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Abstract—Survival data is often collected in medical appli-
cations from a heterogeneous population of patients. While
in the past, popular survival models focused on modeling
the average effect of the covariates on survival outcomes,
rapidly advancing sensing and information technologies have
provided opportunities to further model the heterogeneity of the
population as well as the non-linearity of the survival risk. With
this motivation, we propose a new semi-parametric Bayesian
Survival Rule List model in this paper. Our model derives a
rule-based decision-making approach, while within the regime
defined by each rule, survival risk is modelled via a Gaussian
process latent variable model. Markov Chain Monte Carlo
with a nested Laplace approximation on the Gaussian process
posterior is used to search over the posterior of the rule lists
efficiently. The use of ordered rule lists enables us to model
heterogeneity while keeping the model complexity in check.
Performance evaluations on a synthetic heterogeneous survival
dataset and a real world sepsis survival dataset demonstrate the
effectiveness of our model.

I. INTRODUCTION

Survival analysis studies time-to-event data, and consists
of important prognostic models to analyze patient morbidity
and mortality in almost all medical areas. Many of these
models were developed decades ago when medical data were
largely collected on paper and were designed for modeling
the average effect of risk factors in a population. One
of the most commonly used models, the Cox proportional
hazards regression [1], was built on a creative nonparametric
construct of the baseline hazards function and the use of
linear formalism to characterize the relationship between the
covariates and the survival outcome, i.e. hazard or risk. With
increasing complexity in modern patient medical data that
are now available through advances in sensor technologies,

the methodological framework of the classic Cox regression
model is found to be over-simplified due to its proportional
hazards assumption and the imposed linearity of covariate
effects. It is possible now to develop better methods for
patient survival data analysis by modeling both complex
survival effects as well as data heterogeneity. As these two
interrelated issues are tackled in the literature as separate
issues, in this paper, we propose to tackle both issues in
a unified framework that builds on the strength of rule-
based learning and semi-parametric Bayesian modeling for
survival data. A popular way of modelling survival data is
the nonparametric Kaplan-Meier estimator [2] that estimates
the survival function from censored and event times but does
not incorporate covariate effects. The semi-parametric Cox
regression [1] can overcome this problem, but it imposes
a strict proportional hazards assumption which is often not
valid on real world survival datasets. To ameliorate this
limitation, the fully parametric accelerated failure time (AFT)
method was proposed where a prior baseline probability
distribution is given for the baseline lifetime, and covariate
effects directly act on event-times through a link function.
Both these methods model linear effects, and can only
detect interactions if explicitly specified in the model. On
the other hand, the survival trees [3] and random survival
forests [4] are non-parametric methods that can implicitly
detect interactions and do not assume linearity. Nevertheless,
being non-parametric, they are unable to incorporate prior
information or quantify uncertainty. Recently, there has been
work on using Bayesian semi-parametric methods for survival
analysis. Gaussian process extensions to the Cox and AFT
models [5], [6] have been introduced, where a latent Gaussian



process is used to model one or more parameters. As GP
models define distributions over functions, such models are
capable of modelling non-linear effects. Moreover, since they
are semi-parametric, they are capable of incorporating prior
information, while the Bayesian approach enables them to
quantify uncertainty. However, these models aim to model
the survival data from a homogeneous population and do not
model heterogeneous effects.

