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Abstract
Due to recent empirical successes, the options
framework for hierarchical reinforcement learn-
ing is gaining increasing popularity. In this paper,
we consider learning an options-type hierarchi-
cal policy from expert demonstrations, which is
also referred to as hierarchical imitation learn-
ing. We present the first theoretical analysis of an
approach that uses the EM algorithm to learn a
parameterized hierarchical policy in a latent vari-
able model. To that end, we modify a related
algorithm, first proposed in (Daniel et al., 2016b),
in order to address a problem in its formulation.
If the expert policy can be parameterized by a spe-
cific variant of the options framework, then, under
regularity conditions, we establish that the pro-
posed algorithm converges with high probability
to a norm ball around the true parameter.

1. Introduction
Recent empirical studies show that the scalability of RL
algorithms can be improved by incorporating hierarchical
structures. As an example, consider the options framework
(Sutton et al., 1999; Barto & Mahadevan, 2003) representing
a two-level hierarchical policy: with a set of multi-step
low level procedures (a.k.a., options), the high level policy
chooses an option, which, in turn, chooses the primitive
action applied at each time step until the option terminates.
Learning such a two-level hierarchical policy effectively
breaks the overall task into sub-tasks, each easier to solve.

Many research questions arise depending on how the op-
tions are generated. Existing theoretical analyses (Brunskill
& Li, 2014; Fruit & Lazaric, 2017; Fruit et al., 2017) typ-
ically assume the options are given. As a result, only the
high-level policy needs to be learned through sequential
interaction with the environment. On the contrary, deep
hierarchical RL approaches (Bacon et al., 2017) focus on
concurrently learning the full hierarchical policy, but still
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the initialization of the options is essential. A promising
practical approach is to learn an initial hierarchical policy
from expert demonstrations. Then, deep hierarchical RL al-
gorithms can be applied for policy improvement. We name
the former step as Hierarchical Imitation Learning (HIL).

There are fairly limited existing works on the topic of HIL.
Assuming the specific option adopted by the expert is ob-
served at each time step, (Le et al., 2018) extends algorithms
in standard imitation learning to HIL. However, the high
level decision process is usually intrinsic to the expert, and
only the primitive state action pairs can be observed. In such
cases, HIL becomes an inference problem in a latent vari-
able model. Such a formulation is first proposed in (Daniel
et al., 2016b), where the classical EM algorithm is applied
for policy learning. Empirical studies demonstrate good
performance, but the theoretical analysis remains open.

In this paper, we establish the first known performance
guarantees for the EM approach to HIL. In particular, we
address a problem in the algorithm of (Daniel et al., 2016b),
and a modified algorithm is proposed instead. We identify
the lack of mixing as a technical difficulty in learning the
standard options framework. As a circumvention, a novel
options with failure framework is considered. If the expert
policy can be parameterized by this new framework, then
under regularity conditions, we prove that the proposed
algorithm converges with high probability to a norm ball
around the true parameter. Our analysis involves recent
theories of EM algorithms (Balakrishnan et al., 2017; Yang
et al., 2017) and the classical asymptotic analysis of Hidden
Markov Models (HMMs) (Cappé et al., 2006).

2. Problem settings
We use uppercase letters (e.g., St) for random variables and
lowercase letters (e.g., st) for values of random variables.
Let [t1 : t2] be the set of integers t such that t1 ≤ t ≤ t2.

2.1. Definitions of the hierarchical policy

We first introduce the options framework for hierarchical re-
inforcement learning, captured by the probabilistic graphical
model shown in Figure 1. The index t represents the time;
(St, At, Ot, Bt) respectively represent the state, the action,
the option and the termination indicator. St, At and Ot are
defined on finite sets S, A and O; Bt is binary. Define the
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Figure 1. A graphical model for hierarchical RL.

parameter θ := (θhi, θlo, θb) where θhi ∈ Θhi, θlo ∈ Θlo,
and θb ∈ Θb. The parameter space Θ := Θhi ×Θlo ×Θb
is a convex and compact subset of an Euclidean space.

For any (o0, s1) ∈ O×S , if we fix (O0, S1) = (o0, s1) and
consider a given θ, the joint distribution on the rest of the
graphical model is determined by the following components:
an unknown environment transition probability P , a high
level policy πhi, a low level policy πlo and a termination
policy πb. Sampling a tuple (s2:T , a1:T , o1:T , b1:T ) from
such a joint distribution, or equivalently, implementing the
hierarchical decision process, has the following procedure.
Starting at the first time step, the decision making agent first
determines whether or not to terminate the current option
o0. The decision is encoded in a termination indicator b1
sampled from πb(·|s1, o0; θb). b1 = 1 indicates that the
option o0 terminates and the next option o1 is sampled from
πhi(·|s1; θhi); b1 = 0 indicates that the option o0 continues
and o1 = o0. Then, the primitive action a1 is sampled from
πlo(·|s1, o1; θlo), applying the low level policy associated
with the option o1. Using the environment, the next state
s2 is sampled from P (·|s1, a1). The rest of the samples
(s3:T , a2:T , o2:T , b2:T ) are generated analogously.

The options framework corresponds to the above hierar-
chical policy structure and the policy triple {πhi, πlo, πb}.
However, it is hard to obtain performance guarantees when
the expert policy is parameterized by the standard options
framework, due to the construction of Lemma D.1. For sim-
plicity, we consider a novel options with failure framework,
which relaxes the options framework by the addition of an
extra failure mechanism when bt = 0. There exists a con-
stant 0 < ζ < 1 such that when the termination indicator
bt = 0, with probability 1− ζ the next option ot is assigned
to ot−1, whereas with probability ζ the next option ot is sam-
pled uniformly from the set of options O. Notice that ζ = 0
recovers the options framework. For clarity, we define π̄hi
as the combination of πhi and the failure mechanism.

π̄hi(ot|st, ot−1, bt; θhi) :=
πhi(ot|st; θhi), if bt = 1,

1− ζ + ζ
|O| , if bt = 0, ot = ot−1,

ζ
|O| , if bt = 0, ot 6= ot−1.

Concretely, the options with failure framework is defined
as any policy triple {π̄hi, πlo, πb} parameterized by ζ and θ.

With ζ fixed, for any θ and (O0, S1) = (o0, s1), let Pθ,o0,s1
be the joint distribution of {S2:T , A1:T , O1:T , B1:T }.

Pθ,o0,s1(S2:T = s2:T , A1:T = a1:T , O1:T = o1:T , B1:T

= b1:T ) =

[ T∏
t=1

πb(bt|st, ot−1; θb)π̄hi(ot|st, ot−1,

bt; θhi)πlo(at|st, ot; θlo)
][ T−1∏

t=1

P (st+1|st, at)
]
.

2.2. The imitation learning problem

Suppose an expert (agent) uses an options with failure policy
with true parameters ζ and θ∗; its initial condition (o0, s1)
is sampled from a distribution ν∗. A finite length obser-
vation sequence {s1:T , a1:T } = {st, at}Tt=1 with T ≥ 2 is
observed from the expert. Assume ζ and the parametric
structure of the expert policy are known, but θ∗ and ν∗ are
unknown; our objective is to estimate θ∗ from {s1:T , a1:T }.
The following technical assumptions are imposed.

Assumption 1 (Non-degeneracy). With any other input ar-
guments, the domain of πhi, πlo and πb as functions of θ can
be extended to an open set Θ̃ that contains Θ . Moreover, for
all θ ∈ Θ̃ , πhi, πlo and πb parameterized by θ are strictly
positive.

Assumption 2 (Differentiability). With any other input ar-
guments, πhi, πlo and πb as functions of θ are continuously
differentiable on Θ̃ .

Assumption 3 (State reachability). ∀st, st+1 ∈ S, there
exists at ∈ A such that P (st+1|st, at) > 0.

The next assumption is motivated by the following re-
sult. ∀θ ∈ Θ , consider the Markov chain {Xt; θ}∞t=1 :=
{St, At, Ot, Bt; θ}∞t=1 generated by any (o0, s1) and an op-
tions with failure hierarchical policy with parameters ζ and
θ. Its state space X = S ×A×O × {0, 1} is finite. From
Lemma A.1, such a Markov chain is ergodic; that is, the dis-
tribution of Xt converges to a unique stationary distribution
as t increases. For simplicity, we assume this Markov chain
is initialized with the stationary distribution. Specifically, in
a stationary Markov Chain {Xt; θ

∗}∞t=1, define the marginal
distribution of (Ot, St+1) as νθ∗,OS .

Assumption 4 (Stationary initial distribution). When the
expert generates the observation sequence {s1:T , a1:T },
(o0, s1) is sampled from νθ∗,OS . Equivalently, ν∗ = νθ∗,OS .

3. A Baum-Welch type algorithm
Adopting the EM approach, we present Algorithm 1 for the
inference of θ∗. It is similar to an algorithm in (Daniel et al.,
2016b) but fixes a key problem in its formulation; when cal-
culating the posterior distribution of latent variables, at any
time t < T , (Daniel et al., 2016b) neglects the dependency
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γθµ,t|T (ot, bt) := zθγ,µEO0∼µ(·|s1)[Pθ,O0,s1(S2:T = s2:T , A1:T = a1:T , Ot = ot, Bt = bt)]. (1)

γ̃θµ,t|T (ot−1, bt) := zθγ,µEO0∼µ(·|s1)[Pθ,O0,s1(S2:T = s2:T , A1:T = a1:T , Ot−1 = ot−1, Bt = bt)]. (2)

Qµ,T (θ′|θ) :=
1

T

{ T∑
t=2

∑
ot−1,bt

γ̃θµ,t|T (ot−1, bt) [log πb(bt|st, ot−1; θ′b)] +
T∑
t=1

∑
ot,bt

γθµ,t|T (ot, bt)

× [log πlo(at|st, ot; θ′lo)] +
T∑
t=1

∑
ot

γθµ,t|T (ot, bt = 1)[log πhi(ot|st; θ′hi)]
}
.

(3)

Algorithm 1 A Baum-Welch type algorithm for provable
hierarchical imitation learning
Require: Observation sequence {s1:T , a1:T }; a probability

mass function µ(o0|s1) on o0 ∈ O; N ∈ N+; θ(0) ∈ Θ .
1: for n = 1, . . . , N do
2: Compute the smoothing distributions {γθ(n−1)

µ,t|T }
T
t=1

and {γ̃θ(n−1)

µ,t|T }
T
t=2 defined in (1) and (2).

3: Compute θ(n) ∈ arg maxθ∈Θ Qµ,T (θ|θ(n−1)), with
the Q-function on the RHS defined in (3).

4: end for

of future states St+1:T on the current option Ot. A detailed
discussion is provided in Appendix B.1.

Since our graphical model resembles an HMM, Algorithm 1
is a variant of the classical Baum-Welch algorithm for HMM
parameter inference, which iterates between a latent variable
estimation step and a parameter update step. Analogously,
we define the marginal smoothing distributions in (1) and
(2), where zθγ,µ is a normalizing constant independent of
t such that for all t, both γθµ,t|T and γ̃θµ,t|T are probability
mass functions. Then, such quantities are used to compute
the maximization objective (Q-function) in the parameter
update step, which is a surrogate of the likelihood function.
Note that the Q-function here follows the notation from EM
literature and is different from the usual action value func-
tion in RL. For implementation, the marginal smoothing
distributions can be computed via forward-backward recur-
sion. Due to limited space, the computational procedure is
deferred to Appendix B.2. Finally, for notation, letM be
the set of µ allowed by Algorithm 1.

4. Performance guarantees
The structure of our analysis follows recent theories of EM
algorithms (Balakrishnan et al., 2017; Yang et al., 2017).
Traditionally, the EM algorithm gained its popularity mainly
due to its empirical performance. Its theoretical analysis,
however, were generally weak, only characterizing the con-
vergence of parameter estimates to the MLE of the finite
sample likelihood function (a.k.a., the finite sample MLE).
Due to the randomness in sampling, the finite sample like-

lihood function is usually highly non-convex, leading to
stringent requirements on initialization. Moreover, converg-
ing to the finite sample MLE does not directly characterize
the distance to the maximizer of the population likelihood
function which is the true parameter.

Recent ideas (Balakrishnan et al., 2017; Yang et al., 2017)
focus on the convergence to the true parameter directly,
relying on the definition of the population EM algorithm. It
has the same two-stage iterative procedure as the standard
EM algorithm, but its Q-function is defined as the infinite
sample limit of the finite sample Q-function (a.k.a., the
population Q-function). Under regularity conditions, the
population EM algorithm converges to the true parameter.
The standard EM algorithm is then analyzed as its perturbed
version, converging with high probability to a norm ball
around the true parameter. The main advantage of this
approach is that the true parameter usually has a large basin
of attraction in the population EM algorithm. Therefore, the
requirement on initialization is less stringent.

To properly define the population Q-function, the stochastic
convergence of the finite sample Q-function needs to be
constructed. In the case of i.i.d. samples (Balakrishnan et al.,
2017), it follows directly from the law of large numbers.
However, this is less obvious in time-series models such
as HMMs and the model considered in HIL. For HMMs,
(Yang et al., 2017) shows that the expectation of the Q-
function converges, but both the full stochastic convergence
property and the analytical expression of the population Q-
function are not provided. The missing techniques can be
borrowed from asymptotic analyses of HMMs (Cappé et al.,
2006; De Castro et al., 2017). Notably, a more sensible
construction of the population EM algorithm for HMMs is
proposed in (Le Corff et al., 2013), under a different setting.

Our analysis of Algorithm 1 has the following steps. We
first prove the stochastic convergence of the Q-function
Qµ,T (θ′|θ) to a population Q-function Q̄(θ′|θ), leading to
a well-posed definition of the population version algorithm.
This step is our major theoretical contribution. With a few
additional local assumptions, techniques in (Balakrishnan
et al., 2017) can be applied to show the convergence of
the population version algorithm. The remaining step is to
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analyze Algorithm 1 as a perturbed form of its population
version, which requires a concentration bound on the dis-
tance between their parameter updates. We can establish the
strong consistency of the parameter update of Algorithm 1
as an estimator of the parameter update of the population ver-
sion algorithm. Therefore, the existence of such a high prob-
ability bound can be proved for large enough T . However,
the analytical expression of this bound requires knowledge
on the specific parameterization of {π̄hi, πlo, πb}, which is
not available in this general context of discussion.

Concretely, we first analyze the asymptotic behavior of the
Q-function Qµ,T (θ′|θ) as T → ∞. From Assumption 4,
the observation sequence {s1:T , a1:T } is generated from a
stationary Markov chain. Using Kolmogorov’s extension
theorem, we can extend this Markov chain to the index set Z
and define a unique probability measure Pθ∗ over the sample
space X Z. Any observation sequence {s1:T , a1:T } of length
T can be regarded as a subset of an infinite length sample
path ω ∈ X Z. If {s1:T , a1:T } is not specified, Qµ,T (θ′|θ)
is a random variable associated with the probability mea-
sure Pθ∗ . Its stochastic convergence is characterized in the
following theorem.

Theorem 1 (The stochastic convergence of the Q-function).
There exists a real-valued function Q̄(θ′|θ) defined on the
domain θ′ ∈ Θ̃ and θ ∈ Θ such that

1. For all θ ∈ Θ , Q̄(θ′|θ) is continuously differentiable with
respect to θ′ ∈ Θ̃ . Moreover, the set arg maxθ′∈Θ Q̄(θ′|θ)
is nonempty.

2. As T →∞,
sup
θ,θ′∈Θ

sup
µ∈M

∣∣Qµ,T (θ′|θ;ω)− Q̄(θ′|θ)
∣∣→ 0, Pθ∗ -a.s.

We name Q̄(θ′|θ) as the population Q-function. The ana-
lytical expressions of Q̄(θ′|θ) and ∇Q̄(θ′|θ) are provided
in Appendix C.2, where the complete version of the above
theorem is proved. The population version of Algorithm 1
has parameter updates θ(n) ∈ arg maxθ∈Θ Q̄(θ|θ(n−1)).
To characterize the local convergence of Algorithm 1 and
its population version, we impose the following assump-
tions for the remainder of Section 4. For any r > 0, let
Θr := {θ; θ ∈ Θ , ‖θ − θ∗‖2 ≤ r}.
Assumption 5 (Additional local assumptions). There exists
r > 0 such that

1. (Identifiability) For all θ ∈ Θr, arg maxθ′∈Θ Q̄(θ′|θ)
has a unique element M̄(θ). Moreover, for all ε > 0, with
the convention that supθ′∈∅ Q̄(θ′|θ) = −∞, we have

inf
θ∈Θr

[
Q̄(M̄(θ)|θ)− sup

θ′∈Θ;‖θ′−M̄(θ)‖2≥ε
Q̄(θ′|θ)

]
> 0.

2. (Uniqueness of finite sample updates) For all θ ∈ Θr,
ω ∈ X Z, T ≥ 2 and µ ∈ M, arg maxθ′∈Θ Qµ,T (θ′|θ;ω)
has a unique element Mµ,T (θ;ω).

3. (Strong concavity) There exists λ > 0 such that for all
θ1, θ2 ∈ Θr,

Q̄(θ1|θ∗)− Q̄(θ2|θ∗)− 〈∇Q̄(θ2|θ∗), θ1 − θ2〉

≤ −λ
2
‖θ1 − θ2‖22 .

In the spirit of (Balakrishnan et al., 2017), the population
version algorithm has the following convergence property.
Theorem 2 (Convergence of the population version algo-
rithm). With all the assumptions,

1. (First-order stability) There exists γ > 0 such that for all
θ ∈ Θr,∥∥∇Q̄(M̄(θ)|θ)−∇Q̄(M̄(θ)|θ∗)

∥∥
2
≤ γ ‖θ − θ∗‖2 .

2. (Contraction) Let κ = γ/λ. For all θ ∈ Θr,∥∥M̄(θ)− θ∗
∥∥

2
≤ κ ‖θ − θ∗‖2 .

If κ < 1, the population version algorithm converges lin-
early to the true parameter θ∗.

