
On the Complexity of Modulo-q Arguments and
the Chevalley–Warning Theorem
Mika Göös
Stanford University, CA, USA
https://theory.stanford.edu/~mika/
goos@stanford.edu

Pritish Kamath
Toyota Technological Institute at Chicago, IL, USA
https://pritishkamath.github.io
pritish@ttic.edu

Katerina Sotiraki
Massachusetts Institute of Technology, Cambridge, MA, USA
http://www.mit.edu/~katesot/
katesot@mit.edu

Manolis Zampetakis
Massachusetts Institute of Technology, Cambridge, MA, USA
http://www.mit.edu/~mzampet/
mzampet@mit.edu

Abstract

We study the search problem class PPAq defined as a modulo-q analog of the well-known polynomial
parity argument class PPA introduced by Papadimitriou (JCSS 1994). Our first result shows that
this class can be characterized in terms of PPAp for prime p.

Our main result is to establish that an explicit version of a search problem associated to the
Chevalley–Warning theorem is complete for PPAp for prime p. This problem is natural in that it
does not explicitly involve circuits as part of the input. It is the first such complete problem for
PPAp when p ≥ 3.

Finally we discuss connections between Chevalley-Warning theorem and the well-studied short
integer solution problem and survey the structural properties of PPAq.

2012 ACM Subject Classification Theory of computation → Complexity classes

Keywords and phrases Total NP Search Problems, Modulo-q arguments, Chevalley–Warning The-
orem

Digital Object Identifier 10.4230/LIPIcs.CCC.2020.19

Funding Mika Göös: Work done while at IAS. Supported by NSF grant CCF-1412958.
Pritish Kamath: Work done while at MIT. Supported in part by NSF Awards CCF-1733808 and
IIS-1741137 and MIT-IBM Watson AI Lab and Research Collaboration Agreement No. W1771646.
Katerina Sotiraki: Supported in parts by NSF/BSF grant #1350619, an MIT-IBM grant, and a
DARPA Young Faculty Award, MIT Lincoln Laboratories and Analog Devices.
Manolis Zampetakis: Supported by a Google PhD Fellowship.

Acknowledgements We thank Christos Papadimitriou, Robert Robere, Dmitry Sokolov and Noah
Stephens-Davidowitz for helpful discussions. We also thank anonymous referees for valuable sugges-
tions.

© Mika Göös, Pritish Kamath, Katerina Sotiraki, and Manolis Zampetakis;
licensed under Creative Commons License CC-BY

35th Computational Complexity Conference (CCC 2020).
Editor: Shubhangi Saraf; Article No. 19; pp. 19:1–19:42

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://theory.stanford.edu/~mika/
mailto:goos@stanford.edu
https://pritishkamath.github.io
mailto:pritish@ttic.edu
http://www.mit.edu/~katesot/
mailto:katesot@mit.edu
http://www.mit.edu/~mzampet/
mailto:mzampet@mit.edu
https://doi.org/10.4230/LIPIcs.CCC.2020.19
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

19:2 On the Complexity of Modulo-q Arguments and the Chevalley–Warning Theorem

1 Introduction

The study of total NP search problems (TFNP) was initiated by Megiddo and Papadimitriou
[32] and Papadimitriou [33] to characterize the complexity of search problems that have a
solution for every input and where a given solution can be efficiently checked for validity.
Meggido and Papadimitriou [32] showed that the notion of NP-hardness is inadequate to
capture the complexity of total NP search problems. By now, this theory has flowered
into a sprawling jungle of widely-studied syntactic complexity classes (such as PLS [28],
PPA/PPAD/PPP [33], CLS [18]) that serve to classify the complexities of many relevant
search problems.

The goal of identifying natural1 complete problems for these complexity classes lies in the
foundation of this sub-field of complexity theory and not only gives a complete picture of the
computational complexity of the corresponding search problems, but also provides a better
understanding of the complexity classes. Such natural complete problems have also been
an essential middle-step for proving the completeness of other important search problems,
the same way that the NP-completeness of Sat is an essential middle step in showing the
NP-completeness of many other natural problems. Some known natural complete problems
for TFNP subclasses are: the PPAD-completeness of NashEquilibrium [17], the PPA-
completeness of ConsensusHalving, NecklaceSplitting and HamSandwich problems
[20, 21] and the PPP-completeness of natural problems related to lattice-based cryptography
[36]. Finally, the theory of total search problems has found connections beyond its original
scope to areas like communication complexity and circuit lower bounds [23], cryptography
[9, 29, 16] and the Sum-of-Squares hierarchy [30].

Our main result is to identify the first natural complete problem for the classes PPAq, a
variant of the class PPA. We also illustrate the relevance of these classes through connections
with important search problems from combinatorics and cryptography.

Class PPAq. The class PPAq was defined, in passing, by Papadimitriou [33, p. 520]. It is a
modulo-q analog of the well-studied polynomial parity argument class PPA (which corresponds
to q = 2). The class embodies the following combinatorial principle:

If a bipartite graph has a node of degree not a multiple of q,
then there is another such node.

In more detail, PPAq consists of all total NP search problems reducible2 to the problem
Bipartiteq defined as follows. An instance of this problem is a balanced bipartite graph
G = (V ∪ U,E), where V ∪ U = {0, 1}n together with a designated vertex v? ∈ V ∪ U . The
graph G is implicitly given via a circuit C that computes the neighborhood of every node in
G. Let deg(v) be the degree of the node v in G. A valid solution is a node v ∈ {0, 1}n such
that, either
. v = v? satisfying deg(v) ≡ 0 (mod q) [Trivial Solution] ; or
. v 6= v? satisfying deg(v) 6≡ 0 (mod q).
In Section 2 we provide some other total search problems (Lonelyq, Leafq) that are
reducible to and from Bipartiteq. Any one of these problems could be used to define PPAq.
In fact, Lonelyq and Leafq are natural variants of the standard problems Lonely and
Leaf which are used to define the class PPA.

1 Following the terminology of many TFNP papers, including [24, 20, 21, 36], a natural problem is one
that does not have explicitly a circuit or a Turing machine as part of the input.

2 Here, we consider a many-one reduction, which is a polynomial time algorithm with one oracle query
to the said problem. In contrast, a Turing reduction allows polynomially many oracle queries. See
Subsection 1.5 for a comparison.

M. Göös, P. Kamath, K. Sotiraki, and M. Zampetakis 19:3

Our contributions. We illustrate the importance of the complexity classes PPAq by showing
that many important search problems whose computational complexity is not well understood
belong to PPAq (see §1.6 for details). These problems span a wide range of scientific areas,
from algebraic topology to cryptography. For some of these problems we conjecture that
PPAq-completeness is the right notion to characterize their computational complexity. The
study of PPAq is also motivated from the connections to other important and well-studied
classes like PPAD.

In this paper, we provide a systematic study of the complexity classes PPAq. Our main
result is the identification of the first natural complete problem for PPAq together with some
structural results. Below we give a more precise overview of our results.

§1.1 (Details in Section 3): We characterize PPAq in terms of PPAp for prime p.
§1.2 (Details in Section 4): Our main result is that an explicit3 version of the Chevalley-

Warning theorem is complete for PPAp for prime p. This problem is natural in that it
does not involve circuits as part of the input and is the first known natural complete
problem for PPAp when p ≥ 3.

§1.3 (Details in Section 5): As a consequence of the PPAp-completeness of our natural
problem, we show that restricting the input circuits in the definition of PPAp to just
constant depth arithmetic formulas doesn’t change the power of the class.

§1.4 (Details in Section 6): We show a connection between PPAq and the Short Integer
Solution (SIS) problem from the theory of lattices. This connection implies that SIS
with constant modulus q belongs to PPAq ∩ PPP, but also provides a polynomial time
algorithm for solving SIS when the modulus q is constant and has only 2 and 3 as prime
factors.

§1.5 (Details in Section 7): We sketch how existing results already paint a near-complete
picture of the relative power of PPAp relative to other TFNP subclasses (via inclusions
and oracle separations). We also show that PPAq is closed under Turing reductions.

In §1.6, we include a list of open problems that illustrate the broader relevance of PPAq. We
note that a concurrent and independent work by Hollender [25] also establishes the structural
properties of PPAq corresponding to §1.1 and §1.5.

1.1 Characterization via Prime Modulus
We show, in Section 3, that every class PPAq is built out of the classes PPAp for p a prime.
To formalize this result, we recall the operator “&” defined by Buss and Johnson [13, §6].
For any two syntactic complexity classes M0, M1 with complete problems S0, S1, the class
M0 & M1 is defined via its complete problem S0 & S1 where, on input (x, b) ∈ {0, 1}∗×{0, 1},
the goal is to find a solution for x interpreted as an instance of problem Sb. Namely, if b = 0
then the output has to be a solution of S0 with input x, and otherwise it has to be a solution
of S1 with input x. Intuitively speaking, M1 & M2 combines the powers of both M1 and M2.
Note that M1 ∪M2 ⊆ M1 & M2. We can now formally express our characterization result
(where p|q is the set of primes p dividing q).

I Theorem 1. PPAq = &p|q PPAp.

3 Following the terminology in [8], by explicit we mean that the system of polynomials, which is the input
of the computational problems we define, are given as a sum of monic monomials.

CCC 2020

19:4 On the Complexity of Modulo-q Arguments and the Chevalley–Warning Theorem

A special case of Theorem 1 is that PPApk = PPAp for every prime power pk. Showing the
inclusion PPApk ⊆ PPAp is the crux of our proof. This part of the theorem can be viewed as
a total search problem analog of the counting class result of Beigel and Gill [7] stating that
ModpkP = ModpP; “an unexpected result”, they wrote at the time. Throughout this paper,
we use q to denote any integer ≥ 2 and p to denote a prime integer.

1.2 A Natural Complete Problem via Chevalley-Warning Theorem
There have been several works focusing on completeness results for the class PPA (i.e.
PPA2). Initial works showed the PPA-completeness of (non-natural) total search problems
corresponding to topological fixed point theorems [24, 1, 19]. Closer to our paper, Belovs et al.
[8] show the PPA-completeness of computational analogs of Combinatorial Nullstellensatz and
the Chevalley–Warning Theorem, but which explicitly involve a circuit as part of the input.
More recently, breakthrough results showed PPA-completeness of problems without a circuit
or a Turing Machine in the input such as Consensus-Halving, Necklace-Splitting and
Ham-Sandwich [20, 21] resolving an open problem since the definition of PPA in [33].

Our main contribution is to provide a natural complete problem for PPAp, for every
prime p; thereby also yielding a new complete problem for PPA. Our complete problem is
an extension of the problem Chevalleyp, defined by Papadimitriou [33], which is a search
problem associated to the celebrated Chevalley-Warning Theorem. We first present an
abstract way to understand the proof of the Chevalley-Warning Theorem that motivates the
definition of our natural complete problem for PPAp.

1.2.1 Max-Degree Monic Monomials and Proof of Chevalley-Warning
Theorem

In 1935, Claude Chevalley [15] resolved a hypothesis stated by Emil Artin, that all finite
fields are quasi-algebraically closed. Later, Ewald Warning [37] proved a slight generalization
of Chevalley’s theorem. This generalized statement is usually referred to as the Chevalley-
Warning Theorem (CWT, for short). Despite its initial algebraic motivation, CWT has
found profound applications in combinatorics and number theory as we discuss in §1.4 (and
Section 6).

We now explain the statement of the Chevalley-Warning Theorem, starting with some
notations. For any field F and any polynomial f in a polynomial ring F[x1, . . . , xn] we use
deg(f) to represent the degree of f . We use x to succinctly denote the set of all variables
(x1, . . . , xn) (the number of variables will always be n) and f to succinctly denote a system
of polynomials f = (f1, . . . , fm) ∈ F[x]m. We will often abuse notations to use x to also
denote assignments over Fnp . For instance, let Vf :=

{
x ∈ Fnp : fi(x) = 0 for all i ∈ [m]

}
be

the set of all common roots of f .

I Chevalley-Warning Theorem ([15, 37]). For any prime4 p and polynomial system f ∈
Fp[x]m satisfying

m∑
i=1

deg(fi) < n, (CW Condition)

it holds that |Vf | ≡ 0 (mod p).

4 While most of the results in this section generalize to prime powers, we only consider prime fields for
simplicity.

M. Göös, P. Kamath, K. Sotiraki, and M. Zampetakis 19:5

Given a polynomial system f ∈ Fp[x]m, the key idea in the proof of the Chevalley-Warning
Theorem is the polynomial

CWf (x) :=
m∏
i=1

(
1− fi(x)p−1) (mod {xpi − xi}i

)
.

Note that CWf (x) = 1 if x ∈ Vf and is 0 otherwise. Thus, |Vf | ≡
∑

x∈Fn
p

CWf (x) (mod p).
The following definition informally describes a special type of monomial of CWf that is of
particular interest in the proof. For the precise definition, we refer to Section 4.

I Definition 2 (Max-Degree Monic Monomials (Informal)). Let f ∈ Fp[x]m. A monic
monomial of CWf refers to a monic monomial obtained when symbolically expanding CWf as
a sum of monic monomials. A monic monomial is said to be of max-degree if it is

∏n
j=1 x

p−1
j .

In the above definition, it is important to consider the symbolic expansion of CWf and
ignore any cancellation of coefficients that might occur. Observe that, although the expansion
of CWf is exponentially large in the description size of f , each monic monomial of CWf can
be succinctly described as a combination of monic monomials of the polynomials f1, . . . , fm.
We formally discuss this in Section 4.

Using the definition of max-degree monic monomials, we state the main technical lemma
underlying the proof of CWT (with proof in Section 4).

I Chevalley–Warning Lemma. For any prime p and f ∈ Fp[x]m,

|Vf | ≡ (−1)n · | {max-degree monic monomials of CWf} | (mod p) (CW Lemma)

The Chevalley-Warning Theorem now follows by observing that if
∑m
i=1 deg(fi) < n then the

number of max-degree monic monomials of CWf is zero. Hence, we get that |Vf | ≡ 0 (mod p).

1.2.2 Proofs of Cancellation
From the proof sketch of CWT in the previous section, a slight generalization of CWT follows.
In particular, |Vf | ≡ 0 (mod p) if and only if∣∣{max-degree monic monomials of CWf}

∣∣ ≡ 0 (mod p) , (Extended CW Condition)

Any condition on f that implies the (Extended CW Condition) can replace (CW Condition)
in the Chevalley-Warning Theorem. Note that the (Extended CW Condition) is equivalent
to all the max-degree monic monomials in CWf cancelling out. Thus, we call any such
condition on f that implies (Extended CW Condition) to be a “proof of cancellation” for
the system f .

We can now reinterpret the result of Belovs et al. [8] in this framework of “proof of
cancellation” conditions. In particular, [8] considers the case p = 2 and defines the problem
PPA-Circuit-Chevalley, in which a “proof of cancellation” is given in a specific form of
circuits. These circuits describe the system (f1, . . . , fm) in the PPA-Circuit-Chevalley
problem. It is then shown that PPA-Circuit-Chevalley is PPA2-complete.

1.2.3 Computational Problems Based on Chevalley-Warning Theorem
Every “proof of cancellation” that is syntactically refutable can be used to define a total
search problem that lies in PPAp. By syntactically refutable we mean that whenever the
“proof of cancellation” is false, there exists a small witness that certifies so. In this section,

CCC 2020

19:6 On the Complexity of Modulo-q Arguments and the Chevalley–Warning Theorem

we define three computational problems with their corresponding “proof of cancellation”: (1)
the Chevalleyp problem defined by [33], (2) the GeneralChevalleyp problem that is a
generalization of Chevalleyp, and (3) the problem ChevalleyWithSymmetryp that we
show to be PPAp-complete. All these problems are defined for every prime modulus p and
are natural in the sense that they do not explicitly involve a circuit or a Turing Machine in
their input. In particular, the polynomial systems in the input are explicit in that they are
given as a sum of monic monomials.

1.2.3.1 Chevalley

This is the direct computational analog of the Chevalley-Warning Theorem and was defined
by Papadimitriou [33] as the following total search problem:

Chevalleyp
Given an explicit polynomial system f ∈ Fp[x]m, and an x? ∈ Vf , output one of the
following:
. [Refuting witness] (CW Condition) is not satisfied.
. x ∈ Vf r {x?}.
We will particularly consider a special case where all the fi’s have zero constant term (zecote,
for short). In this case, x? = 0 ∈ Vf , so there is no need to explicitly include x∗ in the input.

1.2.3.2 General Chevalley

As mentioned already, we can define a search problem corresponding to any syntactically
refutable condition that implies the (Extended CW Condition). One such condition is to
directly assert that

{max-degree monic monomials of CWf} = ∅. (General CW Condition)

In particular, note that (CW Condition) implies this condition. Moreover, this condition is
syntactically refutable by a max-degree monic monomial, which is efficiently representable as
a combination of at most m(p− 1) monomials of the fi’s. Thus, we can define the following
total search problem generalizing Chevalleyp.

GeneralChevalleyp
Given an explicit polynomial system f ∈ Fp[x]m and an x? ∈ Vf , output one of the following:
. [Refuting Witness] A max-degree monic monomial of CWf .
. x ∈ Vf r {x?}.

While GeneralChevalleyp generalizes Chevalleyp, it does not capture the full general-
ity of (Extended CW Condition). However (Extended CW Condition) is not syntactically
refutable (in fact, it is ModpP–complete to decide5 if the final coefficient of the max-degree
monomial is 0).

A natural question then is whether GeneralChevalleyp, or even Chevalleyp, could
already be PPAp–complete. We believe this to be unlikely because (General CW Condition)
seems to fail in capturing other simple conditions that are syntactically refutable and yet
imply (Extended CW Condition). Namely, consider a permutation permutation σ ∈ Sn of

5 Circuit-SAT can be encoded as satisfiability of a polynomial system f ∈ Fp[x]m by including a
polynomial for each gate along with

{
x2

i − xi = 0
}
to ensure Booleanity. Thus, number of satisfiable

assignments to the Circuit-SAT is ≡ |Vf | (mod p), which is 0 (mod p) iff the final coefficient of the
max-degree monomial is 0.