Rule-based learning uses spatial partitioning to model het-
erogeneous data. Rule models have been especially important
in medical and healthcare domains where interpretability
is critical, e.g., rule based machine learning models have
been used for diagnosis of breast [7] and lung cancer [8],
sepsis [9], diabetes [10] as well as to study depression
profiles [11]. Rule-based methods have also been shown
to be effective in identifying subgroups with heterogeneous
risk profiles in a patient population [12]. Greedy decision
tree models such as CART [13] are typical examples, but
they provide a quite restrictive result, i.e., the partitioning
is suboptimal. Optimal partitioning such as through integer
programming [14] or Bayesian decision trees [15] is NP-hard
and computationally demanding due to the exponential search
space which severely limits both the depth of the tree and the
number of variables that can be considered. Comparing with
the tree models, the rule-based methods, which work on the
same principle of partitioning, have found a larger flexibility
and efficiency in a range of applications. As the purpose of
using partitioning is to tackle patient heterogeneity, it can be
used to group data into subsets with similar response charac-
teristics that enable subgrouping of subjects and subsequent
separate modeling of each subgroup. A recent breakthrough
in rule learning is Rulefit [16] for classification and regression
modelling, motivated by the sparse regularization techniques,
which was generalized to survival outcomes as well [17].
Rulefit generates a sparse list of predictive rules from a large
set of rules mined from bootsrapped decision trees. Rules can
also be flexibly used or re-organized to make better decisions,
one example is the recent development of Bayesian rule
lists (BRL) for classification [18] that is able to incorporate
Bayesian modeling to quantify uncertainty. BRL is able to
strike a balance between greedy and optimal partitioning
and provides good generalizability with significantly lower
computational load.

In this paper, we propose an integrative framework that
uses ordered rule lists to derive a rule-based decision-making
approach, while within the regime defined by each rule,
survival risk is modelled via a Gaussian process latent
variable model. The computational challenges are overcome
by a tailored Markov Chain Monte Carlo algorithm with a
nested Laplace approximation for the latent variable model to
search over the posterior of the rule lists efficiently. The use
of ordered rule lists enables our method to model data hetero-
geneity while simultaneously keeping the model complexity
low and providing interpretability. Moreover, since basic GP
survival models require O(N3) matrix inversion operations,

the data partitioning approach may lower computational
demands once a rule list is found.

The remainder of the paper is organized as follows: Section
II summarizes the related works; the proposed method is
described in Section III; experimental results are presented
in Section IV; finally, conclusions and future works are
summarized in Section V. Note that, in this paper, we use
lower or upper case letters, e.g., x or X , to represent scalars,
bold-face lower-case letters, e.g., x, to represent vectors,
bold-face upper-case letters, e.g., X, to represent matrices.

II. RELATED WORK

Survival analysis analyzes time-to-event data, which are
typically represented in the form {(ti, δi,xi) | xi ∈ RP , i ∈
1 : N}. Here, ti is the event time or censored time, xi are co-
variates, and δi denotes whether or not the event has occurred
for an observation. Survival data are often incomplete and
the event time may be either right, left or interval censored.
The objective of survival analysis is to model the survival
function and the hazard function and understand how the
covariates impact these functions. Assuming that the time-
to-event (failure time), T , is a continuous random variable
with a density function, f(t), the survival function, S(t),
which is the probability that the event has not yet occurred
by time t is,

S(t) = Pr{T ≥ t} =
∫ ∞
t

f(x)dx. (1)

Further, the hazard function, h(t) is the instantaneous rate of
the occurrence of the event at time t,

h(t) = lim
dt→0

Pr{t ≤ T < t+ dt | T ≥ t}
dt

=
f(t)

S(t)
(2)

The data likelihood can be derived through these functions
as:

L =

K:δ=1∏
i=1

f(ti)

M :δ=0∏
j=1

S(ti) =

N∏
i=1

h(ti)
δiS(ti). (3)

A. Generalized Linear Models for Survival Analysis

Different approaches aim to model the hazard function
based on different premises. In the Cox proportional hazards
regression [1], the hazard function is modelled as the product
of a nonparametric baseline hazard, h0(t) which is a function
of time and a relative hazard term, hR(x) that is a log linear
function of covariates,

h(t | xi) = h0(t)exp(g(xi)), (4)

where g(xi) = w′xi. The Cox model makes an assumption
that the hazards are proportional, i.e., the ratio of hazards of
any two observations remains constant over time and only
depends on the covariates. This restrictive assumption often
does not hold on real survival datasets. Further, since the
baseline hazard, h0(t) is not estimated, the Cox model can
only describe how the hazards of two observations relate with
each other, and not describe the hazard or survival function