The proof is given in Appendix C.3, where we also show an
upper bound on γ. The idea mirrors that of (Balakrishnan
et al., 2017, Theorem 1) with problem-specific modifica-
tions. Algorithm 1 can be regarded as a perturbed form of
this population version algorithm, with convergence charac-
terized in the following theorem.
Theorem 3 (Performance guarantee for Algorithm 1). With
all the assumptions,

1. For all ∆ ∈ (0, (1 − κ)r] and q ∈ (0, 1), there exists
T (∆, q) ∈ N+ such that the following statement is true. If
the observation length T ≥ T (∆, q), then with probability
at least 1− q,

sup
θ∈Θr

sup
µ∈M

∥∥Mµ,T (θ;ω)− M̄(θ)
∥∥

2
≤ ∆.

2. If T ≥ T (∆, q), Algorithm 1 with any µ ∈ M has the
following performance guarantee. If κ < 1 and θ(0) ∈ Θr,
then with probability at least 1− q, for all n ∈ N+,

‖θ(n) − θ∗‖2 ≤ κn‖θ(0) − θ∗‖2 + (1− κ)−1∆.

The proof is provided in Appendix C.4. Essentially, we use
Theorem 1 to show the uniform (in θ and µ) strong consis-
tency of Mµ,T (θ;ω) as an estimator of M̄(θ), following the
standard analysis of M-estimators. A direct corollary of this
argument is the high probability bound on the difference
between Mµ,T (θ;ω) and M̄(θ), as shown in the first part
of the theorem. Combining this bound with Theorem 2 and
(Balakrishnan et al., 2017, Theorem 2) yields the second
part of the theorem. A practical implication is that, under
regularity conditions, with large enough T , the algorithm
can locally converge with arbitrarily high probability to an
arbitrarily small norm ball around the true parameter. Some
empirical results are provided in Appendix E.
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Appendix
Organization of the appendix.

Appendix A presents discussions that motivates Assumption 4, which is omitted from Section 2.2.

Appendix B presents detailed discussions on Algorithm 1, including the comparison with an existing algorithm, the
forward-backward implementation and the definition of the Q-function in (3).

Appendix C presents the proofs omitted in Section 4. Technical lemmas involved in the proofs are deferred to Appendix D.
Notably, a proof sketch of Theorem 2, which is our main theoretical contribution, is provided at the beginning of Appendix C.

Appendix E presents the empirical results of our algorithm on a simple example. Discussions on the scope of this paper and
possible extensions are provided in Appendix F.

A. Ergodicity of the Markov chain
In this section we provide an ergodicity result for the Markov chain considered in Section 2.2, which motivates Assumption 4.
As a recap of the settings, we focus on the graphical model in Figure 1. ∀θ ∈ Θ , consider the stochastic process
{Xt; θ}∞t=1 := {St, At, Ot, Bt; θ}∞t=1 generated by any (o0, s1) and an options with failure hierarchical policy with
parameters ζ and θ. The dependency on ζ is dropped since we assume such a parameter adopted by the expert is a known
constant. The state space of the process X = S × A × O × {0, 1} is finite. From the graphical model, {Xt; θ}∞t=1 is a
Markov chain with a transition kernel parameterized by θ. Denote its one step transition kernel as Qθ and its t step transition
kernel as Qtθ. Such a Markov chain is uniformly ergodic, as shown in the following lemma.

Lemma A.1 (Ergodicity). For all θ ∈ Θ , a Markov chain with transition kernel Qθ has a unique stationary distribution νθ.
There exist constants α ∈ (0, 1) and C > 0 such that for all θ ∈ Θ and t ∈ N+,

sup
θ∈Θ

max
x∈X

∥∥Qtθ(x, ·)− νθ∥∥TV
≤ Cαt.

Proof of Lemma A.1

We start by analyzing the irreducibility of the Markov chain {Xt; θ}∞t=1 with any θ. Denote the probability measure on the
natural filtered space as PX . The dependency on θ is dropped for a cleaner notation, since the following proof holds for all
θ ∈ Θ . For any x, x̃ ∈ X , let x = (s, a, o, b) and x̃ = (s̃, ã, õ, b̃). For any time t,

PX(Xt+2 = x̃|Xt = x) =
∑

s̄∈S,ā∈A
PX(Xt+2 = x̃|Xt = x, St+1 = s̄, At+1 = ā)PX(St+1 = s̄, At+1 = ā|Xt = x).

From the non-degeneracy assumption (Assumption 1), there exists a state s̄ such that ∀ā ∈ A, PX(St+1 = s̄, At+1 =
ā|Xt = x) > 0. Consider the first factor in the sum,

PX(Xt+2 = x̃|Xt = x, St+1 = s̄, At+1 = ā) = PX(St+2 = s̃|St+1 = s̄, At+1 = ā)

× PX(Bt+2 = b̃, Ot+2 = õ, At+2 = ã|Xt = x, St+1 = s̄, At+1 = ā, St+2 = s̃).

From non-degeneracy, the second term on the RHS is positive for all s̄ ∈ S and ā ∈ A. From the reachability assumption
(Assumption 3), for any s̄ there exists an action ā such that PX(St+2 = s̃|St+1 = s̄, At+1 = ā) > 0. As a result,
PX(Xt+2 = x̃|Xt = x) > 0, and the considered Markov chain is irreducible.

As shown above, for all θ ∈ Θ , minx,x̃∈X Q
2
θ(x, x̃) > 0 where Q2

θ is the two step transition kernel of the Markov chain
{Xt; θ}∞t=1. Due to Assumption 2, minx,x̃∈X Q

2
θ(x, x̃) is continuous with respect to θ. Moreover, since Θ is compact, if

we let δ = infθ∈Θ minx,x̃∈X Q
2
θ(x, x̃) we have δ > 0. The Doeblin-type condition can be constructed as follows. For all

θ ∈ Θ and x, x̃ ∈ X , with any probability measure ν over the finite sample space X ,

Q2
θ(x, x̃) ≥ δν(x̃). (4)

A Markov chain convergence result is restated in the following lemma, tailored to our need.
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Lemma A.2 ((Cappé et al., 2006), Theorem 4.3.16 restated). With the Doeblin-type condition in (4), the Markov chain
{Xt; θ}∞t=1 with any θ ∈ Θ has a unique stationary distribution νθ. Moreover, for all θ ∈ Θ , x ∈ X and t ∈ N+,∥∥Qtθ(x, ·)− νθ∥∥TV

≤ (1− δ)bt/2c.

Letting C = (1− δ)−1 and α = (1− δ)1/2, we have

sup
θ∈Θ

max
x1∈X

∥∥Qtθ(x1, ·)− νθ
∥∥

TV
≤ (1− δ)bt/2c ≤ Cαt.

Note that the proof of Lemma A.1 does not use the failure mechanism imposed on the hierarchical policy, implying that the
result also holds for the standard options framework. Loosely speaking, Lemma A.1 shows that in {Xt; θ}∞t=1, the initial
distribution (of X1) is not very important since the distribution of Xt converges to νθ uniformly with respect to X1 and θ.
With a long observation sequence, we can always discard a portion in the front such that the rest approximately satisfies
Assumption 4.

B. Details on Algorithm 1
B.1. A technical problem of an earlier algorithm

First, we point out a technicality when comparing Algorithm 1 and the algorithm in (Daniel et al., 2016b). The algorithm in
(Daniel et al., 2016b) learns a hierarchical policy following the standard options framework, not the options with failure
framework considered in Algorithm 1. To draw direct comparison, we need to let ζ = 0 in Algorithm 1. However, a problem
in the formulation of the existing algorithm can be demonstrated without referring to ζ.

For simplicity, consider O0 fixed to o0 ∈ O; let 2 ≤ t ≤ T − 1. Then, according to the definitions in (Daniel et al., 2016b),
the (unnormalized) forward message is defined as

αθt (ot, bt) = Pθ,o0,s1(A1:t = a1:t, Ot = ot, Bt = bt|S2:t = s2:t).

The (unnormalized) backward message is defined as

βθt|T (ot, bt) = Pθ,o0,s1(At+1:T = at+1:T |St+1:T = st+1:T , Ot = ot, Bt = bt).

The smoothing distribution is defined as

γθt|T (ot, bt) = Pθ,o0,s1(Ot = ot, Bt = bt|S2:T = s2:T , A1:T = a1:T ).

We use the proportional symbol ∝ to represent normalizing constants independent of ot and bt. (Daniel et al., 2016b) claims
that, for any ot and bt,

γθt|T (ot, bt) ∝ αθt (ot, bt)βθt|T (ot, bt).

However, applying Bayes’ formula, it follows that

γθt|T (ot, bt) ∝ Pθ,o0,s1(A1:T = a1:T |S2:T = s2:T , Ot = ot, Bt = bt)Pθ,o0,s1(Ot = ot, Bt = bt|S2:T = s2:T ).

Using the Markov property,

Pθ,o0,s1(A1:T = a1:T |S2:T = s2:T , Ot = ot, Bt = bt) = Pθ,o0,s1(A1:t = a1:t|S2:T = s2:T , Ot = ot, Bt = bt)

× Pθ,o0,s1(At+1:T = at+1:T |S2:T = s2:T , Ot = ot, Bt = bt).

Therefore,
γθt|T (ot, bt) ∝ Pθ,o0,s1(A1:t = a1:t, Ot = ot, Bt = bt|S2:T = s2:T )βθt|T (ot, bt).

Applying Bayes’ formula again, it follows that

Pθ,o0,s1(A1:t = a1:t, Ot = ot, Bt = bt|S2:T = s2:T )

∝ Pθ,o0,s1(A1:t = a1:t, Ot = ot, Bt = bt|S2:t = s2:t)

× Pθ,o0,s1(St+1:T = st+1:T |S2:t = s2:t, A1:t = a1:t, Ot = ot, Bt = bt)

= αθt (ot, bt)Pθ,o0,s1(St+1:T = st+1:T |St = st, At = at, Ot = ot, Bt = bt).

For the claim in (Daniel et al., 2016b) to hold true, Pθ,o0,s1(St+1:T = st+1:T |St = st, At = at, Ot = ot, Bt = bt) should
not depend on ot and bt. Clearly this requirement does not hold in most cases, since the likelihood of the future observation
sequence should depend on the currently applied option.
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B.2. Computation of the smoothing distributions

The marginal smoothing distributions γθµ,t|T and γ̃θµ,t|T can be computed via forward-backward recursion, analogous to the
Baum-Welch algorithm. To do this, additional quantities are required. In the following, we define the forward message and
the backward message for all θ, µ and t ∈ [1 : T ]. With any input arguments ot and bt, the forward message is defined as

αθµ,t(ot, bt) := zθα,µ,tEO0∼µ(·|s1)[Pθ,O0,s1(S2:t = s2:t, A1:t = a1:t, Ot = ot, Bt = bt)],

where zθα,µ,t is a normalizing constant such that αθµ,t is a probability mass function. On the LHS, the dependency on
{s1:T , a1:T } is omitted for a cleaner notation. By convention, αθµ,1 is equivalent to

αθµ,1(o1, b1) = zθα,µ,1EO0∼µ(·|s1)[Pθ,O0,s1(A1 = a1, O1 = o1, B1 = b1)].

The backward message is defined as

βθt|T (ot, bt) := zθβ,tPθ,o0,s1(St+1:T = st+1:T , At+1:T = at+1:T |St = st, At = at, Ot = ot, Bt = bt),

where zθβ,t is a normalizing constant such that βθt|T is a probability mass function. The value of o0 on the RHS is arbitrary.
By convention, the boundary condition is

βθT |T (oT , bT ) = (2 |O|)−1. (5)

The marginal smoothing distributions are defined in (1) and (2). To distinguish these two quantities, we name γθµ,t|T
as smoothing distribution and γ̃θµ,t|T as two-step smoothing distribution. The forward-backward recursion procedure is
provided in the following theorem. For ease of notation, we omit normalizing constants by using the proportional symbol ∝.

Theorem 4 (Forward-backward smoothing). For all θ ∈ Θ and µ ∈M, with any input arguments on the LHS,

1. (Forward recursion) ∀t ∈ [2 : T ],

αθµ,t(ot, bt) ∝
∑

ot−1,bt−1

πb(bt|st, ot−1; θb)π̄hi(ot|st, ot−1, bt; θhi)πlo(at|st, ot; θlo)αθµ,t−1(ot−1, bt−1). (6)

For t = 1,
αθµ,1(o1, b1) ∝ EO0∼µ(·|s1)[πb(b1|s1, O0; θb)π̄hi(o1|s1, O0, b1; θhi)πlo(a1|s1, o1; θlo)]. (7)

2. (Backward recursion) ∀t ∈ [1 : T − 1],

βθt|T (ot, bt) ∝
∑

ot+1,bt+1

πb(bt+1|st+1, ot; θb)π̄hi(ot+1|st+1, ot, bt+1; θhi)πlo(at+1|st+1, ot+1; θlo)β
θ
t+1|T (ot+1, bt+1).

(8)
3. (Smoothing) ∀t ∈ [1 : T ],

γθµ,t|T (ot, bt) ∝ αθµ,t(ot, bt)βθt|T (ot, bt). (9)

4. (Two-step smoothing) ∀t ∈ [2 : T ],

γ̃θµ,t|T (ot−1, bt) ∝ πb(bt|st, ot−1; θb)

[∑
ot

π̄hi(ot|st, ot−1, bt; θhi)πlo(at|st, ot; θlo)βθt|T (ot, bt)

]
×
[∑
bt−1

αθµ,t−1(ot−1, bt−1)

]
. (10)

To compute the marginal smoothing distributions in practice, we first run the forward recursion with t = 2 to T , using (6)
and (7). Then, backward recursion is implemented, using (5) and (8). Finally, the marginal distributions are computed from
the forward message and the backward message, using (9) and (10).

Proof of Theorem 4

We drop the dependency on θ, since the following proof holds for all θ ∈ Θ . The proportional symbol ∝ is used to replace a
multiplier term that depends on the context.
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1. (Forward recursion) First consider any fixed o0. For a cleaner notation, we use p as an abbreviation of Pθ,o0,s1 . Let H1,
H2 be any two subsets of {St, At, Ot, Bt}Tt=1, and let h1, h2 be the sets of values generated from H1 and H2, respectively,
such that the uppercase symbols are replaced by the lowercase symbols. (H1 and H2 are two sets of random variables; h1

and h2 are two sets of values of random variables.) Then, for all (o0, s1), p is defined as

p(h1|h2, o0, s1) := Pθ,o0,s1(H1 = h1|H2 = h2).

If the RHS does not depend on o0 and s1, we can omit it on the LHS by using p(h1|h2). ∀t ∈ [2 : T ],

p(s2:t, a1:t, ot, bt|o0, s1) = p(s2:t, a1:t−1, ot, bt|o0, s1)πlo(at|st, ot)

=
∑
ot−1

p(s2:t, a1:t−1, ot, bt, ot−1|o0, s1)πlo(at|st, ot)

=
∑
ot−1

p(s2:t, a1:t−1, ot−1|o0, s1)πb(bt|st, ot−1)π̄hi(ot|st, ot−1, bt)πlo(at|st, ot).

Furthermore,

p(s2:t, a1:t−1, ot−1|o0, s1) = p(s2:t−1, a1:t−1, ot−1|o0, s1)P (st|st−1, at−1)

∝
∑
bt−1

p(s2:t−1, a1:t−1, ot−1, bt−1|o0, s1),

where ∝ replaces a multiplier that does not depend on ot−1. Taking expectation with respect to O0 gives the desired forward
recursion result. For the case of t = 1, the proof is analogous.

2. (Backward recursion) For any o0, ∀t ∈ [1 : T − 1],

βθt|T (ot, bt) ∝ p(st+1:T , at+1:T |st, at, ot, bt)
= p(st+2:T , at+1:T |st+1, ot)P (st+1|st, at)

∝
∑

ot+1,bt+1

p(st+2:T , at+1:T |st+1, ot, ot+1, bt+1)p(ot+1, bt+1|st+1, ot),

where the multipliers replaced by ∝ are independent of ot and bt. Moreover,

p(st+2:T , at+1:T |st+1, ot, ot+1, bt+1) = p(st+2:T , at+2:T |st+1, ot, ot+1, bt+1, at+1)p(at+1|st+1, ot, ot+1, bt+1)

= βθt+1|T (ot+1, bt+1)p(at+1|st+1, ot, ot+1, bt+1).

Plugging in the structure of the policy gives the desired result.

3. (Smoothing) Consider any fixed o0. For any t ∈ [2 : T ],

p(s2:T , a1:T , ot, bt|o0, s1) = p(s2:t, a1:t, ot, bt|o0, s1)p(st+1:T , at+1:T |s1:t, a1:t, ot, bt, o0)

= p(s2:t, a1:t, ot, bt|o0, s1)p(st+1:T , at+1:T |st, at, ot, bt).

Taking expectation with respect to O0 on both sides yields the desired result. Notice that the second term on the RHS does
not depend on O0, therefore is not involved in the expectation. For the case of t = 1 the proof is analogous.

4. (Two-step smoothing) For any t ∈ [3 : T ], consider any fixed o0,

p(s2:T , a1:T , ot−1, bt|o0, s1) =
∑
bt−1

p(s2:T , a1:T , ot−1, bt, bt−1|o0, s1)

=
∑
bt−1

p(s2:t−1, a1:t−1, ot−1, bt−1|o0, s1)p(st:T , at:T , bt|s1:t−1, a1:t−1, ot−1, bt−1, o0)

=
∑
bt−1

p(s2:t−1, a1:t−1, ot−1, bt−1|o0, s1)P (st|st−1, at−1)p(st+1:T , at:T , bt|st, ot−1).
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Take expectation with respect to O0 on both sides. Notice that only the first term on the RHS depends on o0. We have

γ̃µ,t|T (ot−1, bt) ∝
∑
bt−1

αµ,t−1(ot−1, bt−1)P (st|st−1, at−1)p(st+1:T , at:T , bt|st, ot−1)

∝ πb(bt|st, ot−1)p(st+1:T , at:T |st, bt, ot−1)
∑
bt−1

αµ,t−1(ot−1, bt−1)

= πb(bt|st, ot−1)

[∑
ot

p(st+1:T , at:T , ot|st, bt, ot−1)

]∑
bt−1

αµ,t−1(ot−1, bt−1)

∝ πb(bt|st, ot−1)

[∑
ot

π̄hi(ot|st, ot−1, bt)πlo(at|st, ot)βt|T (ot, bt)

]∑
bt−1

αµ,t−1(ot−1, bt−1),

where the multipliers replaced by ∝ are independent of ot−1 and bt. For the case of t = 2 the proof is analogous.

