Proceedings of the 2019 IISE Annual Conference
H.E. Romeijn, A. Schaefer, R. Thomas, eds.

Adaptive Partition-enabled Preprocessing for Multistage Stochastic
Linear Programs

Abstract ID: 610948
Abstract

We extend the adaptive partition-based approach for solving two-stage stochastic programs with fixed recourse to
its multistage counterpart. The proposed algorithm integrates the adaptive partition-based strategy with a popular
approach for solving multistage stochastic programs, Stochastic Dual Dynamic Programming, via a preprocessing
step as a mean to enhance its convergence. Our numerical experiments on a hydro-thermal power generation planning
problem show the effectiveness of the proposed approach.

Keywords

Partition-based approach, Stochastic dual dynamic programming, Multistage stochastic linear programs.

1. Introduction

In this paper, we are concerned with the computational efficiency of solving Multistage Stochastic Linear Programming
Problems (MSLPs). As a classical optimization modeling tool, MSLPs has been widely applied in real-life applications
such as energy [[1]], transportation [2] and finance [3]], where decision makers have to cope with uncertainty regarding
information about the future in a sequential fashion. MSLPs provide the framework for finding an optimal policy over
a finite planning horizon — typically discretized into 7 intervals that allows for meaningful optimization problem
to arise. To put this into context, in this work, we focus on a multistage hydro-thermal power generation planning
problem over a certain period of time. The objective is to minimize the (expected) total cost imposed by the power
generation expenses and the penalty for the insufficiency in satisfying the power demand, under the uncertainty on
the amount of rainfall in the future. We refer readers to [4] for a detailed description of the problem. A common
approach to tackle these problems is to approximate the underlying stochastic process by using a scenario tree which
typically yields huge-scale mathematical programming models due to the infinite number of sample paths that can
take place in the future. Despite the fact that these problems can be handled using specialized algorithms which
employ decomposition techniques that often take advantage of the fact that the probability distributions governing the
uncertainty are known, the computational burden for solving these problems increases significantly as we desire more
accuracy in the approximation due to the curse of dimensionality [5l].

In the literature, there is a good deal of work being done on mitigating this burden by using cuts-sharing strategies
when the stochastic process is assumed to have a stage-wise independence structure. A milestone in doing so is the
stochastic dual dynamic programming algorithm (SDDP), proposed in [6] which was proved to have an almost-sure
convergence in [[7]. Several algorithmic techniques were proposed to accelerate the convergence in SDDP such as the
ones mentioned in [8} 9]], which deploy regularization scheme that stabilizes iterates during the solution process.

A partition-based formulation, which was first introduced in [10] and later improved in [11]], is a relaxation of the
original stochastic program obtained by aggregating variables and constraints according to a partition over the set of
scenarios. The partition is iteratively refined by exploiting the information of the dual multipliers associated with
each scenario with respect to the relaxation solution until it is sufficient to induce an optimal solution to the original
problem. We refer readers to section [3|for a general overview and [10, [11] for a detailed discussion on the topic.

The motivation behind considering the partition-based approach in the multistage setting is its promising computa-
tional performance in the two-stage context. However, as it turns out, constructing such partition for the multistage
case might be intractable — a partition which deemed to be sufficient ought to accommodate all sample paths in the
scenario tree, which leads back to the core difficulty in this problem. In this paper, we intend to cope with this diffi-
culty by utilizing the adaptive partition-based approach as a catalyst in a pre-processing stage which is followed by the
SDDP algorithm. Our approach generates a sequence of provisional partitions which are exploited to generate validly
but coarse cuts to enhance the progress of the standard SDDP algorithm.

The rest of this paper is organized as follows. Section 2 introduces a general MSLP formulation and provides an
overview of the SDDP algorithm. Section 3 reviews the adaptive partition-based approach. In Section 4 we present
our proposed algorithm which integrates the adaptive partition-based approach with the SDDP algorithm as a prepro-
cessing step. In Section 5, we provide some preliminary computational results for the proposed algorithm and compare
its performance to the standard SDDP. Finally, in Section 6 we conclude with some final remarks.

