitation tradeoff can
be achieved by a base algorithm with sublinear regret

5The adaptive discretization does not change worst-case
regret but has improvements on benign problems, as intro-
duced in section 2.

on such misspecified models, with a Meta-algorithm
to balance the budgets between the base algorithms in
the bins.

Lemma 2. Let hypercube B∆ be a subset of the in-
put space with volume ∆. If a function satisfies as-
sumption G1 ∼ 2, there exists a linear parameter6

θ∗ ∈ Rd(α) and feature map φ : x 7→ φ(x) ∈ Rd(α),such
that f can be approximated by the linear function:
‖f − 〈θ∗, φ(x)〉‖∞ ≤ ε = L∆

α
d for x ∈ B∆. When

α ≤ 2, d(α) = d; when α > 2, d(α) = O(dl) with
l (definition 1). The linear parameter may not be
unique.

The proof is in Appendix section A.1. In the following
parts of this section, we first present the misspecified
bandit algorithm to run inside a bin, and then the
Meta-algorithms to control these local algorithms.

3.2 The Misspecified Linear Bandit
Algorithm

In this subsection we take a step back briefly to present
the misspecified linear bandit algorithm which is modi-
fied from the ConfidenceBall2 algorithm in Dani et al.
(2008) and serves as “arm” of the Meta-algorithms.
The algorithm, as shown in its name, is based on con-
struction of confidence ellipsoid of the unobserved lin-
ear parameter in dimension d. We prove that the
proposed modification can accommodate bias in the
function feedback by deriving an upper bound on the
cumulative regret7 of Õ(d

√
T +dTε). Here ε is the up-

per bound on bias value and is given to the algorithm.
We recently discovered that a similar result with proof
sketch already appeared in recent work of Lattimore
and Szepesvari (2019) (appendix E) who used modifi-
cation of the algorithm in Abbasi-Yadkori et al. (2011),
and hence enjoys the improvement of a multiplica-
tive factor

√
log(T ). For completeness and to provide

necessary intermediate results for Meta-algorithms in
later sections, we present our algorithm and full proof
as complementary. It is worth mentioning that with-
out the modification, the original algorithm incurs sub-
optimal regret under misspecification.

Assumptions We make the following assumptions
for the misspecified model. Note that they are consis-
tent with the aforementioned global assumptions.

A1. The feedback model is y = 〈x, θ∗〉+ b(x) +η with
|b(x)| ≤ ε,∀x ∈ X ∈ Rd.

A2. The mean reward E[y] is bounded by [−1, 1].

6We slightly abuse the notation and define short-hand

notation 〈θ, x〉 := θ0 +
∑d(α)
i=1 θixi.

7For clarity this use of Õ omits ln(T ) and δ dependence.
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A3. The noise η is drawn from zero-mean sub-
gaussian with parameter σ8.

The pseudo-code of the modified algorithm is shown in
Algorithm 1. The goal is to minimize the cumulative
pseudo-regret of the linear model:

R(T ) =

T∑
t=1

rt =

T∑
t=1

(〈x∗, θ∗〉 − 〈xt, θ∗〉). (2)

We prove that this regret is

O
(
d ln(T )

√
ln(T

2

δ )T + εTd
√

2 ln(T )

)
with probabil-

ity 1− δ. This is formally stated in Theorem 3.

Algorithm 1 Misspecified linear UCB algorithm
(Alocal)
Require: Misspecification error ε, input domain X

and its dimension d, fail probability δ, upper
bound on ‖x‖22: κ2 = d.