of a given observation directly. The accelerated failure time
(AFT) model is a popular parametric approach that relaxes
the proportional hazards assumption by modelling the co-
variate effects as directly influencing the failure time of the
observations,

log Ti = g(xi) + ε, (5)

where ε is the error term with a specified distribution that
determines the baseline failure density. A common modelling
approach is to assign a logistic distribution to ε, which is
equivalent to assigning a log-logistic (LL) distribution to the
baseline failure time, T0, as we can see by rewriting (5)
as, Ti = exp(g(xi))T0 and T0 = exp(ε). In this case, the
failure time of an observation, Ti can therefore be seen as a
sample from a log-logistic distribution with scale parameter,
αi = exp(g(xi)) depending on covariates and a common
shape parameter, β for all observations, i.e. Ti ∼ LL(αi, β),
where αi = exp(w′xi). The parameters, (w) of the Cox
regression or (w, β) of the AFT model are estimated through
Maximum Likelihood estimation. These two models fall
under the framework of generalized linear model as the
covariate effects are assumed to be linear, therefore, they
cannot deal with non-linearities and interaction effects unless
explicitly specified in the model terms. A popular approach to
deal with some of these limitations are survival trees [3] and
the bootstrap aggregation of trees, i.e., the random survival
forest [4] which can implicitly deal with interactions. An
added advantage of the tree based approaches is that they
are interpretable and can easily be decomposed into rules.

B. Gaussian Processes for Survival Analysis

To ameliorate the limitations of the generalized linear
model framework, which can only include nonlinear effects
through explicit model specification, a well known approach
has been to use Gaussian processes. Several works in litera-
ture have applied Gaussian processes to extend the standard
models of survival analysis. The GP-Cox model [5] extends
the Cox regression by the replacing linear effects term, g(x)
with a GP, f to model nonlinear covariate effects while
assuming the baseline hazard to be piecewise constant. This
model is extended in [6] by smoothing the piecewise constant
baseline hazard with a second GP. Recently, the Gaussian
Process framework was used to extend the AFT model [19]
to nonlinear effects. We discuss this GP-AFT model in further
detail since it is related to our work.

1) GP-AFT survival model: The GP extension to the
log-logistic AFT model (Section II-A) includes nonlinear
effects by imposing a log GP prior on the scale parameter
(α), instead of a log linear relation to the variables, i.e.,
α = exp(f) where f ∼ GP(0,K). GP-AFT models the scale
of the AFT distribution as dependent on the variables through
the GP, while the shape parameter, β, is considered to be the
same for all observations, and does not depend on covariates.
However, this model carries over the AFT assumption that
the shape parameter of the failure time density does not
change with respect to the covariates. This is restrictive as

it assumes the hazard function to be either exponential or
unimodal for all observations in the data, which does not
hold in heterogeneous datasets.

Work to ameliorate the limitations of Gaussian processes
on heterogeneous data have focused on partitioning ap-
proaches. [20] propose Bayesian treed partitioning, with GP
being fit to the terminal nodes of a Bayesian CART model,
while [21] fit separate GP’s at each element of a voronoi
tessellation. However, these efforts still use exclusive tree
structures for modeling heterogeneity, and do not address
nonlinear survival models such as GP-AFT. In contrast to
these fully probabilistic GP models, our work is semi-
parametric which enables us to achieve a balance between
computational demand and performance. Our proposed work
also addresses the limitation of the GP-AFT survival to
heterogeneity by relaxing the common shape assumption, and
varying the shape parameter with respect to covariates, i.e.,
our rule list approach allows us to learn failure time densities
with varying shapes for different partitions, as well as identify
the covariates that cause heterogeneity.