2. Preliminaries on multistage stochastic linear programs and decomposition schemes

In this section we will provide an overview for one of the most popular decomposition approaches for MSLPs, Stochas-
tic Dual Dynamic Programming (SDDP) [6], which we aim to improve. The main feature in SDDP is that it under-
estimates the cost-to-go functions (functions that quantify the expected impact of the current decision in the future)
using piecewise linear approximations, defined by cutting planes which are generated in the so-called backward step.
This can be seen as a variant of Kelley’s cutting plane method [12] in non-linear non-smooth optimization. Consis-
tently with [6]], we make the conventional assumption that the random data process is stage-wise independent, i.e., the
random vector which captures the uncertainty, denoted by & € E,, is independent of the history of the data process
€17 := (&1,-.,& 1) up to time £ — 1. To put this into perspective, we consider the following MSLP:

min clTxl +E min cszz +E|---+E min c;xT , (1)
Ax1=b; Byx1+Axxy=by Brxr_1+Arxr=br
X1 ER:IJ xzeR? XTER’iT

where some (if not all) data & = (¢;, By, Ar,b;), Vi =2,...,T can be subject to uncertainty. For the sake of numerical
tractability, we assume that the number of realizations of the stochastic process is finite, i.e., |&;| < oo, V¢ =2,...,T,
and therefore can be represented using a scenario tree. This is, for example, the case in which is a sample average
approximation of an underlying MSLP with continuously distributed random variables. Under these assumptions, the

dynamic programming equation for problem (I) at time r = 2,...,T takes the form:
min ¢ X+ Qi1 (x)
O (x—1,&) = wERY o
s.t. Axy =by —Bix—1,

where Q11 (x;) :=E[Qy+1(x,&41)], Yt =1,...T — 1 represents the expected cost-to-go functions, and Q7 (x7) :=
0. Additionally, as in [13]], we assume relatively complete recourse for simplicity of presentation.

As previously noted, SDDP aims to approximate the cost-to-go function which induces a policy for decision making
in each stage. To this end, the SDDP algorithm alternates between the two main steps. A forward simulation which
evaluates the current policy induced by the current approximate cost-to-go functions, and a backward recursion to
update the inaccuracy in the current approximation of the cost-to-go functions (if any). We summarize these two steps
below and refer readers to [6] for a more detailed discussion.

Forward step. Given a sample path § = (§;,...,&r) € &y X ... x Er, trial decisions % = % (§;) are computed recur-
sively going forward with %, being an optimal solution of @), V#=1,...,T and using the current approximation {),()
Qf the true expected cost-to-go function £, (+), which is unknown unless # = 7. The approximate cost-to-go functions
£3;(-) induce an implementable policy for problem (I) via a set of trial decisions % (§};) for each sample path, to which
case the value z=E [Y[_, ¢/ %, (&m)] gives an upper bound for the optimal value of (T)) as long as all scenarios § € E
are considered. Nonetheless, the forward step of SDDP consists of taking a sample 7 with | 7| < N scenarios {&/} jcy
of the stochastic process and computing % (ft) and the respective values z(&/) = ¥, ¢, % {t]), vV j€J. Statistical
confidence intervals on z can be constructed using the corresponding sample mean and variance [13} Sec.3].

Backward step. This step stems from the backward recursion technique used in dyrnamic programming which exploits
the fact that the cost-to-go function at the terminal stage is precisely known, that is Q741 (xy) := 0. To illustrate
this further, let % = % (&), V¢ =1,...,T — 1, be the trial decision obtained at the forward step and let £, (-) be the
current approximation of the cost-to-go function, given by the maximum of a collection of cutting planes defined by
Qi(x 1) = maijJ,{BtJTx,,l +of}, Vt=2,...,T. Atstage t = T the following problem is solved:
min_ cjxr
Q. (¥r-1,8r) = { areRy 3)

S.t. Arxy = br — Brxr_y
V&r = (cr,Br,Ar,br) € E7. Let iy = fir(E7) be an optimal dual solution of problem (3). Then o := E[b; 7]
and Br := —E[B;fcr] € dQ7(¥r_1) define a function gy (x7_;) := B;xr,l +ar = Qr(Fr—1) + Br,xr—1 —Xr-1),

satisfying Qr(xr_1) > qr(xr—1), Vxr_;, and QT(xT 1) = qT(xT 1), i.e., gr(+) is a supporting cutting plane for
Q7 (-). This cutting plane is thereby used to update Q7 (-) to Q7 (xr_1) := max{Qr(xr_1),qr(xr_1)}. The updated

model QT() is then used at stage T — 1, and we recursively solve the following problem forr =7 —1,...,2:
: T
. v min C, Xt +T1r4q
_) mm CzTXz—FQtH(Xz)) ()R xR e 4
Q[(xt_l ’ &l‘) =\ ER+ _ = S.t. A,x, bt thl‘ 1 ()
S.t. A[xt b[B[xl7]