1: Initialize A1 = Id and x1 ∈ X randomly.
2: for t = 1 . . . do
3: Execute action xt and observe reward yt
4: At+1 = At + xtx

T
t

5: θ̂t+1 = A−1
t+1(

∑t
τ=1 yτxτ )

6: βt+1 = 128σ2d ln(1 + t) ln( 4(t+1)2

δ )
7: Define function UCBt+1(x) =(

〈x, θ̂t+1〉+
√
βt+1‖A−1/2

t+1 x‖+ ε
∑t
s=1|xTA

−1
t+1xs|

)
8: Compute action xt+1 = arg maxx∈X UCBt+1(x)
9: Return xt+1 and UCBt+1(xt+1)

10: end for

Theorem 3. If assumptions A1∼A3 hold, then with
probability 1− δ, the cumulative regret of Algorithm 1
is upper bounded by:

R(T ) ≤
√

8dβTT ln(1 + T ) + 2εTd
√

2 ln(1 + T ) + 2εT.
(3)

The first term is the standard stochastic linear bandit
regret rate same as in Dani et al. (2008). We defer the
proof to Appendix section A.2. The increment of a
multiplicative factor

√
d in the second term compared

to that in Lattimore and Szepesvari (2019) is due to
difference in assumption on ‖x‖2. Their assumption is
‖x‖2 ≤ 1 whereas ours is ‖x‖2 ≤ d.

3.3 The UCB-Meta-algorithm

We now present the first structure of our Meta-
algorithms. We consider the most straightforward
structure: UCB-Meta, the pseudo-code is shown in

8Different from Dani et al. (2008) who assumes bounded
noise. This reflects in the difference in βt.

Algorithm 2 (define be as the action of rounding to
nearest integer). We keep a version of the base mis-
pecified linear bandit algorithm in each bin. The con-
fidence estimates of the local linear models are passed
to the Meta-algorithm as UCB of arms, with adjust-
ment of ε, the bias quantity. At every round we choose
the bin with the highest UCB and run one step of
the local bandit algorithm to update its estimation.
For adjusting to different values of l = bαc, we need
only change the linear model, specifically the feature
mapping φ : x 7→ φ(x) ∈ Rd(α) as defined in proof
of Lemma 2. For example, when α ≤ 2, the sub-
algorithms are misspecified linear bandits whose ac-
tions spaces are simply bins B ∈ X .

Algorithm 2 UCB-Meta-algorithm (Aglobal)
Require: smoothness parameter α, Hölder constant

L, dimension of domain d, time horizon T and fail
probability δ, action space X .

1: Initialize n = bT
d

d+2α / ln(T )
2d

d+2α e and divide the
action space X into same-sized bins B1...n with
volume ∆ = 1/n.

2: for k = 1, . . . , n do
3: On bin Bk, start a version of local misspecified

base-algorithm Ak using misspecification error

ε = Ln
−α
d , input domain X ∗ = {φ(x), x ∈ X}

and its dimension d(α), fail probability δ/n.
4: Initialize counter sk = 1 to indicate how many

times Ak is queried.
5: Query Ak once by running steps 3-9 of Algo-

rithm 1 with t = sk and obtain upper confidence
bound UCBk.

6: sk ← sk + 1
7: end for
8: for τ = 1 . . . T do
9: Select the bin with index k(τ) =

arg maxk UCBk.
10: Execute the local bandit algorithm Ak(τ) once

by running steps 3-9 (of Algorithm 1) with t =
sk(τ)

11: Receive updated recommendation φτ ∈
{φ(x), x ∈ Bk(τ)} and UCBk(τ).

12: Increase counter for Ak(τ): sk(τ) ← sk(τ) + 1.
13: end for

3.3.1 Regret Analysis of Algorithm 2

Theorem 4. Let d(α) be the dimension of (polyno-
mial) feature of x, defined in Lemma 2. If the re-
ward function satisfies G1∼G3 in section 2, then with
probability 1− δ, the cumulative regret (equation 1) of
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UCB-Meta-Algorithm is upper bounded by9

R(T ) ≤ O
(
d(α) ln(T )

√
Tn ln(T 2n/δ) + d(α)εT

√
ln(T )

)
.