M. Göös, P. Kamath, K. Sotiraki, and M. Zampetakis 19:7

the variables x1, . . . , xn of order p (i.e. σp is the identity permutation). Suppose that for every
x ∈ Vf , it holds that σ(x) ∈ Vf r {x}; in other words x, σ(x), σ2(x), . . . , σp−1(x) are all
distinct and in Vf (where, σ(x) denotes the assignment obtained by permutating the variables
of the assignment x according to σ). This implies that the elements of Vf can be partitioned
into groups of size p (given by the orbits of the action σ) and hence |Vf | ≡ 0 (mod p). Hence,
such a σ provides a syntactically refutable proof that |Vf | ≡ 0 (mod p) and hence that
(Extended CW Condition) hold.

Hence, we further generalize GeneralChevalleyp into a problem that incorporates
this additional “proof of cancellation” in the form of a permutation σ ∈ Sn.

1.2.3.3 Chevalley with Symmetry

We consider a union of two polynomial systems g ∈ Fp[x]mg and h ∈ Fp[x]mh . Even if both
g and h satisfy (CW Condition), the combined system f := (g1, . . . , gmg

, h1, . . . , hmh
) might

not satisfy (CW Condition) and it might even be the case that |Vf | is not a multiple of p.
Thus, we need to bring in some additional conditions.

We start by observing that since |Vf |+ |Vf | = pn, it holds that |Vf | ≡ 0 (mod p) if and
only if |Vf | ≡ 0 (mod p). Also note that, |Vf | = |Vg|+ |(Vg ∩ Vh)|.

If g satisfies the (General CW Condition) then we have that |Vg| ≡ |Vg| ≡ 0 (mod p).
A simple way to enforce that |Vg ∩ Vh| ≡ 0 (mod p) is to enforce a “symmetry”, namely
that its elements can be grouped into groups of size p each. We impose this grouping with a
permutation σ ∈ Sn of the variables x1, . . . , xn of order p such that for any x ∈ Vg ∩ Vh, it
holds that σ(x) ∈ (Vg ∩ Vh) r {x}; or in other words that x, σ(x), σ2(x), . . . , σp−1(x) are
all distinct and contained in Vg ∩ Vh.

We now define the following natural total search problem.

ChevalleyWithSymmetryp
Given two explicit polynomial systems g ∈ Fp[x]mg and h ∈ Fp[x]mh , and an x? ∈ Vf (where
f := (g,h)) and a permutation σ ∈ Sn of order p, output one of the following:
. [Refuting Witness – 1] A max-degree monic monomial of CWg.
. [Refuting Witness – 2] x ∈ Vg ∩ Vh such that σ(x) /∈ (Vg ∩ Vh) r {x}.
. x ∈ Vf r {x?}.

The above problem is natural, because the input consists of a system of polynomial in an
explicit form, i.e. as a sum of monic monomials, together with a permutation in Sn given say
in one-line notation. Also, observe that when h is empty, the above problem coincides with
GeneralChevalleyp (since Vh = ∅ when h is empty). Our main result is the following
(proved in Section 4).

I Theorem 3. For any prime p, ChevalleyWithSymmetryp is PPAp-complete.

1.3 Complete Problems via Small Depth Arithmetic Formulas
While the ChevalleyWithSymmetryp problem may seem somewhat contrived, the im-
portance of its PPAp-completeness is illustrated by our next result (proved in Section 5)
showing that we can reformulate any of the proposed definitions of PPAp, by restricting the
circuit in the input to be just constant depth arithmetic formulas with gates × (mod p) and
+ (mod p) (we call this class AC0

Fp
). This result is analogous to the NP-completeness of SAT

which basically shows that CircuitSAT remains NP-complete even if we restrict the input
circuit to be a (CNF) formula of depth 2.

CCC 2020

19:8 On the Complexity of Modulo-q Arguments and the Chevalley–Warning Theorem

I Theorem 4. Lonelyp/Bipartitep/Leafp with AC0
Fp

input circuits are PPAp–complete.

We hope that this theorem will be helpful in the context of proving PPAp-hardness of other
problems. There it would be enough to consider only constant depth arithmetic formulas
(and hence NC1 Boolean formulas) in the definitions of PPAp as opposed to unbounded depth
circuits. Such a simplification has been a key-step for proving hardness results for other
TFNP subclasses, e.g. in the PPAD-hardness proofs of approximate-Nash (cf. [35]).

1.4 Applications of Chevalley-Warning
Apart from its initial algebraic motivation, the Chevalley-Warning theorem has been used to
derive several non-trivial combinatorial results. Alon et al. [3] show that adding an extra
edge to any 4-regular graph forces it to contain a 3-regular subgraph. More generally, they
prove that certain types of “almost” regular graphs contain regular subgraphs. Another
application of CWT is in proving zero-sum theorems similar to the Erdös-Ginzburg-Ziv
Theorem. A famous such application is the proof of Kemnitz’s conjecture by Reiher [34].

We define two computational problems that we show are reducible to Chevalleyp and
suffice for proving most of the combinatorial applications of the Chevalley-Warning Theorem
mentioned above (for a certain range of parameters n and m). Both involve finding solutions
to a system of linear equations modulo q, given as Ax ≡ 0 (mod q) for A ∈ Zm×n.

. BISq: Find x ∈ {0, 1}n satisfying x 6= 0 and Ax ≡ 0 (mod q).

. SISq: Find x ∈ {−1, 0, 1}n satisfying x 6= 0 and Ax ≡ 0 (mod q).
The second problem is a special case of the well-known short integer solution problem in
`∞ norm. Note that, when n > m · log2 q, the totality of SISq is guaranteed by pigeonhole
principle; that is, SISq is in PPP in this range of parameters. We are interested in identifying
the range of parameters that places this problem in PPAq – see Definitions 40 and 41 for the
precise range of parameters n and m that we consider. In Theorem 42, we prove a formal
version of the following:

I Theorem (Informal). For a certain range of parameters n,m, it holds that
1. For all primes p : BISp and SISp are Karp-reducible to Chevalleyp, hence are in PPAp.
2. For all q : BISq and SISq are Turing-reducible to any PPAq–complete problem.
3. For all k : BIS2k is solvable in polynomial time.
4. For k and ` : SIS2k3` is solvable in polynomial time.
Even though the SISq problem is well-studied in lattice theory, not many results are known
in the regime where q is a constant and the number of variables depends linearly on the
number of equations. Part (1) of the above theorem establishes a reduction from SISp to
Chevalleyp for prime p. Part (2) follows by a bootstrapping method that allows us to
combine algorithms for SISq1 and SISq2 to give an algorithm for SISq1q2 (for a certain regime
for parameters n and m). Finally Parts (3) and (4) results follow by using this bootstrapping
method along with the observation that Gaussian elimination provides valid solutions for
BIS2 (hence also SIS2) and for SIS3.

1.5 Structural properties
Relation to other classes

Buss and Johnson [13, 27] had defined a class PMODq which turns out to be slightly weaker
than PPAq (refer to Section 7). Despite this slight difference between the definitions of PPAq
and PMODq, we can still deduce statements about PPAq from the work of [27]. In particular,
it follows that PPAD ⊆ PPAq (refer to Subsection 7.1).

M. Göös, P. Kamath, K. Sotiraki, and M. Zampetakis 19:9

FP

CLS

PPAD

PPADS

PLSPPP PPA · · · PPAp

⋂
p PPAp

TFNP

Figure 1 The landscape of TFNP subclasses. A solid arrow M1 → M2 denotes M1 ⊆ M2, and a
dashed arrow M1 99K M2 denotes an oracle separation: MO1 * MO2 relative to some oracle O. The
relationships involving PPAp are highlighted in yellow. See Section 7 for details.

More broadly, a near-complete picture of the power of PPAq relative to other subclasses
of TFNP is summarized in Figure 1. These relationships (inclusions and oracle separations)
mostly follow from prior work in proof complexity [6, 12, 27, 23] (refer to Subsection 7.2).

Closure under Turing reductions

Recall that TFNP subclasses are defined as the set of all total search problems that are
many-one reducible (aka Karp–reducible) to the corresponding complete problems. One can
ask whether more power is gained by allowing Turing reductions, that is, polynomially many
oracle queries to the corresponding complete problem. Buss and Johnson [13] showed that
PLS, PPAD, PPADS, PPA are closed under Turing reductions (with a notable exception of
PPP, which remains open). We show this for PPAp when p is a prime.

I Theorem 5. FPPPAp = PPAp for every prime p.

By contrast, it follows from [13, §6] that PPAq is not closed under black-box Turing reductions
for non-prime powers q. See Subsection 7.3 for details.

1.6 Open questions
Factoring

It has been shown that Factoring reduces to PPP-complete problems as well as to PPA-
complete problems [11, 26], albeit under randomized reductions (which can be derandom-
ized assuming the Generalized Reimann Hypothesis). It has been asked whether in fact
Factoring could be reduced to PPAD-complete problems [26]. As a step towards this
problem, we propose the following question.

I Open Problem 1. Is Factoring in PPAp for all primes p (perhaps under randomized
reductions)?

CCC 2020

19:10 On the Complexity of Modulo-q Arguments and the Chevalley–Warning Theorem

This is clearly an easier problem since PPAD ⊆ PPAp. Interestingly, note that there exists an
oracle O relative to which

⋂
p PPAOp * PPADO. Thus, the above problem, even if established

for all prime p, is still weaker than showing that Factoring reduces to PPAD-complete
problems.

Necklace Splitting

The q-Necklace-Splitting problem is defined as follows: There is an open necklace6 with
q · ai beads of color i, for i ∈ [n]. The goal is to cut the necklace in (q − 1) · n places and
partition the resulting substrings into k collections, each containing precisely ai beads of
color i for each i ∈ [n].

The fact that such a partition exists was first shown in the case of q = 2 by Goldberg and
West [22] and by Alon and West [4]. Later, Alon [2] proved it for all q ≥ 2. As mentioned
before, Filos-Ratsikas and Goldberg [21] showed that the 2-Necklace-Splitting problem
is PPA-complete. Moreover, they put forth the following question (which we strengthen
further).

I Open Problem 2. Is q-Necklace-Splitting in PPAq? More strongly, is it PPAq-
complete?

While we do not know how to prove/disprove this yet, we point out that it was also shown
in [21] that 2k-Necklace-Splitting is in fact in PPA2. This is actually well aligned with
this conjecture since we showed that PPA2k = PPA2 (Theorem 1).

Bárány-Shlosman-Szücs theorem

Alon’s proof of the q-Necklace-Splitting theorem [2] was topological and used a certain
generalization of the Borsuk-Ulam theorem due to Bárány, Shlosman and Szücs [14]. Since
the computational Borsuk-Ulam problem is PPA-complete, we could ask a similar question
about this generalization.

I Open Problem 3. Is Bárány-Shlosman-Szücsp problem in PPAp (perhaps even PPAp-
complete)?

Applications of Chevalley-Warning Theorem

We conclude with some interesting directions for further exploring the connections of
Chevalley with other computational problems.

I Open Problem 4. Does SISq admit worst-to-average case reductions to other lattice prob-
lems in our range of parameters? Or is it average-case hard assuming standard cryptographic
assumptions, e.g. the “learning with errors” assumption?

If resolved positively, the above would serve as evidence of the average-case hardness for the
class PPAp, similar to the evidence that we have for PPA by reduction from Factoring.

I Open Problem 5. For all primes p, is Chevalleyp reducible to BISp?

I Open Problem 6. For all q, is there a non-trivial regime of parameters n, m where BISq
is solvable in polynomial time?

6 an “open necklace” means that the beads form a string, not a cycle

M. Göös, P. Kamath, K. Sotiraki, and M. Zampetakis 19:11

2 The class PPAq

Search Problems in FNP and TFNP

A search problem in FNP is defined by a polynomial time computable relation R ⊆ {0, 1}∗ ×
{0, 1}∗, that is, for every (x, y), it is possible to decide whether (x, y) ∈ R in poly(|x|, |y|)
time. A solution to the search problem on input x is a y such that |y| = poly(|x|) and
(x, y) ∈ R. For convenience, define R(x) := {y : (x, y) ∈ R}. A search problem is total if for
every input x ∈ {0, 1}∗, there exists y ∈ R(x) such that |y| ≤ poly(|x|). TFNP is the class of
all total search problems in FNP.

Reducibility among search problems

A search problem R1 is Karp-reducible (or many-one reducible) to a search problem R2, or
R1 � R2 for short, if there exist polynomial-time computable functions f and g such that
given any instance x of R1, f(x) is an instance of R2 such that for any y ∈ R2(f(x)), it
holds that g(x, f(x), y) ∈ R1(x).

On the other hand, we say that R1 is Turing-reducible to R2, or R1 �T R2 for short, if
there exists a polynomial-time oracle Turing machine that on input x to R1, makes oracle
queries to R2, and outputs a y ∈ R1(x). In this paper, we primarly deal with Karp-reductions,
except in Subsection 7.3, where we compare the two different notions of reductions in the
context of PPAq.

PPAq via complete problems

We describe several total search problems (parameterized by q) that we show to be inter-
reducible. PPAq is then defined as the set of all search problems reducible to either one of
the search problems defined below.

Recall that Boolean circuits take inputs of the form {0, 1}n and operate using (∧, ∨, ¬)
gates. In addition, we’ll also consider circuits acting on inputs in [q]n. We interpret the input
to be of the form ({0, 1}dlog qe)n, where the circuit will be evaluated only on inputs where
each block of dlog qe bits represents a element in [q]. In the case where q is a prime, we
could also represent the circuit as C : Fnq → Fnq with arbitrary gates of the form g : F2

q → Fq.
However, we can simulate any such gate with poly(q) many + and × operations (over Fq)
along with a constant (1) gate. Hence, in the case of prime q, we’ll assume that such circuits
are composed of only (+,×, 1) gates.

I Definition 6 (Bipartiteq).
Principle: A bipartite graph with a non-multiple-of-q degree node has another such node.
Object: Bipartite graph G = (V ∪ U,E). Designated vertex v∗ ∈ V
Inputs: . C : {0, 1}n → ({0, 1}n)k, with ({0, 1}n)k interpreted as a k-subset of {0, 1}n

. v∗ ∈ {0} × {0, 1}n−1 (usually 0n)
Encoding: V := {0} × {0, 1}n−1, U := {1} × {0, 1}n−1,

E := {(v, u) : v ∈ V ∩ C(u) and u ∈ U ∩ C(v)}
Solutions: v∗ if deg(v∗) ≡ 0 (mod q) and

v 6= v∗ if deg(v) 6≡ 0 (mod q)

CCC 2020

19:12 On the Complexity of Modulo-q Arguments and the Chevalley–Warning Theorem

I Definition 7 (Lonelyq).
Principle: A q-dimensional matching on a non-multiple-of-q many vertices has an isolated

node.
Object: q-dimensional matching G = (V,E).

Designated vertices V ∗ ⊆ V with |V ∗| ≤ q − 1
Inputs: . C : [q]n → [q]n

. V ∗ ⊆ [q]n with |V ∗| ≤ q − 1
Encoding: V := [q]n. For distinct v1, . . . , vq, edge e := {v1, . . . , vq} ∈ E if C(vi) = vi+1,

C(vq) = v1
Solutions: v ∈ V ∗ if deg(v) = 1 and

v /∈ V ∗ if deg(v) = 0

I Definition 8 (Leafq).
Principle: A q-uniform hypergraph with a non-multiple-of-q degree node has another such

node.
Object: q-uniform hypergraph G = (V,E). Designated vertex v∗ ∈ V
Inputs: . C : {0, 1}n → ({0, 1}nq)q; Interpret ({0, 1}nq)q as q many q-subsets of {0, 1}n

. v∗ ∈ {0, 1}n (usually 0n)
Encoding: V := {0, 1}n. For distinct v1, . . . , vq, edge e := {v1, . . . , vq} ∈ E if e ∈ C(v) for

all v ∈ e
Solutions: v∗ if deg(v) ≡ 0 (mod q) and

v 6= v∗ if deg(v) 6≡ 0 (mod q)

We remark that Lonelyq and Leafq are modulo-q analogs of the PPA-complete problems
Lonely and Leaf [33, 5]. We prove the following theorem in Appendix A.

I Theorem 9. The problems Bipartiteq, Lonelyq and Leafq are inter-reducible.

I Remark 10 (Simplifications in describing reductions.). We will use the following simple
conventions repeatedly, in order to simplify the descriptions of reductions between different
search problems.
1. We will often use “algorithms”, instead of “circuits” to encode our hypergraphs. It is

standard to simulate polynomial-time algorithms by polynomial sized circuits.
2. While our definitions require vertex sets to be of a very special form, e.g. {0, 1}n or [q]n,

it will hugely simplify the description of our reductions to let vertex sets be of arbitrary
sizes. This is not a problem as long as the vertex set is efficiently indexable, that is,
elements of V must have a poly(n) length representation and we must have a poly-time
computable bijective map ϕ : V → [|V |], whose inverse is also poly-time computable. We
could then use ϕ to interpret the first |V | elements of {0, 1}n (or [q]n) as vertices in V .
Note that, we need to ensure that no new solutions are introduced in this process. In
the case of Bipartiteq or Leafq, we simply leave the additional vertices isolated and
they don’t contribute any new solutions. In the case of Lonelyq we need to additionally
ensure that |V | ≡ 0 (mod q), so that we can easily partition the remaining vertices into
q-uniform hyperedges thereby not introducing any new solutions.

3. The above simplification gives us that all our problems have an instance-extension property
(cf. [10]) – this will be helpful in proving Theorem 5.

4. To simplify our reductions even further, we’ll often describe the edges/hyperdges directly
instead of specifying how to compute the neighbors of a given vertex. This is only for
simplicity and it will be easy to see how to compute the neighbors of any vertex locally.

M. Göös, P. Kamath, K. Sotiraki, and M. Zampetakis 19:13

Bipartitep

Leafp

Leaf′p

Lonelyp

SuccinctBipartitep

TwoMatchingsp

ChevalleyWithSymmetryp

GeneralChevalleyp

Chevalleyp

SISp

Figure 2 Total search problems studied in this work. An arrow A→ B denotes a reduction A � B

that we establish. Problems in the blue region are non-natural problems, which are all complete for
PPAp. Problems in the green region are natural problems of which ChevalleyWithSymmetryp is
the one we show to be PPAp–complete. The problem in the orange region is a cryptographically
relevant problem.

