
Local Access to Huge Random Objects Through
Partial Sampling
Amartya Shankha Biswas
CSAIL, MIT, Cambridge, MA, USA
asbiswas@mit.edu

Ronitt Rubinfeld
CSAIL, MIT, Cambridge, MA, USA
ronitt@csail.mit.edu

Anak Yodpinyanee
CSAIL, MIT, Cambridge, MA, USA
anak@csail.mit.edu

Abstract
Consider an algorithm performing a computation on a huge random object (for example a random
graph or a “long” random walk). Is it necessary to generate the entire object prior to the computation,
or is it possible to provide query access to the object and sample it incrementally “on-the-fly” (as
requested by the algorithm)? Such an implementation should emulate the random object by
answering queries in a manner consistent with an instance of the random object sampled from the
true distribution (or close to it). This paradigm is useful when the algorithm is sub-linear and thus,
sampling the entire object up front would ruin its efficiency.

Our first set of results focus on undirected graphs with independent edge probabilities, i.e. each
edge is chosen as an independent Bernoulli random variable. We provide a general implementation
for this model under certain assumptions. Then, we use this to obtain the first efficient local
implementations for the Erdös-Rényi G(n, p) model for all values of p, and the Stochastic Block
model. As in previous local-access implementations for random graphs, we support Vertex-Pair
and Next-Neighbor queries. In addition, we introduce a new Random-Neighbor query. Next, we
give the first local-access implementation for All-Neighbors queries in the (sparse and directed)
Kleinberg’s Small-World model. Our implementations require no pre-processing time, and answer
each query using O(poly(log n)) time, random bits, and additional space.

Next, we show how to implement random Catalan objects, specifically focusing on Dyck paths
(balanced random walks on the integer line that are always non-negative). Here, we support Height
queries to find the location of the walk, and First-Return queries to find the time when the walk
returns to a specified location. This in turn can be used to implement Next-Neighbor queries on
random rooted ordered trees, and Matching-Bracket queries on random well bracketed expressions
(the Dyck language).

Finally, we introduce two features to define a new model that: (1) allows multiple independent
(and even simultaneous) instantiations of the same implementation, to be consistent with each other
without the need for communication, (2) allows us to generate a richer class of random objects that
do not have a succinct description. Specifically, we study uniformly random valid q-colorings of an
input graph G with maximum degree ∆. This is in contrast to prior work in the area, where the
relevant random objects are defined as a distribution with O(1) parameters (for example, n and p
in the G(n, p) model). The distribution over valid colorings is instead specified via a “huge” input
(the underlying graph G), that is far too large to be read by a sub-linear time algorithm. Instead,
our implementation accesses G through local neighborhood probes, and is able to answer queries
to the color of any given vertex in sub-linear time for q ≥ 9∆, in a manner that is consistent with
a specific random valid coloring of G. Furthermore, the implementation is memory-less, and can
maintain consistency with non-communicating copies of itself.
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1 Introduction

Consider an algorithm performing a computation on a huge random object (for example a huge
random graph or a “long” random walk). Is it necessary to generate the entire object prior to
the computation, or is it possible to provide local query access to the object and generate it
incrementally “on-the-fly” (as requested by the algorithm)? Such an implementation would
ideally emulate the random object by answering appropriate queries, in a manner that is
consistent with a specific instance of the random object, sampled from the true distribution.
This paradigm is useful when we wish to simulate a sub-linear algorithm on a random object,
since sampling the entire object up front would ruin its efficiency.