B.3. Discussion on the Q-function

First, we discuss the use of µ in Algorithm 1. Similar to HMMs, since an unknown prior distribution of (O0, S1) is required
for the statistical model, we need an approximation of it in the definition of the marginal smoothing distributions. We use
ν̂ as an approximation of ν∗: ∀o0 ∈ O, ν̂(o0, s1) := µ(o0|s1); ∀s′1 6= s1, ν̂(o0, s

′
1) := 0. By doing this, we effectively

consider the following statistical model in Figure 1: the prior distribution of (O0, S1) is ν̂, and the distribution of the rest
of the graphical model is determined by an options with failure policy with parameters ζ and θ. From the EM literature
(Balakrishnan et al., 2017; Jain & Kar, 2017), the full likelihood function is

L(s1:T , a1:T , o0:T , b1:T ; θ) = ν̂(o0, s1)Pθ,o0,s1(S2:T = s2:T , A1:T = a1:T , O1:T = o1:T , B1:T = b1:T ).

The marginal likelihood function is

Lm(s1:T , a1:T ; θ) =
∑

o0:T ,b1:T

ν̂(o0, s1)Pθ,o0,s1(S2:T = s2:T , A1:T = a1:T , O1:T = o1:T , B1:T = b1:T ),

where the superscript m means marginal. From (1) and (2), we can verify that Lm(s1:T , a1:T ; θ) = (zθγ,µ)−1.

The Q-function defined in (3) is not exactly the Q-function in EM literature, but rather an approximation of it. We provide
an explanation in the following.

We start by deriving the usual definition of Q-function in EM literature. The standard MLE approach maximizes the
logarithm of the marginal likelihood function (marginal log-likelihood) with respect to θ. However, such an optimization
objective is hard to evaluate for time series models (e.g., HMMs and the graphical model for HIL). As an alternative, the
marginal log-likelihood can be lower bounded (Jain & Kar, 2017, Chap. 5.4) as

logLm(s1:T , a1:T ; θ′) ≥
∑

o0:T ,b1:T

L(s1:T , a1:T , o0:T , b1:T ; θ)

Lm(s1:T , a1:T ; θ)
logL(s1:T , a1:T , o0:T , b1:T ; θ′),

where θ on the RHS is arbitrary. The RHS is usually called the (unnormalized) Q-function. For our graphical model, it is
denoted as Q̃µ,T (θ′|θ).

Q̃µ,T (θ′|θ) =
∑

o0:T ,b1:T

ν̂(o0, s1)Pθ,o0,s1(S2:T = s2:T , A1:T = a1:T , O1:T = o1:T , B1:T = b1:T )

× zθγ,µ log[ν̂(o0, s1)Pθ′,o0,s1(S2:T = s2:T , A1:T = a1:T , O1:T = o1:T , B1:T = b1:T )].

The RHS is well-defined from the non-degeneracy assumption. From the classical monotonicity property of EM updates
(Jain & Kar, 2017, Chap. 5.7), maximizing the (unnormalized) Q-function Q̃µ,T (θ′|θ) with respect to θ′ guarantees non-
negative improvement on the marginal log-likelihood. Therefore, improvements on parameter inference can be achieved via
iteratively maximizing the (unnormalized) Q-function.
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Using the structure of the hierarchical policy, Q̃µ,T can be rewritten as

Q̃µ,T (θ′|θ) =
T∑
t=2

∑
ot−1,bt

γ̃θµ,t|T (ot−1, bt)[log πb(bt|st, ot−1; θ′b)]

+
T∑
t=1

∑
ot,bt

γθµ,t|T (ot, bt)[log πlo(at|st, ot; θ′lo)] +
T∑
t=1

∑
ot

γθµ,t|T (ot, bt = 1)[log πhi(ot|st; θ′hi)]

+ zθγ,µ
∑
o0,b1

µ(o0|s1)Pθ,o0,s1(S2:T = s2:T , A1:T = a1:T , B1 = b1)[log πb(b1|s1, o0; θ′b)] + C,

where C contains terms unrelated to θ′. Consider the first term on the last line, which partially captures the effect of
assuming ν̂ on the parameter inference. Since this term is upper bounded by maxb1,s1,o0 | log πb(b1|s1, o0; θ′b)|, when T is
large enough this term becomes negligible. The precise argument is similar to the proof of Lemma C.2. Therefore, after
dropping the last line and normalizing, we arrive at our definition of the (normalized) Q-function in (3). Maximizing the
(normalized) Q-function in (3) is approximately equivalent to maximizing Q̃µ,T .

C. Details on the performance guarantees
For better communication of the idea, we present the proof sketch of Theorem 2, which is our main theoretical contribution,
as follows. Detailed proof is developed later.

Proof sketch of Theorem 2. Our target is to show the stochastic convergence of Qµ,T (θ′|θ) defined in (3). The main
difficulty for the proof is that, Qµ,T (θ′|θ) is (roughly) the average of T terms, with each term dependent on the whole
observation sequence; as T →∞, all the terms are changed such that the law of large numbers cannot be applied directly.
As a solution, we approximate γθµ,t|T and γ̃θµ,t|T with smoothing distributions in an infinitely extended graphical model
independent of T , resulting in an approximated Q-function (still depends on T ). The techniques adopted in this step are
analogous to Markovian decomposition and uniform forgetting in the HMM literature (Cappé et al., 2006; van Handel, 2008).
The limiting behavior of the approximated Q-function is the same as that of Qµ,T (θ′|θ), since their difference vanishes as
T →∞. For the approximated Q-function, we can apply the ergodic theorem since the smoothing distributions no longer
depend on T .

C.1. Smoothing in an extended graphical model

Before providing the proofs, we first introduce a few definitions. Consider the extended graphical model shown in Figure 2
with a parameter k; k ∈ N+.

Figure 2. An extended graphical model for hierarchical imitation learning.

Let the joint distribution of (O−k, S1−k) be ν∗. Define the distribution of the rest of the graphical model using an options
with failure hierarchical policy with parameters ζ and θ, analogous to our settings so far. With these two components, the
joint distribution on the graphical model is determined; let Pθ,k be the corresponding joint distribution.

The comparison between Pθ,k and Pθ,o0,s1 should be emphasized. Notice that the sample space of Pθ,k is the
domain of {S1−k:T+k, A1−k:T+k, O−k:T+k, B1−k:T+k}, whereas the sample space of Pθ,o0,s1 is the domain of
{S2:T , A1:T , O1:T , B1:T } since (O0, S1) is fixed to (o0, s1).
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Consider any given infinite length observation sequence {st, at}t∈Z. Analogous to the unextended model (Figure 1), we can
define smoothing distributions for the extended model with any parameter k. For all θ ∈ Θ and t ∈ [1 : T ], with any input
arguments ot and bt, the forward message is defined as

αθk,t(ot, bt) := zθα,k,tPθ,k(S1−k:t = s1−k:t, A1−k:t = a1−k:t, Ot = ot, Bt = bt).

The backward message is defined as

βθk,t(ot, bt) := zθβ,k,tPθ,k(St+1:T+k = st+1:T+k, At+1:T+k = at+1:T+k|St = st, At = at, Ot = ot, Bt = bt).

The smoothing distribution is defined as

γθk,t(ot, bt) := zθγ,kPθ,k(S1−k:T+k = s1−k:T+k, A1−k:T+k = a1−k:T+k, Ot = ot, Bt = bt).

The two-step smoothing distribution is defined as

γ̃θk,t(ot−1, bt) := zθγ,kPθ,k(S1−k:T+k = s1−k:T+k, A1−k:T+k = a1−k:T+k, Ot−1 = ot−1, Bt = bt).

The quantities zθα,k,t, z
θ
β,k,t and zθγ,k are normalizing constants such that the LHS of the expressions above are probability

mass functions. In particular, since k > 0, we can define αθk,t for t = 0 in the same way as t ∈ [1 : T ]. Note that the
dependency on T in the smoothing distributions is dropped for a cleaner noation.

Recursive results similar to Theorem 4 can be established; the proof is analogous and therefore omitted. As in Theorem 4,
we make extensive use of the proportional symbol ∝ which stands for, the LHS equals the RHS multiplied by a normalizing
constant. Moreover, the normalizing constant does not depend on the input arguments of the LHS.

Corollary 5 (Forward-backward smoothing for the extended model). For all θ ∈ Θ and k ∈ N+, with any input arguments,

1. (Forward recursion) ∀t ∈ [1 : T ],

αθk,t(ot, bt) ∝
∑

ot−1,bt−1

πb(bt|st, ot−1; θb)π̄hi(ot|st, ot−1, bt; θhi)πlo(at|st, ot; θlo)αθk,t−1(ot−1, bt−1). (11)

2. (Backward recursion) ∀t ∈ [1 : T − 1],

βθk,t(ot, bt) ∝
∑

ot+1,bt+1

πb(bt+1|st+1, ot; θb)π̄hi(ot+1|st+1, ot, bt+1; θhi)πlo(at+1|st+1, ot+1; θlo)β
θ
k,t+1(ot+1, bt+1).

(12)

3. (Smoothing) ∀t ∈ [1 : T ],
γθk,t(ot, bt) ∝ αθk,t(ot, bt)βθk,t(ot, bt). (13)

4. (Two-step smoothing) ∀t ∈ [1 : T ],

γ̃θk,t(ot−1, bt) ∝ πb(bt|st, ot−1; θb)

[∑
ot

π̄hi(ot|st, ot−1, bt; θhi)πlo(at|st, ot; θlo)βθk,t(ot, bt)
]

×
[∑
bt−1

αθk,t−1(ot−1, bt−1)

]
. (14)

The following lemma characterizes the limiting behavior of γθk,t and γ̃θk,t as k →∞.

Lemma C.1 (Limits of smoothing distributions). For all T ≥ 2, θ ∈ Θ and t ∈ [1 : T ], with any infinite length observation
sequence {st, at}t∈Z, the limits of both the sequences {γθk,t}k∈N+ and {γ̃θk,t}k∈N+ as k →∞ exist with respect to the total
variation distance. Let γθ∞,t := limk→∞ γθk,t and γ̃θ∞,t := limk→∞ γ̃θk,t. They have the following properties:

1. γθ∞,t and γ̃θ∞,t do not depend on T .

2. γθ∞,t and γ̃θ∞,t are entry-wise Lipschitz continuous with respect to θ ∈ Θ .

The proof is given in Appendix D.4. The dependency of γθ∞,t and γ̃θ∞,t on {st, at}t∈Z is omitted for a cleaner notation.
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C.2. The stochastic convergence of the Q-function

Using the definitions from Section 4, the quantities defined in Appendix C.1 can also be analyzed in the infinitely extended
probability space. Remember that X = S × A × O × {0, 1}. Formally, let Ω = X Z and consider the probability space
(Ω, 2Ω,Pθ∗). From this perspective, γθ∞,t and γ̃θ∞,t are both functions of the observation sequence, therefore also functions
of a sample path ω ∈ Ω. For any sample path ω, let ω(st) and ω(at) be the values of St and At corresponding to the
sample path ω. With a slight overload of notation, let ω(t) = {ω(st), ω(at), ω(ot), ω(bt)}, which is the set of elements in ω
corresponding to time t.

For all θ ∈ Θ , θ′ ∈ Θ̃ , ω ∈ Ω and t ∈ N+, define

ft(θ
′|θ;ω) :=

∑
ot−1,bt

γ̃θ∞,t(ot−1, bt;ω) [log πb(bt|ω(st), ot−1; θ′b)] +
∑
ot,bt

γθ∞,t(ot, bt;ω) [log πlo(ω(at)|ω(st), ot; θ
′
lo)]

+
∑
ot

γθ∞,t(ot, bt = 1;ω) [log πhi(ot|ω(st); θ
′
hi)] ,

where the dependency of the RHS on ω is shown explicitly for clarity. |ft(θ′|θ;ω)| is upper bounded by a constant that
does not depend on θ, θ′, ω and t, due to Assumption 1 and Assumption 2. Moreover, for all θ, ω and t, ft(θ′|θ;ω) is
continuously differentiable with respect to θ′ ∈ Θ̃ . For all θ′, ω and t, ft(θ′|θ;ω) is Lipschitz continuous with respect to
θ ∈ Θ , due to Lemma C.1.

Next, define
Q̄(θ′|θ) := Eθ∗ [f1(θ′|θ;ω)]. (15)

The subscript θ∗ in Eθ∗ means the expectation is taken with respect to the probability measure Pθ∗ .

With the above definitions, we state the complete version of Theorem 1. The Q-function defined in (3) is written as
Qµ,T (θ′|θ;ω), showing its dependency on the sample path.

Theorem 6 (The complete version of Theorem 1). For Q̄(θ′|θ) defined in (15), we have

1. For any θ ∈ Θ , Q̄(θ′|θ) is continuously differentiable with respect to θ′ ∈ Θ̃ , where Θ̃ is defined in Assumption 1. The
gradient is

∇Q̄(θ′|θ) = Eθ∗ [∇f1(θ′|θ;ω)].

Moreover, as the set of maximizing arguments, arg maxθ′∈Θ Q̄(θ′|θ) is nonempty.

2. As T →∞,
sup
θ,θ′∈Θ

sup
µ∈M

∣∣Qµ,T (θ′|θ;ω)− Q̄(θ′|θ)
∣∣→ 0, Pθ∗ -a.s.

Before proving Theorem 6, we state the following definition and an auxiliary lemma required for the proof.

For all θ, θ′ ∈ Θ , ω ∈ Ω and T ≥ 2, the sample-path-based population Q-function Qs∞,T (θ′|θ;ω) is defined as

Qs∞,T (θ′|θ;ω) :=
1

T

T∑
t=1

ft(θ
′|θ;ω). (16)

The superscript s in Qs∞,T stands for sample-path-based. If the sample path ω is not specified, Qs∞,T (θ′|θ) is a ran-
dom variable associated with probability measure Pθ∗ . Note that due to stationarity, for any θ, θ′ and T , Q̄(θ′|θ) =
Eθ∗ [Qs∞,T (θ′|θ;ω)].

The difference between Qs∞,T and Qµ,T is bounded in the following lemma.

Lemma C.2 (Bounding the difference between the Q-function and the sample-path-based population Q-function). For all
T ≥ 2 and ω ∈ Ω,

sup
θ,θ′∈Θ

sup
µ∈M

∣∣Qs∞,T (θ′|θ;ω)−Qµ,T (θ′|θ;ω)
∣∣ ≤ const · T−1,

where const is a constant independent of T and ω.
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The proof is provided in Appendix D.5. Now we are ready to present the proof of Theorem 6 step-by-step. The structure of
this proof is similar to the standard analysis of HMM maximum likelihood estimators (Cappé et al., 2006, Chap. 12).

Proof of Theorem 6

1. For all θ′ ∈ Θ̃ , there exists δθ′ > 0 such that the set {θ̃; ‖θ̃ − θ′‖2 ≤ δθ′} ⊆ Θ̃ . For all θ ∈ Θ and ω ∈ Ω, due to the
differentiability of f1(θ′|θ;ω) with respect to θ′, there exists a gradient∇f1(θ′|θ;ω) at any θ′ ∈ Θ̃ such that

lim
δ→0

sup
θ̃∈Θ̃;‖θ̃−θ′‖2≤δ

|f1(θ̃|θ;ω)− f1(θ′|θ;ω)− 〈∇f1(θ′|θ;ω), θ̃ − θ′〉|
‖θ̃ − θ′‖2

= 0.

We need to transform the above pointwise (in ω) convergence to the convergence of expectation, using the dominated
convergence theorem. As a requirement, the quantity inside the limit on the LHS needs to be upper-bounded. For all θ ∈ Θ ,
θ′ ∈ Θ̃ , ω ∈ Ω and 0 < δ ≤ δθ′ ,

sup
θ̃∈Θ̃;‖θ̃−θ′‖2≤δ

|f1(θ̃|θ;ω)− f1(θ′|θ;ω)− 〈∇f1(θ′|θ;ω), θ̃ − θ′〉|
‖θ̃ − θ′‖2

≤ sup
θ̃;‖θ̃−θ′‖2≤δθ′

|f1(θ̃|θ;ω)− f1(θ′|θ;ω)|
‖θ̃ − θ′‖2

+ sup
θ̃;‖θ̃−θ′‖2≤δθ′

|〈∇f1(θ′|θ;ω), θ̃ − θ′〉|
‖θ̃ − θ′‖2

. (17)

Since continuously differentiable functions are Lipschitz continuous on convex and compact subsets, πhi, πlo and πb as
functions of θ̃ ∈ Θ̃ are Lipschitz continuous on {θ̃; ‖θ̃ − θ′‖2 ≤ δθ′}, with any other input arguments. Therefore from
the expression of f1, we can verify that for any fixed θ and ω, f1(θ̃|θ;ω) as a function of θ̃ is Lipschitz continuous on
{θ̃; ‖θ̃ − θ′‖2 ≤ δθ′}, and the Lipschitz constant only depends on θ′ and δθ′ . Consequently, the RHS of (17) can be
upper-bounded uniformly in ω ∈ Ω. Applying the dominated convergence theorem, we have

lim
δ→0

Eθ∗
[

sup
θ̃∈Θ̃;‖θ̃−θ′‖2≤δ

|f1(θ̃|θ;ω)− f1(θ′|θ;ω)− 〈∇f1(θ′|θ;ω), θ̃ − θ′〉|
‖θ̃ − θ′‖2

]
= 0. (18)

On the other hand, notice that for all θ ∈ Θ , θ′ ∈ Θ̃ and δ > 0,

sup
θ̃∈Θ̃;‖θ̃−θ′‖2≤δ

|Q̄(θ̃|θ)− Q̄(θ′|θ)− 〈Eθ∗ [∇f1(θ′|θ;ω)], θ̃ − θ′〉|
‖θ̃ − θ′‖2

= sup
θ̃∈Θ̃;‖θ̃−θ′‖2≤δ

|Eθ∗ [f1(θ̃|θ;ω)− f1(θ′|θ;ω)− 〈∇f1(θ′|θ;ω), θ̃ − θ′〉]|
‖θ̃ − θ′‖2

≤ Eθ∗
[

sup
θ̃∈Θ̃;‖θ̃−θ′‖2≤δ

|f1(θ̃|θ;ω)− f1(θ′|θ;ω)− 〈∇f1(θ′|θ;ω), θ̃ − θ′〉|
‖θ̃ − θ′‖2

]
.