3 Characterization via Primes

In this section we prove Theorem 1, namely PPAq = &p|q PPAp. The theorem follows by
combining the following two ingredients.
§3.1: PPAqr = PPAq & PPAr for any coprime q and r.
§3.2: PPApk = PPAp for any prime power pk.

3.1 Coprime case

PPAqr ⊇ PPAq & PPAr

We show that Lonelyq & Lonelyr reduces to Lonelyqr. Recall that an instance of
Lonelyq & Lonelyr is a tuple (C, V ∗, b) where (C, V ∗) describes an instance of either
Lonelyq or Lonelyr as chosen by b ∈ {0, 1}. Suppose wlog that b = 0, so the input
encodes a q-dimensional matching G = (V,E) over V = [q]n with designated vertices
V ∗ ⊆ V , |V ∗| 6≡ 0 (mod q). We can construct a qr-dimensional matching G = (V ,E) on
vertices V := V × [r] as follows: For every hyperedge e := {v1, . . . , vq} ∈ E, we include the
hyperedge e × [r] in E. We let the designated vertices of G be V ∗ := V ∗ × [r]. Note that
|V ∗| 6≡ 0 (mod qr). It is easy to see that a vertex (v, i) is isolated in G′ iff v is isolated in G.
This completes the reduction since V is efficiently indexable, and the neighbors of any vertex
in V are locally computable using black-box access to C.

PPAqr ⊆ PPAq & PPAr

We show that Bipartiteqr reduces to Bipartiteq & Bipartiter. Our input instance of
Bipartiteqr is a circuit C : {0, 1}n → ({0, 1}n)k that encodes a bipartite graph G = (V ∪
U,E) with a designated node v∗ ∈ V . If deg(v∗) ≡ 0 (mod qr), then we already have solved
the problem and no further reduction is necessary. Otherwise, if deg(v∗) 6≡ 0 (mod qr), we
have, by the coprime-ness of q and r, that either deg(v∗) 6≡ 0 (mod q) or deg(v∗) 6≡ 0 (mod r).
In the first case (the second case is analogous), we can simply view (G, v∗) as an instance of
Bipartiteq, since vertices with degree 6≡ 0 (mod q) in G are also solutions to Bipartiteqr.

CCC 2020

19:14 On the Complexity of Modulo-q Arguments and the Chevalley–Warning Theorem

V ∗

Figure 3 Illustration of the proof of PPApk ⊆ PPAp for p = 2, k = 2, n = 2, t = 1. In black,
we indicate the 4-dimensional matching G. In color, we highlight some of the vertices of G and
the edges between them. The vertices of G in red, blue and green are paired up and hence are
non-solutions; whereas the vertex in yellow is isolated and not in V

∗ and hence a solution.

3.2 Prime power case
PPApk ⊇ PPAp follows immediately from our proof of PPAqr ⊇ PPAq & PPAr, which didn’t
require that q and r be coprime. It remains to show PPApk ⊆ PPAp. We exploit the following
easy fact.

I Fact 11. For all primes p, it holds that,

for integers t, c > 0 :
(
c · pt

pt

)
≡ 0 (mod p) if and only if c ≡ 0 (mod p) (3.1)

for integer k > 0 :
(
pk

i

)
≡ 0 (mod p) for all 0 < i < pk (3.2)

We reduce Lonelypk to Lonelyp. Our instance of Lonelypk is (C, V ∗) where C implicitly
encodes a pk-dimensional matching G = (V = [pk]n, E) and a designated vertex set V ∗ ⊆ V
such that |V ∗| 6≡ 0

(
mod pk

)
.

Let pt, 0 ≤ t < k, be the largest power of p that divides |V ∗|. Through local operations
we construct a p-dimensional matching hypergraph G = (V ,E) over vertices V :=

(
V
pt

)
(set

of all size-pt subsets of V) with designated vertices V ∗ :=
(
V ∗

pt

)
. From Eq. 3.1, we get that

|V | ≡ 0 (mod p) and |V ∗| 6≡ 0 (mod p).
We will describe an algorithm that on vertex v ∈ V outputs a hyperedge of p vertices that

contains v (if any). To this end, first fix an algorithm that for any set e :=
{
u1, . . . , upk

}
⊆ V

and for any 1 ≤ i ≤ pt, computes some “canonical” partition of the set
(
e
i

)
into subsets of

size p, and moreover assigns a canonical cyclic order within each such subset. This is indeed
possible because of Eq. 3.2, since t < k.

Given a vertex v := {v1, . . . , vpt} ∈ V ,
. Compute all edges e1, . . . , e` ∈ E that include some v ∈ v.
. For edge ej , define Sj := ej ∩ v and let S1

j , . . . , S
p−1
j be the remaining subsets in the

same partition as Sj in the canonical partition of
(ej

|Sj |
)
, listed in the canonical cyclic

order starting at Sj . Also, let S0 be the set of untouched vertices in v. Observe that
v = S0 ∪ S1 ∪ . . . ∪ S`.

. Output neighbors of v as the vertices v1, . . . , vp−1 where vi := S0 ∪ Si1 ∪ . . . ∪ Si`.
It is easy to see that v is isolated in G iff all v ∈ v are isolated in G. Moreover, any isolated
vertex in V r V

∗ contains at least one isolated vertex in V r V ∗; and a non-isolated vertex
in V ∗ contains at least one non-isolated vertex in V ∗ (in fact pt many).

The edges of G can indeed be computed efficiently with just black-box access to C. In
order to complete the reduction, we only need that V is efficiently indexable. This is indeed
standard; see [31, §2.3] for a reference. See Figure 3 for an illustration of the proof.
I Remark 12. Note that the size of the underlying graph blows up polynomially in our
reduction. We do not know whether a reduction exists that avoids such a blow-up, although
we suspect that the techniques of [6] can be used to show that some blow-up is necessary for
black-box reductions.

M. Göös, P. Kamath, K. Sotiraki, and M. Zampetakis 19:15

4 A Natural Complete Problem

We start with some notations that will be useful for the presentation of our results.

Notations. For any polynomial g ∈ Fp[x], we define deg(g) to be the degree of g. We define
the expansion to monic monomials of g as

∑L
`=1 t`(x), where t`(x) is a monic monomial in

Fp[x], i.e. a monomial with coefficient 1. For example, the expansion of the polynomial
g(x1, x2) = x1 · (2x1 + 3x2) is given by x2

1 + x2
1 + x1x2 + x1x2 + x1x2.

For a polynomial system f := (f1, . . . , fm) ∈ Fp[x]m, its affine variety Vf ⊆ Fnp is defined
as Vf :=

{
x ∈ Fnp | f(x) = 0

}
. Let Vf := Fnp \ Vf . If the constant term of each fi is 0, we

say that f is zecote, standing for “Zero Constant Term” (owing to lack of known terminology
and creativity on our part).

4.1 The Chevalley-Warning Theorem
We repeat the formal statement of Chevalley-Warning Theorem together with its proof.

I Chevalley-Warning Theorem ([15, 37]). For any prime p and a polynomial system f ∈
Fp[x]m satisfying

∑m
i=1 deg(fi) < n (CW Condition), |Vf | ≡ 0 (mod p).

We describe the proof of CWT through Lemma 14. Even though there are direct
proofs, the following presentation helps motivate the generalizations we study in future
sections. Given a polynomial system f ∈ Fp[x]m, a key idea in the proof is the polynomial
CWf (x) :=

∏m
i=1 CWfi(x) where each CWfi(x) := (1−fi(x)p−1). Observe that CWf (x) = 1

if x ∈ Vf and is 0 otherwise. The following definition describes the notion of a max-degree
monomial of CWf that plays an important role in the proof.

I Definition 13 (Max-Degree Monic Monomials). For any prime p, let f ∈ Fp[x]m and
let the expansion into monic monomials of CWfi(x) be

∑ri

`=1 ti,`(x). Let also Ui = {(i, `) |
` ∈ [ri]} and U =×m

i=1 Ui, we define the following quantities.
1. A monic monomial of CWf is a product tS(x) =

∏m
i=1 tsi(x) for S = (s1, . . . , sm) ∈ U .

2. A max-degree monic monomial of CWf is any monic monomial tS(x), such that
tS(x) ≡

∏n
j=1 x

p−1
j

(
mod {xpi − xi}i∈[n]

)
.

3. We defineMf to be the set of max-degree monic monomials of CWf , i.e.
Mf := {S ∈ U | tS is a max-degree monic monomial of CWf}.

In words, the monomials t(S) are precisely the ones that arise when symbolically expanding
CWf (x). We illustrate this with an example: Let p = 3 and f1(x1, x2) = x1 + x2 and
f2(x1, x2) = x2

1. Then modulo
{
x3

1 − x1, x
3
2 − x2

}
, we have

CW(f1,f2)(x1, x2) = (1− (x1 + x2)2)(1− (x2
1)2)

= (1− x2
1 − 2x1x2 − x2

2) · (1− x2
1)

= (1 + x2
1 + x2

1 + x1x2 + x2
2 + x2

2) · (1 + x2
1 + x2

1)

Thus there are 18 (= 6 × 3) monic monomials in the system (f1, f2). The monomial
corresponding to S = ((1, 5), (2, 2)) is a maximal monomial since the 5-th term in CWf1 is x2

2
and 2-nd term in CWf2 is x2

1. Using the above definitions, we now state the main technical
lemma of the proof of CWT.

I Lemma 14 (Main Lemma in the proof of CWT). For any prime p and any system of
polynomials f ∈ Fp[x]m, it holds that |Vf | ≡ (−1)n |Mf | (mod p).

CCC 2020

19:16 On the Complexity of Modulo-q Arguments and the Chevalley–Warning Theorem

Proof. As noted earlier, CWf (x) = 1 if x ∈ Vf and is 0 otherwise. Thus, it follows that
|Vf | ≡

∑
x∈Fn

p
CWf (x) (mod p). For any monic monomial m(x) =

∏n
j=1 x

dj

j , it holds that∑
x∈Fn

p
m(x) = 0 if dj < p− 1 for some xj . On the other hand, for the monic max-degree

monomialm(x) =
∏n
j=1 x

p−1
j , it holds that

∑
x∈Fn

p
m(x) = (p−1)n. Thus, we get that |Vf | ≡∑

x∈Fn
p

CWf (x) (mod p) ≡
∑
S∈U

∑
x∈Fn

p
tS(x) (mod p) ≡ (−1)n|Mf | (mod p). J

The proof of Chevalley-Warning Theorem follows easily from Lemma 14.

Proof of Chevalley-Warning Theorem. We have that deg(CWf) ≤ (p − 1)
∑m
i=1 deg(fi).

Thus, if f satisfies (CW Condition), then deg(CWf) < (p− 1)n and hence |Mf | = 0. CWT
now follows from Lemma 14. J

4.2 The Chevalley-Warning Theorem with Symmetry
In this section, we formalize the intuition that we built in Sections 1.2.2 and 1.2.3 to prove the
more general statements to lead to the same conclusion as the Chevalley-Warning Theorem.

First, we prove a theorem that argues about the cardinality of Vf directly using some
symmetry of the system of polynomials f . Then, combining this symmetry-based argu-
ment with the (General CW Condition) we get the generalization of the Chevalley-Warning
Theorem. Our natural PPAp-complete problem is based on this generalization.

The theorem statements are simplified using the definition of free action of a group. For
a permutation over n elements σ ∈ Sn, we define 〈σ〉 to be the sub-group generated by σ and
|σ| to be the order of 〈σ〉. For x ∈ Fnp , σ(x) denotes the assignment obtained by permutating
the variables of the assignment x according to σ.

I Definition 15 (Free Group Action). Let σ ∈ Sn and V ⊆ Fnp , then we say that 〈σ〉
acts freely on V if, for every x ∈ V, it holds that σ(x) ∈ V and x 6= σ(x).

Our first theorem highlights the use of symmetry in arguing about the size of |Vf |.

I Theorem 16. Let f ∈ Fp[x]m be a system of polynomials. If there exists a permutation
σ ∈ Sn with |σ| = p such that 〈σ〉 acts freely on Vf , then |Vf | ≡ 0 (mod p).

Proof. Since σ acts freely on Vf , we can partition Vf into orbits of any x ∈ Vf under
actions of 〈σ〉, namely sets of the type

{
σi(x)

}
i∈[p] for x ∈ Vf . Since 〈σ〉 acts freely on Vf ,

each such orbit has size p. Thus, we can conclude that
∣∣Vf

∣∣ ≡ 0 (mod p) from which the
theorem follows. J

I Remark 17. For any polynomial system f and any permutation σ, we can check in linear
time if |σ| = p and we can syntactically refute that 〈σ〉 acts freely on Vf with an x ∈ Fnpr{0}
such that f(σ(x)) = 0 or σ(x) = x.

We now state and prove an extension of CWT that captures both the argument from
Lemma 14 and the symmetry argument from Theorem 16.

I Theorem 18 (Chevalley-Warning with Symmetry Theorem). Let g ∈ Fp[x]mg and
h ∈ Fp[x]mh be two systems of polynomials, and f := (g,h). If there exists a permutation
σ ∈ Sn with |σ| = p such that (1) Mg = ∅ and (2) 〈σ〉 acts freely on Vg ∩ Vh, then
|Vf | = 0 (mod p).

M. Göös, P. Kamath, K. Sotiraki, and M. Zampetakis 19:17

I Remark 19. We point to the special form of Condition 2. By definition, Vf = Vg∩Vh, hence
if 〈σ〉 were to act freely on Vg ∪ Vh (or even Vg ∩ Vh), then we could just use Theorem 16
to get that |Vf | ≡ 0 (mod p). In the above theorem, we only require that 〈σ〉 acts freely
on Vg ∩ Vh. Observe that Theorem 16 follows as a special case of CWT with Symmetry
by setting mg = 0. Additionally, by setting mh = 0 we get the generalization of CWT
corresponding to the (General CW Condition) as presented in Subsubsection 1.2.3.

Proof of Theorem 18. If CWg does not have any max- degree monic monomials, we have
|Vg| ≡ 0 (mod p) (similar to proof of CWT) and, since Vg = Fnp \ Vg, we have

∣∣Vg

∣∣ ≡
0 (mod p). Also, since 〈σ〉 acts freely on Vg ∩ Vh, we have

∣∣Vg ∩ Vh

∣∣ ≡ 0 (mod p) (similar
to the proof of Theorem 16). Hence,

∣∣Vf

∣∣ =
∣∣Vg ∩ Vh

∣∣ =
∣∣Vg ∪ Vh

∣∣ =
∣∣Vg

∣∣ +
∣∣Vg ∩ Vh

∣∣ ≡
0 (mod p). Thus, |Vf | ≡ 0 (mod p). J

4.3 Computational Problems Related to Chevalley-Warning Theorem
We now follow the intuition developed in the previous section and in Subsection 1.2 to
formally define the computational problems Chevalleyp, GeneralChevalleyp, and
ChevalleyWithSymmetryp.

I Definition 20 (Chevalleyp).
Principle: Chevalley-Warning Theorem.
Input: f ∈ Fp[x]m : an explicit zecote polynomial system.
Condition:

∑m
i=1 deg(fi) < n.

Output: x ∈ Fnp such that x 6= 0 and f(x) = 0.

I Definition 21 (GeneralChevalleyp).
Principle: General Chevalley-Warning Theorem via (General CW Condition).
Input: f ∈ Fp[x]m : an explicit zecote polynomial system.
Output: 0. A max-degree monic monomial tS(x) of CWf , or

1. x ∈ Fnp such that x 6= 0 and f(x) = 0.

I Definition 22 (ChevalleyWithSymmetryp).
Principle: Chevalley-Warning Theorem with Symmetry (Theorem 18).
Input: . g ∈ Fp[x]mg and h ∈ Fp[x]mh : explicit zecote polynomial systems

. σ ∈ Sn : a permutation over [n].
Condition: |σ| = p.
Output: 0. (a) A max-degree monic monomial tS(x) of CWg, or

(b) x ∈ Vg ∩ Vh such that σ(x) 6∈ (Vg ∩ Vh) r {x}, or
1. x ∈ Fnp such that x 6= 0 and f(x) = 0.

I Remark 23. Some observations about the above computational problems follow:
1. In the problems GeneralChevalleyp and ChevalleyWithSymmetryp, we assume

that, if the output is a max-degree monic monomial, this is given via the multiset of
indices S that describes the monomial as formalized in Definition 13.

2. We have that Chevalleyp � GeneralChevalleyp � ChevalleyWithSymmetryp.
Thus, inclusion of ChevalleyWithSymmetryp in PPAp implies that both Chevalleyp
and GeneralChevalleyp are also in PPAp. Also, in Section 6 we prove that SISp
reduces to Chevalleyp, where SISp is a cryptographically relevant problem. This shows
that the problems GeneralChevalleyp and ChevalleyWithSymmetryp are at least
as hard as SISp.

We restate our main result.

I Theorem 3. For any prime p, ChevalleyWithSymmetryp is PPAp-complete.

CCC 2020

19:18 On the Complexity of Modulo-q Arguments and the Chevalley–Warning Theorem

4.4 ChevalleyWithSymmetryp is PPAp–complete
4.4.1 ChevalleyWithSymmetryp is in PPAp

Even though Papadimitriou [33] provided a rough proof sketch of Chevalleyp ∈ PPAp, a
formal proof was not given. We show that ChevalleyWithSymmetryp is in PPAp (and
so are GeneralChevalleyp and Chevalleyp). In order to do so we extend the definition
of Bipartiteq to instances where the vertices might have exponential degree and edges
appear with multiplicity. The key here is to define a Bipartiteq instance with unbounded
(even exponential) degree, but with additional information that allows us to verify solutions
efficiently.