III. METHODS

Let R be the pre-mined rule set containing a total of K
rules. We generate R by extracting rules of various cardinal-
ities from trees in a random survival forest. The cardinality
of a rule is defined as the number of interacting covariates in
the rule (ex. 1, 2, .. etc.). Rules that are endorsed by at least
a given minimum number of observations in the dataset are
selected, i.e., rules that apply to very few observations are
filtered out. Our goal is to tackle heterogeneity by building
an ordered rule list, d which is a subset of R of size m where
m � K. Priors on the number of rules in the list, m and
the number of covariates interacting in each rule ensure that
the rule list is sufficiently sparse and complex. We utilize
an MCMC scheme similar to that in BRL [18] to obtain a
posterior over the ordered rule list given data; however, the
objective in BRL was multivariate classification, while our
goal is survival analysis with Gaussian processes. In what
follows, we describe our predictive model, Gaussian process
survival rule lists (GPSRL), and inference procedure to learn
the model.

A. Formulation of Gaussian Process Survival Rule Lists

An ordered rule list, d with m rules will divide the
dataset into m + 1 non overlapping partitions as follows:
each observation in the dataset which endorses at least one
of the m rules belongs to the partition associated with the
first rule in the ordered list, d, that the observation endorses.
Observations not endorsing any of the m rules will belong
to the m+1-th partition. Thus, an ordered rule list of length
m will divide the data into m + 1 exclusive partitions. For
each of the partitions determined by d, we fit a log-logistic
(LL) Gaussian process AFT model (II-B1) with its scale
parameter (α) dependent on covariates and modelled via a
Gaussian process, and a shared shape (β) parameter with



Fig. 1: Caption

a log uniform prior. The same priors are adopted across
partitions to control the model complexity. An illustration
of our Bayesian GPSRL model is given in (6).

if r1 then t1 ∼ LL(α1, β1)

else if r2 then t2 ∼ LL(α2, β2)

. (6)

.

else if rm then tm ∼ LL(αm, βm)

else t0 ∼ LL(α0, β0)

The priors on the parameters of the rule list and survival
models on each partition (j ∈ {0, · · ·m}) are:

m ∼ TP (λ, 0, |R|) αj = exp
(
fj(Xj)

)
log βj ∼ U(0, s) fj(Xj) ∼ GP(0,Kj) (7)

s ∼ IG(a, b) Kj(x,x) = σ2
j exp

(
− |x− x′|2

2l2j

)
σj ∼ IG(aσ, bσ) lj ∼ IG(al, bl)

Here, LL,U, TP, IG,N are the Log-logistic, Uniform,
Truncated-Poisson, Inverse-Gamma and Normal distribu-
tions, respectively. Our model seeks to combine the inter-
pretability of rule-based models with the modelling flexibility
of Gaussian process survival models. Given the pre-mined
set of rules R, we seek to obtain the posterior distribution of
the ordered Bayesian rule list, d, and the associated posterior
distributions of parameters of the Gaussian survival processes
that model the survival response at each of the corresponding
partitions defined by d.

B. Bayesian inference

Given covariate data, X, and survival response, y, Our goal
is to obtain the posterior distribution of the ordered Bayesian
rule list. The posterior probability density of the rule list, d
is proportional to the product of data likelihood and prior
probability:

p(d | X,y) ∝ p(y | X, d)p(d). (8)

1) Prior probability: Similar to the prior probability of the
BRL [18] model, the prior probability of the GPSRL rule list
is defined hierarchically as,

p(d) = p(m | λ)
m∏
j=1

p(cj | c1 · · · cj−1, η)p(rj | r1, · · · rj−1, cj).

(9)
Here m is the number of rules in the list, and cj denotes
the cardinality of rule rj . Truncated-Poisson (TP) priors are
selected for both m and each of cj | c1 · · · cj−1. The TP prior
on m has a given mean value λ and is truncated on the total
number of rules that are available, K. It may be written as
follows.

p(m | R, λ) = (λm/m!)∑K
j=1(λ

j/j!)
, m = 0, 1, . . .K (10)