(4)

The core of the proof is the distribution-independent
analysis of UCB, which relies on the honesty of the con-
fidence bands as well as their lengths. In particular,
if the function value f(x) at time t is contained in an
honest confidence band [UCBt(x)− 2lt(x), UCBt(x)],
then we can use the length lt(x) to bound instanta-
neous regret incurred by the selected action at this
step. The confidence ellipsoids for the piecewise linear
parameters θ̂k,t that are constructed by local misspec-
ified linear bandits offer a convenient confidence esti-
mation of function value, with the additional adjust-
ment factor ε, the approximation error. The full proof
is deferred to Appendix section A.3. The algorithm de-
fines each bin to be a hypercube with volumn ∆ = 1/n,

according to Lemma 2 we have ε = Ln
−α
d . Therefore,

setting n = O(T
d

d+2α / ln(T )
2d

d+2α ) will minimize the
upper bound and yield cumulative regret bound of 10

R(T ) ≤ Õ(d(α)T
d+α
d+2α ). (5)

3.3.2 Anytime Regret Guarantee for
Algorithm 2

To achieve the rate in bound 5, Algorithm 2 needs to
know the time horizon T in advance to set n and ε cor-
respondingly. Here we prove that, with the doubling
trick (Auer et al. (1995)) , the UCB-Meta-algorithm
can get regret that is of the same rate as in bound 5 up
to constant factors without knowing T . This result is
needed in the adaptation problem studied in section 4.

Theorem 5. If Algorithm 2 with access to the time
horizon T achieves regret of Õ(T a) with probability
1− δ, then the procedure described in Algorithm 3 can
achieve regret rate Õ(T a) with probability 1−δ without
the knowledge of T .

The pseudo-code for Algorithm 3 is in Appendix sec-
tion B.1 and the proof of Theorem 5 in Appendix A.4.

3.4 The Corral-Meta-algorithm

Another choice for Meta-algorithm is bandit model se-
lection methods. Here we use the Corral algorithm
defined in Pacchiano et al. (2020), which will be in-
troduced more formally in section 4. An example of
corralling misspecified linear bandit algorithms with-
out corruption to the regret rate apart from log factors

9The d-dependence of the second term is propagated
from Theorem 3

10δ-dependence absorbed in O since they are inside log
terms.

has already been given in Pacchiano et al. (2020), but
for adaptation to the misspecification error ε. Here
we demonstrate that it can also be used to corral mis-
specified bandit base-algorithms on different bins in
a discretized domain. We derive the following regret
bound that is the same as UCB-Meta-algorithm.

Theorem 6. First perform the smoothing transforma-
tion (Algorithm 3 in Pacchiano et al. (2020)) to our
misspecified linear bandits in Algorithm 1, denote the
smoothed misspecified linear bandits as Alocals . Then,
the Meta-algorithm (Algorithm 5 (Corral-Update) re-
produced in Pacchiano et al. (2020)) applied with a
set of Alocals that are initialized in the same way as in
Algorithm 2 has expected regret upper bounded by:

E[R(T )] ≤ Õ(d(α)T
d+α
d+2α ). (6)

The proof of this theorem is in Appendix section A.5.

3.5 Discussion

Choice of Meta-algorithm. The role of the Meta-
algorithm is essentially model selection and adapta-
tion to the base-algorithms. It is not a trivial task
since the rewards incurred by the base-algrotihms are
not i.i.d as in standard stochastic settings. How-
ever, UCB as a stochastic multi-armed bandit algo-
rithm, is applicable as Meta-algorithm because the lo-
cal parametric (linear) function approximations pro-
vide honest upper confidence bounds for each bin
even under the misspecifications, thus enabling the
distribution-independent analysis for UCB. The ad-
vantage of Corral-Meta is that it potentially allows re-
laxation of the Hölder smoothness to hold only around
the global maxima (Auer et al. (2007); Bubeck et al.
(2010)), while the same relaxation is not straightfor-
ward for UCB-Meta. The advantage of UCB is that
under standard stochastic settings where each arm has
i.i.d rewards, it achieves the gap-dependent bound of
O(log(T )/∆). Thus an interesting question for the fu-
ture is whether similar gap-dependent bounds for the
UCB-Meta is available. Such bounds would enable
exploitation of the growth conditions (section 2) for
potential rate improvements.