In this work, we focus on generating huge random objects in a number of new settings,
including basic random graph models that were not previously considered, Catalan objects,
and random colorings of graphs. One emerging theme that we develop further is to provide
access to random objects through more complex yet natural queries. For example, con-
sider an implementation for Erdös-Rényi G(n, p) random graphs, where the simplest query
Vertex-Pair(u, v) would ask about the existence of edge (u, v), which can be answered
trivially by flipping a coin with bias p (thus revealing a single entry in the adjacency matrix).
However, many applications involving non-dense graphs would benefit from adjacency list
access, which we provide through Next-Neighbor and Random-Neighbor queries1

The problem of sampling partial information about huge random objects was pioneered
in [26, 24, 25], through the implementation of indistinguishable pseudo-random objects
of exponential size. Further work in [41, 18] considers the implementation of different
random graph models. [18] introduced the study of Next-Neighbor queries which provide
efficient access to the adjacency list representation. In addition to supporting Vertex-Pair
and Next-Neighbor, we also introduce and implement a new Random-Neighbor query for
undirected graphs with independent edge probabilities.

Finally, we define a new model that allows us to generate a richer class of random objects
that do not have a succinct description. Specifically, we study uniformly random valid
q-colorings of an input graph G with max degree ∆. This is in contrast to prior work in the
area, where random objects are defined as a distribution with O(1) parameters (for example,
n and p in the G(n, p) model). The distribution over valid colorings is instead specified via
a “huge” input (the underlying graph G), that is too large to be read by a sub-linear time
algorithm. Instead, our implementation accesses G using local neighborhood probes.

This new model can be compared to Local Computation Algorithms, which also implement
query access to a consistent valid solution, and read their input using local probes. Inspired
by this connection, we extend our model to support memory-less implementations. This
allows multiple independent (possibly simultaneous) instantiations to agree on the same

1 Vertex-Pair(u, v) returns whether u and v are adjacent, Next-Neighbor(v) returns a new neighbor
of v each time it is invoked (until none is left), and Random-Neighbor(v) returns a uniform random
neighbor of v (if v is not isolated).

https://doi.org/10.4230/LIPIcs.ITCS.2020.27
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random object, without any communication. We show how to implement local access to
color of any given node in a random coloring, using sub-linear resources. Unlike LCAs which
can generate an arbitrary valid solution, our model requires a uniformly random one.

Random Graphs (Section 3 and Section E)

Random graphs are one of the most well studied types of random object. We consider the
problem of implementing local access to a number of fundamental random graph models,
through natural queries, including Vertex-Pair, Next-Neighbor, and a newly introduced
Random-neighbor query1, using polylogarithmic resources per query. Our results on random
graphs are summarized in Table 1.

Undirected Random Graphs with Independent Edge Probabilities. We implement the
aforementioned queries for the generic class of undirected graphs with independent edge
probabilities {puv}u,v∈V , where puv denotes the probability that there is an edge between u
and v. Under reasonable assumptions on the ability to compute certain values pertaining to
consecutive edge probabilities, our implementations support Vertex-Pair, Next-Neighbor,
and Random-Neighbor queries1, using O(poly(log n)) time, space, and random bits. Note
that in this setting, Vertex-Pair queries are trivial by themselves, since the existence of an
edge depends on an independent random variable. However, maintaining all three types of
queries simultaneously is much harder. As in [18] (and unlike many of the implementations
presented in [24, 26]), our techniques allow unlimited queries, and the generated random
objects are sampled from the true distribution (rather than just being indistinguishable).
In particular, our construction yields local-access implementations for the Erdös-Rényi
G(n, p) model (for all values of p), and the Stochastic Block model with random community
assignment.

Table 1 (Local access implementations for random graphs): All the implementations
in this table use polylogarithimc time, additional space and random bits per query. A 7 in the
All-Neighbors column indicates that the graphs in this model may have un-bounded degree, and it
is therefore impossible to sample All-Neighbors efficiently. A ?? entry indicates a sampling problem
with no known efficient solution.