I Definition 24 (SuccinctBipartiteq).
Principle: Similar to Bipartiteq, but degrees are allowed to be exponentially large, edges

are allowed with multiplicities at most q − 1.
Object: Bipartite graph G = (V ∪ U,E) s.t. E ⊆ V × U × Zq. Designated edge e∗ ∈ E.
Inputs: Let V := {0} × {0, 1}n−1 and U := {1} × {0, 1}n−1:

. C : V × U → [q], edge counting circuit

. φV : V × U × [q]→ (U × [q])q, grouping pivoted at V

. φU : V × U × [q]→ (V × [q])q, grouping pivoted at U

. e∗ = (v∗, u∗, k∗), designated edge
Encoding: V := {0} × {0, 1}n−1, U := {1} × {0, 1}n−1,

E := {(v, u, k) : 1 ≤ k ≤ C(v, u), (v, u) ∈ V × U} (edges with multiplicities)
Edge (v, u, k) is grouped with {(v, u′, k′) : (u′, k′) ∈ φV (v, u, k)} (pivoting at v),
provided |φV (v, u, k)| = q, all (v, u′, k′) ∈ E and φV (v, u′, k′) = φV (v, u, k).

Edge (v, u, k) is grouped with {(v′, u, k′) : (v′, k′) ∈ φU (v, u, k)} (pivoting at u),
provided |φU (v, u, k)| = q, all (v, u′, k′) ∈ E and φU (v′, u, k′) = φV (v, u, k).

Solutions: e∗ if e∗ is grouped, pivoting at v∗, or if e∗ is not grouped pivoting at u∗, OR
e 6= e∗ if e is not grouped pivoting at one of its ends.

In words, SuccinctBipartitep encodes a bipartite graph with arbitrary degree. Instead of
listing the neighbors of a vertex using a circuit, we have a circuit that outputs the multiplicity
of edges between any two given vertices. We are therefore unable to efficiently count the
number of edges incident on any vertex. The grouping function φV aims to group edges
incident on any vertex v ∈ V into groups of size q. Similarly, φU aims to group edges incident
on any vertex u ∈ U . The underlying principle is that if we have an edge e∗ that is not
grouped pivoting at v∗ (one of its endpoints), then either e∗ is not pivoted at u∗ (its other
endpoint) or there exists another edge that is also not grouped pivoting at one of its ends.
Note that in contrast to the problems previously defined, v∗ might still be an endpoint of a
valid solution.

I Lemma 25. For all primes p, ChevalleyWithSymmetryp ∈ PPAp.

Proof. We reduce ChevalleyWithSymmetryp to SuccinctBipartitep, which we show
to be PPAp–complete in Subsection A.1. Given an instance of ChevalleyWithSymmetryp,
namely a zecote polynomial system f = (g,h) and a permutation σ, we construct a bipartite
graph G = (U ∪ V,E) encoded as an instance of SuccinctBipartitep as follows.

Description of vertices. U = Fnp , namely all possible assignments of x. The vertices of
V are divided into two parts V1 ∪ V2. The part V1 contains one vertex for each monomial
in the expansion of CWg =

∏mg

i=1(1 − gp−1
i). Since p is constant, we can efficiently list

out the monomials of 1 − gp−1
i . For a fixed lexicographic ordering of the monomials of

each CWgi
:= 1− gp−1

i , a monomial of CWg is represented by a tuple (a1, a2, . . . , amg) with

M. Göös, P. Kamath, K. Sotiraki, and M. Zampetakis 19:19

0 ≤ ai < Li, where ai represents the index of a monomial of CWgi and Li is the number of
monomials of CWgi

, where ai = 0 corresponds to the constant term 1. The part V2 :=
(Fn

p
p

)
,

i.e. it contains a vertex for each subset of p distinct elements in Fnp .

Description of edges. We first describe the edges between U and V1, namely include an
edge between an assignment x and a monomial t with multiplicity t(x). With these edges in
place, the degree of vertices are as follows:
x = 0n has a single edge corresponding to the constant monomial 1, since f is zecote.
We let this be the designated edge e∗ in the final SuccinctBipartitep instance.
x /∈ Vg has 0 (mod p) edges (counting multiplicities). Since CWg(x) = 0, the sum over
all monomials of t(x) must be 0 (mod p).
x ∈ Vg has 1 (mod p) edges (counting multiplicities), since the sum over all t(x) monomi-
als gives CWg(x) ≡ 1 (mod p).

Thus with the edges so far, the vertices (excluding 0n), with degree 6≡ 0 (mod p) are precisely
vertices t ∈ V1 such that

∑
x t(x) 6≡ 0 (mod p) or x ∈ Vg r {0n}. For the former case, if t

contained a variable with degree less than p− 1, then
∑

x t(x) ≡ 0 (mod p). Hence, it must

be that t =
n∏
i=1

xp−1
i . In the later case, the degree of x is 1 (mod p) and hence x ∈ Vg.

However, there is no guarantee that a vertex x with degree 1 (mod p) is in Vh as well.
To argue about h, we add edges between U and V2 that exclude solutions x ∈ Vg ∩ Vh, on
which σ acts freely (that is, σ(x) = x). More specifically, for x ∈ Vg ∩ Vh, if σ(x) 6= x, we
add an edge with multiplicity p− 1 between x and Σx ∈ V2 where Σx := {σi(x)}i∈Zp

(note
that, in this case |Σx| = p since σ(x) 6= x and |σ| = p is prime). Observe that, if a vertex in
V2 corresponds to a Σx, it has p edges each with multiplicity p− 1, one for each x′ ∈ Σx only
if Σx ⊆ Vg ∩Vh. If a vertex in V2 does not correspond to a Σx, then it has no edges. Thus, a
vertex in V2 has degree 6≡ 0 (mod p) iff it contains an x ∈ Vg ∩Vh such that σ(x) /∈ Vg ∩Vh.

Thus, with all the edges added, vertices with degree 6≡ 0 (mod p) correspond to one of
x ∈ Vg ∩ Vh such that x 6= 0, or
t ∈ V1 such that t(x) is a max-degree monomial or
x ∈ Vg ∩ Vh such that σ(x) = x or
v ∈ V2 such that ∃x ∈ v satisfying x ∈ Vg ∩ Vh and σ(x) /∈ Vg ∩ Vh.

These correspond precisely to the solutions of ChevalleyWithSymmetryp. To summarize,
the edge counting circuit C on input (x, t) ∈ U×V1 outputs t(x) and on input (x, v) ∈ U×V2
outputs p− 1 if x ∈ Vg ∩ Vh, σ(x) 6= x and v = Σx and 0 otherwise.

Grouping Functions. The grouping functions φU and φV are defined as follows (analogous
to the so-called “chessplayer algorithm” in [33]):
. Grouping φU (corresponding to endpoint in U):

For x ∈ Vg: we have that there exists some i such that CWgi
(x) = 0. Consider

an edge of the form (x, (a1, a2, . . . , amg
), k). We can explicitly list out the multiset

containing the monomials tj = (a1, a2, . . . , ai ← j, . . . , amg) with multiplicity tj(x),
for each 1 ≤ j ≤ Li. Since CWgi

(x) = 0, this multiset has size multiple of p. Hence,
we can canonically divide its elements into groups of size p, counting multiplicities and
φU returns the subset containing (t, k).
For x ∈ Vg ∩ Vh such that σ(x) 6= x: Note that gp−1

i (x) = 0 for all i ∈ [mg]. Let
v1 ∈ V1 be the vertex corresponding to the constant monomial 1. φU groups the edge
(x, v1, 1) (of multiplicity 1) with the p−1 edges (x,Σx, k) for k ∈ [p−1]. For any other
t ∈ V1 \ {v1} and an edge (x, t, k), we have that t = (a1, . . . , amg

) has ai 6= 0 for some
i. We define the multiset containing tj = (a1, . . . , ai ← j, . . . amg) with multiplicity
tj(x) for each 1 ≤ j < Li. Since gp−1

i (x) = 0, this multiset has size which is a multiple
of p, which we can canonically partition into groups of size p. Thus, φU on input
(x, t, k) returns the group containing (t, k).

CCC 2020

19:20 On the Complexity of Modulo-q Arguments and the Chevalley–Warning Theorem

. Grouping φV (corresponding to endpoint in V):

For t ∈ V1 such that t 6=
n∏
i=1

xp−1
i : there exists a variable xi with degree less than

p − 1. For xj = (x1, . . . , xi−1, xi ← j, . . . , xn) with j ∈ Fp we define the multiset

{(xj , t(xj))}j∈Fp
. Since

p−1∑
j=0

t(xj) = 0, this multiset has size multiple of p, so we can

canonically partition it into groups of size p. Then, φV (x, t, k) returns the group
containing (x, k),
For v ∈ V2: if deg(v) = 0, then there is no grouping to be done. Else if deg(v) ≡
0 (mod p) then φV (x, t, k) returns {(x, k)}x∈v.

Thus, for any vertex with degree ≡ 0 (mod p), we have provided a grouping function for all
its edges. So, for any edge that is not grouped by grouping function at any of its endpoints,
then such an endpoint must have degree 6≡ 0 (mod p) and hence point to a valid solution of
the ChevalleyWithSymmetryp instance. J

4.4.2 ChevalleyWithSymmetryp is PPAp–hard
We show a reduction from Lonelyp to ChevalleyWithSymmetryp. In the instance of
ChevalleyWithSymmetryp that we create, we will ensure that there are no solutions of
type 0 (as in Definition 22) and thus, the only valid solutions will be of type 1. In order to
do so, we introduce the notions of labeling and proper labeling and prove a generalization of
CWT that we call Labeled CWT (Theorem 30).

As we will see, the Labeled CWT, is just a re-formulation of the original CWT rather
than a generalization. To understand the Labeled CWT we start with some examples that
do not seem to satisfy the Chevalley-Warning condition, but where a solution exists.

Example 1. Consider the case where p = 3 and f(x1, x2) = x2 − x2
1. In this case the

Chevalley-Warning condition is not met, since we have 2 variables and the total degree is also
2. But, let us consider a slightly different polynomial where we replace the variable x2 with
the product of two variables x21, x22 then we get the polynomial g(x1, x21, x22) = x21 ·x22−x2

1.
Now, g satisfies (CW Condition) and hence, we conclude that the number of roots of g is
a multiple of 3. Interestingly, from this fact we can argue that there exists a non-trivial
solution for f(x) = 0. In particular, the assignment x1 = 0, x2 = 0 corresponds to five
assignments of the variables x1, x21, x22. Hence, since |Vg| = 0 (mod 3), g has another root,
which corresponds to a non-trivial root of f . In this example, we applied the CWT on a
slightly different polynomial than f to argue about the existence of non-trivial solutions of f ,
even though f did not satisfy (CW Condition) itself.

Ignore Some Terms. The Labeled CWT formalizes the phenomenon observed in Example
1 and shows that under certain conditions we can ignore some terms when defining the
degree of each polynomial. For instance, in Example 1, we can ignore the term x2

1 when
computing the degree of f and treat f as a degree 1 polynomial of 2 variables, in which case
the condition of CWT is satisfied.

We describe which terms can be ignored by defining a labeling of the terms of each
polynomial in the system. The labels take values in {−1, 0,+1} and our final goal is to
ignore the terms with label +1. Of course, it should not be possible to define any labeling
that we want; for example we cannot ignore all the terms of a polynomial. Next, we describe
the rules of a proper labeling that will allow us to prove the Labeled CWT. We start with a
definition of a labeling.

M. Göös, P. Kamath, K. Sotiraki, and M. Zampetakis 19:21

I Definition 26 (Monomial Labeling). Let f ∈ F[x]m and let tij be the j-th monomial of
the polynomial fi ∈ F[x] (written in some canonical sorted order). Let T be the set of all pairs
(i, j) such that tij is a monomial in f . A labeling of f is a function λ : T → {−1, 0,+1}
and we say that λ(i, j) is the label of tij according to λ.

I Definition 27 (Labeled Degree). For f ∈ F[x]m with a labeling λ, we define the
labeled degree of fi as, degλ(fi) := maxj :λ(i,j)6=+1 deg(tij), in words, maximum degree among
monomials of fi labeled either 0 or −1.

Example 1 (continued). According to the lexicographic ordering, f(x1, x2) = −x2
1 +x2 and

we have the monomials t11 = −x2
1 and t12 = x2. Hence, one possible labeling, which as we

will see later corresponds to the vanilla Chevalley-Warning Theorem, is λ(1, 1) = λ(1, 2) = 0.
According to this labeling, degλ(f) = 2. Another possible labeling, that, as we will see,
allows us to apply the Labeled CWT , is λ(1, 1) = +1 and λ(1, 2) = −1. In this case, the
labeled degree is degλ(f) = 1.

As we highlighted before, our goal is to prove the Chevalley-Warning Theorem, but with
the weaker condition that

∑m
i=1 degλ(fi) < n instead of

∑m
i=1 deg(fi) < n. Of course, we

first have to restrict the space of all possible labelings by defining proper labelings. In order
to make the condition of proper labelings easier to interpret we start by defining the notion
of a labeling graph.

I Definition 28 (Labeling Graph). For f ∈ F[x]m with a labeling λ, we define the
labeling graph Gλ = (U ∪ V,E) as a directed bipartite graph on vertices U = {x1, . . . , xn}
and V = {f1, . . . , fm}. The edge (xj → fi) belongs to E if xj appears in a monomial tir in
fi with label +1, i.e. λ(i, r) = +1. Symmetrically, the edge (fi → xj) belongs to E if the xj
appears in a monomial tir in fi with label −1, i.e. λ(i, r) = −1.

Example 2. Let p = 2 and f1(x1, x2, x3, x4) = x1x2 − x3, f2(x1, x2, x3, x4) = x1x3 − x4. In
this system, if we use the lexicographic monomial ordering we have the monomials t11 = x1x2,
t12 = −x3, t21 = x1x3, t22 = −x4. The following figure shows the graph Gλ for the labeling
λ(1, 1) = +1, λ(1, 2) = −1, λ(2, 1) = +1 and λ(2, 2) = −1.

f1 f2

x1 x2 x3 x4

I Definition 29 (Proper Labeling). Let f ∈ F[x]m with a labeling λ. We say that the
labeling λ is proper if the following conditions hold.
(1) For all i, either λ(i, j) ∈ {−1, 1} for all j, or λ(i, j) = 0 for all j.
(2) If two monomials tij, tij′ contain the same variable xk, then λ(i, j) = λ(i, j′).
(3) If λ(i, j) = −1, then tij is multilinear.
(4) If xk is a variable in the monomials tij, ti′j′ , with i 6= i′ and λ(i, j) = −1, then

λ(i′, j′) = +1.
(5) If λ(i, j) 6= 0, then there exists a j′ such that λ(i, j′) = −1.
(6) The labeling graph Gλ contains no directed cycles.
We give an equivalent way to understand the definition of a proper labeling.

CCC 2020

19:22 On the Complexity of Modulo-q Arguments and the Chevalley–Warning Theorem

. Condition (1) : there is a partition of the polynomial system f into polynomial systems g
and h such that all monomials in g are labeled in {+1,−1} and all monomials in h are
labeled 0.

. Condition (2) : each polynomial gi in g can be written as gi = g+
i + g−i , such that g+

i and
g−i are polynomials on a disjoint set of variables.

. Condition (3) : Each g−i is multilinear.

. Condition (4) : Any variable xk can appear in at most one of the g−i . Moreover, if an xk
appears in some g−i , it does not appear in any hj in h.

. Condition (5) : Every g−i involves at least one variable.

. Condition (6) : The graph Gλ is essentially between polynomials in g and the variables
that appear in them, with an edge (gi → xk) if xk appears in g−i or an edge (xk → gi) if
xk appears in g+

i .
. Note that degλ(gi) = deg(g−i), whereas degλ(hj) = deg(hj).
It is easy to see that the trivial labeling λ(i, j) = 0 is always proper. As we will see this
special case of the Labeled CWT corresponds to the original CWT . Note that in this case
the labeling graph Gλ is an empty graph. Also, given a system of polynomials f and a
labeling λ, it is possible to check in polynomial time whether the labeling λ is proper or not.

Example 2 (continued). It is an instructive exercise to verify that the labeling λ specified
was indeed a proper labeling of f .

I Theorem 30 (Labeled Chevalley-Warning Theorem). Let Fq be a finite field with
characteristic p and f ∈ Fq[x]m. If λ is a proper labeling of f with

∑m
i=1 degλ(fi) < n, then

|Mf | = 0. In particular, |Vf | ≡ 0 (mod p).

Proof. Note that CWf (x) =
∑
S⊆[m]

∏
i∈S(−1)|S|fp−1

i . We’ll show that every monomial
appearing in the expansion of

∏
i∈S f

p−1
i will have at least one variable with degree at most

p− 1. For simplicity, we focus on the case S = [m] and the other cases of S follow similarly.
We index a monomial of

∏
i∈[m] f

p−1
i with a tuple

((j11, j12, . . . , j1(p−1)), . . . , (jm1, . . . , jm(p−1)))

with 1 ≤ ji` ≤ Li where Li is the number of monomials in the explicit representation of fi.
The coordinates (ji1, . . . , ji(p−1)) represent the indices of the monomials chosen from each of
the p− 1 copies of fp−1

i . More succinctly, we have t =
∏m
i=1
∏p−1
`=1 ti,ji`

.

Case 1. λ(i, ji`) ∈ {0,−1}, for all (i, `):
Here, deg(t) ≤ (p− 1)

∑m
i=1 degλ(fi) which, by our assumption, is strictly less than (p− 1)n.

Hence, there is a variable with degree less than p− 1.

Case 2. There is a unique i with λ(i, ji`) = +1 for some `: (warmup for case 3)
That is, for all i′ 6= i, λ(i′, ji′`) ∈ {0,−1}. By condition (5) of proper labeling there exists a
j′ 6= ji` such that λ(i, j′) = −1. Let xk be a variable in the monomial tij′ . By condition (2),
xk is not present in the monomial ti,ji`

and by condition (3), its degree in (ti,ji,1 , . . . , ti,ji,p−1)
is at most p− 2. Additionally, by condition (4), any monomial of fi′ for i′ 6= i containing
xk must have label +1, but λ(i′, ji′,`) are all in {0,−1}. Hence, xk does not appear in any
other monomial of t and its degree on t is equal to its degree in (ti,ji,1 · · · ti,ji,p−1), which is
strictly less than p− 1.