Computational aspects. At each round indexed
by t, the algorithm chooses the maximizer of upper
confidence bounds over n bins(complexity O(n)). It
also needs to choose the maximizer xt of updated up-
per confidence bound in selected bin, based on locally
fitted polynomial. Finding such maximizer is a non-
convex problem if α > 2 (akin to finding maximizers
of acquisition functions in other complex models such
as GP bandits). Hence it is hard to explicitly state
the runtime dependence. However when α ≤ 2, Dani
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et al. (2008) suggested a computationally efficient ver-
sion of the LinUCB algorithm which suffers an extra√
d term in regret. Nevertheless, if we treat the Lin-

UCB maximization as a black box, then the runtime of
UCB-Meta-algorithm should be polynomial in n and
polynomial in T .

3.6 Comparison with Existing Lower Bound

We compare the derived upper bounds of

Õ(d(α)T
d+α
d+2α ) to the existing lower bound from Wang

et al. (2018), which study global optimization. In
their work, the performance of optimization al-
gorithms with output x̂T is measured by simple

regret L(x̂T ; f)
4
= f(x∗) − f(x̂T ), for f in Hölder

spaces including α ≥ 1. Theorem 2 (coupled with
Proposition 3) in Wang et al. (2018) implies that

supf∈
∑

(α) E[L(x̂T ; f)] = Ω(T
−α

2α+d ). We argue that
this lower bound can be directly used to lower bound
the worst-case cumulative regret, by making the
following observation (remark 3 in Bubeck et al.
(2010)): If a strategy achieves expected cumulative
regret E[RT ], then by uniformly selecting a past action
as the final output x̂T , it can also achieve expected
simple regret E[L(x̂T ; f)] = E[RT ]/T . Therefore, any
strategy with cumulative regret õ(TE[L(x̂T ; f)]) will
violate the lower bound. Through proof by contra-
diction, we take the result from Wang et al. (2018)

as an Ω(T
d+α
d+2α ) lower bound on expected cumulative

regret, and argue that our results match this bound
up to log factors. Our results show that proposed
algorithms are minimax optimal in dependence on T
and effectively exploit the function smoothness.

4 Adaptation to Unknown
Smoothness

In this section, we study adaptation to the smoothness
exponent α of the reward function. Minimax adapta-
tion, which means a learner can simultaneously achieve
the minimax optimal rates (Hoffmann et al. (2011);
Locatelli and Carpentier (2018)) under a nested set of
Hölder spaces, has been proven to be impossible for
cumulative regret minimization without additional as-
sumptions. Locatelli and Carpentier (2018) provide a
lower bound for adaptation between two Hölder con-
tinuous functions spaces. Assume α < γ ≤ 1, for
any strategy with a good expected regret E[Rγ(T ) in∑

(γ, L)], they show that its expected regret in the su-
perset

∑
(α,L) will depend inversely on E[Rγ(T )], and

therefore be suboptimal for
∑

(α,L). They propose a
strategy to match that lower bound that requires val-
ues of α and γ, thereby also proving that the lower
bound is tight.

However, when adapting to a continuous scale of
Hölder spaces (possibly α ≥ 1), it remains unclear
what strategy can generalize and achieve this lower
bound for some Hölder spaces. We aim to answer
that question by proposing a new strategy that uses a
recently developed bandit model selection algorithm
(Corral with smooth wrapper in Pacchiano et al.
(2020)) applied with a set of Meta-algorithms (sec-
tion 3). We will present this strategy and its theoret-
ical guarantees next. Throughout the following sec-
tions, we refer to minimax optimal in terms of depen-
dence of cumulative regret on T only unless otherwise
specified.