Model Vertex-Pair Next-Neighbor Random-Neighbor All-Neighbors

G(n, p) with p = logO(1) n
n

[41] [41] [41] [41]

G(n, p) for arbitrary p This paper This paper This paper 7

Stochastic Block Model with
logO(1) n communities This paper This paper This paper 7

BA Preferential Attachment [18] [18] ?? 7

Small world model This paper This paper This paper This paper

Random ordered rooted trees This paper This paper This paper This paper

While Vertex-Pair and Next-Neighbor queries have been considered in prior work
[18, 24, 41], we provide the first implementations of these in non-sparse random graph
models. Prior results for implementing queries to G(n, p) focused on the sparse case where
p = logO(1) n/n [41]. The dense case where p = Θ(1) is also relatively simple because most
of the adjacency matrix is filled, and neighbor queries can be answered by performing Θ(1)
Vertex-Pair queries until an edge is found. The case of general p is more involved, and
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was not considered previously. For example, when p = 1/
√
n, each vertex has high degree

O(
√
n) but most of the adjacency matrix is empty, thus making it difficult to generate a

neighbor efficiently. Next-Neighbor queries were introduced in [18] in order to access the
neighborhoods of vertices in non-sparse graphs in lexicographic order. This query however,
does not allow us to efficiently explore graphs in some natural ways, such as via random
walks, since the initially returned neighbors are biased by the lexicographic ordering. We
address this deficiency by introducing a new Random-Neighbor query, which would be useful,
for instance, in sub-linear algorithms that employ random walk processes. We provide the
first implementation of all three queries in non-sparse graphs as follows:

I Theorem 1. Given a random graph model defined by the probability matrix {puv}u,v∈[n],
and assuming that we can compute the the quantities

∏b
u=a(1 − pvu) and

∑b
u=a pvu in

O(logO(1) n) time, there exists an implementation for this model that supports local access
through Random-Neighbor, Vertex-Pair, and Next-Neighbor queries using O(logO(1) n)
running time, additional space, and random bits per query.

We show that these assumptions can be realized in Erdös-Rényi random graphs and the
Stochastic Block Model. SBM presents additional challenges for assigning community labels
to vertices (Section 2.1.1).

I Corollary 2. There exists an algorithm that implements local access to a Erdös-Rényi G(n, p)
random graph, through Vertex-Pair, Next-Neighbor, and Random-Neighbor queries, while
using O(log3 n) time, O(log3 n) random bits, and O(log2 n) additional space per query with
high probability.

I Corollary 3. There exists an algorithm that implements local access to a random graph
from the n-vertex Stochastic Block Model with r randomly-assigned communities, through
Vertex-Pair, Next-Neighbor, and Random-Neighbor queries, using O(r poly(log n)) time,
random bits, and space per query w.h.p.

We remark that while we are able to generate Erdös-Rényi random graphs on-the-fly
supporting all three types of queries, our construction still only requires Õ(m+ n) time and
space to generate a complete G(n, p) graph, which is optimal up to logarithmic factors.

I Corollary 4. The final algorithm in Section 3 can generate a complete random graph from
the Erdös-Rényi G(n, p) model using overall Õ(n+m) time, random bits and space, which is
Õ(pn2) in expectation. This is optimal up to O(poly(log n)) factors.

Directed Random Graphs – The Small World Model (Section E). We consider local-
access implementations for directed graphs through Kleinberg’s Small World model, where
the probabilities are based on distances in a 2-dimensional grid. This model was introduced in
[31] to capture the geographical structure of real world networks, in addition to reproducing
observed properties of short routing paths and low diameter. We implement All-Neighbors
queries for the Small World model, using O(poly(log n)) time, space and random bits. Since
such graphs are sparse, the other queries follow directly.

I Theorem 5. There exists an algorithm that implements All-Neighbors queries for a
random graph from Kleinberg’s Small World model, where probability of including each directed
non-grid edge (u, v) in the graph is c/(dist(u, v))2, where the range of allowed values of c
is log±O(1) n and dist denotes the Manhattan distance, using O(log2 n) time and random
words per query with high probability.
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Catalan Objects (Section 4)

Catalan objects capture a well studied combinatorial property and admit numerous interpret-
ations that include well bracketed expressions, rooted trees and binary trees, Dyck languages
etc. In this paper, we focus on the Dyck path interpretation and implement local access to
a uniformly random instance of a Dyck path. Since Dyck paths have natural bijections to
other Catalan objects, we can use our Dyck Path implementation to obtain implementations
of these random Catalan objects.