Combining with (18) proves the differentiability of Q̄(θ′|θ) with respect to θ′ ∈ Θ̃ for any fixed θ. The gradient is

∇Q̄(θ′|θ) = Eθ∗ [∇f1(θ′|θ;ω)].

Analogously, using the dominated convergence theorem we can also show that the gradient∇Q̄(θ′|θ) is continuous with
respect to θ′ ∈ Θ̃ . Details are omitted due to the similarity with the above procedure. It is worth noting that we let θ′ ∈ Θ̃
instead of Θ . In this way, the gradient∇Q̄(θ′|θ) can be naturally defined when θ′ is not an interior point of Θ .

From differentiability and Θ ⊆ Θ̃ , Q̄(θ′|θ) is also continuous with respect to θ′ ∈ Θ . Since Θ is compact, the set of
maximizing arguments arg maxθ′∈Θ Q̄(θ′|θ) is nonempty.

2. We need to prove the uniform (in θ, θ′ ∈ Θ and µ ∈ M) almost sure convergence of the Q-function Qµ,T (θ′|θ;ω) to
the population Q-function Q̄(θ′|θ). The proof is separated into three steps. First, we show the almost sure convergence
of Qs∞,T (θ′|θ;ω) to Q̄(θ′|θ) for all θ, θ′ ∈ Θ using the ergodic theorem. Second, we extend this pointwise convergence
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to uniform (in θ, θ′) convergence using a version of the Arzelà-Ascoli theorem (Davidson, 1994, Chap. 21). Finally, from
Lemma C.2, the difference between Qµ,T (θ′|θ;ω) and Qs∞,T (θ′|θ;ω) vanishes uniformly in µ as T →∞.

Concretely, for the pointwise (in θ, θ′) almost sure convergence of Qs∞,T (θ′|θ;ω) as T →∞, we apply Birkhoff’s ergodic
theorem. Let T : Ω→ Ω be the standard shift operator. That is, for any t ∈ Z, T ω(t) = ω(t+ 1). Due to stationarity, T is
a measure-preserving map, i.e., Pθ∗(T −1F ) = Pθ∗(F ) for all F ∈ 2Ω. Therefore, the quadruple {Ω, 2Ω,Pθ∗ , T } defines a
dynamical system.

Since Pθ∗ is extended from the unique stationary distribution of the Markov chain with the true parameter θ∗, the dynamical
system {Ω, 2Ω,Pθ∗ , T } is ergodic (Hairer, 2006, Corollary 5.12). For our case, Birkhoff’s ergodic theorem is restated as
follows.

Lemma C.3 ((Hairer, 2006), Corollary 5.3 restated). If a dynamical system {Ω, 2Ω,Pθ∗ , T } is ergodic and f : Ω → R
satisfies Eθ∗ [f(ω)] <∞, then as T →∞,

1

T

T−1∑
t=0

f(T tω)→ Eθ∗ [f(ω)], Pθ∗ -a.s.

For our purpose, observe that for any θ, θ′ ∈ Θ , ft(θ′|θ;ω) = f1(θ′|θ; T t−1ω). Therefore, applying the ergodic theorem to
Qs∞,T (θ′|θ), as T →∞,

Qs∞,T (θ′|θ;ω)→ Q̄(θ′|θ), Pθ∗ -a.s. (19)

To extend the pointwise convergence in (19) to uniform (in θ, θ′) convergence, the following concept is required. The
sequence {Qs∞,T (θ′|θ)} indexed by T as functions of θ and θ′ is strongly stochastically equicontinuous (Davidson, 1994,
Equation 21.43) if for any ε > 0 there exists δ > 0 such that

lim sup
T→∞

sup
θ1,θ′1,θ2,θ

′
2∈Θ;‖θ1−θ2‖2+‖θ′1−θ′2‖2≤δ

∣∣Qs∞,T (θ′1|θ1;ω)−Qs∞,T (θ′2|θ2;ω)
∣∣ < ε, Pθ∗ -a.s. (20)

Indeed this property holds for {Qs∞,T (θ′|θ)}, as shown in Appendix D.6. The version of the Arzelà-Ascoli theorem we use
is restated as follows, tailored to our need.

Lemma C.4 ((Davidson, 1994), Theorem 21.8 restated). Given (19) and (20) hold, as T →∞ we have

sup
θ,θ′∈Θ

∣∣Qs∞,T (θ′|θ;ω)− Q̄(θ′|θ)
∣∣→ 0, Pθ∗ -a.s.

Combining Lemma C.2 and Lemma C.4 concludes the proof of the second part.

C.3. The convergence of the population version algorithm

We first present the complete version of Theorem 2, where an upper bound on γ is also shown. Notice that we assume all the
assumptions, including Assumption 5.

Theorem 7 (The complete version of Theorem 2). With all the assumptions,

1. (First-order stability) There exists 0 < γ ≤ γ̄ such that for all θ ∈ Θr,∥∥∇Q̄(M̄(θ)|θ)−∇Q̄(M̄(θ)|θ∗)
∥∥

2
≤ γ ‖θ − θ∗‖2 .

Specifically, the upper bound γ̄ is given by

γ̄ =
4|O|Lθ∗,r

ε2
bζ

(
sup
θ′∈Θr

zθ′,θ∗

)(
2 max
o0,s1,b1

sup
θ′b∈Θb

‖∇ log πb(b1|s1, o0; θ′b)‖2+ max
s1,a1,o1

sup
θ′lo∈Θlo

‖∇ log πlo(a1|s1, o1; θ′lo)‖2

+ max
s1,o1

sup
θ′hi∈Θhi

‖∇ log πhi(o1|s1; θ′hi)‖2

)
.

ζ is the failure parameter in the options with failure framework; εb is a mixing constant defined in Lemma D.1; Lθ∗,r is a
Lipschitz constant defined in Lemma D.2; zθ′,θ∗ is defined in Lemma D.5.
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2. (Contraction) Let κ = γ/λ. For all θ ∈ Θr,∥∥M̄(θ)− θ∗
∥∥

2
≤ κ ‖θ − θ∗‖2 .

If κ < 1, the population version algorithm converges linearly to the true parameter θ∗.

Proof of Theorem 7

1. For convenience of notation, let∇Q̄(θ′|θ) = [∇bQ̄(θ′|θ),∇loQ̄(θ′|θ),∇hiQ̄(θ′|θ)] such that, for example,∇bQ̄(θ′|θ) is
the gradient of Q̄(θ′|θ) with respect to θ′b. Using the expressions of∇Q̄(θ′|θ) from Theorem 6, we have∥∥∇Q̄(M̄(θ)|θ)−∇Q̄(M̄(θ)|θ∗)

∥∥
2
≤
∥∥∇bQ̄(M̄(θ)|θ)−∇bQ̄(M̄(θ)|θ∗)

∥∥
2

+
∥∥∇loQ̄(M̄(θ)|θ)−∇loQ̄(M̄(θ)|θ∗)

∥∥
2

+
∥∥∇hiQ̄(M̄(θ)|θ)−∇hiQ̄(M̄(θ)|θ∗)

∥∥
2

Consider the first term,∥∥∇bQ̄(M̄(θ)|θ)−∇bQ̄(M̄(θ)|θ∗)
∥∥

2

=

∥∥∥∥∥∥Eθ∗
{∑
o0,b1

[
γ̃θ∞,1(o0, b1;ω)− γ̃θ

∗

∞,1(o0, b1;ω)
] [
∇ log πb(b1|ω(s1), o0; M̄(θ)b)

]}∥∥∥∥∥∥
2

≤
∑
o0,b1

∥∥∥∥Eθ∗{[γ̃θ∞,1(o0, b1;ω)− γ̃θ
∗

∞,1(o0, b1;ω)
] [
∇ log πb(b1|ω(s1), o0; M̄(θ)b)

]}∥∥∥∥
2

≤
∑
o0,b1

Eθ∗
{ ∣∣∣γ̃θ∞,1(o0, b1;ω)− γ̃θ

∗

∞,1(o0, b1;ω)
∣∣∣ ∥∥∇ log πb(b1|ω(s1), o0; M̄(θ)b)

∥∥
2

}

≤ max
o0,s1,b1

sup
θ′b∈Θb

‖∇ log πb(b1|s1, o0; θ′b)‖2 Eθ∗
{∑
o0,b1

∣∣∣γ̃θ∞,1(o0, b1;ω)− γ̃θ
∗

∞,1(o0, b1;ω)
∣∣∣ }

≤ 2 max
o0,s1,b1

sup
θ′b∈Θb

‖∇ log πb(b1|s1, o0; θ′b)‖2 × sup
ω∈Ω

∥∥∥γ̃θ∞,1(ω)− γ̃θ
∗

∞,1(ω)
∥∥∥

TV

≤ 8|O|Lθ∗,r
ε2
bζ

(
sup
θ′∈Θr

zθ′,θ∗

)(
max
o0,s1,b1

sup
θ′b∈Θb

‖∇ log πb(b1|s1, o0; θ′b)‖2

)
‖θ − θ∗‖2 .

We use the triangle inequality and the Jensen’s inequality in the third and the fourth line respectively. The fifth line is
finite due to θb being compact and the continuity of the gradient (Assumption 2). The last line is due to the limit form of
Lemma D.7, similar to the argument in Appendix D.4. Notice that the coefficient of ‖θ − θ∗‖2 on the last line does not
depend on θ.

Analogously, we have∥∥∇loQ̄(M̄(θ)|θ)−∇loQ̄(M̄(θ)|θ∗)
∥∥

2
≤

4|O|Lθ∗,r
ε2
bζ

(
sup
θ′∈Θr

zθ′,θ∗

)(
max
s1,a1,o1

sup
θ′lo∈Θlo

‖∇ log πlo(a1|s1, o1; θ′lo)‖2

)
‖θ − θ∗‖2 ,

and∥∥∇hiQ̄(M̄(θ)|θ)−∇hiQ̄(M̄(θ)|θ∗)
∥∥

2
≤

4|O|Lθ∗,r
ε2
bζ

(
sup
θ′∈Θr

zθ′,θ∗

)(
max
s1,o1

sup
θ′hi∈Θhi

‖∇ log πhi(o1|s1; θ′hi)‖2

)
‖θ − θ∗‖2 .

Combining everything, we have the upper bound on γ.

2. The proof of the second part mirrors the proof of (Balakrishnan et al., 2017, Theorem 1). The main difference is the
construction of the following self-consistency (a.k.a. fixed-point) condition.
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Lemma C.5 (Self-consistency). With all the assumptions, θ∗ = M̄(θ∗).

The proof of this lemma is presented in Appendix D.7. Such a condition is used without proof in (Balakrishnan et al., 2017)
since it only considers i.i.d. samples, and the self-consistency condition for EM with i.i.d. samples is a well-established
result. However, for the case of dependent samples like our graphical model, such a condition results from the stochastic
convergence of the Q-function which is not immediate.

For the rest of the proof, we present a brief sketch here for completeness. Due to concavity, we have the first order optimality
conditions: for any θ, θ′ ∈ Θr, 〈∇Q̄(M̄(θ∗)|θ∗), θ−M̄(θ∗)〉 ≤ 0 and 〈∇Q̄(M̄(θ)|θ), θ′−M̄(θ)〉 ≤ 0. Using θ∗ = M̄(θ∗),
we can combine the two optimality conditions together and obtain the following. For any θ ∈ Θr,

〈∇Q̄(M̄(θ)|θ∗)−∇Q̄(θ∗|θ∗), θ∗ − M̄(θ)〉 ≤ 〈∇Q̄(M̄(θ)|θ∗)−∇Q̄(M̄(θ)|θ), θ∗ − M̄(θ)〉.

From the strong concavity assumption, LHS ≥ λ‖θ∗ − M̄(θ)‖22. From Cauchy-Schwarz and the first order stability
assumption, RHS ≤ γ‖θ∗ − M̄(θ)‖2‖θ − θ∗‖2. Canceling ‖θ∗ − M̄(θ)‖2 on both sides completes the proof.

C.4. Proof of Theorem 3

1. We first show the strong consistency of Mµ,T (θ;ω), the parameter update of Algorithm 1, as an estimator of M̄(θ). This
follows from standard techniques in the analysis of M-estimators. In particular, for all θ ∈ Θ , ω ∈ Ω, T ≥ 2 and µ ∈M,

0 ≤ Q̄(M̄(θ)|θ)− Q̄(Mµ,T (θ;ω)|θ)
≤ Q̄(M̄(θ)|θ)−Qµ,T (M̄(θ)|θ;ω) +Qµ,T (M̄(θ)|θ;ω)−Qµ,T (Mµ,T (θ;ω)|θ;ω)

+Qµ,T (Mµ,T (θ;ω)|θ;ω)− Q̄(MT (θ;ω)|θ)
≤ 2 sup

θ′∈Θ

∣∣Q̄(θ′|θ)−Qµ,T (θ′|θ;ω)
∣∣ .

From Theorem 6, Pθ∗ almost surely, supθ,θ′∈Θ supµ∈M |Q̄(θ′|θ)−Qµ,T (θ′|θ;ω)| → 0 as T →∞. Therefore,

sup
θ∈Θr

sup
µ∈M

[
Q̄(M̄(θ)|θ)− Q̄(Mµ,T (θ;ω)|θ)

]
→ 0, Pθ∗ -a.s.

An equivalent argument is the following. Pθ∗ almost surely, for any δ > 0 there exists Tω ∈ N+ such that for all T ≥ Tω,
supθ∈Θr supµ∈M[Q̄(M̄(θ)|θ)− Q̄(Mµ,T (θ;ω)|θ)] ≤ δ. In particular, for any ε > 0, let

δ =
1

2
inf
θ∈Θr

[
Q̄(M̄(θ)|θ)− sup

θ′∈Θ;‖θ′−M̄(θ)‖2≥ε
Q̄(θ′|θ)

]
.

From the identifiability assumption (Assumption 5), the RHS is positive. Therefore, such an assignment of δ is valid.
Consequently, for all T ≥ Tω , θ ∈ Θr and µ ∈M,

Q̄(M̄(θ)|θ)− Q̄(Mµ,T (θ;ω)|θ) < Q̄(M̄(θ)|θ)− sup
θ′∈Θ;‖θ′−M̄(θ)‖2≥ε

Q̄(θ′|θ),

which means that ‖Mµ,T (θ;ω)− M̄(θ)‖2 < ε. Taking supremum over θ ∈ Θr and µ ∈M, we summarize the argument
as the following. Pθ∗ almost surely, for any ε > 0 there exists Tω ∈ N+ such that for all T ≥ Tω ,

sup
θ∈Θr

sup
µ∈M

∥∥Mµ,T (θ;ω)− M̄(θ)
∥∥

2
< ε.

Such a result is equivalent to the uniform (in θ and µ) strong consistency of Mµ,T (θ;ω) as an estimator of M̄(θ). As
T →∞,

sup
θ∈Θr

sup
µ∈M

∥∥Mµ,T (θ;ω)− M̄(θ)
∥∥

2
→ 0, Pθ∗ -a.s.

This result is insufficient for Part 1, since Tω is sample path dependent. To get rid of this sample path dependency, we use
the dominated convergence theorem. Notice that for all T ≥ 2 and ω ∈ Ω, supθ∈Θr supµ∈M ‖Mµ,T (θ;ω)− M̄(θ)‖2 is
bounded due to the compactness of Θ . Therefore we have

lim
T→∞

Eθ∗
[

sup
θ∈Θr

sup
µ∈M

∥∥Mµ,T (θ;ω)− M̄(θ)
∥∥

2

]
= 0.
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For any q > 0, there exists T (q) ∈ N+ such that for all T ≥ T (q),

Eθ∗
[

sup
θ∈Θr

sup
µ∈M

∥∥Mµ,T (θ;ω)− M̄(θ)
∥∥

2

]
≤ q.

Applying Markov’s inequality, for any ∆ > 0,

Pθ∗
(

sup
θ∈Θr

sup
µ∈M

∥∥Mµ,T (θ;ω)− M̄(θ)
∥∥

2
≥ ∆

)
≤ 1

∆
Eθ∗

[
sup
θ∈Θr

sup
µ∈M

∥∥Mµ,T (θ;ω)− M̄(θ)
∥∥

2

]
≤ q

∆
.

Scaling q yields the desired result.

2. The proof of Part 2 is the same as (Balakrishnan et al., 2017, Theorem 2). We present a sketch for completeness. For all
T ≥ T (∆, q), condition the following proof on the high probability event that supθ∈Θr supµ∈M

∥∥Mµ,T (θ;ω)− M̄(θ)
∥∥

2
≤

∆.

Assume ‖θ(n−1) − θ∗‖2 ≤ r, which holds for n = 1. Then, using the triangle inequality, the result from Theorem 2, the
above concentration and ∆ ≤ (1− κ)r, we have the following for any µ.∥∥∥θ(n) − θ∗

∥∥∥
2
≤
∥∥∥M̄(θ(n−1))− θ∗

∥∥∥
2

+
∥∥∥Mµ,T (θ(n−1))− M̄(θ(n−1))

∥∥∥
2
≤ κ‖θ(n−1) − θ∗‖2 + ∆, (21)

and ‖θ(n) − θ∗‖2 ≤ κr + (1− κ)r = r. From induction, the one step relation (21) holds for all n ∈ N+. Unrolling (21)
and regrouping the terms completes the proof.