Bt+1xl +0‘t+1 Sty JEJa-

Similarly, let nt =7 (F,,) and define p/ = p! (é,) as the optimal dual multipliers associated with constraints A,;x, = b, —
B,;%;_1 and B,+1xr+0°,+1 < ry41, respectively. Then the function g, (x,—1) := B, x,—1 + 0o, = IE[QI (F—1,&)] 4+ Bryx—1 —
%_1) constructed with o, := E[b/ %, +Yjen t+1p,] and B, := —E[B &/ € E[0Q, (%-1,&)] is a supporting cutting
plane for 9,(-) which sativsﬁes Qi (x-1) > qr (x,—1), V x,—1 and is added to update the collection of the supporting
cutting planes at stage ¢: 9, (x—1) = max{£);(x,—1),q;(x,—1)} . This process continues until the first stage, where the
solution of (@) at r = 1 defines a lower bound z for the optimal value of (T).

3. Adaptive partition-based approach for stochastic linear programs with fixed recourse

Decomposition algorithms used for solving stochastic programs usually rely on sequences of candidate solutions (trial
points in the sequel) &, =)E,(ﬁ[,]) for generating cutting plane approximations. It is intuitively clear that generating
such approximations to 9,(-)’s with high precision for early iterates, likely far from an optimal solution, is surely a
wasteful use of computing power — accuracy will need to be integrated adaptively when more precision is necessary
in the resulting solution. Hence, as a mean to make the cut generation effort adaptive to the solution progress, a natural
idea is to partition the scenario set, for a given stage, into clusters (resulting in a relaxation of the original stochastic
program) and approximate the functions £;(-)’s using one representative scenario for each cluster, which aggregates
the information for the cluster. The partition is then refined (when necessary) dynamically during the iterative solution
process to better approximate £, (-). To demonstrate this, we assume a fixed recourse structure from now on, i.e., ¢;
and A; for all t = 2,3,...,T are assumed to be deterministic, implying that {(B,é’,b&’)}‘“’| is the set of realizations
used to characterize the uncertainty, X; be the trial points, L, the partition size and let the current partition be denoted
as N, = {Bf }é’: | for each stage t =2,3,...,T. Atstage t = T, the scenario-based subproblem for each realization

(BF}T , b‘y}T) € Er and the partition-based subproblem for each cluster fP% € Nr,£=1,2,...,Lt compare as follows:

Y {QT()ET—I @T)} > QT()ET—MTYZ‘) = min{C;XT | Apxr = bl — Brir_ } ,
Xr
Ere?;
where BéT = Zét el bE;T ,and BY. := Zé; el B?T. It can be easily seen that Q.. (xr_1, T%) is constructed by aggregating
constraints and variables of Q. (Fr_1,E7), V&r € PL, and therefore gives a valid lower bound. Treating each cluster

‘P% as a scenario, a coarse cut BJTTxT,l + OL]T < rr can be generated in the same way that a standard Benders cut is
generated (see the derivations after equation (3)), using the corresponding optimal dual solution for each cluster fP% of
Nr. When the coarse cuts do not yield any cut violation at the trial point ¥7_1 with respect to the current relaxation
for the cost-to-go function, i.e., QT()ET_l) > B’TTXT_1 + 0., the partition A can be refined by solving the subproblem
9, (¥r-1,E7), V & € Er, where the corresponding optimal dual vectors will guide the partition refinements. In this
paper we will adopt a very simple refinement strategy which is, we isolate any two realizations from a cluster & of the
partition A\; whenever their euclidian distance is sufficiently large. It follows that, the refined partition will only contain
clusters of realizations whose corresponding optimal dual vectors are sufficiently close to each other in terms of the
Euclidian distance. Several other strategies can be considered such as those described in [[11]]. Now, similarly, consider

any other stage 1 € {2,3,...,T — 1}, using the cutting plane approximation £3; | (x,) = maxjey,, | {OL'ZH + B{+1xl} for

the cost-to-go function £, (x;), the scenario-based subproblem for each realization (B,F” , bf”) € E; and the partition-
based subproblem for each cluster P/ € A[, £ = 1,2,...,L, compare as follows:

Y [e@ 18] =0l 2.
ged!
Similar to the case when t = T, the partition refinement is guided by the optimal dual vectors { (¢, Tg, }¢, cpt- Itcan

be seen from [10, Theorem 2.5] that this partition refinement rule guarantees that, after refining Af into N[= {fPé =1

Z?:l Qt.[(itfl) = ZV&,EE; Qt(ftfh‘tat)'

4. Adaptive partition-enabled preprocessing for multistage stochastic linear programs

In this section we present our proposed algorithm which builds a connection between the SDDP algorithm discussed
in Section [2] and the adaptive partition-based strategy of Section [3] Considering the promising performance of the
adaptive partition-based strategy in the two-stage setting presented in [[10} [1 1], it is very tempting to conclude that this
competence will be extended naturally to the multistage context. However, the effectiveness of the approach in the
multistage case is hindered by the following difficulty: The convergence in the two-stage case relies heavily on the
fact that one only needs to define a partition over the set of second-stage realizations, and seeks a sufficient partition
that induces an optimal first-stage solution; whereas in the multistage case, the sufficiency of a partition over the set
of realizations in stage ¢ depends on the particular sample path that it takes from stage 1 to stage r — 1. Hence, using
the strategy in the multistage case will only yield a sequence of partitions A = (AA], . .., Ar) which are only sufficient
"locally" with respect to the exercised sample path(s) & = (§;,...,Er) — making it (almost) impossible to identify a
sequence of partitions A that accommodates all £; X ... X Z7 possible sample paths. Nonetheless, the coarse cuts
generated throughout this process remain valid cuts to the original problem. While they might be weaker cuts (because
only aggregated information is utilized), one could still employ these coarse cuts for the purpose of accelerating the
backward step, particularly in the early stages where exact information is not necessary for generating initial cutting
plane relaxations. This has been validated in our experiment results shown in Section 3}

In order to construct such "locally" sufficient sequence of partitions, our algorithm decouples problem (IJ) into 7 — 1
consecutive two-stage problems. Each t = 1,...,7 — 1 problem will be solved using the adaptive partition-based
strategy on a sample path & = (’f7 ...,&L) which is randomly chosen from the scenario tree. This procedure will
not only yield a partition 9\4’;1 corresponding to EF but also warm start the process of approximating the cost-to-go
function at every stage ¢ via the generated coarse cuts during the solution process. Once all T — 1 two-stage problems
are solved, we exploit the resulting sequence of partitions A* = (9\61‘, ce 9\[T") by defining a relaxation of problem
on the aggregated scenarios in N* which can be solved efficiently using SDDP — now that the scenarios are aggregated
which makes the size of the scenario tree significantly smaller.

The motivation behind decoupling problem (TJ) into 7 — 1 two-stage problems is the desire to modify the setting of the
cost-to-go function approximation procedure to a framework which fits and leverages the computational efficiency of
the adaptive partition-based approach, and generate partitions to which we can validly claim sufficiency.

It’s worth noting that this decoupling modification is nothing but an alternative strategy for traversing the scenario tree
to the one employed by the SDDP algorithm, with the additional benefit of making the cut generation effort adaptive
to the solution progress. This tree traversal strategy can be seen as a "cautious" strategy, in the sense that, the policy
evaluation process never goes forward down the tree unless all cuts that would be passed back from stage ¢ + 1 to stage
t are redundant. Unlike the "quick" pass used in SDDP, where the policy is evaluated at every stage (1 -2 —--- —
T —1 — T) in the scenario tree, and cuts are passed directly back up the tree (T -7 —1 — --- — 2 — 1) with no
intermediate changes of direction between consecutive stages ¢ and t — 1. However, we still employ the quick traversal
strategy in the relaxation problem induced by the sequence of partitions A,

SDDP with the adaptive partition-enabled preprocessing We outline our proposed algorithm which integrates
SDDP with the adaptive partition-enabled approach (see also Algorithm[I)) in the following three steps:

1. Exploration step This step is concerned with constructing a provisional sequence of partitions A using the adap-
tive partition-based technique, which will then be used in the Exploitation step. To accomplish this, for a given
scenario & = (§,...,&r) we define a sequence of two-stage stochastic programs between every two consecutive
stagestandr+ 1, V¢ =2,...,T — 1 and then solve them using the adaptive partition-based approach.