A Dyck path is defined as a sequence of n upward (+1) steps, and n downward (−1)
steps, with the added constraint that the sum of any prefix of the sequence is non-negative.
A random Dyck path may be viewed as a constrained one dimensional balanced random
walk. A natural query on Dyck paths is Height(t) which returns the position of the walk
after t steps (equivalently, sum of the first t sequence elements). Height queries correspond
to Depth queries on rooted trees and bracketed expressions (Section 4.1).

We also introduce and support First-Return queries, where First-Return(t) returns
the first time when the random walk returns to the same height as it was at time t, as long
as Height(t+ 1) = Height(t) + 1 (Section 4.1 presents the rationale for this definition). This
allows us to support more involved queries that are widely used; for example, First-Return
queries are equivalent to finding the next child of a node in a random rooted tree, and also
to finding a matching closing bracket in random bracketed expressions.

Height queries for unconstrained random walks follow trivially from the implementation
of interval summable functions in [26, 23]. However, the added non-negativity constraint
introduces intricate non-local dependencies on the distribution of positions. We show how to
overcome these challenges, and support both queries using O(poly(log n)) resources.

I Theorem 6. There is an algorithm using O(logO(1) n) resources per query that provides
access to a uniformly random Dyck path of length 2n by implementing the following queries:

Height(t) returns the position of the walk after t steps.
First-Return(t): If Height(t + 1) > Height(t), then First-Return(t) returns the
smallest index t′, such that t′ > t and Height(t′) = Height(t) (i.e. the first time the
Dyck path returns to the same height). Otherwise, if Height(t + 1) < Height(t), then
First-Return(t) is not defined.

Random Coloring of Graphs – A New Model (Section 5)

So far, all the results in this area have focused on random objects with a small description
size; for instance, the G(n, p) model is described with only two parameters n and p. We
introduce a new model for implementing random objects with huge input description; that
is, the distribution is specified as a uniformly random solution to a huge combinatorial
problem. The challenge is that now our algorithms cannot read the entire description in
sub-linear time.

In this model, we implement query access to random q-colorings of a given huge graph
G with maximum degree ∆. A random coloring is generated by proposing O(n log n) color
updates and accepting the ones that do not create a conflict (Glauber dynamics). This is an
inherently sequential process with the acceptance of a particular proposal depending on all
preceding neighboring proposals. Moreover, unlike the previously considered random objects,
this one has no succinct representation, and we can only uncover the proper distribution by
probing the underlying graph (in the manner of local computation algorithms [48, 5]). Unlike
LCAs which can return an arbitrary valid solution, we also have to make sure that we return
a solution from the correct distribution. We are able to construct an efficient oracle that
returns the final color of a vertex using only a sub-linear number of probes when q ≥ 9∆.

ITCS 2020
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This implementation also has the feature that multiple independent instances of the
algorithm having access to the same random bits, will respond to queries in a manner
consistent with each other; they will generate exactly the same coloring, regardless of the
queries asked. Since these implementations are memory-less, the resulting coloring is oblivious
to the order of queries, and only depends on common random bits,

I Theorem 7. Given neighborhood query access to a graph G with n nodes, maximum degree
∆, and q = 2α∆ ≥ 9∆ colors, we can generate the color of any given node from a distribution
of color assignments that is ε-close (in L1 distance) to the uniform distribution over all valid
colorings of G, in a consistent manner, using only O((n/ε)3.06/α∆ log(n/ε)) time, probes,
and public random bits per query.

1.1 Related Work
The problem of computing local information of huge random objects was pioneered in [24, 26].
Further work of [41] considers the implementation of sparse G(n, p) graphs from the Erdös-
Rényi model [17], with p = O(poly(log n)/n), by implementing All-Neighbors queries.
While these implementations use polylogarithmic resources over their entire execution, they
generate graphs that are only guaranteed to appear random to algorithms that inspect a
limited portion of the generated graph.