Case 3. I = {i : λ(i, ji`) = +1 for some `}:
In the labeling graph Gλ, let i ∈ I be such that there is no path from fi to any other fi′
for i′ ∈ I. Such an i exists due to acyclicity of Gλ, i.e. condition (6). Let ` be such that
λ(i, ji`) = +1. Again, by condition (5) of proper labeling there exists a j′ 6= ji` such that

M. Göös, P. Kamath, K. Sotiraki, and M. Zampetakis 19:23

λ(i, j′) = −1. Let xk be a variable in the monomial tij′ . By condition (2), xk is not present
in the monomial ti,ji`

and by condition (3), its degree in (ti,ji,1 , . . . , ti,ji,p−1) is at most p− 2.
Additionally, by condition (4), any monomial of fi′ for i′ 6= i containing xk must have label
+1. For i′ /∈ I, λ(i′, ji′,`) are all in {0,−1}. And for i′ ∈ I, variable xk cannot appear with
+1 label in fi′ by our choice of fi. Hence, xk does not appear in any other monomial of t
and its degree on t is equal to its degree on (ti,ji,1 · · · ti,ji,p−1), which is strictly less than
p− 1. J

We are now ready to prove the PPAp-hardness of ChevalleyWithSymmetryp.

I Lemma 31. For all primes p, ChevalleyWithSymmetryp is PPAp-hard.

Proof. We prove that Lonelyp � ChevalleyWithSymmetryp. Let us assume (without
loss of generality from Lemma 44) that the Lonelyp instance has a single distinguished
vertex represented by 0n. We’ll assume that 0n is isolated, otherwise, no further reduction is
necessary.

Pre-processing. We slightly modify the given circuit C by defining C′ : Fnp → Fnp as follows:

C′(v) =
{

v , if Cp(v) 6= v

C(v) , otherwise

Since p is a prime, a vertex v ∈ Fnp has deg(v) = 1 if and only if Cp(v) = v and C(v) 6= v.
By modifying the circuit, we changed this condition to just C′(v) 6= v, which facilitates our
reduction.

Circuit C′ is composed of the Fp-addition (+), Fp-multiplication (×) and the constant
(1) gates. However, we require the input of ChevalleyWithSymmetryp to be a zecote
polynomial system, and so we further modify the circuit C′ to eliminate all the constant (1)
gates, without changing it’s behavior – this is possible because we assume C′(0n) = 0n.

B Claim 32. Given circuit C′ with (+,×, 1) gates, there exists circuit C̄ with (+,×) gates
such that

C̄(v) =
{

0n , if v = 0n
C′(v) , otherwise

Proof of Claim 32. We replace all instances of the (1) gate by the function 1{v 6=0n}, which
we can compute using only (+,×) gates as follows: For any x, y ∈ Fp, observe that 1{x 6=0} ∨
1{y 6=0} = xp−1 + yp−1−xp−1yp−1. We can thus recursively compute

∨n
i=1 1{vi 6=0} using only

(+,×) gates. Thus, C̄(v) = C′(v) for all v 6= 0n. And C̄(0n) = 0n, since C̄ is computed with
only (+,×) gates. C

Thus, we can transform our original circuit C into a circuit C̄ with just (+,×) gates. For
simplicity, we’ll write C̄ as simply C from now on.

As an intermiate step in the reduction we describe a system of polynomials fC over 2n+ s

variables (x1, . . . , xn, z1, . . . , zs, y1, . . . , yn), where s is the size of the circuit C. The variables
x = (x1, . . . , xn) correspond to the input of C, the variables y = (y1, . . . , yn) correspond to
the output and the variables z = (z1, . . . , zs) correspond to the gates of C. For an addition
gate (+) we include a polynomial of the form

f(a1, a2, a3) = a2 + a3 − a1,

CCC 2020

19:24 On the Complexity of Modulo-q Arguments and the Chevalley–Warning Theorem

where a1 is the variable corresponding to the output of the (+) gate and a2, a3 are the
variables corresponding to its two inputs. Similarly for a multiplication (×) gate, we include
a polynomial of the form

f(a1, a2, a3) = a2 · a3 − a1

Finally, for the output of the circuit, we include the polynomial

f(a, yi) = a− yi,

where a is the variable corresponding to the i-th output gate of C. It holds that

C(x) = y ⇐⇒ fC(x,y, z) = 0.

We now describe the reduction from Lonelyp to ChevalleyWithSymmetryp. In order
to do this, we need to specify a system of polynomials (g,h) and a permutation σ such that
|σ| = p. In addition, we will provide a proper labeling λ for g satisfying the degree condition.
We will also ensure that 〈σ〉 acts freely on Vg ∩ Vh. And hence, the only valid solutions for
the resulting ChevalleyWithSymmetryp instance will be x ∈ Vg ∩ Vh.

Definition of g. The polynomial system g contains the following systems of polynomials.

fC(x1,x2, z1,2)
x2 − x3

fC(x3,x4, z3,4)
x4 − x5

...
fC(x2p−1,x2p, z2p−1,2p)

Note that there are N = (2n+ s)p variables in total.

Labeling λ of g. For the polynomials belonging to a system of the form fC , the labeling is
equal to −1 for the monomials corresponding to the output of each gate and +1, otherwise.
For instance, let a2 + a3 − a1 be the i-th polynomial of g corresponding to a (+) gate and
let a1 ≺ a2 ≺ a3, then λ(i, 1) = −1 and λ(i, 2) = λ(i, 3) = +1.

For the polynomials belonging to a system of the form xi − xi+1, the labeling is equal to
−1 for the monomials with variables in xi+1 and +1 for the monomials with variables in xi.

B Claim 33. The labeling λ for g is proper.

Proof of Claim 33. By Definition 29, the labeling λ is proper if the following conditions hold.
Condition 1. For all i, either λ(i, j) ∈ {−1, 1} for all j, or λ(i, j) = 0 for all j.

In the labeling λ, there are no labels equal to 0, so this condition holds trivially.
Condition 2. If two monomials tij , tij′ contain the same variable xk, then λ(i, j) = λ(i, j′).

By construction of g, no variable appears twice in the same polynomial with a different
labeling. For polynomials of fC , this holds because the output variable of a gate is not
simultaneously an input variable and all input variables have the same labeling. For
polynomials in a system of the form xi − xi+1, each polynomial contains two different
variables.

M. Göös, P. Kamath, K. Sotiraki, and M. Zampetakis 19:25

Condition 3. If λ(i, j) = −1, then tij is multilinear.
For polynomials of fC , only the output variable of a gate has label −1 and by definition
this monomial is linear. For polynomials in a system of the form xi−xi+1, all monomials
are linear, so the condition holds trivially.

Condition 4. If xk is a variable in the monomials tij, ti′j′ , with i 6= i′ and λ(i, j) = −1,
then λ(i′, j′) = +1.
Observe that all monomials with label −1 contain only a single variable, so we refer to
a monomial xk with label −1. For a polynomial in fC , a monomial xk with label −1
corresponds to the output of a gate. Hence, if xk appears in other monomials of fC , these
monomials correspond to inputs and have label +1. Also, if xk is an output variable of
fC , then it might appear in a polynomial of the form a1 − a2. However, by construction
the monomials of xi − xi+1 that correspond to output variables of fC have label +1.

Condition 5. If λ(i, j) 6= 0, then there exists a j′ such that λ(i, j′) = −1.
By the definition of λ, all polynomials of g have a monomial with label −1. These are
the monomials that correspond to the outputs of a gate for the systems of the form fC
and the monomials that correspond to xi+1 for the systems of the form xi − xi+1.

Condition 6. The labeling graph Gλ contains no cycles.
Each system of the form xi − xi+1 has incoming edges with variables appearing only in
the i-th copy of fC and outgoing edges with variables appearing only in the (i+ 1)-th
copy of fC . Also, the variables appearing on the i-th copy of fC might appear only in the
systems xi−1 − xi and xi − xi+1. Hence, Gλ has no cycles that contain vertices of two
different copies of fC or of a copy of fC and a system of the form xi−1 − xi.
It is left to argue that the labeling graph restricted to a copy of fC does not have any
cycles. Let the vertices of fC be ordered according to the topological ordering of C. This
restricted part of Gλ corresponds exactly to the graph of C, which by definition is a DAG.
Hence, Gλ contains no cycles. C

We also need to show that for this labeling g satisfies the labeled Chevalley condition.

B Claim 34. The labeled Chevalley condition
∑mg

i=1 degλ(gi) < N holds for g with labeling
λ.

Proof. Each polynomial of g has a unique monomial with λ(i, j) = −1 and this monomial
has degree 1. Thus,

∑mg

i=1 degλ(gi) = mg. On the other hand, the i-th polynomial of g
has exactly one variable that has not appeared in any of the previous polynomials. More
specifically, the number of variables is equal to mg + n, where n is the size of the input of C.
Hence, the labeled Chevalley condition holds for g. C

Definition of h. The system of polynomials g allows us to compute the p vertices given
by Ci(x) for i ∈ [p+ 1]. From the definition of Lonelyp and our pre-processing on C, this
group of p vertices is a hyperedge if and only if C(x) 6= x. Since solutions of Lonelyp are
lonely vertices, we define h to exclude x such that C(x) 6= x. Namely, we set h to be the
system of polynomials

x1 − x2.

Definition of permutation σ. In the description of f = (g,h), we have used the following
vector of variables:

x = (x1,x2, . . . ,x2p, z1,2, z3,4, . . . , z2p−1,2p)

CCC 2020

19:26 On the Complexity of Modulo-q Arguments and the Chevalley–Warning Theorem

We define the permutation σ such that

σ(x) = (x3,x4, . . . ,x2p,x1,x2, z3,4, z5,6, . . . , z2p−1,2p, z1,2) ,

as illustrated in the following figure. The blue arrows indicate the polynomials g and the
green arrows indicate the permutation σ in the case of p = 3.

x1 x2
z1,2

x3

=

x4
z3,4

x5

=

x6
z5,6

B Claim 35. The group 〈σ〉 has order p and acts freely on Vg ∩ Vh.

Proof. In order to see that |σ| = p, note that the input of σ consists of 3p blocks of variables.
The permutation σ performs a rotation of the first 2p blocks by two positions and of the last
p blocks by one position.

All that remains is to show that 〈σ〉 acts freely on Vg ∩ Vh. First, we show that 〈σ〉
defines a group action on Vg ∩ Vh, that is for all x ∈ Vg ∩ Vh, it holds that σ(x) ∈ Vg ∩ Vh.
Let x = (x1,x2, . . . ,x2p−1,x2p, z1,2, z3,4, . . . , z2p−1,2p) ∈ Vg ∩ Vh, then
x ∈ Vg implies that fC(x2i−1,x2i, z2i−1,2i) = 0 for i ∈ [p] and x2i = x2i+1 for i ∈ [p− 1]
x ∈ Vh implies that x1 6= x2, that is, C(x1) 6= x1 since fC(x1,x2, z1,2) = 0⇔ x2 = C(x1).

Now, σ(x) = (x3,x4, . . . ,x1,x2, z3,4, z5,6, . . . , z1,2) ∈ Vg ∩ Vh holds because
fC(x2i−1,x2i, z2i−1,2i) = 0 for i ∈ [p] and x2i = x2i+1 for i ∈ [p− 1], which holds from
x ∈ Vg. Additionally, x1 = x2p holds because we pre-processed C such that Cp(x1) = x1,
x3 6= x4, which holds because x4 = C(x3) for i ∈ [p] and from the definition of C,
C(x1) 6= x1 implies that x2i 6= x2i−1 for all i ∈ [p].

Finally, if x ∈ Vg ∩ Vh, by construction of C, we have that x2k 6= x2j for k 6= j and thus
σ(x) 6= x simply because x3 6= x1. Thus, we conclude that 〈σ〉 acts freely on Vg ∩ Vh. C

Putting it all together. The solution of this instance of ChevalleyWithSymmetryp
cannot be a vector x ∈ Vg ∩ Vh with σ(x) 6∈ Vg ∩ Vh or σ(x) = x, since we know from
Claim 35 that 〈σ〉 acts freely on Vg ∩ Vh. We also have from Theorem 30 that the solution
also cannot be a max-degree monomial in the expansion of CWg(x) =

∏
(1− gp−1

i). Thus,
the solution must be an x 6= 0 such that f(x) = 0. Let x1 denote the first n coordinates
of x, then f(x) = 0 implies that x1 = C(x1) and x 6= 0 implies that x1 6= 0. Hence, x1
corresponds to a lonely vertex of the Lonelyp instance. J

M. Göös, P. Kamath, K. Sotiraki, and M. Zampetakis 19:27

5 Complete Problems via Small Depth Arithmetic Circuits

We now illustrate the significance of the PPAp-completeness of ChevalleyWithSymmetryp,
by showing that we can reformulate any of the proposed definitions of PPAp, by restricting
the circuit in the input to be just constant depth arithmetic formulas with gates × (mod p)
and + (mod p) (we call this class AC0

Fp

7). This result is analogous to the NP-completeness
of SAT which basically shows that CircuitSAT remains NP-complete even if we restrict
the input circuit to be a (CNF) formula of depth 2.

We define SuccinctBipartitep[AC0
Fp

] to be the same as SuccinctBipartitep but with
the input circuit being a formula in AC0

Fp
. Similarly, we define Lonelyp[AC0

Fp
], Leafp[AC0

Fp
],

etc.

I Theorem 36. For all primes p, SuccinctBipartitep[AC0
Fp

] is PPAp-complete.

I Remark 37. In [35], a similar simplification theorem was shown for PPAD. In fact, this
simplification involves only the End-of-Line problem and does not go through a natural
complete problem for PPAD (see Theorem 1.5 in [35]). A similar result can be shown for
other TFNP subclasses, including PPA. However, it is unclear if these techniques also apply
to PPAp classes.

Theorem 36 follows directly from the proof of Lemma 25 by observing that the reduction
can be perfomed by an AC0

Fp
circuit. For completeness, we include this proof in Appendix B.

Since the reductions between SuccinctBipartitep and other problems studied in this
work (refer to Appendix A) can also be implemented as AC0 circuits, we get the following
corollary.

I Corollary 38. For all primes p, Lonelyp[AC0
Fp

], Leafp[AC0
Fp

] and Bipartitep[AC0
Fp

] are
all PPAp-complete.

Since + (mod p) and × (mod p) can be simulated in NC1, we also get the following corollary.

I Corollary 39. For all primes p, Lonelyp[NC1], Leafp[NC1] and Bipartitep[NC1] are all
PPAp-complete.

Thus, Theorem 36 allows us to consider reductions from these PPAp-complete problems
with instances encoded by a shallow formulas rather than an arbitrary circuit. We believe
this could be a useful starting point for finding other PPAp-complete problems.

6 Applications of Chevalley-Warning

For most of the combinatorial applications mentioned in Subsection 1.4, the proofs utilize
restricted versions of the Chevalley-Warning Theorem that are related to finding binary or
short solutions in a system of modular equations. We define two computational problems to
capture these restricted cases. The first problem is about finding binary non-trivial solutions
in a modular linear system of equations, which we call BISq. The second is a special case of
the well-known short integer solution problem in `∞ norm, which we denote by SISq. The
computational problems are defined below, where N(q) denotes the sum of the exponents in
the canonical prime factorization of q, e.g. N(4) = N(6) = 2. In particular, N(p) = 1 for
prime p and N(q1q2) = N(q1) +N(q2) for all q1, q2.

7 Note that AC0
Fp

is strictly more powerful than AC0 since the Boolean operations of {∧,∨,¬} can be
implemented in AC0

Fp
, but + (mod p) cannot be implemented in AC0.

CCC 2020

19:28 On the Complexity of Modulo-q Arguments and the Chevalley–Warning Theorem

I Definition 40 (BISq).
Input: A ∈ Zm×nq , a matrix over Z
Condition: n ≥ (m+ 1)N(q)(q − 1)
Output: x ∈ {0, 1}n such that x 6= 0 and Ax ≡ 0 (mod q)

I Definition 41 (SISq).
Input: A ∈ Zm×nq , a matrix over Z
Condition: n ≥ ((m+ 1)/2)N(q)(q − 1)
Output: x ∈ {−1, 0, 1}n such that x 6= 0 and Ax ≡ 0 (mod q)

SISq is a special case of the well-known short integer solution problem in `∞ norm from
the theory of lattices. The totality of this problem is guaranteed even when n > m log2 q

by pigeonhole principle; thus, SISq belongs also to PPP (for this regime of parameters).
However, for the parameters considered in above definitions, the existence of a solution in
the BISq and SISq is guaranteed through modulo q arguments, which we formally show in
the following theorem.

I Theorem 42. For the regime of parameters n, m as in Definitions 40 and 41,
1. For all primes p : BISp, SISp � Chevalleyp.
2. For all q : BISq, SISq ∈ FPPPAq ,
3. For all k : BIS2k ∈ FP,
4. For all k, ` : SIS2k3` ∈ FP.

Proof. Part 1. For all primes p, BISp, SISp � Chevalleyp.
Given an BISp instance A = (aij), we define a zecote polynomial system as follows

f :=

fi(x) =
n∑
j=1

aijx
p−1
j : i ∈ [m]


Clearly, deg(fi) = p− 1, so

∑m
i=1 deg(fi) = m(p− 1). Since n ≥ (m+ 1)(p− 1) > m(p− 1),

(CW Condition) is satisfied. Hence the output of Chevalleyp is a solution x 6= 0 such
that f(x) = 0. This gives us that xp−1 := (xp−1

1 , . . . , xp−1
n) is binary and satisfies Ax ≡

0 (mod p).
The reduction SISp � Chevalleyp also follows in a similar fashion. Namely, we define

fi(x) :=
∑m
j=1 aijx

(p−1)/2
j . This satisfies the (CW Condition) because

∑
i deg(fi) = m(p−

1)/2 < ((m+ 1)/2)(p− 1) ≤ n. This ensures that any x ∈ Vf satisfies x(p−1)/2 ∈ {−1, 0, 1}n

and Ax ≡ 0 (mod p).