D. Proofs of auxiliary lemmas
This section presents proofs omitted in earlier sections.

In particular, the first three subsections develop a few essential lemmas required for the proofs in later subsections.
Assumptions 1, 2, 3 and 4 are assumed. Concretely, in Appendix D.1 we show an important mixing property of the options
with failure framework. In Appendix D.2, such a mixing property is used to prove a general contraction result of our
forward-backward smoothing procedure (Theorem 4 and Corollary 5), similar to the concept of filtering stability in the
HMM literature. At a high level, considering the forward-backward recursion in the extended graphical model (Corollary 5),
this result characterizes the effect of changing θ and the boundary conditions αθk,0 and βθk,T on the smoothing distribution
γθk,t, given any observation sequence {st, at}t∈Z. Due to this high level reasoning, we name this result as the smoothing
stability lemma. Appendix D.3 provides concrete applications of this lemma to quantities defined in earlier sections.

D.1. Mixing

Remember that ζ is the auxiliary parameter in the options with failure framework.

Lemma D.1 (Mixing). There exists a constant εb > 0 and a conditional distribution π̄o,b(ot, bt|st; θ) parameterized by θ
such that for all θ ∈ Θ , with any input arguments bt, st, ot−1 and ot,

0 < εbζπ̄o,b(ot, bt|st; θ) ≤ πb(bt|st, ot−1; θb)π̄hi(ot|st, ot−1, bt; θhi) ≤ ε−1
b |O|π̄o,b(ot, bt|st; θ).

Proof of Lemma D.1

The proof is separated into two parts.

1. We first show an intermediate result: there exists a constant εb > 0 and a conditional distribution π̄b(bt|st; θb)
parameterized by θb such that for all θb ∈ Θb, with any input arguments bt, st and ot−1,

0 < εbπ̄b(bt|st; θb) ≤ πb(bt|st, ot−1; θb) ≤ ε−1
b π̄b(bt|st; θb).

This can be proved as follows. Let cb = infθb∈Θb minbt,st,ot−1 πb(bt|st, ot−1; θb). Similar to the procedure in Appendix A,
from the non-degeneracy assumption, the differentiabiilty assumption and Θ being compact, we have cb > 0. For
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any θb ∈ Θb, with any input arguments bt and st, let f(bt, st; θb) = minot−1∈O πb(bt|st, ot−1; θb). Observe that cb ≤
f(bt, st; θb) ≤ 1. Let εb = cb/2 and

π̄b(bt|st; θb) =
f(bt, st; θb)∑

b′t∈{0,1}
f(b′t, st; θb)

.

Clearly εbπ̄b(bt|st; θb) > 0. Moreover, for any ot−1, εbπ̄b(bt|st; θb) < 2cbπ̄b(bt|st; θb) ≤ f(bt, st; θb) ≤
πb(bt|st, ot−1; θb).

On the other hand, with any input arguments,

ε−1
b π̄b(bt|st; θb) ≥ ε−1

b cb/2 = 1 ≥ πb(bt|st, ot−1; θb),

which completes the proof of the first part.

2. Define π̄o,b(ot, bt|st; θ) as follows. With any input arguments, let

π̄o,b(ot, bt = 0|st; θ) := π̄b(bt = 0|st; θb)/|O|,
π̄o,b(ot, bt = 1|st; θ) := π̄b(bt = 1|st; θb)πhi(ot|st; θhi).

Clearly εbζπ̄o,b(ot, bt|st; θ) > 0. Omit the dependency on θ for a cleaner notation since every term is parameterized by θ.
When bt = 1, with any other input arguments,

εbπ̄b(bt = 1|st)πhi(ot|st) ≤ πb(bt = 1|st, ot−1)π̄hi(ot|st, ot−1, bt = 1) ≤ ε−1
b π̄b(bt = 1|st)πhi(ot|st).

Similarly, when bt = 0 and ot = ot−1,

εbπ̄b(bt = 0|st)ζ/|O| ≤ εbπ̄b(bt = 0|st)
(

1− |O| − 1

|O|
ζ

)
≤ πb(bt = 0|st, ot−1)π̄hi(ot = ot−1|st, ot−1, bt = 0) ≤ ε−1

b π̄b(bt = 0|st).

Finally, when bt = 0 and ot 6= ot−1,

εbπ̄b(bt = 0|st)ζ/|O| ≤ πb(bt = 0|st, ot−1)π̄hi(ot|st, ot−1, bt = 0) ≤ ε−1
b π̄b(bt = 0|st)ζ/|O|.

Combining the above cases and the definition of π̄o,b(ot, bt|st; θ) completes the proof.

D.2. Smoothing stability

Before stating the smoothing stability lemma, we introduce a few definitions. The quantities defined in this subsection
depend on an observation sequence {st, at}t∈Z, but such a dependency is usually omitted for simplifying the notation,
unless specified otherwise. Consistent with our notations so far, in the following we make extensive use of the proportional
symbol ∝.

D.2.1. FORWARD AND BACKWARD RECURSION OPERATORS

With any given observation sequence {st, at}t∈Z and any θ ∈ Θ , define the filtering operator F θt as the following. For any
probability measure ϕ on O × {0, 1}, F θt ϕ is also a probability measure such that with any input arguments ot and bt,

F θt ϕ(ot, bt) ∝
∑

ot−1,bt−1

πb(bt|st, ot−1; θb)π̄hi(ot|st, ot−1, bt; θhi)πlo(at|st, ot; θlo)ϕ(ot−1, bt−1). (22)

The RHS has exactly the form of the forward recursion, therefore the recursion on both αθk,t in (6) and αθµ,t in (11) can be

expressed using F θt . For generality, let {ϕθt }t∈Z and {ϕ̂θ̂t }t∈Z be any two indexed sets of probability measures such that
F θt ϕ

θ
t−1 = ϕθt and F θ̂t ϕ̂

θ̂
t−1 = ϕ̂θ̂t . We restrict {ϕθt }t∈Z and {ϕ̂θ̂t }t∈Z for any t to be strictly positive. Due to Assumption 1,

such a restriction is valid. Notice that θ and θ̂ here can be equal. We use the seemingly more complicated notation {ϕ̂θ̂t }t∈Z
because even if θ = θ̂, {ϕθt }t∈Z and {ϕ̂θ̂t }t∈Z are still different; in this case they are just two different sets of probability
measures satisfying the same recursion (F θt ).
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Similarly, we define the backward recursion operator Bθt as follows. For any probability measure ρ on O × {0, 1}, Bθt ρ is
also a probability measure such that with any input arguments ot and bt,

Bθt ρ(ot, bt) ∝
∑

ot+1,bt+1

πb(bt+1|st+1, ot; θb)π̄hi(ot+1|st+1, ot, bt+1; θhi)πlo(at+1|st+1, ot+1; θlo)ρ(ot+1, bt+1). (23)

The recursion on both βθt|T in (8) and βθk,t in (12) can be expressed using Bθt . Let {ρθt }t∈Z and {ρ̂θ̂t }t∈Z be any two indexed

sets of probability measures such that Bθt ρ
θ
t+1 = ρθt and Bθ̂t ρ̂

θ̂
t+1 = ρ̂θ̂t . We restrict {ρθt }t∈Z and {ρ̂θ̂t }t∈Z for any t to be

strictly positive.

The operation ⊗ is defined as follows: {(ϕθ ⊗ ρ̂θ̂)t}t∈Z is an indexed set of probability measures such that for any input
arguments ot and bt,

(ϕθ ⊗ ρ̂θ̂)t(ot, bt) ∝ ϕθt (ot, bt)ρ̂θ̂t (ot, bt). (24)

Finally, we clarify the use of ∝ in the above definitions. In (22), (23) and (24), the normalizing constants replaced by ∝ are
independent of the input arguments (ot, bt).

D.2.2. FORWARD AND BACKWARD SMOOTHING OPERATORS

For any θ, θ̂ ∈ Θ and any t, with any observation sequence {st, at}t∈Z and any input arguments ot and bt, observe that

(ϕ̂θ̂ ⊗ ρθ)t(ot, bt) ∝
∑

ot−1,bt−1

πb(bt|st, ot−1; θ̂b)π̄hi(ot|st, ot−1, bt; θ̂hi)πlo(at|st, ot; θ̂lo)

× ρθt (ot, bt)
(ϕ̂θ̂ ⊗ ρθ)t−1(ot−1, bt−1)

ρθt−1(ot−1, bt−1)
,

and
ρθt−1(ot−1, bt−1) ∝

∑
o′t,b
′
t

πb(b
′
t|st, ot−1; θb)π̄hi(o

′
t|st, ot−1, b

′
t; θhi)πlo(at|st, o′t; θlo)ρθt (o′t, b′t).

As an abbreviation, let

h(θ; ot−1, st, at, ot, bt) = πb(bt|st, ot−1; θb)π̄hi(ot|st, ot−1, bt; θhi)πlo(at|st, ot; θlo). (25)

Then,

(ϕ̂θ̂ ⊗ ρθ)t(ot, bt) = C θ̂,θF
∑

ot−1,bt−1

h(θ̂; ot−1, st, at, ot, bt)ρ
θ
t (ot, bt)(ϕ̂

θ̂ ⊗ ρθ)t−1(ot−1, bt−1)∑
o′t,b
′
t
h(θ; ot−1, st, at, o′t, b

′
t)ρ

θ
t (o
′
t, b
′
t)

, (26)

where C θ̂,θF is a normalizing constant such that

(
C θ̂,θF

)−1

=
∑

ot−1,bt−1

∑
ot,bt

h(θ̂; ot−1, st, at, ot, bt)ρ
θ
t (ot, bt)∑

o′t,b
′
t
h(θ; ot−1, st, at, o′t, b

′
t)ρ

θ
t (o
′
t, b
′
t)

(ϕ̂θ̂ ⊗ ρθ)t−1(ot−1, bt−1).

From (26), we define the forward smoothing operator K θ̂,θ
F,t on the probability measure (ϕ̂θ̂ ⊗ ρθ)t−1 such that as probability

measures,

(ϕ̂θ̂ ⊗ ρθ)t−1K
θ̂,θ
F,t = (ϕ̂θ̂ ⊗ ρθ)t.

The subscript F in K θ̂,θ
F,t stands for forward. K θ̂,θ

F,t depends on the the parameters θ and θ̂, the observation {st, at}t∈Z, and

the specific choice of {ρθt }t∈Z. In the general case of θ 6= θ̂, K θ̂,θ
F,t is a nonlinear operator which requires rather sophisticated

analysis. However, when θ = θ̂, it is straightforward to verify that the normalizing constant Cθ,θF = 1, and Kθ,θ
F,t becomes a

linear operator.
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In fact, the linear operator Kθ,θ
F,t can be regarded as the standard operation of a Markov transition kernel on probability

measures. With a slight overload of notation, define such a Markov transition kernel on O × {0, 1}, entry-wise, as the
following. For any (ot, bt) and (ot−1, bt−1) in O × {0, 1},

Kθ,θ
F,t(ot, bt|ot−1, bt−1) :=

h(θ; ot−1, st, at, ot, bt)ρ
θ
t (ot, bt)∑

o′t,b
′
t
h(θ; ot−1, st, at, o′t, b

′
t)ρ

θ
t (o
′
t, b
′
t)
. (27)

We name this Markov transition kernel as the forward smoothing kernel. Such a definition is analogous to Markovian
decomposition in the HMM literature (Cappé et al., 2006). The only caveat here is that we also allow perturbations on the
parameter. The resulting operator K θ̂,θ

F,t is nonlinear and no longer corresponds to a Markov transition kernel.

To proceed, we characterize the difference between operators K θ̂,θ
F,t and Kθ,θ

F,t when θ̂ and θ are close. First, we show a
version of Lipschitz continuity for the options with failure framework.

Lemma D.2 (Lipschitz continuity). For all θ ∈ Θ and δ > 0, there exists a real number Lθ,δ such that with any input
arguments ot−1, st, at, ot and bt, the function h(θ̃; ot−1, st, at, ot, bt) defined in (25) is Lθ,δ-Lipschitz with respect to θ̃ on
the set {θ̃; θ̃ ∈ Θ , ‖θ̃ − θ‖2 ≤ δ}. Moreover, Lθ,δ is upper bounded by a constant that does not depend on θ and δ.

Proof of Lemma D.2

Due to Assumption 2, with any input arguments ot−1, st, at, ot and bt, h(θ̃; ot−1, st, at, ot, bt) is continuously differentiable
with respect to θ̃ ∈ Θ̃ . As continuously differentiable functions are Lipschitz continuous on convex and compact subsets,
h(θ̃; ot−1, st, at, ot, bt) is Lipschitz continuous on Θ , hence also on {θ̃; θ̃ ∈ Θ , ‖θ̃ − θ‖2 ≤ δ}. The Lipschitz constants
depend on the choice of input arguments ot−1, st, at, ot and bt.

We can let Lθ,δ be the smallest Lipschitz constant on {θ̃; θ̃ ∈ Θ , ‖θ̃ − θ‖2 ≤ δ} that holds for all input arguments ot−1, st,
at, ot and bt. Clearly Lθ,δ is upper bounded by any Lipschitz constant on Θ that holds for all input arguments, which does
not depend on θ and δ.

Next, we bound the difference between operators K θ̂,θ
F,t and Kθ,θ

F,t .

Lemma D.3 (Perturbation on the forward smoothing kernel). Let ϕ be any probability measure on O × {0, 1}. Let K θ̂,θ
F,t

and Kθ,θ
F,t be defined with the same observation sequence {st, at}t∈Z and the same choice of {ρθt }t∈Z. Their difference is

only in the first entry of the superscript (θ̂ in K θ̂,θ
F,t; θ in Kθ,θ

F,t). Then, for all t, ϕ, θ, θ̂, {st, at}t∈Z and {ρθt }t∈Z,

∥∥∥ϕK θ̂,θ
F,t − ϕK

θ,θ
F,t

∥∥∥
TV
≤

maxot−1,ot,bt h(θ; ot−1, st, at, ot, bt)

minot−1,ot,bt h(θ; ot−1, st, at, ot, bt)

Lθ,‖θ̂−θ‖2‖θ̂ − θ‖2
minot−1,ot,bt h(θ̂; ot−1, st, at, ot, bt)

.

Proof of Lemma D.3

From the definitions, for any t, ϕ, θ, θ̂, {st, at}t∈Z and {ρθt }t∈Z,∥∥∥ϕK θ̂,θ
F,t − ϕK

θ,θ
F,t

∥∥∥
TV

=
1

2

∑
ot,bt

∣∣∣∣∣ ∑
ot−1,bt−1

[
C θ̂,θF h(θ̂; ot−1, st, at, ot, bt)− h(θ; ot−1, st, at, ot, bt)

]
∑
o′t,b
′
t
h(θ; ot−1, st, at, o′t, b

′
t)ρ

θ
t (o
′
t, b
′
t)

ρθt (ot, bt)ϕ(ot−1, bt−1)

∣∣∣∣∣
≤ 1

2

∑
ot−1,bt−1

∑
ot,bt

∣∣∣C θ̂,θF h(θ̂; ot−1, st, at, ot, bt)− h(θ; ot−1, st, at, ot, bt)
∣∣∣ ρθt (ot, bt)∑

o′t,b
′
t
h(θ; ot−1, st, at, o′t, b

′
t)ρ

θ
t (o
′
t, b
′
t)

ϕ(ot−1, bt−1).

From the definition of the normalizing constant C θ̂,θF , we have

(
C θ̂,θF

)−1

=
∑

ot−1,bt−1

∑
ot,bt

h(θ̂; ot−1, st, at, ot, bt)ρ
θ
t (ot, bt)∑

o′t,b
′
t
h(θ; ot−1, st, at, o′t, b

′
t)ρ

θ
t (o
′
t, b
′
t)
ϕ(ot−1, bt−1).
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Therefore,

C θ̂,θF ≤ max
ot−1

∑
ot,bt

h(θ; ot−1, st, at, ot, bt)ρ
θ
t (ot, bt)∑

ot,bt
h(θ̂; ot−1, st, at, ot, bt)ρθt (ot, bt)

,

and

∣∣∣C θ̂,θF − 1
∣∣∣ =

∣∣∣∣∣∣
∑

ot−1,bt−1

∑
ot,bt

[h(θ̂; ot−1, st, at, ot, bt)− h(θ; ot−1, st, at, ot, bt)]ρ
θ
t (ot, bt)∑

ot,bt
h(θ; ot−1, st, at, ot, bt)ρθt (ot, bt)

ϕ(ot−1, bt−1)

∣∣∣∣∣∣C θ̂,θF
≤

Lθ,‖θ̂−θ‖2‖θ̂ − θ‖2C
θ̂,θ
F

minot−1

∑
ot,bt

h(θ; ot−1, st, at, ot, bt)ρθt (ot, bt)
.

As a result, for any given ot−1, ot and bt,∣∣∣C θ̂,θF h(θ̂; ot−1, st, at, ot, bt)− h(θ; ot−1, st, at, ot, bt)
∣∣∣

≤ C θ̂,θF

∣∣∣h(θ̂; ot−1, st, at, ot, bt)− h(θ; ot−1, st, at, ot, bt)
∣∣∣+
∣∣∣C θ̂,θF − 1

∣∣∣h(θ; ot−1, st, at, ot, bt)

≤

[
1 +

h(θ; ot−1, st, at, ot, bt)

mino′t−1

∑
o′t,b
′
t
h(θ; o′t−1, st, at, o

′
t, b
′
t)ρ

θ
t (o
′
t, b
′
t)

]
Lθ,‖θ̂−θ‖2

∥∥∥θ̂ − θ∥∥∥
2
C θ̂,θF .