In [18], the authors construct an oracle for the implementation of recursive trees, and
BA preferential attachment graphs. Unlike prior work, their implementation allows for an
arbitrary number of queries. Although the graphs in this model are generated via a sequential
process, the oracle is able to locally generate arbitrary portions of it and answer queries
in polylogarithmic time. Though preferential attachment graphs are sparse, they contain
vertices of high degree, thus [18] provides access to the adjacency list through Next-Neighbor
queries. For additional related work, see Section G.

1.2 Applications
One motivation for implementing local access to huge random objects is so that we can
simulate sub-linear time algorithms on them. The standard paradigm of generating the
entire (input) object a priori is wasteful, because sub-linear algorithms only inspect a small
fraction of the generated input. For example, the greedy routing algorithm on Kleinberg’s
small world networks [31] only uses O(log2 n) probes to the underlying network. Using
our implementation, one can execute this algorithm on a random small world instance in
O(poly(log n)) time, without incurring the O(n) prior-sampling overhead, by generating only
those parts of the graph that are accessed by the routing algorithm.

Local access implementations may also be used to design parallel generators for random
objects. The model in Definition 10 is particularly suited to parallelization; different
processors/machines can generate parts of the random object independently, using a read-
only shared memory containing public random bits.

2 Model and Overview of our Techniques

We begin by formalizing our model of local-access implementations, inspired by [18], but
we add some aspects that were not addressed in earlier models. First, we define families of
random objects.
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I Definition 8. A random object family maps a description Π to a distribution XΠ over
the set XΠ.

For example, the family of Erdös-Rényi graphs maps Π = (n, p) to a distribution over
XΠ, which is the set of all possible n-vertex graphs, where the probability assigned to any
graph containing m edges in the distribution XΠ is exactly pm · (1− p)(

n
2)−m.

I Definition 9. Given a random object family {(XΠ,XΠ)} parameterized by Π, a local
access implementation of a family of query functions 〈F1, F2, · · · 〉 where Fi : XΠ → {0, 1},
provides an oracle M with an internal state for storing a partially generated random object.
Given a description Π and a query Fi, the oracle returns the value M(Π, Fi), and updates
its internal state, while satisfying the following:

Consistency: There must be a single X ∈ XΠ, such that for all queries Fi presented to
the oracle, the returned value M(Π, Fi) equals the true value Fi(X).
Distribution equivalence: The random object X ∈ XΠ consistent with the responses
{Fi(X)} must be sampled from some distribution X̂Π that is ε-close to the desired distri-
bution XΠ in L1-distance. In this work, we focus on supporting ε = n−c for any desired
constant c > 0.
Performance: The computation time, and random bits required to answer a single query
must be sub-linear in |X| with high probability, without any initialization overhead.

In particular, we allow queries to be made adversarially and non-deterministically. The
adversary has full knowledge of the algorithm’s behavior and its past random bits.

For example, in the G(n, p) family with description Π = (n, p), we can define Vertex-Pair
query functions {F(u,v)}u,v∈[n]. So, given a graph G ∈ XΠ, the query F(u,v)(G) = 1 if and
only if (u, v) ∈ G.

In prior work [18, 26, 41] as well as some of our results, the input description Π is of
small size (typically O(log n)), and the oracleM can read all of Π (for example, Π = (n, p)
in G(n, p)).

Distributions with Huge Description Size. We initiate the study of random object
families where the description Π is too large to be read by a sub-linear time algorithm.
In this setting, the oracle from Definition 9 cannot read the entire input Π, and instead
accesses it through local probes. For instance, consider the random object family that
maps a graph G to the uniform distribution over valid colorings of G. Here, the description
Π includes the entire graph G, which is too large to be read by a sub-linear time algorithm.
In this case, the oracle can query the underlying graph using neighborhood probes. The
number of such probes used to answer a single query must be sub-linear in the input size.