Part 2. For all q : BISq, SISq ∈ FPPPAq .
We show that BISq1q2 � BISq1 & BISq2 . Hence if BISq1 ∈ FPPPAq1 and BISq2 ∈ FPPPAq2 ,
then BISq1q2 ∈ FPPPAq1q2 . The proof of Part 2 now follows by induction.

Given a BISq1q2 instance A ∈ Zm×n, we divide A along the columns into n1 = (m +
1)N(q1)(q1 − 1) submatrices denoted by A1, . . . ,An1 , each of size at least m × n2, with
n2 = bn/n1c (if n/n1 is not an integer, then we let An1 has more than n2 columns). Each
Ai is an instance of BISq2 , since

n2 = bn/n1c ≥ (m+ 1)N(q2) b(q − 1)/(q1 − 1)c ≥ (m+ 1)N(q2)(q2 − 1).

Let yi ∈ {0, 1}n2 be any solution to Aiyi ≡ 0 (mod q2). We define the matrix B ∈ Zm×n1

where the i-th column is equal to Aiyi/q2; this has integer entries since Aiyi ≡ 0 (mod q2).
Now, by our choice of n1, we have that B is an instance of BISq1 . Let z = (z1, . . . , zn1) ∈
{0, 1}n1 be any solution to Bz = 0 (mod q1).

M. Göös, P. Kamath, K. Sotiraki, and M. Zampetakis 19:29

Finally, we define x := (z1y1, . . . , zn1yn1) ∈ {0, 1}n. Observe that since yi and z are
binary, x is also binary. Additionally,

Ax =
n1∑
i=1

(Aiyi)zi = q2

n1∑
i=1

Aiyi
q2

zi = q2By ≡ 0 (mod q1q2) .

Hence, x is a solution of the original BISq1q2 instance Ax ≡ 0 (mod q1q2). This concludes
the proof of BISq ∈ FPPPAq . The proof of SISq ∈ FPPPAq follows similarly, by observing that
if yi and z have entries in {−1, 0, 1} then so does x.

Parts 3, 4. For all k, ` : BIS2k ∈ FP and SIS2k3` ∈ FP.
Observe that BIS2 (hence also SIS2) and SIS3 are solvable in polynomial time via Gaussian
elimination. Combining this with the reduction BISq1q2 � BISq1 & BISq2 completes the
proof (similarly for SIS). J

Note that for a prime p and any k, we have from Theorem 1, that PPApk = PPAp. Additionally,
Theorem 5 shows that PPAp is closed under Turing reductions, so we have the following
corollary.

I Corollary 43. For all primes p and all k : BISpk , SISpk ∈ PPAp.

Even though the SISq problem is well-studied in lattice theory, not many results are known
in the regime we consider where q is a constant. Our results show that solving Chevalleyp
is at least as hard as finding short integer solutions in p-ary lattices for a specific range of
parameters. More specifically, our reduction assumes that q is a constant and, thus, it does
not depend on the input lattice, and that the dimension n of lattice is related to the number
of constraints in the dual as n > ((m+ 1)/2)N(q)(q − 1). On the other hand, we showed (in
Parts 3, 4) that there are q-ary lattice for which finding short integer solutions is easy.

7 Structural Properties of PPAq

In this section, we prove the structural properties of PPAq outlined in Subsection 1.5.

Relation to PMODq

Buss and Johnson [13, 27] defined a problem Modq, which is almost identical to Lonelyq,
with the only difference being that the q-dimensional matching is over a power-of-2 many
vertices encoded by C : {0, 1}n → {0, 1}n, with no designated vertices, except when q is a
power of 2 in which case we have one designated vertex. The class PMODq is then defined as
the class of total search problems reducible to Modq. The restriction of number of vertices
to be a power of 2, which arises as an artifact of the binary encoding of circuit inputs, makes
the class PMODq slightly weaker than PPAq.

To compare PPAq and PMODq, we define a restricted version of Lonelyq, where the
number of designated vertices is exactly k; call this problem Lonelykq . Clearly, Lonelykq
reduces to Lonelyq. We show that a converse holds, but only for prime p; see Subsection A.2
for proof.

I Lemma 44. For all primes p and k ∈ {1, . . . , p− 1}, Lonelyp reduces to Lonelykp.

I Corollary 45. For all primes p, PPAp = PMODp.

CCC 2020

19:30 On the Complexity of Modulo-q Arguments and the Chevalley–Warning Theorem

For composite q, however, the two classes are conceivably different. In contrast to
Theorem 1, it is shown in [27] that PMODq =

&

p|q PMODp, where the operator “

&

” is
defined as follows: For any two search problem classes M0, M1 with complete problems S0,
S1, the class M0

&

M1 is defined via the complete problem S0

&

S1 defined as follows: Given
(x0, x1) ∈ Σ∗ × Σ∗, find a solution to either x0 interpreted as an instance of S0 or to x1
interpreted as an instance of S1. In other words, M1

&

M2 is no more powerful than either
M1 or M2. In particular, it holds that M1

&

M2 = M1 ∩ M2, whereas M1 & M2 ⊇ M1 ∪ M2.
Because of this distinction, unlike Theorem 1, the proof of PMODpk = PMODp in [27] follows
much more easily since for any odd prime p it holds that 2n 6≡ 0 (mod p) and hence a
Lonelypk instance readily reduces to a Lonelyp instance.

7.1 PPAD ⊆ PPAq

Johnson [27] already showed that PPAD ⊆ PMODq which implies that PPAD ⊆ PPAq. We
present a simplified version of that proof.

We reduce the PPAD-complete problem End-of-Line to Lonelyq. An instance of
End-of-Line is a circuit C that implicitly encodes a directed graph G = (V,E), with in-
degree and out-degree at most 1 and a designated vertex v∗ with in-degree 0 and out-degree 1.

v∗

G = (V,E)

;

(v∗, 1) (v∗, 2)

G = (V ,E)

q = 3

We construct a q-dimensional matching G = (V ,E) on vertices V = V × [q], such that
for every edge (u → v) ∈ E, we include the hyperedge {(u, q), (v, 1), . . . , (v, q − 1)} in E.
The designated vertices are V ∗ = {(v∗, 1), . . . , (v∗, q − 1)}. Note that |V | ≡ 0 (mod q) and
|V ∗| = q − 1 6≡ 0 (mod q). It is easy to see that a vertex (v, i) is isolated in G if and only if
v is a source or a sink in G. This completes the reduction, since V is efficiently representable
and indexable and the neighbors of any vertex in V are locally computable using black-box
access to C (see Remark 10).

7.2 Oracle separations
Here we explain how PPAq can be separated from other TFNP classes relative to oracles, as
summarized in Figure 1. That is, for distinct primes p, p′, there exist oracles O1, . . . , O5 such
that

(1) PLSO1 * PPAO1
p (2) PPAO2

p * PPPO2 (3) PPAO3
p′ * PPAO3

p

(4) PPADSO4 * PPAO4
p (5)

⋂
p

PPAO5
p * PPADO5

M. Göös, P. Kamath, K. Sotiraki, and M. Zampetakis 19:31

The usual technique for proving such oracle separations is propositional proof complexity
(together with standard diagonalization arguments) [5, 10, 13]. The main insight is that if a
problem S1 reduces to another problem S2 in a black-box manner, then there are “efficient
proofs” of the totality of S1 starting from the totality of S2. The discussion below assumes
some familiarity with these techniques.

PLSO1 * PPAO1
p , PPAO2

p * PPPO2 , PPAO3
p′ * PPAO3

p

Johnson [27] showed all the above separations with respect to PMODp. Since we showed
PPAp = PMODp (Corollary 45), the same oracle separations hold for PPAp.

PPADSO4 * PPAO4
p

Göös et al. [23, §4.3] building on [6] showed that the contradiction underlying the PPADS-
complete search problem Sink-of-Line requires Fp-Nullstellensatz refutations of high degree.
This yields the oracle separation.

⋂
p PPAO5

p * PPADO5

For a fixed k ≥ 1, consider the problem Sk :=

&

i∈[k] Lonelypi
where pi are the primes.

Buss et al. [12] showed that the principle underlying Si is incomparable with the principle
underlying Lonelypi+1 . This translates into an relativized separation

⋂
i∈[k] PPApi

* PPApi+1

which in particular implies
⋂
i∈[k] PPApi * PPAD. Finally, one can consider the problem

S := Sk(n) where k(n) is a slowly growing function of the input size n. This problem is
in
⋂
p PPAp since for each fixed p and for large enough input size, S reduces to the PPAp-

complete problem. On the other hand, the result of Buss et al. [12] is robust enough to
handle a slowly growing k(n); we omit the details.

7.3 Closure under Turing reductions
Theorem 5 says that for any prime p, the class PPAp is closed under Turing reductions. In
contrast, Buss and Johnson showed that PPAp1 & PPAp2 , for distinct primes p1 and p2, is not
closed under black-box Turing reductions [13, 27]. In particular, they define the ‘⊗’ operator
as follows. For two total search problems S1 and S2, the problem S1 ⊗ S2 is defined as:
Given (x0, x1) ∈ Σ∗ × Σ∗, find a solution to both x0 (instance of S0) and to x1 (instance of
S1). Clearly the problem Lonelyp1 ⊗ Lonelyp2 can be solved with two queries to the oracle
PPAp1 & PPAp2 . However, Buss and Johnson [13, 27] show that Lonelyp1 ⊗ Lonelyp2

cannot be solved with one oracle query to PPAp1 & PPAp2 under black-box reductions. In
particular, this implies that PPAq is not closed under black-box Turing reductions, when q is
not a prime power. We now prove Theorem 5, which is equivalent to the following.

I Theorem 46. For any prime p and total search problem S, if S �T Lonelyp, then
S �m Lonelyp.

Proof. The key reason why this theorem holds for prime p is Lemma 44: In a Lonelyp
instance, we can assume w.l.o.g. that there are exactly p− 1 distinguished vertices.

On instance x of the problem S, suppose the oracle algorithm sequentially makes at most
t = poly(|x|) queries to Lonelyp oracle. The i-th query consists of a tuple (Ci, V ∗i) where
Ci encodes a p-dimensional matching graph Gi = (Vi, Ei) and V ∗i ⊆ Vi is the set of p − 1
designated vertices, and let yi ∈ Vi be the solution returned by the Lonelyp oracle. The
query (Ci, V ∗i) is computable in polynomial time, given x and valid solutions to all previous
queries. Finally, after receiving all answers the algorithm returns L(x, y1, . . . , yt) that is a
valid solution for x in S.

CCC 2020

19:32 On the Complexity of Modulo-q Arguments and the Chevalley–Warning Theorem

We make the following simplifying assumptions.
Each hypergraph Gi is on pn vertices, where n = poly(|x|) (thanks to instance extension
property – see Remark 10).
For any query the vertices V ∗i are always isolated in Gi (if some vertex in V ∗i were to not
be isolated, the algorithm could be modified to simply not make the query).
Exactly t queries are made irrespective of the oracle answers.

We reduce x to a single instance of Lonelyp as follows.

Vertices. The vertices of the Lonelyp instance will be V = [p]n ∪ [p]2n ∪ · · · ∪ [p]tn, which
we interpret as V = V1 ∪ (V1 × V2) ∪ (V1 × V2 × V3) ∪ · · · ∪ (V1 × · · · × Vt). The designated
vertices will be V ∗ := V ∗1 . Note that |V ∗| = |V ∗1 | 6≡ 0 (mod p).

Edges. We’ll define the hyperedge for vertex v = (v1, . . . , vk) for any k ≤ t. Let j ≤ k be
the last coordinate such that for all i < j, the vertex vi is a valid solution for the Lonelyp
instance (Ci, V ∗i), which the algorithm creates on receiving v1, . . . , vi−1 as answers to previous
queries.
Case j < k: Let u1, . . . , up−1 be the neighbors of vk in a canonical trivial matching over

[p]n; e.g.
{

[p]× w : w ∈ [p]n−1}. The neighbors of v are {(v1, . . . , vk−1, ui)}i.
Case j = k: We consider three cases, depending on whether vk is designated, non-isolated

or isolated in the Lonelyp instance (Ck, V ∗k).
Non-isolated vk: For u1, . . . , up−1 being the neighbors of vk in Gk, the neighbors of v

are {(v1, . . . , vk−1, ui)}i.
Isolated vk: Such a vk is a valid solution for (Ck, V ∗k).

If k < t: the algorithm will have a next oracle query (Ck+1, V
∗
k+1). In this case,

for u1, . . . , up−1 being the designated vertices in V ∗k+1, the neighbors of v are
{(v1, . . . , vk−1, vk, ui)}i.

If k = t: there are no more queries, and we leave v isolated.
Designated vk: Let u1, . . . , up−2 be the other designated vertices in V ∗k . The neighbors

of v are {(v1, . . . , vk−1, ui)}i ∪ {(v1, . . . , vk−1)}.

V1

V1 × V2

· · · · · ·

It is easy to see that our definition of edges are consistent and the only vertices which are
isolated (apart from those in V ∗) are of the type (y1, . . . , yt) where each yi is a valid solution
for the Lonelyp instance (Ci, V ∗i). Thus, given an isolated vertex y, we can immediately
infer a solution for x as L(x, y1, . . . , yt). This completes the reduction since V is efficiently
representable and indexable – see Remark 10. J

References
1 James Aisenberg, Maria Luisa Bonet, and Sam Buss. 2-d tucker is PPA complete. Electronic

Colloquium on Computational Complexity (ECCC), 22:163, 2015. URL: http://eccc.hpi-web.
de/report/2015/163.

2 Noga Alon. Splitting necklaces. Advances in Mathematics, 63(3):247–253, 1987. doi:10.1016/
0001-8708(87)90055-7.

http://eccc.hpi-web.de/report/2015/163
http://eccc.hpi-web.de/report/2015/163
https://doi.org/10.1016/0001-8708(87)90055-7
https://doi.org/10.1016/0001-8708(87)90055-7

M. Göös, P. Kamath, K. Sotiraki, and M. Zampetakis 19:33

3 Noga Alon, Shmuel Friedland, and Gil Kalai. Regular subgraphs of almost regular graphs.
Journal of Combinatorial Theory, Series B, 37(1):79–91, 1984.

4 Noga Alon and Douglas B. West. The Borsuk-Ulam theorem and bisection of neck-
laces. Proceedings of the American Mathematical Society, 98(4):623–628, 1986. doi:
10.1090/S0002-9939-1986-0861764-9.

5 Paul Beame, Stephen A. Cook, Jeff Edmonds, Russell Impagliazzo, and Toniann Pitassi.
The relative complexity of NP search problems. J. Comput. Syst. Sci., 57(1):3–19, 1998.
doi:10.1006/jcss.1998.1575.

6 Paul Beame and Søren Riis. More on the relative strength of counting principles. In Proceedings
of the DIMACS Workshop on Proof Complexity and Feasible Arithmetics, volume 39, pages
13–35, 1998.

7 Richard Beigel and John Gill. Counting classes: Thresholds, parity, mods, and fewness. Theor.
Comput. Sci., 103(1):3–23, 1992. doi:10.1016/0304-3975(92)90084-S.

8 Aleksandrs Belovs, Gábor Ivanyos, Youming Qiao, Miklos Santha, and Siyi Yang. On
the polynomial parity argument complexity of the combinatorial nullstellensatz. In 32nd
Computational Complexity Conference, CCC 2017, July 6-9, 2017, Riga, Latvia, pages 30:1–
30:24, 2017. doi:10.4230/LIPIcs.CCC.2017.30.

9 Nir Bitansky, Omer Paneth, and Alon Rosen. On the cryptographic hardness of finding a nash
equilibrium. In 2015 IEEE 56th Annual Symposium on Foundations of Computer Science,
pages 1480–1498. IEEE, 2015.

10 Josh Buresh-Oppenheim and Tsuyoshi Morioka. Relativized NP search problems and
propositional proof systems. In 19th Annual IEEE Conference on Computational Com-
plexity (CCC 2004), 21-24 June 2004, Amherst, MA, USA, pages 54–67, 2004. doi:
10.1109/CCC.2004.1313795.

11 Joshua Buresh-Oppenheim. On the TFNP complexity of factoring. Manuscript, 2006. URL:
http://www.cs.toronto.edu/~bureshop/factor.pdf.

12 Samuel R. Buss, Dima Grigoriev, Russell Impagliazzo, and Toniann Pitassi. Linear gaps
between degrees for the polynomial calculus modulo distinct primes. J. Comput. Syst. Sci.,
62(2):267–289, 2001. doi:10.1006/jcss.2000.1726.

13 Samuel R. Buss and Alan S. Johnson. Propositional proofs and reductions between NP search
problems. Ann. Pure Appl. Logic, 163(9):1163–1182, 2012. doi:10.1016/j.apal.2012.01.015.

14 I. Bárány, S. B. Shlosman, and A. Szücs. On a topological generalization of a theorem
of tverberg. Journal of the London Mathematical Society, s2-23(1):158–164, 1981. doi:
10.1112/jlms/s2-23.1.158.

15 Claude Chevalley. Démonstration d’une hypothèse de m. artin. Abhandlungen aus dem
Mathematischen Seminar der Universität Hamburg, 11(1):73–75, December 1935. doi:10.
1007/BF02940714.

16 Arka Rai Choudhuri, Pavel Hubácek, Chethan Kamath, Krzysztof Pietrzak, Alon Rosen, and
Guy N Rothblum. Finding a nash equilibrium is no easier than breaking fiat-shamir. In
Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, pages
1103–1114. ACM, 2019.

17 Constantinos Daskalakis, Paul W. Goldberg, and Christos H. Papadimitriou. The complexity
of computing a nash equilibrium. SIAM J. Comput., 39(1):195–259, 2009. doi:10.1137/
070699652.

18 Constantinos Daskalakis and Christos H. Papadimitriou. Continuous local search. In
Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2011, San Francisco, California, USA, January 23-25, 2011, pages 790–804, 2011.
doi:10.1137/1.9781611973082.62.