2. Exploitation step This step is concerned with exploiting the provisional sequence of partitions Al obtained in
the Exploration step. The sequence N = (Aj,...,Ar) induces a relaxation of the original formulation (T)
under which the scenarios variables and constraints are aggregated in clusters ? (see Section [3) such that
N, = {Tf %’ZU Vit=2,3,...,T. This induced relaxation problem is then solved using the standard SDDP
algorithm and we keep track of its lower bound progress. If the progress is relatively small for n consecutive
iterations, we go back to the Exploration step and refine A as discussed in Section

3. Optimization step While alternating between between step 1 and 2, we keep track of the size of the sequence of
partitions relative to the full set of scenarios, i.e., Y., |A¢|/|Z;|. Whenever this ratio exceeds a certain threshold
parameter m, we terminate the loop and simply revert to the original stochastic program with the full set of
scenarios, which is then solved using standard SDDP. The coarse cuts obtained in step 1 and 2 are used for
warm-starting the SDDP.

Algorithm 1 Adaptive Partition-enabled Preprocessing algorithm.

STEP 0: Initialization. Let k = 0,20 := —oo, 0(-) := —o0, V1 =2,...,T. Choose a tolerance € > 0, threshold
parameter m € (0, 1], and an initial sequence of partitions A = (AL,..., AP).

STEP 1: Increment k — k+ 1 and refine 9\4]_‘;11 by doing the following loop: V¢ =1,...,7 — 1 define a two-stage
stochastic program on 1:11 where: 1%-stage = ¢ and 2"d-stage = ¢ + 1 and solve it using the adaptive partition-
based approach [10} [TT]] to update /:11 — N, and Q1) = Q5.

STEP 2: If Y, |A(¥|/|Z;| > m, go to STEP 3. Otherwise, define an MSLP on the sequence of partitions A¥ =
(A,...,A) and cutting plane approximations Q¥ (-), where A = {®/ }£" | and the clusters /" are treated as
scenarios. Define a parameter n < k and do the following loop: While z¥ — 7" > € apply the SDDP algorithm to
improve the cutting plane approximations Qf() Vt=2,...,T and consequently update z*~! — z*. go to STEP 1.
STEP 3: Define an MSLP on the complete set of realizations with the updated cutting plane approximations Df()
Solve it using the SDDP algorithm and stop upon a termination criterion (such as a time limit).

5. Numerical experiments

In this section we present some preliminary numerical results for the performance of our proposed algorithm compared
to the standard SDDP algorithm. We implemented all algorithms in julia 0.6.2, JuMP 0.18.4 [15], using commercial
solver Gurobi, version 7.0.1 [15]. All the tests are conducted on Clemson University’s primary high-performance
computing (HPC) resource, "big-memory" node with 2.67GHz processors, using a 494Gb memory and the number
of threads is set to be 24. We benchmark the performance of each algorithm by reporting their lower bound progress
at prespecified time limits. From both Table [I] and Figure [I] we can see that, our proposed algorithm outperforms

Table 1: Lower bound progress obtained by the SDDP algorithm with adaptive partition-enabled preprocessing
(SDDP-Parts) and the standard SDDP algorithm. %LB = 100(LBsppp—parts — LBsppp) / (LBsppp).

Time T 25 61 97
[Z] 20 50 100 20 50 100 20 50 100
1 hour %1.B 4.3 1.2 19.9 5.9 1.1 4.1 5.0 0.9 -0.2
3 hours %1.B 3.9 0.3 15.2 33 -0.2 5.5 3.6 3.9 3.8
6 hours %1.B 3.7 1.2 10.4 2.6 -0.2 1.0 3.8 3.1 2.9
Preprocessing time in seconds | 11.8 25.5 83.5 19.8 54.3 123.5 17.5 91.0 2134
First 1hr of processing First 1hr of processing First 1hr of processing

g

==SDDP-Parts

==SDDP-Parts

==SDDP-Parts

LB progress
LB progress
RY
LB progress

1w ==SDDP-1 - ==SDDP-1 =SDDP-1

100 500 000 3500 0 s0 1000 50 0

CPU time (s) CPU time (s) CPU time (s)

() |Z;| =20 (b) |Z,] =50 (©) |Z:] = 100

Figure 1: LB progress for T = 25 and |E,| = 20, 50 and 100 over 6 hours

the standard SDDP in terms of the LB progress (in most instances). This is consistent for both small and large
number of stages with different size of realizations. We also observe that the improvement is more significant when a
relatively tighter time limit is adopted. The adaptive partition-enabled preprocessing is not a major factor in the overall
computational time.