Supporting Independent Query Oracles: Memory-less Implementations

The model in Definition 9 only supports sequential queries, since the response to a future query
may depend on the changes in internal state caused by past queries. In some applications,
we may want to have multiple independent query oracles whose responses are all consistent
with each other. One way to achieve this is to restrict our attention to memory-less
implementations; ones without any internal state. An important implication of being
memory-less is that the responses to each query is oblivious to the order of queries being
asked. In fact, the lack of internal state implies that independent implementations that
use the same random bits and the same input description must respond to queries in the
same way. Thus, instead of using the internal state to maintain consistency, memory-less
implementations are given access to the same public random oracle.

ITCS 2020
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For the problem of sampling a random graph coloring, we present an implementation that
is memory-less and also accesses the input description through local probes, as elaborated in
the following model:

I Definition 10. Given a random object family {(XΠ,XΠ)} parameterized by input Π, a
local access implementation of a family of query functions 〈F1, F2, · · · 〉, provides an oracle
M with the following properties. M has query access to the input description Π, and a
tape of public random bits R. Upon being queried with Π and Fi, the oracle uses sub-linear
resources to return the value M(Π,R, Fi), which must equal Fi(X) for a specific X ∈ XΠ,
where the choice of X depends only on R, and the distribution of X (over R) is 1

nc -close
to the distribution over XΠ, for any given constant c. Thus, different instances of M with
the same description Π and the same random bits R, must agree on the choice of X that is
consistent with all answered queries regardless of the order and content of queries that were
actually asked.

We can contrast Definition 10 with the one for Local Computation Algorithms [48, 5]
which also allow query access to some valid solution by reading the input through local probes.
The additional challenge in our setting is that we also have to make sure that we return a
uniformly random solution, rather than an arbitrary one. We also note that the memory-
less property may be achieved for small description size random object families. For
instance, our implementation for the directed small world model admits such a memory-less
implementation using public random bits.

2.1 Undirected Graphs
We consider the generic class of undirected graphs with independent edge probabilities
{puv}u,v∈V , (where puv denotes the probability that there is an edge between u and v),
from which the results can be applied to Erdös-Rényi random graphs and the Stochastic
Block Model. Throughout, we identify our vertices via their unique IDs from 1 to n, namely
V = [n]. In this model, Vertex-Pair queries by themselves can be implemented trivially,
since the existence of any edge (u, v) is an independent Bernoulli random variable, but it
becomes harder to maintain consistency when implementing them in conjunction with the
other queries. Inspired by [18], we provide an implementation of next-neighbor queries,
which return the neighbors of any given vertex one by one in lexicographic order. Finally,
we introduce a new query: Random-Neighbor that returns a uniformly random neighbor
of any given vertex. This would be useful for any algorithm that performs random walks.
Random-Neighbor queries in non-sparse graphs present particularly interesting challenges
that are outlined below.

Next-Neighbor Queries

In Erdös-Rényi graphs, the (lexicographically) next neighbor of a vertex can be recovered
by generating consecutive entries of the adjacency matrix until a neighbor is found, which
takes roughly Ω(1/puv) time. For small edge probabilities puv = o(1), this implementation is
inefficient, and we show how to improve the runtime to O(poly(log n)). Our main technique
is to sample the number of “non-neighbors” preceding the next neighbor. To do this, we
assume that we can estimate the “skip” probabilities F (v, a, b) =

∏b
u=a(1 − pvu), where

F (v, a, b) is the probability that v has no neighbors in the range [a, b]. We later show how to
compute this quantity efficiently for G(n, p) and the Stochastic Block Model.
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This strategy of skip-sampling is also used in [18]. However, in our work, the main
difficulty arises from the fact that our graph is undirected, and thus we must “inform”
all (potentially Θ(n)) non-neighbors once we decide on the query vertex’s next neighbor.
Concretely, if u′ is sampled as the next neighbor of v after its previous neighbor u, we must
maintain consistency in subsequent steps by ensuring that none of the vertices in the range
(u, u′) return v as a neighbor. This update will become even more complicated as we handle
Random-Neighbor queries, where we may generate non-neighbors at random locations.