4.1 Corral Applied with Meta-algorithms

The bandit model selection method Corral is first de-
veloped by Agarwal et al. (2016) and based on an in-
stance of online mirror descent with mirror map de-
rived from Foster et al. (2016). Corral with smooth
wrapper proposed by Pacchiano et al. (2020) for
stochastic feedback problems is different from the orig-
inal Corral algorithm in the following aspects. The
smoothed version no longer needs to send importance-
weighted feedback to base-algorithm, therefore no
longer requires the base-algorithms themselves to be
modified for stability guarantee (definition 3 in Agar-
wal et al. (2016)). In the following parts, we will use
Corral with smooth wrapper to adapt to the smooth-
ness and refer to it as Corral for simplicity11. A copy of
the pseudo-code of Corral from Pacchiano et al. (2020)
can be found in Appendix B.2 for easier reference. We
use a set of M Meta-algorithms Aglobal(αi), i ∈ [M ] in
Algorithm 2 as bases. The input values αi are from
a grid G defined later. Therefore, we first specify the
regret of a Meta-algorithm with input smoothness pa-
rameter α′ that is ran on functions with actual Hölder
smoothness α.

Lemma 7. For function f that satisfies global as-
sumptions G1 ∼ G3 with parameter α, the regret of
Algorithm 2 with input parameter α′ ≤ α is bounded
with probability 1− δ by

R(T ) ≤ Õ(d(α′)T
d+α′
d+2α′ ). (7)

The bound does not hold for α′ > α.

The proof is deferred to Appendix section A.6. Hav-
ing established the performance of base algorithms
with misspecified smoothness exponents, we present
the adaptation strategy and its regret bound in The-
orem 8. Since it is impossible to achieve minimax op-
timal rates for multiple values of the smoothness pa-
rameter simultaneously, we introduce a user-sepecified

11Since the core of oneline mirror descent in Corral is
not changed.
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parameter R that controls the Hölder space over which
minimax optimality is desired. We show that con-
ditioned on achieving minimax rate for the space∑

(R,L), our adaptation strategy provides best pos-
sible regret bound on all supersets

∑
(α,L) where

α ≤ R. The results are stated in Theorem 8.

Theorem 8. Consider adapting to a continuous scale
of nested Hölder spaces indexed by α whose value is
bounded in a given interval. For simplicity, we assume
0 < α ≤ 2, where d(α) = d. Define R ≤ 2 as a param-
eter set by the decision-maker that specifies the index
of Hölder space for which minimax optimal regret is
achieved. Define linear grid G = {αi = R

blog(T )c i, i =

0, 1 . . . blog(T )c} so that the total number of base algo-
rithms is M = |G| = dlog(T )e. Consider using Cor-
ral with bases that are Meta-algorithms (Algorithm 3
in Appendix section B.1) with input αi ∈ G, i ∈ [M ].
Then by setting the learning rate of Corral to be η =

(dT
d+R
d+2R )−1, the regret rates achieved for any Hölder

exponent α ∈ (0, 2] are:

sup
f∈

∑
(α,L)

E[R(T )] ≤ Õ(dT
d2+2Rd+Rα
(d+2R)(d+α) ) for α ∈ (0, R],

(8)

sup
f∈

∑
(α,L)

E[R(T )] ≤ Õ(dT
d+R
d+2R ) for α ∈ [R, 2]. (9)

A straightforward example is shown in Figure 1. Func-
tions with Hölder exponent α > R essentially belong
to
∑

(R,L) and will therefore have the same regret
rate as equation (9) because the algorithm did not
fully exploit their smoothness. Similar results can be
shown for α in a general given range, if both the lin-
ear grid and the sub-algorithms are chosen appropri-
ately. There are two sources of cost of adaptation,
first the cost of adapting to M grid points. Since
M = O(log(T )), this has the same difficulty as the
adaptation to two values in Locatelli and Carpen-
tier (2018). The second one, however, is a conse-
quence of adapting to a continuous scale of α. The
cost is the rate difference between the exponent α
and the closest value to it on G, denoted α̂ ∈ G, s.t.
α̂ ≤ α ≤ α̂ + R

blog(T )c . This cost can be alleviated by

the design of the linear grid. We defer the full proof
to Appendix section A.7.