Combining everything together,

∥∥∥ϕK θ̂,θ
F,t − ϕK

θ,θ
F,t

∥∥∥
TV
≤ Lθ,‖θ̂−θ‖2

∥∥∥θ̂ − θ∥∥∥
2
C θ̂,θF ×max

ot−1

1 +
∑
ot,bt

h(θ;ot−1,st,at,ot,bt)ρ
θ
t (ot,bt)

mino′
t−1

∑
o′t,b
′
t
h(θ;o′t−1,st,at,o

′
t,b
′
t)ρ

θ
t (o′t,b

′
t)

2
∑
o′t,b
′
t
h(θ; ot−1, st, at, o′t, b

′
t)ρ

θ
t (o
′
t, b
′
t)

=
Lθ,‖θ̂−θ‖2‖θ̂ − θ‖2C

θ̂,θ
F

mino′t−1

∑
o′t,b
′
t
h(θ; o′t−1, st, at, o

′
t, b
′
t)ρ

θ
t (o
′
t, b
′
t)

≤
maxot−1,ot,bt h(θ; ot−1, st, at, ot, bt)

minot−1,ot,bt h(θ; ot−1, st, at, ot, bt)

Lθ,‖θ̂−θ‖2‖θ̂ − θ‖2
minot−1,ot,bt h(θ̂; ot−1, st, at, ot, bt)

.

On the other hand, we can formulate a backward smoothing recursion as

(ϕθ ⊗ ρ̂θ̂)t(ot, bt) = Cθ,θ̂B
∑

ot+1,bt+1

h(θ̂; ot, st+1, at+1, ot+1, bt+1)ϕθt (ot, bt)(ϕ
θ ⊗ ρ̂θ̂)t+1(ot+1, bt+1)∑

o′t,b
′
t
h(θ; o′t, st+1, at+1, ot+1, bt+1)ϕθt (o

′
t, b
′
t)

, (28)

where Cθ,θ̂B is a normalizing constant such that

(
Cθ,θ̂B

)−1

=
∑

ot+1,bt+1

∑
ot,bt

h(θ̂; ot, st+1, at+1, ot+1, bt+1)ϕθt (ot, bt)∑
o′t,b
′
t
h(θ; o′t, st+1, at+1, ot+1, bt+1)ϕθt (o

′
t, b
′
t)

(ϕθ ⊗ ρ̂θ̂)t+1(ot+1, bt+1).

The subscript B in Kθ,θ̂
B,t stands for backward. Similar to the forward smoothing operator K θ̂,θ

F,t , we can define the backward

smoothing operator Kθ,θ̂
B,t from (28) such that as probability measures,

(ϕθ ⊗ ρ̂θ̂)t+1K
θ,θ̂
B,t = (ϕθ ⊗ ρ̂θ̂)t.

Analogous to K θ̂,θ
F,t , in the general case of θ 6= θ̂, Kθ,θ̂

B,t is a nonlinear operator. However, if θ = θ̂, Kθ,θ̂
B,t becomes a linear

operator and induces a Markov transition kernel.

The following lemma is similar to Lemma D.3. we state it without proof.
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Lemma D.4 (Perturbation on the backward smoothing kernel). Let ρ be any probability measure on O × {0, 1}. Let Kθ,θ̂
B,t

and Kθ,θ
B,t be defined with the same observation sequence {st, at}t∈Z and the same choice of {ϕθt }t∈Z. Then, for any t, ρ, θ,

θ̂, {st, at}t∈Z and {ϕθt }t∈Z,

∥∥∥ρKθ,θ̂
B,t − ρK

θ,θ
B,t

∥∥∥
TV
≤

maxot,ot+1,bt+1
h(θ; ot, st+1, at+1, ot+1, bt+1)

minot,ot+1,bt+1
h(θ; ot, st+1, at+1, ot+1, bt+1)

Lθ̂,‖θ̂−θ‖2‖θ̂ − θ‖2
minot,ot+1,bt+1

h(θ̂; ot, st+1, at+1, ot+1, bt+1)
.

Notice that the bounds in both Lemma D.3 and Lemma D.4 depend on the observation sequence {st, at}t∈Z.

D.2.3. A PERTURBED CONTRACTION RESULT FOR SMOOTHING STABILITY

For any t1, t2 ∈ Z with t1 ≤ t2, let I = [t1 : t2]. Remember the following definition from Appendix D.2.1, with the
index set restricted to I: For any θ, θ̂ ∈ Θ , {ϕθt }t∈I and {ϕ̂θ̂t }t∈I are two indexed sets of probability measures defined on
O × {0, 1} such that, for all t ∈ I, (1) if t 6= t1, F θt ϕ

θ
t−1 = ϕθt and F θ̂t ϕ̂

θ̂
t−1 = ϕ̂θ̂t ; (2) ϕθt and ϕ̂θ̂t are strictly positive on

their domains. {ρθt }t∈I and {ρ̂θ̂t }t∈I are two indexed sets of probability measures defined on O × {0, 1} such that for all
t ∈ I, (1) if t 6= t2, Bθt ρ

θ
t+1 = ρθt and Bθ̂t ρ̂

θ̂
t+1 = ρ̂θ̂t ; (2) ρθt and ρ̂θ̂t are strictly positive on their domains. θ and θ̂ are allowed

to be equal.

The smoothing stability lemma is stated as follows.

Lemma D.5 (Smoothing stability). With {ϕθt }t∈I, {ϕ̂θ̂t }t∈I, {ρθt }t∈I and {ρ̂θ̂t }t∈I defined above,

∥∥∥(ϕθ ⊗ ρθ)t2 − (ϕ̂θ̂ ⊗ ρθ)t2
∥∥∥

TV
≤
(

1− ε2
bζ

|O|

)t2−t1
+
|O|zθ,θ̂Lθ,‖θ̂−θ‖2

ε2
bζ

∥∥∥θ̂ − θ∥∥∥
2
,

and ∥∥∥(ϕ̂θ̂ ⊗ ρθ)t1 − (ϕ̂θ̂ ⊗ ρ̂θ̂)t1
∥∥∥

TV
≤
(

1− ε2
bζ

|O|

)t2−t1
+
|O|zθ,θ̂Lθ,‖θ̂−θ‖2

ε2
bζ

∥∥∥θ̂ − θ∥∥∥
2
,

where zθ,θ′ is a positive real number dependent only on θ and θ̂. Specifically,

zθ,θ′ = max
s′t,a

′
t

[maxot−1,ot,bt h(θ; ot−1, s
′
t, a
′
t, ot, bt)] ∨ [maxot−1,ot,bt h(θ̂; ot−1, s

′
t, a
′
t, ot, bt)]

[minot−1,ot,bt h(θ; ot−1, s′t, a
′
t, ot, bt)][minot−1,ot,bt h(θ̂; ot−1, s′t, a

′
t, ot, bt)]

.

Intuitively, if θ̂ = θ, Lemma D.5 has the form of an exact contraction, which is similar to the standard filtering stability
result for HMMs. Indeed, our proof uses the classical techniques of uniform forgetting from the HMM literature (Cappé
et al., 2006). If θ̂ is different from θ, such a contraction is perturbed. For HMMs, similar results are provided in (De Castro
et al., 2017, Proposition 2.2, Theorem 2.3).

Proof of Lemma D.5

1. Consider the first bound. It holds trivially when t2 = t1. Now consider only t2 > t1.

Using the forward smoothing operators, for any t1 < t ≤ t2,

(ϕθ ⊗ ρθ)t−1K
θ,θ
F,t − (ϕ̂θ̂ ⊗ ρθ)t−1K

θ̂,θ
F,t = (ϕθ ⊗ ρθ)t − (ϕ̂θ̂ ⊗ ρθ)t.

Therefore,∥∥∥(ϕθ ⊗ ρθ)t − (ϕ̂θ̂ ⊗ ρθ)t
∥∥∥

TV
≤
∥∥∥[(ϕθ ⊗ ρθ)t−1 − (ϕ̂θ̂ ⊗ ρθ)t−1

]
Kθ,θ
F,t

∥∥∥
TV

+
∥∥∥(ϕ̂θ̂ ⊗ ρθ)t−1K

θ,θ
F,t − (ϕ̂θ̂ ⊗ ρθ)t−1K

θ̂,θ
F,t

∥∥∥
TV

,

where the first term is due to Kθ,θ
F,t being a linear operator.
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From Lemma D.3, the second term on the RHS is upper bounded by zθ,θ̂Lθ,‖θ̂−θ‖2‖θ̂ − θ‖2. As for the first term, we can
construct the classical Doeblin-type minorization condition (Cappé et al., 2006, Chap. 4.3). Applying Lemma D.1 in the
definition of the Markov transition kernel Kθ,θ

F,t (27), we have

Kθ,θ
F,t(ot, bt|ot−1, bt−1) ≥ ε2

bζ

|O|
π̄o,b(ot, bt|st; θ)πlo(at|st, ot; θlo)ρθt (ot, bt)∑
o′t,b
′
t
π̄o,b(o′t, b

′
t|st; θ)πlo(at|st, o′t; θlo)ρθt (o′t, b′t)

=:
ε2
bζ

|O|
π̄θF,t(ot, bt). (29)

Observe that π̄θF,t just defined is a probability measure. Further define K̄θ,θ
F,t entry-wise as

K̄θ,θ
F,t(ot, bt|ot−1, bt−1) :=

(
1− ε2

bζ

|O|

)−1(
Kθ,θ
F,t(ot, bt|ot−1, bt−1)− ε2

bζ

|O|
π̄θF,t(ot, bt)

)
.

We can verify that K̄θ,θ
F,t is also a Markov transition kernel. Moreover,[

(ϕθ ⊗ ρθ)t−1 − (ϕ̂θ̂ ⊗ ρθ)t−1

]
Kθ,θ
F,t =

(
1− ε2

bζ

|O|

)[
(ϕθ ⊗ ρθ)t−1 − (ϕ̂θ̂ ⊗ ρθ)t−1

]
K̄θ,θ
F,t .

To proceed, the standard approach is to use the fact that the Dobrushin coefficient of K̄θ,θ
F,t is upper bounded by one. For

clarity, we avoid such definitions and take a more direct approach here, which requires the extension of the total variation
distance for two probability measures to the total variation norm for a finite signed measure. For a finite signed measure ν
over a finite set Ω, let the total variation norm of ν be

‖ν‖TV :=
1

2

∑
ω∈Ω

|ν(ω)| .

When ν is the difference between two probability measures ν1 − ν2, the total variation norm of ν coincides with the total
variation distance between ν1 and ν2. Therefore, the same notation ‖·‖TV is adopted here.

Let M̄(O×{0, 1}) be the set of finite signed measures over the finite setO×{0, 1}. From (Cappé et al., 2006, Chap. 4.3.1),
M̄(O × {0, 1}) is a Banach space. Define an operator norm ‖·‖op for K̄θ,θ

F,t as∥∥∥K̄θ,θ
F,t

∥∥∥
op

:= sup
{∥∥∥νK̄θ,θ

F,t

∥∥∥
TV

; ‖ν‖TV = 1, ν ∈ M̄(O × {0, 1})
}
.

Since K̄θ,θ
F,t is a Markov transition kernel, ‖K̄θ,θ

F,t‖op = 1 (Cappé et al., 2006, Lemma 4.3.6). Therefore,∥∥∥(ϕθ ⊗ ρθ)t2 − (ϕ̂θ̂ ⊗ ρθ)t2
∥∥∥

TV

≤
∥∥∥[(ϕθ ⊗ ρθ)t2−1 − (ϕ̂θ̂ ⊗ ρθ)t2−1

]
Kθ,θ
F,t2

∥∥∥
TV

+
∥∥∥(ϕ̂θ̂ ⊗ ρθ)t2−1

(
Kθ,θ
F,t2
−K θ̂,θ

F,t2

)∥∥∥
TV

=

(
1− ε2

bζ

|O|

)∥∥∥[(ϕθ ⊗ ρθ)t2−1 − (ϕ̂θ̂ ⊗ ρθ)t2−1

]
K̄θ,θ
F,t2

∥∥∥
TV

+ zθ,θ̂Lθ,‖θ̂−θ‖2‖θ̂ − θ‖2

≤
(

1− ε2
bζ

|O|

)∥∥∥(ϕθ ⊗ ρθ)t2−1 − (ϕ̂θ̂ ⊗ ρθ)t2−1

∥∥∥
TV

∥∥∥K̄θ,θ
F,t2

∥∥∥
op

+ zθ,θ̂Lθ,‖θ̂−θ‖2‖θ̂ − θ‖2

=

(
1− ε2

bζ

|O|

)∥∥∥(ϕθ ⊗ ρθ)t2−1 − (ϕ̂θ̂ ⊗ ρθ)t2−1

∥∥∥
TV

+ zθ,θ̂Lθ,‖θ̂−θ‖2‖θ̂ − θ‖2.

The second inequality is due to the sub-multiplicativity of the operator norm. Finally, the desired result follows from
unrolling the summation and identifying the geometric series.

2. The proof of the second bound is analogous, using the backward smoothing operators instead of the forward smoothing
operators. Details are omitted.

Note that Lemma D.5 only holds when considering the options with failure framework. For the standard options framework,
the one-step Doeblin-type minorization condition (29) we construct in the proof does not hold anymore, due to the failure
of Lemma D.1. Instead, one could target the two-step minorization condition: define a two step smoothing kernel similar
to Kθ,θ

F,t and lower bound it similar to (29). Notations are much more complicated. For simplicity, this extension is not
considered in this paper.
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D.3. The approximation lemmas

This subsection applies Lemma D.5 to quantities defined in earlier sections.

First, we bound the difference of smoothing distributions in the unextended graphical model (as in Theorem 4) and the
extended one with parameter k (as in Corollary 5). The parameter θ in the two models can be different. The bounds use
quantities defined in Appendix D.1 and Appendix D.2.

Lemma D.6 (Bounding the difference of smoothing distributions, Part I). For all θ, θ̂ ∈ Θ , k ∈ N+ and µ ∈M, with any
observation sequence {st, at}t∈Z, we have

1. ∀t ∈ [1 : T ],

∥∥∥γθµ,t|T − γθ̂k,t∥∥∥
TV
≤
(

1− ε2
bζ

|O|

)t−1

+

(
1− ε2

bζ

|O|

)T−t
+

2|O|zθ,θ̂Lθ,‖θ̂−θ‖2
ε2
bζ

∥∥∥θ̂ − θ∥∥∥
2
.

2. ∀t ∈ [2 : T ],

∥∥∥γ̃θµ,t|T − γ̃θ̂k,t∥∥∥
TV
≤ 2

(
1− ε2

bζ

|O|

)t−2

+

(
1− ε2

bζ

|O|

)T−t
+

4|O|zθ,θ̂Lθ,‖θ̂−θ‖2
ε2
bζ

∥∥∥θ̂ − θ∥∥∥
2
.

Similarly, we can bound the difference of smoothing distributions in two extended graphical models with different k and
different parameter θ.

Lemma D.7 (Bounding the difference of smoothing distributions, Part II). For all θ, θ̂ ∈ Θ and t ∈ [1 : T ], with any two
integers k2 > k1 > 0 and any observation sequence {st, at}t∈Z, we have

∥∥∥γθk1,t − γθ̂k2,t∥∥∥
TV
≤
(

1− ε2
bζ

|O|

)t+k1−1

+

(
1− ε2

bζ

|O|

)T+k1−t

+
2|O|zθ,θ̂Lθ,‖θ̂−θ‖2

ε2
bζ

∥∥∥θ̂ − θ∥∥∥
2
.

and ∥∥∥γ̃θk1,t − γ̃θ̂k2,t∥∥∥
TV
≤ 2

(
1− ε2

bζ

|O|

)t+k1−2

+

(
1− ε2

bζ

|O|

)T+k1−t

+
4|O|zθ,θ̂Lθ,‖θ̂−θ‖2

ε2
bζ

∥∥∥θ̂ − θ∥∥∥
2
.

It can be easily verified that in Lemma D.6 and Lemma D.7, the bounds still hold if θ and θ̂ on the LHS are interchanged.
We only present the proof of Lemma D.6. As for Lemma D.7, the proof is analogous therefore omitted. Our proof essentially
relies on the smoothing stability lemma (Lemma D.5).

Proof of Lemma D.6

1. For a cleaner noation, let

∆θ,θ̂ =
|O|zθ,θ̂Lθ,‖θ̂−θ‖2

ε2
bζ

∥∥∥θ̂ − θ∥∥∥
2
.

Apply Lemma D.5 as follows: ∀t ∈ [1 : T ], let ϕθt = αθµ,t and ϕ̂θ̂t = αθ̂k,t; let ρθt = βθt|T and ρ̂θ̂t = βθ̂k,t. Due to
Assumption 1, the strictly positive requirement is satisfied. Then, we have∥∥∥∥∥∥ α

θ
µ,t · βθt|T
〈αθµ,t, βθt|T 〉

−
αθ̂k,t · βθt|T
〈αθ̂k,t, βθt|T 〉

∥∥∥∥∥∥
TV

≤
(

1− ε2
bζ

|O|

)t−1

+ ∆θ,θ̂,

and ∥∥∥∥∥∥ α
θ̂
k,t · βθt|T
〈αθ̂k,t, βθt|T 〉

−
αθ̂k,t · βθ̂k,t
〈αθ̂k,t, βθ̂k,t〉

∥∥∥∥∥∥
TV

≤
(

1− ε2
bζ

|O|

)T−t
+ ∆θ,θ̂.



Provable Hierarchical Imitation Learning via EM

where · denotes element-wise product and 〈·, ·〉 denotes Euclidean inner product. Therefore,

∥∥∥γθµ,t|T − γθ̂k,t∥∥∥
TV

=

∥∥∥∥∥ α
θ
µ,t · βθt|T
〈αθµ,t, βθt|T 〉

−
αθ̂k,t · βθ̂k,t
〈αθ̂k,t, βθ̂k,t〉

∥∥∥∥∥
TV

≤

∥∥∥∥∥∥ α
θ
µ,t · βθt|T
〈αθµ,t, βθt|T 〉

−
αθ̂k,t · βθt|T
〈αθ̂k,t, βθt|T 〉

∥∥∥∥∥∥
TV

+

∥∥∥∥∥∥ α
θ̂
k,t · βθt|T
〈αθ̂k,t, βθt|T 〉

−
αθ̂k,t · βθ̂k,t
〈αθ̂k,t, βθ̂k,t〉

∥∥∥∥∥∥
TV

≤
(

1− ε2
bζ

|O|

)t−1

+

(
1− ε2

bζ

|O|

)T−t
+ 2∆θ,θ̂.