The TP prior on cj | c1 · · · cj−1 has a mean η and is truncated
to only include the cardinalities of rules that are currently
available. Rj = R \ {r1, r2 . . . rj−1} are the rules available
after sampling j − 1 rules. The probability of selecting the
cardinality, cj may be written as:

p(cj | c1 · · · cj−1, η) =
ηcj/cj !∑
c∈Cj

ηc/c!
, (11)

where Cj is the set of cardinalities of rules in Rj . Once
cj is sampled, a uniform probability is chosen over all the
available rules with cardinality cj to sample the j-th rule in
d, rj . That is,

p(rj | r1, · · · rj−1, cj) =
1

|{ri | ri ∈ Rj , ci = cj}|
(12)

The first term in the prior (9) is the probability of obtaining
a rule list with m rules given the mean number of rules λ.
In the subsequent product over the rules {r1 · · · rm} in d,
each term denotes the probability of obtaining a rule rj with
a cardinality of cj given a mean cardinality η multiplied by
the probability of choosing rule rj from all the available rules
with this cardinality.

2) Likelihood: We fit a log-logistic (LL) Gaussian process
AFT model (II-B1) at each of the partitions defined by the
rule list, d. Here, the data likelihood (3) of partition j ∈
{1, 2, . . .m + 1} given response y = (t, δ), covariate data,
X, and parameters (α, β) is as follows:

p(y | α, β) =
M :δ=1∏
i=1

(αi

β )( yi

αi
)β−1

(1 + yi

αi
β)2

N :δj=0∏
j=1

1

1 + ( yi

αi
)β
.

(13)
The scale parameter, α = exp(f) is defined as an expo-
nential of a Gaussian process (GP) with prior f | X ∼
GP(0,KX), while the shape parameter has a log uniform
prior, log β ∼ U(0, s). Since this likelihood (13) is not Gaus-
sian or conjugate-Gaussian, the posterior density of f, i.e.,
p(f | X,y), and consequently the marginal data likelihood,
p(y | X) =

∫
p(y | f)p(f | X)df is not analytically tractable

and must be approximated. A popular method to approximate



the posterior in case of non-Gaussian likelihood with latent
Gaussian processes such as those arising in survival analysis
is the Laplace approximation, which obtains a Gaussian
distribution approximation to the posterior density of the
GP around the mode of the true distribution. The Laplace
approximation [22] obtains a Gaussian density, q, which
approximates the true non-Gaussian posterior density of the
GP, i.e., the approximate posterior density, q(f) ≈ p(f | y,X)
given by,

q(f) = N (f | f̂ ,A−1) (14)

where f̂ = argmaxfp(f | X,y) is the mode of the posterior
and A = −∇∇log p(f | X,y) is the Hessian of the negative
log posterior at the mode. This approximate density can
be used in lieu of the true GP posterior to calculate an
approximated marginal likelihood, p(y | X) ≈ pL(y | X) =∫
p(y | f)q(f)df . The total approximated marginal likelihood

of the data can be written as:

pL(y | X, d) =
m∏
j=0

pL(yj | Xj), (15)

where yj and Xj is the response and covariate data, respec-
tively, belonging to each of the m+1 partitions (indexed by
j) defined by our rule list.

3) MCMC Sampling: We use Metropolis-Hastings sam-
pling to infer the posterior distribution of the rule list,
p(d | X,y). The sampling sequence of rule lists starts with
an initial random list, d0 sampled from the prior, p(d). After
initialization, the sequence proceeds as follows: At step t
in the sequence, with a rule list dt of length mt, a proposal
distribution Q is used to propose the next list in the sequence
dt+1 ∼ Q(dt). The new rule list is generated through one of
three equally likely operations: i) adding a rule to the bottom
of dt, ii) removing a randomly selected rule from dt, iii)
moving a randomly selected rule to a different position in dt.
The proposal distribution denotes the probability of sampling
dt+1 from dt,

Q(dt+1 | dt,R) =


1

(K−mt)(mt+1) if a rule is added
1
mt if a rule is removed

1
mt(mt−1) if a rule is moved.

(16)
The proposed sequence, dt+1 is then accepted with an
acceptance probability, π(dt+1 | dt), defined as follows:

π(dt+1 | dt) = min
{Q(dt+1, dt)

Q(dt, dt+1)

p(y | X, dt+1)p(dt+1)

p(y | X, dt)p(dt)
, 1
}
.