4.2 Comparison with Existing Lower Bound
for Adaptation

In this subsection, we compare the results in Theo-
rem 8 to the existing lower bound in Locatelli and Car-
pentier (2018). Theorem 3 of Locatelli and Carpentier
(2018) state that given two smoothness values α1 <
α2 ≤ 1, if a strategy has expected regret E[Rα2

(T )]

under exponent α2 that is Õ(T
d+α
d+2α ), then the re-

Figure 1: Illustration of adaptation to smoothness for
continuous scale of Hölder spaces.

gret of this strategy under the superset characterized
by α1 is lower bounded by supf∈

∑
(α1,L) E[R(T )] ≥

Ω̃(TRα2
(T )

−α1
α1+d ), even if the strategy has access to

both α1 and α2.

We make the following remark: for any pair of expo-
nent values (α1, α2) where α1 < R and R ≤ α2 ≤ 1,
the strategy proposed in Theorem 8 matches the lower
bound except for log factors. We verify this by plug-

ging in E[Rα2(T )] = Õ(T
d+R
d+2R ), omitting dependence

on d, to yield the lower bound on
∑

(α1, L) which is

Õ(T
d2+2Rd+Rα1
(d+2R)(d+α1) ). This is matched by our upper bound

in equation (8), apart from log factors and d. An illus-
tration is shown in Figure 2. In other words, the pro-
posed algorithm can perform under unknown smooth-
ness exponent and match the lower bound (available
only for exponent values within (0, 1]) on a subset of
Hölder spaces.

Figure 2: Illustration of values of exponents α1, α2 on
which our proposed strategy matches the lower bound
in Locatelli and Carpentier (2018).
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5 Conclusion

The core of this paper is extending the assumption
on function space from Lipschitz to Hölder spaces
with higher-order smoothness in bandit optimization
of black-box functions. We also study adaptation
to the smoothness under this scope. The class of
two-layer algorithms that we proposed consists of a
Meta-algorithm with the choice of UCB (Auer et al.
(2002)) or Corral (Agarwal et al. (2016); Pacchiano
et al. (2020)) and a set of misspecified bandit base-
algorithms as arms. We derive regret upper bounds for
α-Hölder smooth functions with α > 1 that matches
existing lower bounds in their dependence on T , the
number of active queries, with straightforward general-
ization to larger α. Our framework provides useful in-
sights in exploiting higher-order smoothness of reward
functions for cumulative regret minimization, because
our two-layer structure allows base-algorithms to per-
form local exploration-exploitation tradeoff as opposed
to the local pure exploration done for bandit optimiza-
tion of α-Hölder continuous functions. For adaptation
to the smoothness exponent, we further previous works
by deriving regret upper bound for adaptation to a
continuous scale of Hölder spaces with exponent α in
a given range. We show that by using bandit model
selection algorithms, it can achieve the existing lower
bound between two Hölder spaces, even if the algo-
rithm does not know both exponent values.

Our work inspires several directions for the future. An
intriguing direction is to study whether there exist
gap-dependent bounds for the UCB-Meta algorithm,
whose arms have non-i.i.d rewards because they are
bandit algorithms themselves. Such bounds could en-
able better rates for benign problem instances, for ex-
ample with the growth conditions (mentioned in sec-
tion 2). Another direction is the relaxation of the
Hölder smooth assumption, to hold only around the
maxima instead of everywhere on X , which is consid-
ered by prior works such as Auer et al. (2007); Klein-
berg et al. (2008); Bubeck et al. (2010). Finally, it
remains an open problem to establish the lower bound
for adaptation when the smoothness exponents are
larger than 1.
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