2. Next, we bound the difference of two-step smoothing distributions ‖γ̃θµ,t|T − γ̃
θ̂
k,t‖TV. Although the idea is straightfor-

ward, the details are tedious. For any t ∈ [2 : T ], from (10) we have

γ̃θµ,t|T (ot−1, bt)

∝ πb(bt|st, ot−1; θb)

[∑
ot

π̄hi(ot|st, ot−1, bt; θhi)πlo(at|st, ot; θlo)
γθµ,t|T (ot, bt)

αθµ,t(ot, bt)

][∑
bt−1

αθµ,t−1(ot−1, bt−1)

]

∝
∑
ot

π̄hi(ot|st, ot−1, bt; θhi)πlo(at|st, ot; θlo)γθµ,t|T (ot, bt)[
∑
bt−1

αθµ,t−1(ot−1, bt−1)]∑
o′t−1,bt−1

πb(bt|st, o′t−1; θb)π̄hi(ot|st, o′t−1, bt; θhi)πlo(at|st, ot; θlo)αθµ,t−1(o′t−1, bt−1)
πb(bt|st, ot−1; θb)

=
∑
ot

πb(bt|st, ot−1; θb)π̄hi(ot|st, ot−1, bt; θhi)[
∑
bt−1

αθµ,t−1(ot−1, bt−1)]∑
o′t−1

πb(bt|st, o′t−1; θb)π̄hi(ot|st, o′t−1, bt; θhi)[
∑
bt−1

αθµ,t−1(o′t−1, bt−1)]
γθµ,t|T (ot, bt).

The denominators are all positive due to the non-degeneracy assumption. It can be easily verified that the normalizing
constants involved in the second and the third line cancel each other. As abbreviations, define

gθ(ot−1, st, ot, bt) := πb(bt|st, ot−1; θb)π̄hi(ot|st, ot−1, bt; θhi),

gθ̂(ot−1, st, ot, bt) := πb(bt|st, ot−1; θ̂b)π̄hi(ot|st, ot−1, bt; θ̂hi),

fθµ,t(ot−1, st, ot, bt) :=
gθ(ot−1, st, ot, bt)[

∑
bt−1

αθµ,t−1(ot−1, bt−1)]∑
o′t−1

gθ(o′t−1, st, ot, bt)[
∑
bt−1

αθµ,t−1(o′t−1, bt−1)]
,

f θ̂k,t(ot−1, st, ot, bt) :=
gθ̂(ot−1, st, ot, bt)[

∑
bt−1

αθ̂k,t−1(ot−1, bt−1)]∑
o′t−1

gθ̂(o′t−1, st, ot, bt)[
∑
bt−1

αθ̂k,t−1(o′t−1, bt−1)]
.

Then,

∥∥∥γ̃θµ,t|T − γ̃θ̂k,t∥∥∥
TV

=
1

2

∑
ot−1,bt

∣∣∣∣∑
ot

[fθµ,t(ot−1, st, ot, bt)γ
θ
µ,t|T (ot, bt)− f θ̂k,t(ot−1, st, ot, bt)γ

θ̂
k,t|T (ot, bt)]

∣∣∣∣
≤ 1

2

∑
ot−1,bt,ot

∣∣∣fθµ,t(ot−1, st, ot, bt)− f θ̂k,t(ot−1, st, ot, bt)
∣∣∣ γθµ,t|T (ot, bt)

+
1

2

∑
ot−1,bt,ot

f θ̂k,t(ot−1, st, ot, bt)
∣∣∣γθµ,t|T (ot, bt)− γθ̂k,t|T (ot, bt)

∣∣∣ . (30)
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Now, we bound the two terms on the RHS separately. Consider the first term in (30),

1

2

∑
ot−1,ot,bt

∣∣∣fθµ,t(ot−1, st, ot, bt)− f θ̂k,t(ot−1, st, ot, bt)
∣∣∣ γθµ,t|T (ot, bt)

≤ 1

2
max
ot,bt

∑
ot−1,bt−1

∣∣∣∣ gθ(ot−1, st, ot, bt)α
θ
µ,t−1(ot−1, bt−1)∑

o′t−1,b
′
t−1

gθ(o′t−1, st, ot, bt)α
θ
µ,t−1(o′t−1, b

′
t−1)

−
gθ(ot−1, st, ot, bt)α

θ̂
k,t−1(ot−1, bt−1)∑

o′t−1,b
′
t−1

gθ(o′t−1, st, ot, bt)α
θ̂
k,t−1(o′t−1, b

′
t−1)

∣∣∣∣
+

1

2
max
ot,bt

∑
ot−1,bt−1

αθ̂k,t−1(ot−1, bt−1)

∣∣∣∣ gθ(ot−1, st, ot, bt)∑
o′t−1,b

′
t−1

gθ(o′t−1, st, ot, bt)α
θ̂
k,t−1(o′t−1, b

′
t−1)

− gθ̂(ot−1, st, ot, bt)∑
o′t−1,b

′
t−1

gθ̂(o′t−1, st, ot, bt)α
θ̂
k,t−1(o′t−1, b

′
t−1)

∣∣∣∣. (31)

Denote the two terms on the RHS of (31) as ∆1 and ∆2 respectively. To bound ∆1, we can apply Lemma D.5 on the index
set [1 : t − 1] as follows, assuming t > 2. For any t′ ∈ [1 : t − 1], let ϕθt′ = αθµ,t′ and ϕ̂θ̂t′ = αθ̂k,t′ . For any (ot, bt), let
ρθt−1(ot−1, bt−1) = z−1

θ gθ(ot−1, st, ot, bt), where zθ is a normalizing constant. For 1 ≤ t′ < t − 1, let ρθt′ = Bθt′ρ
θ
t′+1.

Then,

∆1 ≤
(

1− ε2
bζ

|O|

)t−2

+ ∆θ,θ̂.

Such a bound holds trivially if t ≤ 2.

Next, we bound ∆2 as follows. Straightforward computation yields the following result.

∆2 =
1

2
max
ot,bt

∑
ot−1,bt−1

αθ̂k,t−1(ot−1, bt−1)

∣∣∣∣ h(θ; ot−1, st, at, ot, bt)∑
o′t−1,b

′
t−1

h(θ; o′t−1, st, at, ot, bt)α
θ̂
k,t−1(o′t−1, b

′
t−1)

− h(θ̂; ot−1, st, at, ot, bt)∑
o′t−1,b

′
t−1

h(θ̂; o′t−1, st, at, ot, bt)α
θ̂
k,t−1(o′t−1, b

′
t−1)

∣∣∣∣
≤ max

ot,bt

∑
ot−1,bt−1

∣∣∣h(θ; ot−1, st, at, ot, bt)− h(θ̂; ot−1, st, at, ot, bt)
∣∣∣αθ̂k,t−1(ot−1, bt−1)∑

o′t−1,b
′
t−1

h(θ; o′t−1, st, at, ot, bt)α
θ̂
k,t−1(o′t−1, b

′
t−1)

≤
maxot−1,ot,bt

∣∣∣h(θ; ot−1, st, at, ot, bt)− h(θ̂; ot−1, st, at, ot, bt)
∣∣∣

minot−1,ot,bt h(θ; ot−1, st, at, ot, bt)
≤ ∆θ,θ̂,

where we use the definition of h(θ; ot−1, st, at, ot, bt) in (25).

As for the second term in (30),

1

2

∑
ot−1,bt,ot

fθk,t(ot−1, st, ot, bt)
∣∣∣γθµ,t|T (ot, bt)− γθk,t|T (ot, bt)

∣∣∣ =
∥∥∥γθµ,t|T − γθk,t∥∥∥

TV

≤
(

1− ε2
bζ

|O|

)t−1

+

(
1− ε2

bζ

|O|

)T−t
+ 2∆θ,θ̂.

Combining the above gives the desired result.

D.4. Proof of Lemma C.1

Based on Lemma D.7, for all T ≥ 2, θ ∈ Θ and t ∈ [1 : T ], with any observation sequence, both the sequences {γθk,t}k∈N+

and {γ̃θk,t}k∈N+ are Cauchy sequences associated with the total variation distance. Moreover, the set of probability measures
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over the finite sample space O × {0, 1} is complete. Therefore, the limits of both {γθk,t}k∈N+
and {γ̃θk,t}k∈N+

as k →∞
exist with respect to the total variation distance. From the definitions of {γθk,t}k∈N+

and {γ̃θk,t}k∈N+
in Appendix C.1, it is

clear that their limits as k →∞ do not depend on T .

The Lipschitz continuity of γθ∞,t also follows from Lemma D.7. Specifically, for all θ, θ̂ ∈ Θ and t ∈ [1 : T ], with any
observation sequence, ∥∥∥γθ∞,t − γθ̂∞,t∥∥∥

TV
≤

2|O|zθ,θ̂Lθ,‖θ̂−θ‖2
ε2
bζ

∥∥∥θ̂ − θ∥∥∥
2
.

The coefficient of ‖θ̂ − θ‖2 on the RHS can be upper bounded by a constant that does not depend on θ and θ̂. The same
argument holds for γ̃θ∞,t.

D.5. Proof of Lemma C.2

For a cleaner notation, we omit the dependency on ω in the following analysis. From the definitions, for all θ, θ′ ∈ Θ and
µ ∈M,

Qs∞,T (θ′|θ)−Qµ,T (θ′|θ) =
1

T

{ T∑
t=2

∑
ot−1,bt

[
γ̃θ∞,t(ot−1, bt)− γ̃θµ,t|T (ot−1, bt)

]
[log πb(bt|st, ot−1; θ′b)]

+

T∑
t=1

∑
ot,bt

[
γθ∞,t(ot, bt)− γθµ,t|T (ot, bt)

]
[log πlo(at|st, ot; θ′lo)]

+
T∑
t=1

∑
ot

[
γθ∞,t(ot, bt = 1)− γθµ,t|T (ot, bt = 1)

]
[log πhi(ot|st; θ′hi)] + err

}
,

where the last term is a small error term associated with t = 1 such that,

|err| =
∣∣∣∣ ∑
o0,b1

γ̃θ∞,1(o0, b1) [log πb(b1|s1, o0; θ′b)]

∣∣∣∣ ≤ max
b1,s1,o0

| log πb(b1|s1, o0; θ′b)|.

The maximum on the RHS is finite due to the non-degeneracy assumption. Furthermore,

∣∣Qs∞,T (θ′|θ)−Qµ,T (θ′|θ)
∣∣ ≤ 1

T

{ T∑
t=2

max
bt,st,ot−1

|log πb(bt|st, ot−1; θ′b)|
∑

ot−1,bt

∣∣∣γ̃θ∞,t(ot−1, bt)− γ̃θµ,t|T (ot−1, bt)
∣∣∣

+
T∑
t=1

max
at,st,ot

|log πlo(at|st, ot; θ′lo)|
∑
ot,bt

∣∣∣γθ∞,t(ot, bt)− γθµ,t|T (ot, bt)
∣∣∣

+
T∑
t=1

max
st,ot
|log πhi(ot|st; θ′hi)|

∑
ot

∣∣∣γθ∞,t(ot, bt = 1)− γθµ,t|T (ot, bt = 1)
∣∣∣+ |err|

}
.

Since the bounds in Lemma D.6 hold for any k > 0, they also hold in the limit as k →∞. Therefore, for any θ, any µ and
any t ∈ [1 : T ], ∥∥∥γθµ,t|T − γθ∞,t∥∥∥

TV
≤
(

1− ε2
bζ

|O|

)t−1

+

(
1− ε2

bζ

|O|

)T−t
.

For any θ, any µ and any t ∈ [2 : T ],

∥∥∥γ̃θµ,t|T − γ̃θ∞,t∥∥∥
TV
≤ 2

(
1− ε2

bζ

|O|

)t−2

+

(
1− ε2

bζ

|O|

)T−t
.
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Combining everything above,∣∣Qs∞,T (θ′|θ)−Qµ,T (θ′|θ)
∣∣

≤ 1

T

{
max

bt,st,ot−1

|log πb(bt|st, ot−1; θ′b)|
[
1 + 2

T∑
t=2

∥∥∥γ̃θµ,t|T − γ̃θ∞,t∥∥∥
TV

]

+ 2

[
max
at,st,ot

|log πlo(at|st, ot; θ′lo)|+ max
st,ot
|log πhi(ot|st; θ′hi)|

] T∑
t=1

∥∥∥γθµ,t|T − γθ∞,t∥∥∥
TV

}
≤ 1

T

{(
1 +

6|O|
ε2
bζ

)
max

bt,st,ot−1

|log πb(bt|st, ot−1; θ′b)|

+
4|O|
ε2
bζ

[
max
at,st,ot

|log πlo(at|st, ot; θ′lo)|+ max
st,ot
|log πhi(ot|st; θ′hi)|

]}
=
C(θ′)

T
,

whereC(θ′) is a positive real number that only depends on θ′ and the structural constants |O|, ζ and εb. Due to Assumption 2,
C(θ′) is continuous with respect to θ′. Since Θ is compact, supθ′∈Θ C(θ′) <∞. Therefore,∣∣Qs∞,T (θ′|θ)−Qµ,T (θ′|θ)

∣∣ ≤ 1

T
sup
θ′∈Θ

C(θ′).

Taking supremum with respect to θ, θ′ and µ completes the proof.

D.6. Proof of the strong stochastic equicontinuity condition (20)

First, for all δ > 0 and ω ∈ Ω,

lim sup
T→∞

sup
θ1,θ′1,θ2,θ

′
2∈Θ;‖θ1−θ2‖2+‖θ′1−θ′2‖2≤δ

∣∣Qs∞,T (θ′1|θ1;ω)−Qs∞,T (θ′2|θ2;ω)
∣∣

≤ lim sup
T→∞

1

T
sup

θ1,θ′1,θ2,θ
′
2∈Θ;‖θ1−θ2‖2+‖θ′1−θ′2‖2≤δ

|ft(θ′1|θ1;ω)− ft(θ′2|θ2;ω)| .

Due to the boundedness of ft(θ′|θ;ω) from Appendix C.2, we can apply the ergodic theorem (Lemma C.3). Pθ∗ almost
surely,

lim sup
T→∞

1

T

T∑
t=1

sup
θ1,θ′1,θ2,θ

′
2∈Θ;‖θ1−θ2‖2+‖θ′1−θ′2‖2≤δ

|ft(θ′1|θ1;ω)− ft(θ′2|θ2;ω)|

= Eθ∗
[

sup
θ1,θ′1,θ2,θ

′
2∈Θ;‖θ1−θ2‖2+‖θ′1−θ′2‖2≤δ

|f1(θ′1|θ1;ω)− f1(θ′2|θ2;ω)|
]

≤ Eθ∗
[

sup
θ1,θ′1,θ

′
2∈Θ;‖θ′1−θ′2‖2≤δ

|f1(θ′1|θ1;ω)− f1(θ′2|θ1;ω)|
]

+ Eθ∗
[

sup
θ1,θ2,θ′2∈Θ;‖θ1−θ2‖2≤δ

|f1(θ′2|θ1;ω)− f1(θ′2|θ2;ω)|
]
.

Notice that for all θ1, θ′1, θ′2 and ω,

|f1(θ′1|θ1;ω)− f1(θ′2|θ1;ω)| ≤ max
ot

∣∣log πhi(ot|ω(st); θ
′
1,hi)− log πhi(ot|ω(st); θ

′
2,hi)

∣∣
+ max

ot

∣∣log πlo(ω(at)|ω(st), ot; θ
′
1,lo)− log πlo(ω(at)|ω(st), ot; θ

′
2,lo)

∣∣
+ max
ot−1,bt

∣∣log πb(bt|ω(st), ot−1; θ′1,b)− log πb(bt|ω(st), ot−1; θ′2,b)
∣∣ .

The RHS does not depend on θ1. Due to Assumption 2, πhi, πlo and πb as functions of the parameter θ are uniformly
continuous on Θ , with any other input arguments. Therefore it is straightforward to verify that, for any ω,

lim
δ→0

sup
θ1,θ′1,θ

′
2∈Θ;‖θ′1−θ′2‖2≤δ

|f1(θ′1|θ1;ω)− f1(θ′2|θ1;ω)| = 0.
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Applying the dominated convergence theorem,

lim
δ→0

Eθ∗
[

sup
θ1,θ′1,θ

′
2∈Θ;‖θ′1−θ′2‖2≤δ

|f1(θ′1|θ1;ω)− f1(θ′2|θ1;ω)|
]

= 0.

Similarly, using Lemma C.1 we can show that for any ω,

lim
δ→0

sup
θ1,θ2,θ′2∈Θ;‖θ1−θ2‖2≤δ

|f1(θ′2|θ1;ω)− f1(θ′2|θ2;ω)| = 0.

Using the dominated convergence theorem gives the convergence of the expectation as well. Combining the above gives the
strong stochastic equicontinuity condition (20).

D.7. Proof of Lemma C.5

Consider the following joint distribution on the graphical model shown in Figure 1: the prior distribution of (O0, S1) is ν∗,
and the joint distribution of the rest of the graphical model is determined by an options with failure policy with parameters ζ
and θ. Notice that this is the correct graphical model for the inference of the true parameter θ∗, since the assumed prior
distribution of (O0, S1) coincides with the correct one.

For clarity, we use the same notations as in Appendix B.3 for the full likelihood function, the marginal likelihood function
and the (unnormalized) Q-function. Specifically, such quantities used in this proof have the same symbols as those defined
in Appendix B.3, but mathematically they are not the same.

Parallel to Appendix B.3, the full likelihood function is

L(s1:T , a1:T , o0:T , b1:T ; θ) = ν∗(o0, s1)Pθ,o0,s1(S2:T = s1:T , A1:T = a1:T , O1:T = o1:T , B1:T = b1:T ).

The marginal likelihood function is

Lm(s1:T , a1:T ; θ) =
∑
o0

ν∗(o0, s1)Pθ,o0,s1(S2:T = s1:T , A1:T = a1:T ).

Let µ∗ be the conditional distribution of O0 given s1. For any o0 ∈ O,

µ∗(o0|s1) =
ν∗(o0, s1)∑

o′0∈O
ν∗(o′0, s1)

.