(17)
Here p(y | X, dt) and p(y | X, dt+1) are marginals that may
be evaluated approximately as shown in Section III-B2. For
a sufficiently long chain, the sequence will sample rule lists
from the posterior density of the Bayesian rule list. Gaussian
approximates to the marginal likelihood have been proposed
in literature to increase the speed of the MCMC algorithm
when the likelihood evaluation is costly [23], where it was

shown that using an approximate likelihood may take more
MCMC steps to reach convergence though the total time
of convergence reduces due to faster sampling enabled by
the approximations. However, using approximate likelihood
evaluations does not theoretically guarantee convergence of
the MCMC algorithm though the algorithm will push the
sequence towards an area with a high approximate posterior.

C. Predictive Inference

Given the posterior distribution of the rule lists obtained
from the MCMC sequence, p(d | X,y), we can obtain a
point estimate of the rule list, d, and the model defined
by the Laplace-posterior approximations of the latent GP,
qj(f) and shape parameter of the log likelihood distribution,
βj at each of the partitions. The predictive density (under
the Laplace approximation) of a new observation (y∗,x∗)
which falls in, say, the j-th partition as defined by d can be
evaluated as follows: first, the distribution of the latent GP
at the new observation (see [22] for derivation) under the
Laplace approximation is computed. Since,[

f∗

f

]
∼ N

(
0,

[
K(X) K(X,x∗)

K(x∗,X) K(x∗)

])
(18)

and therefore the conditional density is

f∗ | x∗,X, f = N
(
K(x∗,X)K(X)−1f ,

K(x∗)−K(x∗,X)K(X)−1K(X,x∗)
)
. (19)

The posterior predictive density of the GP under the Laplace
approximation, qj(f∗ | x∗,X,y), can then be evaluated as,

pj(f
∗ | X,y, f) =

∫
pj(f

∗ | x∗,X, f)p(f | X,y)df

≈
∫
p(f∗ | x∗,X, f)qj(f | X,y)df (20)

= qj(f
∗ | x∗,X,y)

and is therefore a Gaussian distribution that is analytically
tractable. Then, the predictive density of the observation
(y∗,x∗) under the Laplace approximation is given by the
integral,

p(y∗ | x∗,X,y) =
∫
p(y∗ | α∗, βj)pj(f∗ | x∗,X,y)df∗

≈
∫
p(y∗ | α∗, βj)qj(f∗ | x∗,X,y)df∗

(21)

Since the first term of this integral is the log logistic data
likelihood (13), and is not conjugate-Gaussian, the integral
is not analytically tractable and must be calculated using
numerical methods.



IV. EXPERIMENTS

Performance validation and comparison with several ex-
isting GP-based survival models such as GP-AFT survival
Gaussian process model with Laplace approximation [24]
SGP(L), survival GP model with variational approximation
[25] SGP(V), and a recent work that proposed to model
both shape and scale parameters with GP’s, chained Gaussian
process model [26], CHGP. Experiments are performed on a
synthetic heterogeneous survival dataset and a real-world sur-
vival dataset of sepsis patients from the MIMIC-III (Medical
Information Mart for Intensive Care) [27] database. Perfor-
mance is evaluated using the negative log predictive density
(NLPD) (21) and concordance index (C-INDEX) [28]. NLPD
is calculated from the predictive density as shown in Section
III-C,

NLPD(y∗,X∗) =

∑N
i=1 p(y

∗
i | x∗i ,X,y)
N

. (22)

C-INDEX is the measure of a model’s ability to rank survival
times. It estimates the probability that in a randomly selected
pair of test observations, the one with the lower response time
has the lower predictive response time. In our experiments,
for each observation, we take the average C-INDEX calcu-
lated over 100 predicted times sampled from the predictive
log logistic distributions in the obtained GPSRL rule lists
(6). NLPD is lower in a superior model while C-INDEX is
higher. We use the GPy [29] software to train the GP models
used in these experiments.