6. Conclusions
This work extends the computational aspects of [10,[11] in the two-stage context to the multistage setting. Although
identifying a sufficient partition for optimality might be intractable due to the curse of dimensionality brought by

the large number of sample paths, we show through our numerical results that we can still make use of the adaptive
partition-based approach at least during the early stages of the solution process by generating coarse cuts. This effi-
ciency can also be exploited further by employing regularization schemes and bundle methods to stabilize the iterates
during the solution process and hence accelerate the convergence. An alternative integration to the adaptive partition-
based approach in multistage stochastic programs is to perform coarse cut generation and partition refiniements within
the backward pass of the SDDP.

Acknowledgements

Clemson University is acknowledged for generous allotment of compute time on Palmetto cluster. The authors ac-
knowledge partial support by the National Science Foundation [Grant CMMI 1854960]. Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the
views of the National Science Foundation.

References
[1] de Matos, V.L., Morton, D.P. and Finardi, E.C., 2016, “Assessing policy quality in a multistage stochastic program
for long-term hydrothermal scheduling," Annals of Operations Research, 253(2), 1-19,

[2] Fhoula, B., Hajji, A. and Rekik, M., 2013, “Stochastic dual dynamic programming for transportation planning
under demand uncertainty," In Advanced Logistics and Transport (ICALT), May 2013 International Conference
on (550-555). IEEE.

[3] Dupacov4, J. and Polivka, J., 2009, “Asset-liability management for Czech pension funds using stochastic pro-
gramming," Annals of Operations Research, 165(1), 5-28.

[4] van Ackooij, W., de Oliveira, W. and Song, Y., 2017, “On level regularization with normal solutions in decompo-
sition methods for multistage stochastic programming problems (submitted for publication).

[5] Powell, W.B., 2007, “Approximate Dynamic Programming: Solving the curses of dimensionality," (Vol. 703).
John Wiley & Sons.

[6] Pereira, M.V. and Pinto, L.M., 1991, “Multi-stage stochastic optimization applied to energy planning," Mathe-
matical programming, 52(2), 359-375.

[7] Linowsky, K. and Philpott, A.B., 2005, “On the convergence of sampling-based decomposition algorithms for
multistage stochastic programs,” Journal of optimization theory and applications, 125(2), 349-366.

[8] Asamov, T. and Powell, W.B., 2018, “Regularized decomposition of high-dimensional multistage stochastic
programs with markov uncertainty," SIAM Journal on Optimization, 28(1), 575-595.

[9] Sen, S. and Zhou, Z., 2014. Multistage stochastic decomposition: a bridge between stochastic programming and
approximate dynamic programming. SIAM Journal on Optimization, 24(1), pp.127-153.

[10] Song, Y. and Luedtke, J., 2015, “An adaptive partition-based approach for solving two-stage stochastic programs
with fixed recourse,” SIAM Journal on Optimization, 25(3), 1344-1367.

[11] van Ackooij, W., de Oliveira, W. and Song, Y., 2017, “Adaptive Partition-Based Level Decomposition Methods
for Solving Two-Stage Stochastic Programs with Fixed Recourse,” INFORMS Journal on Computing, 30(1),
57-70.

[12] Kelley, Jr, J.E., 1960, “The cutting-plane method for solving convex programs," Journal of the Society for
Industrial and Applied Mathematics, 8(4), 703-712.

[13] Shapiro, A., 2011, “Analysis of stochastic dual dynamic programming method," European Journal of Operational
Research, 209(1), 63-72.

[14] Shapiro, A., Dentcheva, D. and Ruszczynski, A., 2009, “Lectures on stochastic programming: modeling and
theory," Society for Industrial and Applied Mathematics.

[15] Dunning, I., Huchette, J. and Lubin, M., 2017, “JuMP: A modeling language for mathematical optimization,"
SIAM Review, 59(2), 295-320.

	Introduction
	Preliminaries on multistage stochastic linear programs and decomposition schemes
	Adaptive partition-based approach for stochastic linear programs with fixed recourse
	Adaptive partition-enabled preprocessing for multistage stochastic linear programs
	Numerical experiments
	Conclusions