19 Xiaotie Deng, Jack R. Edmonds, Zhe Feng, Zhengyang Liu, Qi Qi, and Zeying Xu. Understand-
ing PPA-Completeness. In Ran Raz, editor, 31st Conference on Computational Complexity
(CCC 2016), volume 50 of Leibniz International Proceedings in Informatics (LIPIcs), pages
23:1–23:25, Dagstuhl, Germany, 2016. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.
doi:10.4230/LIPIcs.CCC.2016.23.

CCC 2020

https://doi.org/10.1090/S0002-9939-1986-0861764-9
https://doi.org/10.1090/S0002-9939-1986-0861764-9
https://doi.org/10.1006/jcss.1998.1575
https://doi.org/10.1016/0304-3975(92)90084-S
https://doi.org/10.4230/LIPIcs.CCC.2017.30
https://doi.org/10.1109/CCC.2004.1313795
https://doi.org/10.1109/CCC.2004.1313795
http://www.cs.toronto.edu/~bureshop/factor.pdf
https://doi.org/10.1006/jcss.2000.1726
https://doi.org/10.1016/j.apal.2012.01.015
https://doi.org/10.1112/jlms/s2-23.1.158
https://doi.org/10.1112/jlms/s2-23.1.158
https://doi.org/10.1007/BF02940714
https://doi.org/10.1007/BF02940714
https://doi.org/10.1137/070699652
https://doi.org/10.1137/070699652
https://doi.org/10.1137/1.9781611973082.62
https://doi.org/10.4230/LIPIcs.CCC.2016.23

19:34 On the Complexity of Modulo-q Arguments and the Chevalley–Warning Theorem

20 Aris Filos-Ratsikas and Paul W. Goldberg. Consensus halving is ppa-complete. In Proceedings
of the 50th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018, Los
Angeles, CA, USA, June 25-29, 2018, pages 51–64, 2018. doi:10.1145/3188745.3188880.

21 Aris Filos-Ratsikas and Paul W. Goldberg. The complexity of splitting necklaces and bisecting
ham sandwiches. In STOC (to appear), 2019. arXiv:1805.12559.

22 C. Goldberg and D. West. Bisection of circle colorings. SIAM Journal on Algebraic Discrete
Methods, 6(1):93–106, 1985. doi:10.1137/0606010.

23 Mika Göös, Pritish Kamath, Robert Robere, and Dmitry Sokolov. Adventures in monotone
complexity and TFNP. In 10th Innovations in Theoretical Computer Science Conference,
ITCS 2019, January 10-12, 2019, San Diego, California, USA, pages 38:1–38:19, 2019.
doi:10.4230/LIPIcs.ITCS.2019.38.

24 Michelangelo Grigni. A sperner lemma complete for ppa. Information Processing Letters,
77(5-6):255–259, 2001.

25 Alexandros Hollender. The classes PPA-k: Existence from arguments modulo k. In Ioannis
Caragiannis, Vahab Mirrokni, and Evdokia Nikolova, editors, Web and Internet Economics,
pages 214–227, Cham, 2019. Springer International Publishing.

26 Emil Jerábek. Integer factoring and modular square roots. J. Comput. Syst. Sci., 82(2):380–394,
2016. doi:10.1016/j.jcss.2015.08.001.

27 Alan S. Johnson. Reductions and propositional proofs for total NP search problems. UC
San Diego Electronic Theses and Dissertations, 2011. URL: https://escholarship.org/uc/
item/89r774x7.

28 David S. Johnson, Christos H. Papadimitriou, and Mihalis Yannakakis. How easy is local
search? J. Comput. Syst. Sci., 37(1):79–100, 1988. doi:10.1016/0022-0000(88)90046-3.

29 Ilan Komargodski, Moni Naor, and Eylon Yogev. White-box vs. black-box complexity of
search problems: Ramsey and graph property testing. Journal of the ACM (JACM), 66(5):34,
2019.

30 Pravesh K Kothari and Ruta Mehta. Sum-of-squares meets nash: lower bounds for finding
any equilibrium. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of
Computing, pages 1241–1248. ACM, 2018.

31 Donald L. Kreher and Douglas R. Stinson. Combinatorial Algorithms: Generation, Enu-
meration, and Search, volume 7 of Discrete Mathematics and Its Applications. CRC Press,
1998.

32 Nimrod Megiddo and Christos H. Papadimitriou. On total functions, existence theorems
and computational complexity. Theor. Comput. Sci., 81(2):317–324, 1991. doi:10.1016/
0304-3975(91)90200-L.

33 Christos H. Papadimitriou. On the complexity of the parity argument and other inefficient
proofs of existence. J. Comput. Syst. Sci., 48(3):498–532, 1994. doi:10.1016/S0022-0000(05)
80063-7.

34 Christian Reiher. On kemnitz’conjecture concerning lattice-points in the plane. The Ramanujan
Journal, 13(1-3):333–337, 2007.

35 Aviad Rubinstein. Settling the complexity of computing approximate two-player nash equilibria.
In IEEE 57th Annual Symposium on Foundations of Computer Science, FOCS 2016, 9-11
October 2016, Hyatt Regency, New Brunswick, New Jersey, USA, pages 258–265, 2016.

36 Katerina Sotiraki, Manolis Zampetakis, and Giorgos Zirdelis. Ppp-completeness with con-
nections to cryptography. In 59th IEEE Annual Symposium on Foundations of Com-
puter Science, FOCS 2018, Paris, France, October 7-9, 2018, pages 148–158, 2018. doi:
10.1109/FOCS.2018.00023.

37 Ewald Warning. Bemerkung zur vorstehenden arbeit von herrn chevalley. Abh. Math. Sem.
Univ. Hamburg, 11:76–83, 1936.

https://doi.org/10.1145/3188745.3188880
http://arxiv.org/abs/1805.12559
https://doi.org/10.1137/0606010
https://doi.org/10.4230/LIPIcs.ITCS.2019.38
https://doi.org/10.1016/j.jcss.2015.08.001
https://escholarship.org/uc/item/89r774x7
https://escholarship.org/uc/item/89r774x7
https://doi.org/10.1016/0022-0000(88)90046-3
https://doi.org/10.1016/0304-3975(91)90200-L
https://doi.org/10.1016/0304-3975(91)90200-L
https://doi.org/10.1016/S0022-0000(05)80063-7
https://doi.org/10.1016/S0022-0000(05)80063-7
https://doi.org/10.1109/FOCS.2018.00023
https://doi.org/10.1109/FOCS.2018.00023

M. Göös, P. Kamath, K. Sotiraki, and M. Zampetakis 19:35

A Appendix: Reductions Between Complete Problems

In order to prove Theorem 9, we introduce an additional problem that will serve as interme-
diate problem in our reductions.

I Definition 47 (Leaf′q).
Principle: Same as Leafq, but degrees are allowed to be larger (polynomially bounded).
Object: q-uniform hypergraph G = (V,E). Designated vertex v∗ ∈ V .
Inputs: . C : {0, 1}n → ({0, 1}nq)k

where ({0, 1}nq)k is interpreted as k many q-subsets of {0, 1}n

. v∗ ∈ {0, 1}n (usually 0n)
Encoding: V := {0, 1}n.

For distinct v1, . . . , vq, edge e := {v1, . . . , vq} ∈ E if e ∈ C(v) for all v ∈ e
Solutions: v∗ if deg(v) ≡ 0 (mod q) and

v 6= v∗ if deg(v) 6≡ 0 (mod q)

Proof of Theorem 9. We show the following inter-reducibilities: (1) Leafq � Leaf′q, (2)
Leaf′q � Bipartiteq and (3) Leafq � Lonelyq.

(1a) Leafq � Leaf′
q.(1a) Leafq � Leaf′
q. Each instance of Leafq is trivially an instance of Leaf′q.

(1b) Leaf′
q � Leafq.(1b) Leaf′
q � Leafq. We start with a Leaf′q instance (C, v∗), where C encode a q-uniform

hypergraph G = (V,E) with degree at most k. Let t = dk/qe. We construct a Leafq instance
encoding a hypergraph G = (V ,E) on vertex set V := V × [t], intuitively making t copies of
each vertex.

In order to locally compute hyperedges, we first fix a canonical algorithm that for any
vertex v and any edge e ∈ E incident on v, assigns it a label `v(e) ∈ [t], with at most q edges
mapping to the same label – e.g. sort all edges incident on v in lexicographic order and
bucket them sequentially in at most t groups of at most q each. Note that we can ensure
that for any vertex v at most one label gets mapped to by a non-zero, non-q number of edges.
Moreover, if deg(v) ≡ 0 (mod q), then exactly q or 0 edges are assigned to any label.

We’ll assume that deg(v∗) 6≡ 0 (mod q), as otherwise, a reduction wouldn’t be necessary.
We let (v∗, `∗) be the designated vertex of the Leafq instance, where `∗ is the unique label
that gets mapped to by a non-zero, non-q number of edges incident on v∗.

For any vertex (v, i) ∈ V , we assign it at most q edges as follows: For each edge
e = {v1, . . . , vq} such that `v(e) = i, the corresponding hyperedge of (v, i) is

(v1, `v1(e)), . . . , (vq, `vq
(e)) .

It is easy to see that the designated vertex (v∗, `∗) indeed has non-zero, non-q degree.
Moreover, a vertex deg(v, i) /∈ {0, q} in G only if v has a non-multiple-of-q degree in G. Thus,
solutions to the Leafq instance naturally maps to solutions to the original Leaf′q instance.

By Remark 10, this completes the reduction since the edges are locally computable with
black-box access to C and V is efficiently indexable.

(2a) Leaf′
q � Bipartiteq.(2a) Leaf′
q � Bipartiteq. We start with a Leaf′q instance (C, v∗), where C encode a q-

uniform hypergraph G = (V,E). We construct a Bipartiteq instance encoding a graph
G = (V ∪ U,E) such that V = V and U =

(
V
q

)
, i.e. all q-sized subsets of V . We include the

edge (v, e) ∈ E if e ∈ E is incident on v. The designated vertex for the Bipartiteq instance
is v∗ in V .

Clearly, all vertices e ∈ U have degree either q or 0. For any v ∈ V , the degree of v in G
is same as its degree in G. Thus, any solution to the Bipartiteq instance immediately gives

CCC 2020

19:36 On the Complexity of Modulo-q Arguments and the Chevalley–Warning Theorem

a solution to the original Leaf′q instance. By Remark 10, this completes the reduction since
the edges are locally computable with black-box access to C and V and U are efficiently
indexable (cf. [31, §2.3] for efficiently indexing U).

(2b) Bipartiteq � Leaf′
q.(2b) Bipartiteq � Leaf′
q. We start with a Bipartiteq instance (C, v∗) encoding a bipartite

graph G = (V ∪ U,E) with maximum degree of any vertex being at most k. We construct a
Leaf′q instance encoding a hypergraph G = (V ,E) such that V = V with designated vertex
v∗.

First, we fix a canonical algorithm that for any vertex u ∈ U with degG(u) ≡ 0 (mod q)
produces a partition of it’s neighbors with q vertices of V in each part. Now, the set of q-
uniform hyperedges incident on any vertex v ∈ V in E can be obtained as: for all neighbors u
of v, with degG(u) ≡ 0 (mod q), we include a hyperedge consisting of all vertices in the same
partition as v among the neighbors of u (we ignore neighbors u with deg(u) 6≡ 0 (mod q)).

Observe that degG(v) ≤ degG(v) and equality holds if and only if all neighbors of v
in G have degree ≡ 0 (mod q). Hence for any v ∈ V , if degG(v) 6= degG(v) (mod q),
then there exists a neighbor u ∈ U of v in G such that deg(u) 6≡ 0 (mod q). Thus, if
v = v∗ and degG(v∗) ≡ 0 (mod q), then either degG(v) ≡ 0 (mod q) or we can find a
neighbor u of v in G with deg(u) 6≡ 0 (mod q). Similarly if for some v 6= v∗, we have
degG(v∗) 6≡ 0 (mod q), then either degG(v) 6≡ 0 (mod q) or we can find a neighbor u of v in
G with deg(u) 6≡ 0 (mod q). Thus, any solution to the Leaf′q instance gives us a solution to
the original Bipartiteq instance. This completes the reduction since V = {0, 1}n and the
edges are locally computable with black-box access to C.

(3a) Leafq � Lonelyq.(3a) Leafq � Lonelyq. We start with a Leafq instance (C, v∗), where C encode a q-
uniform hypergraph G = (V,E) with degree at most q. If degG(v∗) = q or 0, then we
don’t need any further reduction. Else, we construct a Lonelyq instance encoding a q-
dimensional matching G = (V ,E) on vertex set V = V × [q]. The designated vertices
will be V ∗ = {(v, q − i) : 1 ≤ i ≤ q − deg(v∗)}. Note that, |V ∗| = q − degG(v∗) and hence
1 ≤ |V ∗| ≤ q − 1.

In order to locally compute hyperedges, we first fix a canonical algorithm that for any
vertex v and any edge e ∈ E incident on v, assigns it a unique label `v(e) ∈ [q] – e.g. sort all
edges incident on v in lexicographic order and label them sequentially in [q]. In fact, we can
ensure that an edge incident on v get labeled within {1, . . . , degG(v)}.

For any vertex (v, i) ∈ V , we assign it at most one hyperedge as follows:
. If degG(v) = 0, we include the hyperedge {(v, i) : i ∈ [q]}.
. Else if degG(v) ≥ i, then for edge e = {v1, . . . , vq} incident on v such that `v(e) = i, the

corresponding hyperedge of (v, i) is (v1, `v1(e)), . . . , (vq, `vq (e)).
. Else if 0 < degG(v) < i, we leave it isolated.

It is easy to see that our definition of hyperedges is consistent and that the designated
vertices V ∗ are indeed isolated. Moreover, a vertex (v, i) is isolated in G only if 1 ≤ degG(v) ≤
q − 1. Thus, solutions to the Leafq instance naturally maps to solutions to the original
Leaf′q instance.

By Remark 10, this completes the reduction since the edges are locally computable with
black-box access to C and V is efficiently indexable.

(3b) Lonelyq � Leafq.(3b) Lonelyq � Leafq. We start with a Lonelyq instance (C, V ∗), where C encode a
q-dimensional matching G = (V,E). We construct a Leafq instance encoding a q-uniform
hypergraph G = (V ,E) on vertex set V that will be specified shortly. We describe the
hyperedges in G and it’ll be clear how to compute the hyperedges for any vertex locally with
just black-box access to C.

M. Göös, P. Kamath, K. Sotiraki, and M. Zampetakis 19:37

We start with V = V . Our goal is to transform all vertices of degree 1 to degree q,
while ensuring that vertices of degree 0 are mapped to vertices of degree not a multiple
of q. Towards this goal we let E to be set of edges in E in addition to q − 1 canonical
q-dimensional matchings over V . For example, for a vertex v := (x1, . . . , xn) ∈ V = [q]n,
the corresponding edges in E include an edge in E (if any) and edges of the type ei =
{(x1, . . . , xi−1, j, xi+1, . . . , xn) : j ∈ [q]} for i ∈ [q − 1] (note, this requires us to assume
n ≥ q − 1). Adding the q − 1 matchings increases the degree of each vertex by q − 1.
Therefore, vertices with initial degree 1 now have degree q and vertices with initial degree 0
now have degree q− 1. However, a couple of issues remain in order to complete the reduction,
which we handle next.

Multiplicities. An edge e ∈ E might have gotten added twice, if it belonged to one of
the canonical matchings. To avoid this issue altogether, instead of adding edges directly
on V , we augment V to become V := V ∪

((
V
q

)
× [q − 1]

)
, i.e. in addition to V , we have

q− 1 vertices for every potential hyperedge of G. For any edge e := {v1, . . . , vq} ∈ E, instead
of adding it directly in G, we add hyperedge {v, (e, 1), (e, 2), . . . , (e, q − 1)} for each v ∈ e.
Note that, all vertices (e, i) ∈

(
V
q

)
× [q − 1] have degree q if e ∈ E and degree 0 if e /∈ E, so

they are non-solutions for the Leafq instance. For vertices in V , we still have as before that
vertices with initial degree 1 now have degree q and vertices with initial degree 0 now have
degree q − 1.

Designated vertex. In a Leafq instance, we need to specify a single designated vertex
v∗ ∈ V . If the Lonelyq instance had a single designated vertex then we would be done.
However, in general it is not possible to assume this (for non-prime q). Nevertheless, we
provide a way to get around this. We augment V with t = (q − 1)(q − k) + 1 additional
vertices to become V := V ∪

((
V
q

)
× [q − 1]

)
∪ {wi,j : i ∈ [q − k], j ∈ [q − 1]} ∪ {v∗}, where

v∗ will eventually be the single designated vertex for the Leafq instance.
Let V ∗ = {u1, . . . , uk} ⊆ V be the set of designated vertices in the Lonelyq instance

(note 1 ≤ k < q). So far, note that degG(ui) = q − 1. The only new hyperedges we add will
be among ui’s, wi,j ’s and v∗, in such a way that degG(ui) will become q, the degree of all
wi,j ’s will also be q and degree of v∗ will be q − k.
. For each u ∈ V ∗, include {u,w1,1, . . . , w1,q−1}. So far, degG(u) = q and degG(w1,j) = k.
. For each j ∈ [q − 1] and each i ∈ {2, . . . , q − k}, include {w1,j , wi,1, . . . , wi,q−1}.

So far, degG(wi,j) = q − 1 for all (i, j) ∈ [q − k]× [q − 1].
. Finally, for each (i, j) ∈ [q − k]× [q − 1], include {v∗, wi,1, . . . , wi,q−1}.

Now, degG(wi,j) = q for all (i, j) ∈ [q − k]× [q − 1] and degG(v∗) = q − k.

Thus, we have finally reduced to a Leafq instance encoding the graph G = (V ,E)
with V := V ∪

((
V
q

)
× [q − 1]

)
∪ {wi,j : i ∈ [q − k], j ∈ [q − 1]} ∪ {v∗}. By Remark 10, this

completes the reduction, since V is efficiently indexable (again, see [31] for a reference on
indexing

(
V
q

)
) and the edges are locally computable using black-box access to C. J

A.1 Completeness of Succinct Bipartite
We introduce an intermediate problem to show PPAp–completeness of SuccinctBipartitep.