A. Synthetic Data

We simulated a heterogeneous survival dataset, D =
(y, δ,X), consisting of N = 1000 observations with P = 4
variables. The covariates of each observation x ∈ X are
generated by sampling from uniform distribution (xi ∼
U(0, 1) ∀i ∈ 1 : P ). Event times for all observations, t,
are simulated by sampling from a log-logistic distribution,
ti ∼ LL(α, β) with the scale α, and shape β parameters
generated as follows:

α(x) = I1α1(x) + I2α2(x) + I3α3(x),

β(x) = I1β1(x) + I2β2(x) + I3β3(x),

where I1, I2, I3 are indicator functions to denote certain
conditions on the covariate data being satisfied and αi, βi are
different complex functions of the covariates of the following
form:

αi(x) = a1exp
(
a2
( 2∑
k=1

exp(a3(x[k]− a4)2)
)
+

4∑
k=3

sin(πx[k]2)
)
,

βi(x) = b1exp
( 2∑
k=1

sin(2πx[k]2) +
4∑
k=3

cos(2πx[k]2)
)
,

with varying values of a1, a2, a3, a4 and b1 for each i ∈
{1, 2, 3}. We assume that 35% of the simulated data is
censored (δi = 0). To account for this, the simulated event
times, t of a random subset consisting of 35% of the data
are multiplied with a uniform random variable to simulate
the response times, y, i.e., yi = ρiti if δi = 0 else yi = ti
where ρi ∼ U(0, 1). Performance comparison is carried
out by evaluating model performance on a testing dataset
consisting of 250 observations that was simulated in a similar
manner as the training data. A large set of rules are mined
from a survival random forest and rules that are followed by
at least 10% of the data are selected to generated the initial
rules, R.

TABLE I: Estimate of ordered rule list d from the posterior

Rules

r1 x3 ≤ 0.259

r3 x4 > 0.596 & x3 > 0.196

r3 x4 ≤ 0.677 & x4 > 0.192
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else

(a)
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h
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Hazard function
if r1

else if r2

else if r3

else

(b)

Fig. 2: (a) Mean survival function and (b) Mean hazard
function of GPSRL model on each of the partitions defined
by rule list in Table I

Results: We used hyperparameter values of λ = 3 for
the mean length of the rule list, and η = 2 for the mean
number of variables in each of the rules. The MCMC chain
was simulated until convergence, which took approximately
4000 iterations. An example of the rule list obtained from
the posterior in one of the MCMC chains is shown in Table
I. Fig. 2a shows the mean survival function learnt at each of
the four data partitions defined by the rule list, and Fig. 2b
shows the mean hazard function. It is noted that the hazard
function learnt by GPSRL is multimodal, i.e., in the first
partition, the hazard is exponential, signifying that the shape
parameter, β <= 1 while in the other partitions it is unimodal
meaning β > 1. The standard GP-AFT models discussed in
Section II assume the same value of β for all observations and
hence learn either an exponential or a unimodal hazard but
not both, while the partitioning approach of GPSRL allows
us to model both unimodal and multimodal hazards, which
is a typical aspect of heterogeneous medical datasets.

The performance comparison results in Fig. 3 show that
GPSRL model outperforms the other models on the synthetic
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Fig. 3: (a) NLPD and (b) C-INDEX comparison over 10
cross-validation folds with 250 replicates for different sur-
vival GP models trained on synthetic data

dataset. The box plot in Fig. 3a shows the NLPD obtained
by each model on the testing data over 10 folds of the testing
data. We observe that GPSRL achieves the lowest values
of NLPD as compared to other models, demonstrating its
effectiveness. The other survival model that provides a way
to model heterogeneity, chained survival Gaussian process
performs second best. The GP-AFT models with Laplace ap-
proximation, SGP-L and with sparse GP variational approx-
imation, SGP-V achieve a comparable performance. In Fig.
3b, the comparison of C-INDEX for different models on the
10 testing folds is shown. Once again, GPSRL outperforms
other models and has the highest mean C-INDEX. The C-
INDEX follows the same trend as NLPD, however SGP(V)
achieves the lowest C-INDEX.