Therefore, for the inference of θ∗ considered in this proof, the (unnormalized) Q-function can be expressed as

Q̃µ∗,T (θ′|θ) =
∑

o0:T ,b1:T

L(s1:T , a1:T , o0:T , b1:T ; θ)

Lm(s1:T , a1:T ; θ)
logL(s1:T , a1:T , o0:T , b1:T ; θ′)

=
∑

o0:T ,b1:T

µ∗(o0|s1)Pθ,o0,s1(S2:T = s2:T , A1:T = a1:T , O1:T = o1:T , B1:T = b1:T )

× zθγ,µ∗ log[ν∗(o0, s1)Pθ′,o′0,s1(S2:T = s1:T , A1:T = a1:T , O1:T = o1:T , B1:T = b1:T )].

We can rewrite Q̃µ∗,T (θ′|θ) using the structure of the options with failure framework, drop the terms irrelevant to θ′ and
normalize using T . The result is the following definition of the (normalized) Q-function:

Q∗T (θ′|θ) :=

∑
o0,b1

ν∗(o0|s1)Pθ,o0,s1(S2:T = s2:T , A1:T = a1:T , B1 = b1)[log πb(b1|s1, o0; θ′b)]

T
∑
o0
ν∗(o0, s1)Pθ,o0,s1(S2:T = s1:T , A1:T = a1:T )

+
1

T

T∑
t=1

∑
ot,bt

γθµ∗,t|T (ot, bt)[log πlo(at|st, ot; θ′lo)] +
1

T

T∑
t=1

∑
ot

γθµ∗,t|T (ot, bt = 1)[log πhi(ot|st; θ′hi)]

+
1

T

T∑
t=2

∑
ot−1,bt

γ̃θµ∗,t|T (ot−1, bt)[log πb(bt|st, ot−1; θ′b)].
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We draw a comparison between Q∗T (θ′|θ) and Qµ∗,T (θ′|θ) defined in (3): their difference is in the first term of Q∗T (θ′|θ).
Maximizing Q∗T (θ′|θ) with respect to θ′ is equivalent to maximizing the (unnormalized) Q-function Q̃µ∗,T (θ′|θ). In
Algorithm 1, since Q∗T (θ′|θ) is unavailable, we use Qµ∗,T (θ′|θ) as its approximation.

Q∗T (θ′|θ) depends on the observation sequence, therefore it is a function of a sample path ω ∈ Ω. In the following we
explicitly show this dependency by writing Q∗T (θ′|θ;ω). Clearly, for any θ, θ′ ∈ Θ , ω ∈ Ω and T ≥ 2,

|Q∗T (θ′|θ;ω)−Qµ∗,T (θ′|θ;ω)| ≤ 1

T
sup
θ′∈Θ

max
b1,s1,o0

|log πb(b1|s1, o0; θ′b)| .

Combining this with the stochastic convergence of Qµ∗,T as shown in Theorem 1, we have, that for any θ ∈ Θ , as T →∞,∣∣Q∗T (θ|θ∗;ω)− Q̄(θ|θ∗)
∣∣→ 0, Pθ∗ -a.s.

Using the dominated convergence theorem, such a convergence holds in expectation as well. For any θ ∈ Θ ,

lim
T→∞

Eθ∗ [Q∗T (θ|θ∗;ω)] = Q̄(θ|θ∗).

Since maximizing Q∗T (θ|θ∗) with respect to θ is equivalent to maximizing the (unnormalized) Q-function Q̃µ∗,T (θ|θ∗), the
standard monotonicity property of the EM update holds as well. For any θ ∈ Θ , ω ∈ Ω and T ≥ 2,

logLm[ω(s1:T ), ω(a1:T ); θ]− logLm[ω(s1:T ), ω(a1:T ); θ∗] ≥ T [Q∗T (θ|θ∗;ω)−Q∗T (θ∗|θ∗;ω)] .

Taking expectation on both sides, we have

Eθ∗ [LHS] =
∑

s1:T ,a1:T

Lm(s1:T , a1:T ; θ∗) log
Lm(s1:T , a1:T ; θ)

Lm(s1:T , a1:T ; θ∗)
≤ 0,

due to the non-negativity of the Kullback-Leibler divergence. Therefore, Eθ∗ [Q∗T (θ|θ∗;ω)] ≤ Eθ∗ [Q∗T (θ∗|θ∗;ω)], and in
the limit we have Q̄(θ|θ∗) ≤ Q̄(θ∗|θ∗) for any θ ∈ Θ . Applying the identifiability assumption for the uniqueness of M̄(θ∗)
completes the proof.

E. Empirical results
In this section, we demonstrate the empirical performance of Algorithm 1 using a simple numerical example. Consider the
Markov Decision Process (MDP) illustrated in Figure 3. There are four states, numbered from left to right as 1 to 4. At
any state st ∈ [1 : 4], there are two allowable actions: LEFT and RIGHT. If at = RIGHT, then the next state is sampled
uniformly from the states on the right of state st (including st itself). Symmetrically, if at = LEFT, then the next state is
sampled uniformly from the states on the left of state st (including st).

1 2 3 4

= RIGHT

= 1/3

Figure 3. The state transition structure.

Suppose an expert applies the following options with fail-
ure policy with parameters (θ∗hi, θ

∗
lo, θ

∗
b ) = (0.6, 0.7, 0.8) and

ζ = 0.1. The option space has two elements: LEFTEND
and RIGHTEND. πhi(ot = LEFTEND|st; θhi) equals θhi if
st = 1, 2 and 1 − θhi if st = 3, 4. For all st, πlo(at =
LEFT|st, ot = LEFTEND; θlo) = πlo(at = RIGHT|st, ot =
RIGHTEND; θlo) = θlo. πb(bt = 1|st, ot = LEFTEND; θb)
equals θb if st = 1, and 1 − θb otherwise. Symmetrically,
πb(bt = 1|st, ot = RIGHTEND; θb) equals θb if st = 4, and
1 − θb otherwise. Intuitively, the high level policy directs the
agent to states 1 and 4, and the option terminates with high probability when the corresponding target state is reached.

In our experiment, we investigate the behavior of ‖θ(n) − θ∗‖2 as a random variable dependent on n and T . 50 sample
paths of length 10000 are sampled from (approximately) the stationary Markov chain induced by the expert policy. Then,
the first T state-action pairs are used as the observation sequence {s1:T , a1:T }, with T ∈ {5000, 8000, 10000}. For all s1,
µ(o0 = RIGHTEND|s1) = 1. The initial parameter estimate (θ

(0)
hi , θ

(0)
lo , θ

(0)
b ) = (0.5, 0.6, 0.7). The parameter spaces Θhi,
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Figure 4. Plots of err(n, T ) and log err(n, T ) with varying n and T .

Θlo and Θb are all equal to the interval [0.1, 0.9]. After running Algorithm 1 with any sample path ω and any T , we obtain a
sequence {‖θ(n) − θ∗‖2;ω, T}n∈[0:N ]. Let err(n, T ) be the average of ‖θ(n) − θ∗‖2 for fixed n and T , over the 50 sample
paths. The result is shown in Figure 4.

Although the regularity conditions in Theorem 3 are hard to validate even for this simple example, we observe that the
empirical result qualitatively matches the performance guarantee. From Figure 4, err(n, T ) decreases exponentially in the
early phase of the algorithm (roughly the first 10 iterations). Then, as n further increases, err(n, T ) remains at low values
but does not decrease to 0. One caveat is that when n > 300, err(n, T ) slightly increases. A possible explanation of this
behavior consistent with Theorem 3 is the following: there exists a low probability event that the upper bound fails, and the
algorithm converges to a stationary point of the likelihood function outside the vicinity of the true parameter. After all the
sample paths converge, the slope of err(n, T ) becomes roughly flat again at n = 1200. Finally, consistent with Theorem 3,
the algorithm achieves better performance as T increases.

In the following, we present details on the experiment and a few auxiliary results.

E.1. Generation of the observation sequences

We first introduce the method we use to sample observation sequences from the stationary Markov chain induced by the
expert policy. Using the expert policy and a fixed (o0, s1) pair, we generate 50 observation sequences of length 20,000.
Then, the first 10,000 samples in each observation sequence are discarded, and the rest is saved as the observation sequence
used in the algorithm. Such a procedure is motivated by Lemma A.1: it can be easily verified that our first three assumptions
are satisfied in our numerical example. Therefore, from Lemma A.1, the distribution of Xt approaches the stationary
distribution νθ∗ regardless of the initial (o0, s1) pair.

E.2. Analytical expression of the parameter update

For our numerical example, the parameter update step in Algorithm 1 has a unique analytical solution. For all θ ∈ Θ ,
ω ∈ X Z, T ≥ 2 and µ ∈ M, we first derive the analytical expression of Mµ,T (θ;ω)hi which is the updated parameter
for πhi based on the previous parameter θ. Such a notation is borrowed from Assumption 5. Using the expression of the
Q-function (3), we have

Mµ,T (θ;ω)hi ∈ arg max
θ′hi∈Θhi

T∑
t=1

∑
ot

γθµ,t|T (ot, bt = 1)[log πhi(ot|st; θ′hi)],
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where st on the RHS is the state value ω(st) from the sample path ω. We omit ω on the RHS for a cleaner notation. Let
f(θ′hi) denote the sum inside the argmax. Then,

f(θ′hi) =
T∑
t=1

{
γθµ,t|T (ot = LEFTEND, bt = 1)[log πhi(ot = LEFTEND|st; θ′hi)]

+ γθµ,t|T (ot = RIGHTEND, bt = 1)[log πhi(ot = RIGHTEND|st; θ′hi)]
}

=
T∑
t=1

{
γθµ,t|T (ot = LEFTEND, bt = 1)

[
1[st = 1, 2] log θ′hi + 1[st = 3, 4] log(1− θ′hi)

]
+ γθµ,t|T (ot = RIGHTEND, bt = 1)

[
1[st = 3, 4] log θ′hi + 1[st = 1, 2] log(1− θ′hi)

]}
.

Taking the derivative of f(θ′hi), we can verify that f(θ′hi) is strongly concave on [0.1, 0.9]. Therefore, the parameter update
for πhi is unique.

Mµ,T (θ;ω)hi =


0.1, if M̃µ,T (θ;ω)hi < 0.1,

M̃µ,T (θ;ω)hi, if 0.1 ≤ M̃µ,T (θ;ω)hi ≤ 0.9,

0.9, if M̃µ,T (θ;ω)hi > 0.9,

where M̃µ,T (θ;ω)hi is the unconstrained parameter update given as

M̃µ,T (θ;ω)hi =

∑T
t=1 γ

θ
µ,t|T (ot = LEFTEND, bt = 1)1[st = 1, 2]∑T

t=1

∑
ot
γθµ,t|T (ot, bt = 1)

+

∑T
t=1 γ

θ
µ,t|T (ot = RIGHTEND, bt = 1)1[st = 3, 4]∑T

t=1

∑
ot
γθµ,t|T (ot, bt = 1)

.

Similarly, the unconstrained parameter updates for πlo and πb are the following:

M̃µ,T (θ;ω)lo =
1

T

T∑
t=1

∑
bt

{
γθµ,t|T (ot = LEFTEND, bt)1[at = LEFT]+γθµ,t|T (ot = RIGHTEND, bt)1[at = RIGHT]

}
.

M̃µ,T (θ;ω)b =
1

T − 1

T∑
t=2

∑
ot−1

{
γ̃θµ,t|T (ot−1, bt = 1)1[event] + γ̃θµ,t|T (ot−1, bt = 0)1[¬event]

}
,

where the event = {(st = 1, ot−1 = LEFTEND) ∨ (st = 4, ot−1 = RIGHTEND)}. The parameter updates Mµ,T (θ;ω)lo
and Mµ,T (θ;ω)b are the projections of M̃µ,T (θ;ω)lo and M̃µ,T (θ;ω)b onto [0.1, 0.9], respectively.

E.3. Supplementary results to Figure 4

In this subsection we present supplementary results to Figure 4. In Figure 4, err(n, T ) is defined as the average of
‖θ(n) − θ∗‖2 over all the 50 sample paths. Here, we divide the set of sample paths into smaller sets (by percentiles) and
evaluate the average of ‖θ(n) − θ∗‖2 over these smaller sets separately. The settings for the computation of parameter
estimates are the same as before. The following procedure serves as the post-processing step of the obtained parameter
estimates.

Concretely, as defined before, we obtain a sequence {‖θ(n) − θ∗‖2;ω, T}n∈[0:N ] after running Algorithm 1 with any sample
path ω and any T . After fixing T and letting n = N , ‖θ(N) − θ∗‖2 is a function of ω only. With a given threshold interval
I = [I1, I2], we define a smaller set of sample paths as the set of ω with ‖θ(N) − θ∗‖2 greater than the I1-th percentile
and less than the I2-th percentile. Let err(n, T, I) be the average of ‖θ(n) − θ∗‖2 over this smaller set of sample path
specified by interval I . For T = 8000, the values of err(n, T, I) with specific choices of I are plotted below. If I = [0, 100],
err(n, T, I) is equivalent to err(n, T ) investigated in Figure 4.
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Figure 5. Plots of err(n, T, I) with varying n and I; T is fixed as 8000.

Figure 5 suggests that with probability around 0.6, our algorithm with the particular choice of T and θ(0) achieves decent
performance, decreasing the estimation error by at least a half. A worth-noting observation is that, for all the choices of I
(including I = [90, 100] representing the failed sample paths), err(n, T, I) roughly follows the same exponential decay
in the early stage of the algorithm (roughly the first 10 iterations). The same behavior can be observed for T = 5000
and T = 10000 as well. It is not clear whether this behavior is general or specific to our numerical example. Detailed
investigation is required in future work.

E.4. Varying µ
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Figure 6. Plots of err(n, T ) with varying n and µ; T is fixed
as 5000.

In this subsection we investigate the effect of µ on the perfor-
mance of Algorithm 1. Intuitively, from the uniform forgetting
analysis throughout this paper, it is reasonable to expect that
at each iteration, the effect of µ on the parameter update is
negligible if T is large. However, such a negligible error could
accumulate if N is large. The effect of µ on the final parameter
estimate is not clear without experiments.

We use the same observation sequences as before. T is fixed
as 5000. θ(0) = (0.5, 0.6, 0.7), and the parameter space for
all the three parameters remains the same as [0.1, 0.9]. For
all s1, µ(o0 = RIGHTEND|s1) ∈ {0.2, 0.5, 0.8}. The per-
formance of the algorithm is evaluated by err(n, T ). The re-
sult is presented in Figure 6, which shows that indeed, the
effect of µ on the final performance of the algorithm is neg-
ligible. For n = 1000, maxµ err(n, T ) is 0.7% higher than
minµ err(n, T ).

E.5. Random initialization

Up to this point, all the empirical results use the same initial parameter estimate θ(0) = (0.5, 0.6, 0.7) on all the 50 sample
paths. In this subsection, we evaluate the effect of the initial estimation error {θ(0) − θ∗}2 on the performance of the
algorithm, by applying random θ(0).

In this experiment, we use the same observation sequences as before. T is fixed to 8000. For all s1, µ(o0 =
RIGHTEND|s1) = 1. The parameter space for all the three parameters remains the same as [0.1, 0.9]. For each ob-
servation sequence, we first generate three independent samples xhi, xlo and xb uniformly from the interval [0, 1]. Then,
θ(0) is generated as follows: with a scale factor w ∈ {0.1, 0.2, 0.3}, let θ(0)

hi = θ∗hi − wxhi, θ
(0)
lo = θ∗lo − wxlo and

θ
(0)
b = θ∗b − wxb. As a result, θ(0) dependent on w is different for different observation sequences. The choices of θ(0) are

not symmetrical with respect to θ∗ due to the restriction of the bounded parameter space. The result is shown in Figure 7.

From Figure 7, the curves corresponding to w = 0.1 and w = 0.2 qualitatively match the performance guarantee in
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Figure 7. Plots of err(n, T ) with varying n and θ(0); T is fixed to 8000.

Theorem 3. The algorithm achieves decent performance when {θ(0) − θ∗}2 is intermediate (the case of w = 0.2), where the
average estimation error err(n, T ) is reduced by at least a half. If {θ(0)− θ∗}2 is small (the case of w = 0.1), the parameter
estimates cannot improve much from θ(0). If {θ(0) − θ∗}2 is large (the case of w = 0.3), the algorithm cannot converge to
the vicinity of the true parameter, which is consistent with our local convergence analysis.

F. Discussion
In this section we discuss our scope and possible extensions to our work.

First, we assume that the parametric structure of the expert policy is known, which effectively transforms the HIL problem
into a well-posed parametric inference problem. In practice, such a parametric structure may not be known a priori. Instead,
we can choose an expressive enough parametric model for the learned policy (e.g., a neural network) and infer the optimal
parameters. Our algorithm can be applied without modification to this case. Although the performance guarantee becomes
invalid, the algorithm still converges to a stationary point of the (approximate) finite sample likelihood function, and decent
empirical performance could be obtained assuming good initialization. Two caveats need to be emphasized. The first one is
that, regularization is often required since these expressive parametric models often have high dimensional parameter spaces.
A common regularization procedure is to penalize the similarity between low level policies corresponding to different
options (Daniel et al., 2016a). In this way, the obtained set of options can be more versatile. The second caveat is that, the
size of the option space needs to be set when selecting the parametric model. This is similar to the classical order estimation
problem in HMMs, and relevant techniques could be borrowed from there.

Second, we restrict the state space S , the action space A and the option space O to be finite. For S and A, such a restriction
is not very stringent: if we allow continuous S and A assuming the existence of density functions, the algorithm can still
be applied. We only need to replace πlo in Theorem 4 by its density. As for the performance guarantee (Theorem 3), the
structure of the proof remains the same. The assumptions need to be modified, but such a modification is more technical
rather than essential. On the other hand, we emphasize that the restriction of finite O is important. If O is continuous, then
each step in the forward-backward recursion (Theorem 4) is an integral instead of a sum, and techniques like Sequential
Monte Carlo (SMC) need to be applied. Fortunately, it is widely accepted that the options framework should have a finite
option space, since the options need to be distinct and separate (Daniel et al., 2016a). Based on this argument, it is sufficient
to consider only finite O.