I Definition 48 (TwoMatchingsp).
Principle: Two p-dimensional matchings over a common vertex set, with a vertex in exactly

one of the matchings, has another such vertex.
Object: Two p-dimensional matchings G0 = (V,E0), G1 = (V,E1).

Designated vertex v∗ ∈ V .

CCC 2020

19:38 On the Complexity of Modulo-q Arguments and the Chevalley–Warning Theorem

Inputs: . C0 : {0, 1}n → ({0, 1}n)p and C1 : {0, 1}n → ({0, 1}n)p
. v∗ ∈ {0, 1}n

Encoding: V := {0, 1}n. For b ∈ {0, 1}, Eb := {e : Cb(v) = e for all v ∈ e}
Solutions: v∗ if degG0(v∗) 6= 1 or degG1(v∗) 6= 0 and

v 6= v∗ if degG0
(v∗) 6= degG1

(v∗)

Observe that in the case of p = 2, TwoMatchingsp can be readily seen as equivalent to
Leaf2.

I Theorem 49. For any prime p, SuccinctBipartitep and TwoMatchingsp are PPAp–
complete.

Proof. We show Bipartitep � SuccinctBipartitep � TwoMatchingsp � Lonelyp.

Bipartitep � SuccinctBipartitep.Bipartitep � SuccinctBipartitep. Since p is a prime, we can assume that the designated
vertex v∗ has degree 1 (mod p) (similar to Lemma 44). Since the number of neighbors in a
Bipartitep instance are polynomial, we can check if an edge exists and canonically group
them efficiently for all vertices with degree being a multiple of p. The designated edge e∗ is the
unique ungrouped edge incident on v∗. Thus, valid solution edges to SuccinctBipartitep
must have at least one endpoint which is a solution to the original Bipartitep instance.

SuccinctBipartitep � TwoMatchingsp.SuccinctBipartitep � TwoMatchingsp. We reduce to a TwoMatchingsp instance
encoding two p-dimensional matchings G0 = (V ,E0) and G1 = (V ,E1), over the vertex set
V = V × U × [p − 1], that is, all possible edges producible in the SuccinctBipartitep
instance. The designated vertex v∗ is the designated edge e∗ in the SuccinctBipartitep
instance.

For any edges e1, . . . , ep, which are grouped by φV pivoted at some v ∈ V , we include
the hyperedge {e1, . . . , ep} in E0. Similarly, for any edges e1, . . . , ep, which are grouped
by φU pivoted at some u ∈ U , we include the hyperedge {e1, . . . , ep} in E1. It is easy to
see that points in exactly one of the two matchings G0 or G1 correspond to edges of the
SuccinctBipartitep instance that are not grouped at exactly one end. Thus, we can derive
a solution to SuccinctBipartitep from a solution to TwoMatchingsp. (Remark: while
edges which are not grouped at either end are solutions to SuccinctBipartitep, they do
not correspond to a solution in the TwoMatchingsp instance.)

TwoMatchingsp � Lonelyp.TwoMatchingsp � Lonelyp. Given an instance of TwoMatchingsp that encodes two p-
dimensional matchings G0 = (V,E0) and G1 = (V,E1), we reduce to an instance of Lonelyp
encoding a p-dimensional matching G = (V ,E) such that V = V × [p]. The designated
vertex for the Lonelyp instance is (v∗, p).

For any hyperedge {v1, . . . , vp} in E0, we include the hyperedge {(v1, i), (v2, i), . . . , (vp, i)}
in G for each i ∈ {1, . . . , p− 1}. Similarly, for any hyperedge {v1, . . . , vp} in E1, we include
the hyperedge {(v1, p), (v2, p), . . . , (vp, p)} in G. If v ∈ V is isolated in both G0 and G1, then
we include the hyperedge {v} × [p].

Observe that, (v∗, p) is isolated by design. A vertex (v, i), for i < p is isolated only if
degG0(v) = 0 and deg(G1) = 1. Similarly, the vertex (v, p) is isolated only if degG0(v) = 1
and deg(G1) = 0. Thus, isolated vertices in the Lonelyp instance correspond to solutions of
the TwoMatchingsp instance. J

A.2 Equivalence with PMODp

Proof of Lemma 44. Consider any prime p. Consider a Lonelyp instance (C, V ∗), where
C encodes a p-dimensional matching G = (V,E) and |V ∗| = `. We wish to reduce to an
instance of Lonelykp, where the number of designated vertices is exactly k. First, we’ll

M. Göös, P. Kamath, K. Sotiraki, and M. Zampetakis 19:39

assume that all vertices in V ∗ are indeed isolated in G, otherwise, no reduction would be
necessary. The key reason why this lemma holds for primes (and not for composites) is
because ` has a multiplicative inverse modulo p. In particular, let t ≡ `−1k (mod p).

We construct a Lonelykp instance encoding the p-dimensional matching G = (V ,E) over
V = V × [t]. We let V ∗ to be the lexicographically first k vertices in V ∗ × [t]. Note that
|V ∗ × [t]| = t.` ≡ k (mod p). Thus, we partition the remaining vertices of V ∗ × [t] into
p-uniform hyperedges. For any vertex v ∈ V r V ∗, with neighbors v1, . . . , vp−1 in G, the
neighbors of (v, i) in G are (v1, i), . . . , (vp−1, i) for any i ∈ [t]. Thus, a vertex (v, i) is isolated
only if it is in V ∗ or v is isolated in G. This completes the reduction since V is efficiently
indexable – see Remark 10. J

Proof of Corollary 45. It is easy to see that Modq ≤ Lonelyq with number of designated
vertices being k ≡ −2n (mod q), since {0, 1}n is efficiently indexable (Remark 10). Conversely,
using Lemma 44, we can reduce a Lonelyq instance to a Modq instance as follows: Let the
Lonelyq instance encode a q-dimensional matching over [q]n with k designated vertices. If
any of the designated vertices are not isolated, no further reduction is necessary. Otherwise,
we can embed the non-designated vertices of G into the first qn − k vertices of {0, 1}N for a
choice of N satisfying 2N > qn and 2N ≡ −k (mod q). Such an N is guaranteed to exist
(and can be efficiently found) when q is a prime. Since 2N − qn + k ≡ 0 (mod q), we can
partition the remaining vertices into q-uniform hyperedges, and thus, solutions to the Modq
instance readily map to solutions of the original Lonely′q instance. J

B Appendix: Proof of Theorem 36

Proof of Theorem 36. We show a reduction from ChevalleyWithSymmetryp to
SuccinctBipartitep[AC0

Fp
]; the theorem then follows by combining this reduction with

Theorem 3. Additionally from the proof of Theorem 3 we can assume without loss of
generality that the system of polynomials f = (g,h) of the ChevalleyWithSymmetryp
instance has the following properties.
a. Each polynomial fi has degree at most 2.
b. Each polynomial fi has at most 3 monomials.
c. Each polynomial fi has at most 3 variables.
Hence, we can compute each of the polynomials gp−1

i explicitly as a sum of monomials. The
degree of this polynomial is O(p) and the number of monomials is at most 3p. Observe that
since p is a constant, 3p is also a constant.

Now we follow the proof of Lemma 25 that reduces ChevalleyWithSymmetryp to
SuccinctBipartitep. Following this proof there are two circuits that we need to replace
with formulas in AC0

Fp
to reduce to SuccinctBipartitep. The first circuit is the edge

counting circuit C and the second is the grouping function φ. We remind that the bipartite
graph G(U, V) of the SuccinctBipartitep instance has two parts U , V , where U is the set
of all possible assignments, i.e. Fnp , and V = V1 ∪ V2, where V1 in the set of all monomials
of the polynomial F =

∏m
i=1(1− gp−1

i) and V2 is the set of all p-tuples of assignments, i.e.(
Fnp
)p.

From Edge Counting Circuit To Edge Counting Formula. As described in the proof
of Lemma 25 the edge counting circuit takes as input a vertex u ∈ U and a vertex v ∈ V and
outputs the multiplicity of the edge {u, v} in G. Hence, the edge counting formula C, that
we want to implement, takes as input a tuple (x, s,a,y). The vector x corresponds to the
assignment in U . The vector a corresponds to the description of a monomial of F , as the
product

∏m
i=1 t

′
iai

where t′iai
is the ai-th monomial of the polynomial 1− gp−1

i . The vector

CCC 2020

19:40 On the Complexity of Modulo-q Arguments and the Chevalley–Warning Theorem

y = (y1,y2, . . . ,yp) and corresponds to a p-tuple in V2. Finally, s is a selector number to
distinguish between v ∈ V1 and v ∈ V2, namely if s = 1, we have v ∈ V1 and if s = 0, we
have that v ∈ V2. So, the edge counting formula can be written as follows

C(x, s,a,y) =

 ∏
i∈Fp,i 6=1

(s− i)

 C1(x,a,y) +

 ∏
i∈Fp,i 6=0

(s− i)

 C2(x,a,y). (B.1)

This way we can define the edge counting formula C1 for when v ∈ V1 and the edge counting
formula C2 for when v ∈ V2 separately and combine them by using at most two additional
layers in the arithmetic formula. Now, C1(x,y,a) = 1(y = 0) ·

∏m
i=1Qi(x, ai) where Qi(x, ai)

is the formula to compute the value ti,ai
(x). Observe that the factor 1(y = 0) can be easily

computed and is necessary since C1 should consider only neighbors between x and monomials
in V1. Hence, if y is not equal to 0, C1 should return 0. As we already explained the
number of monomials of 1− gp−1

i is constant, and hence the formula Qi(x, ai) can be easily
implemented in constant depth using a selector between all different monomials similarly to
Equation (B.1). Hence, C1 is implemented in constant depth.

The formula C2 has a factor 1(a = 0) to ensure only neighbors in V2 have non-zero
outputs. The main challenge in the description of C2 is that every distinct p-tuple y has
p! equivalent representations, but the modulo p argument of Lemma 25 applies only when
edges appear to precisely one of the equivalent copies of the p-tuple. Thus, we let C2 add
edges only to the lexicographically ordered version of y. It is a simple exercise to see that
sorting of p! numbers, when p is constant, is possible in constant depth. We leave this folklore
observation as an exercise to the reader. Once we make sure that y is lexicographically
sorted, we compute a sorted representation of the set Σx = {x, σ(x), . . . , σp−1(x)}, where
σ is the permutation in the input of the ChevalleyWithSymmetryp problem. Then, we
can easily check whether the p-tuple represented by y is the same as the sorted p-tuple Σx.
Finally, we observe that edges between x and Σx are only used when x ∈ Vg ∩ Vh which
again can be checked with constant depth formulas. If these checks pass, then C2 outputs
p− 1, otherwise it outputs 0.

From Grouping Circuit to Grouping Formula. For this step we use selectors similarly to
Equation (B.1) and sorting as in the description of C2. We consider two different cases for
the grouping formula φ. When the first argument is in U , i.e. grouping with respect to an
assignment, we call the formula ψ and when the first argument is in V , i.e. grouping with
respect to monomials/p-tuples, we call the formula χ. Then, φ selects between ψ and χ using
a selector. This adds at most two layers to φ.
Grouping formula for x ∈ U . First, we describe ψ with inputs x ∈ U , (s,a,y) ∈ V and r

be the copy of the input edge. We have two cases with respect to whether s = 1 or s = 0.
Let ψ1 be the formula for the first case and ψ2 be the formula for the second case. For
the case s = 1, we need again to consider two cases: (i) x ∈ Vg and (ii) x ∈ Vg. For case
(i) we describe the formula ψ1

1 and for case (ii) we define the formula ψ1
2 . It is easy to see

that computing 1(x ∈ Vg) can be done using a depth 3 formula since g is given in an
explicit form. Hence, once again, we can combine ψ1

1 and ψ1
2 using a selectors.

Case s = 1, x ∈ Vg. The formula ψ1
1 first computes i? = min

i:1−gp−1
i

(x)=0
i. This is doable

in constant depth, since we can compute in parallel the value 1(1− gp−1
i (x) = 0) for all

i ∈ [m1] and then in an extra layer compute for every i whether 1 − gp−1
i (x) = 0 and

1− gp−1
j (x) 6= 0 for all j < i, which requires just one multiplication gate per i.

M. Göös, P. Kamath, K. Sotiraki, and M. Zampetakis 19:41

Next, we define a formula ψ1
1i for all i and we use a selector to output ψ1

1i∗ . In ψ1
1i, we

first compute the value Ci(x) =
∏
j 6=i tj,aj

(x). The output of ψ1
1i is a p-tuple, where each

of the p parts differs only on the coordinate ai of a, which corresponds to a monomial of
1− gp−1

i , and the value r. We need to determine p different values for the tuple (ai, r)
where ai ∈ [3p], r ∈ Zp. These values only depend on the evaluation of the polynomial gi
on the input x, on the value ai and on the value r.
Because of the properties of the input system of polynomials f , each polynomial gi
depends only on three variables in Zp, let these variables be x1, x2, x3 for simplicity.
Then, for every i the grouping function that we want to implement is a function with
input domain Z3

p × [3p]× Zp and output domain Z2
p. The truth-table of this function has

size that depends only on p and therefore we can explicitly implement this function using
its truth-table in constant depth. This finishes the construction of ψ1

1i.

Case s = 1, x ∈ Vg. We remind that a = 0 corresponds to the constant monomial 1
of the polynomial F . If a 6= 0, this case is similar to the previous, except that we use
the polynomials gp−1

i instead of 1− gp−1
i , see also the proof of Lemma 25. If a = 0, ψ1

2
outputs the input edge (1,a,0, 1) and p− 1 edges of the form (0,0,y, t), t ∈ [p− 1] where
y is the lexicographically ordered set Σx.

Case s = 0. In this case, the formula ψ2 checks whether the vector y is in lexicographic
order as described in the edge counting formula C and a = 0. It also checks if x ∈ Vf1∩Vf2

as described before. If any of these checks fails, the output is 0. Otherwise, if y = Σx,
then we output p − 1 copies of the edge (0,0,y, t), t ∈ [p − 1], that connects x with y,
and the edge (1,0,0, 1), that connects x with the constant term of F .

Grouping formula for vertices in V . We describe the grouping formula χ when the first
argument belongs to V , i.e. the grouping with respect to monomials or p-tuples. The
input again is a triple (s,a,y) representing a vertex in V , a vertex x ∈ U and a number
r ∈ Zp that denotes the index of the edge that we want to group, among its possible
multiple copies. Again we have two cases, s = 1 and s = 0, which correspond to the
formulas χ1 and χ2 respectively. In each case, we have to check that one of a, y is equal
to 0, which is done similarly to the previous formulas.

Case s = 1. In this case, the input is a monomial ta(x) =
∏m1
i=1 ti,ai

(x) and we have to
find a variable that appears with degree less than p− 1. We first construct a formula χ1

j

that computes zk, where k is the degree of xj in ta(x). This can be done with a constant
size formula that for a given index j multiplies the powers of xj in the monomials of
1− gp−1

i appearing in t.
Now, we compute all values χ1

j (1), . . . , χ1
j (p− 1) and we check in parallel if at least one

of them is different from 1. If this is the case, then the degree of xj in t(x) is less than
p− 1. Hence, we have computed the formula χ̄1

j (a) = 1(degree of xj in ta 6= p− 1). We
can find the smallest index j∗ such that χ̄1

j (a) = 1 using the same construction as in ψ1.
So, we can construct a formula for each j that is equal to 1 if and only if j = j∗ is the
smallest index such that xj∗ has degree less than p− 1 in ta. Finally, we use a selector to
find the value Cj∗(x) = x−kj∗ t(x), by computing Cj(x) for all j. This is done through the
product of all variables that appear in ta(x) excluding xj .
It is left to implement a formula that takes as input the value Cj∗(x) ∈ Zp, the value of
r ∈ Zp and the values χ1

j∗(0), χ1
j∗(1), . . . , χ1

j∗(p− 1) all in Zp and outputs a group of p
values in Z2

p, which corresponds to the values of xj and r in the output. Observe that
both the input and the output size of this formula are only a function of p and, hence,
constant. Therefore, we can explicitly construct a constant depth formula to capture this
grouping.

CCC 2020

19:42 On the Complexity of Modulo-q Arguments and the Chevalley–Warning Theorem

Case s = 0. For constructing the formula χ2 we first check whether x ∈ Vf1 and
whether y is the lexicographically sorted version of Σx. These can both be done as we
have described in the construction of the formula ψ above. If all checks pass, then we
output the p edges of the form (z, r) for all z ∈ Σx, that correspond to the r-th copy of
the edge between z and y.

Combining the formulas ψ and χ through a selector concludes the construction of φ.
Hence, the theorem follows by observing that the instance of ChevalleyWithSymmetryp
that we get when reducing Lonelyp to ChevalleyWithSymmetryp in Theorem 3 reduces
to SuccinctBipartitep[AC0

Fp
]. J

	Introduction
	Characterization via Prime Modulus
	A Natural Complete Problem via Chevalley-Warning Theorem
	Max-Degree Monic Monomials and Proof of Chevalley-Warning Theorem
	Proofs of Cancellation
	Computational Problems Based on Chevalley-Warning Theorem

	Complete Problems via Small Depth Arithmetic Formulas
	Applications of Chevalley-Warning
	Structural properties
	Open questions

	The class {PPA}_q
	Characterization via Primes
	Coprime case
	Prime power case

	A Natural Complete Problem
	The Chevalley-Warning Theorem
	The Chevalley-Warning Theorem with Symmetry
	Computational Problems Related to Chevalley-Warning Theorem
	ChevalleyWithSymmetry_{p} is {PPA}_{{p}}–complete
	ChevalleyWithSymmetry_{p} is in {PPA}_p
	ChevalleyWithSymmetry_{p} is {PPA}_p–hard

	Complete Problems via Small Depth Arithmetic Circuits
	Applications of Chevalley-Warning
	Structural Properties of {PPA}_q
	{PPAD}subseteq {PPA}_q
	Oracle separations
	Closure under Turing reductions

	Appendix: Reductions Between Complete Problems
	Completeness of Succinct Bipartite
	Equivalence with {PMOD}_p

	Appendix: Proof of Theorem 36