B. Sepsis Data

MIMIC-III is a comprehensive database comprising
anonymized information relating to patients admitted to the
Beth Israel Deaconess Medical Center in Boston, MA be-
tween 2001 and 2012. The data consists of over 53,000 adult
ICU admissions during this time period. In this paper, we
utilize a subset of inpatient admissions which were diagnosed
with sepsis conditions. We consider 9 variables consisting
of patient characteristics and physiological measurements,
which are age, heart rate, diastolic and systolic blood pres-
sure, saturated oxygen, arterial-pH etc. We choose a subset of
1200 observations for training the model and a testing dataset
of 400 observations.

TABLE II: Estimate of ordered rule list d from the posterior

Rules

r1 artpH-(mean) <= 7.249

r2 O2sat-(sd) <= 4.66 & diaBP-(mean) <= 61.26

r3 O2sat-(sd) <= 4.8

Results: We used hyperparameter values of λ = 3 for
the mean length of the rule list, and η = 2 for the mean
number of variables in each of the rules. The MCMC chain
was simulated until convergence, which took approximately
4700 iterations. An example of the rule list obtained from
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Fig. 4: (a) Mean survival function and (b) Mean hazard
function of GPSRL model on each of the partitions defined
by rule list in Table II
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Fig. 5: a) NLPD and (b) C-INDEX comparison over 10 cross-
validation folds with 400 replicates for different survival GP
models trained on sepsis data.

the posterior in one of the MCMC chains is shown in Table
II. Fig. 4a shows the mean survival function learnt at each
of the three data partitions defined by the rule list, and
Fig. 4b shows the mean hazard function. The performance
comparison results in Fig. 5 show that on this dataset,
performance of all the models is comparable though a small
gain is achieved by using GPSRL. The box plot in Fig. 5a
shows the NLPD achieved by each model on the testing data
over 10 folds of 40 observations each. GPSRL does achieve
a slightly lower median NLPD as compared to other models,
though standard GP models are satisfactory on this dataset.
The same applies to Fig. 5b which compares the C-INDEX
achieved by the models on the 10 testing folds. Once again,
the values obtained are nearly equal.

TABLE III: Summary of NLPD comparison of different
models

Data SGP(L) SGP(V) CHGP GPSRL

Synthetic 1.08± 0.2 1.09± 0.2 0.93± 0.1 0.9± 0.1

Sepsis 1.76± 0.2 1.75± 0.2 1.73± 0.2 1.67± 0.2

A summary of the mean NLPD obtained via crossvalida-
tion by the various survival GP models on both the synthetic
and survival test datasets is provided in Table III, and a
summary of the mean C-INDEX is provided in Table IV. As



TABLE IV: Summary of C-INDEX comparison of different
models

Data SGP(L) SGP(V) CHGP GPSRL

Synthetic 0.77± 0.05 0.75± 0.05 0.75± 0.05 0.78± 0.04

Sepsis 0.61± 0.07 0.62± 0.06 0.62± 0.07 0.63± 0.07

can be seen, our model achieves clearly better performance in
both average NLPD and average C-INDEX on the synthetic
heterogenous dataset while the all the GP models have more
or less similar performance on the sepsis data.

V. CONCLUSION

In this paper, we propose a novel and effective method
to model heterogeneity in survival data analysis. Our model,
‘Gaussian Process Survival Rule Lists (GPSRL)’, utilizes a
semi-parametric Bayesian framework to partition the data
into subsets with different survival characteristics. This al-
lows us to address some of the limitations of standard survival
Gaussian process models, and also provides a degree of inter-
pretability. Experimental results on the synthetic dataset and
the MIMIC sepsis survival dataset demonstrate the efficacy
of our model by outperforming existing survival GP models.
In future work, exploring speedups to GPSRL through either
screening for bad proposals of rule lists or computationally
efficient approximations, such as stochastic approximations
to the latent marginal can improve the model further.
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