In Section 3.1, we present a randomized implementation (Algorithm 1) that supports
Next-Neighbor queries efficiently, but has a complicated performance analysis. We remark
that this approach may be extended to support Vertex-Pair queries (Section A) with
superior performance (if we do not support Random-Neighbor queries), and also to provide
deterministic resource usage guarantee (Section C).

Random-Neighbor Queries

We implement Random-Neighbor queries (Section 3.2) using poly(log n) resources. The
ability to do so is surprising since: (1) Sampling the degree of vertex, may not be viable for
sub-linear implementations, because this quantity alone imposes dependence on the existence
of all of its potential incident edges and consequently on the rest of the graph (since it is
undirected). Thus, our implementation needs to return a random neighbor, with probability
reciprocal to the query vertex’s degree, without resorting to determining its degree. (2)
Even without committing to the degrees, answers to Random-Neighbor queries affect the
conditional probabilities of the remaining adjacencies in a global and non-trivial manner.2

We formulate an approach which samples many consecutive edges simultaneously, in
such a way that the conditional probabilities of the unsampled edges remain independent
and “well-behaved” during subsequent queries. For each vertex v, we divide the potential
neighbors of v into consecutive ranges {B(i)

v } called blocks, so that each B(i)
v contains Θ(1)

neighbors in expectation (i.e.
∑
u∈Bi pvu = Θ(1)). The subroutine of Next-Neighbor is

applied to sample the neighbors within a block in expected Õ(1) time. We can now obtain
a neighbor of v by picking a random neighbor from a random block, but this introduces a
bias because all blocks may not have the same number of neighbors. We remove this bias by
rejecting samples from block B(i)

v with probability proportional to the number of neighbors
in B(i)

v .

2.1.1 Applications to Random Graph Models

We now consider the application of our construction above to actual random graph models,
where we must realize the assumption that

∏b
u=a(1 − pvu) and

∑b
u=a pvu can be com-

puted efficiently. For the Erdös-Rényi G(n, p) model, these quantities have simple closed-
form expressions. Thus, we obtain implementations of Vertex-Pair, Next-Neighbor, and
Random-Neighbor queries, using polylogarithmic resources per query, for arbitrary values of
p, We remark that, while Ω(n+m) = Ω(pn2) time and space is clearly necessary to generate
and represent a full random graph, our implementation supports local-access via all three
types of queries, and yet can generate a full graph in Õ(n+m) time and space (Corollary 4).

2 Consider a G(n, p) graph with small p, say p = 1/
√
n, such that vertices will have Õ(

√
n) neighbors

with high probability. After Õ(
√
n) Random-Neighbor queries, we will have uncovered all the neighbors

(w.h.p.), so that the conditional probability of the remaining Θ(n) edges should now be close to zero.
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We also generalize our construction to implement the Stochastic Block Model. In this
model, the vertex set is partitioned into r communities {C1, . . . , Cr}. The probability that
an edge exists between u ∈ Ci and v ∈ Cj is pij . A naive solution would be to simply assign
communities to contiguous (by index) blocks of vertices, which would easily allow us to
calculate the relevant sums/products of probabilities on continuous ranges of indices, with
some additional case analysis to check when we are at a community boundary. However, this
setup is unrealistic, and not particularly useful in the context of the Stochastic Block model.
As communities in the observed data are generally unknown a priori, and significant research
has been devoted to designing efficient algorithms for community detection and recovery,
these studies generally consider the random community assignment condition for the purpose
of designing and analyzing algorithms [40]. Thus, we construct implementations where the
community assignments are sampled from some given distribution R, or from a collection of
specified community sizes 〈|C1|, . . . , |Cr|〉. The main difficulty here is to obtain a uniformly
sampled assignment of vertices to communities on-the-fly.

Since the probabilities of potential edges now depend on the communities of their
endpoints, we can’t obtain closed form expressions for the relevant sums and products
of probabilities. However, we observe that it suffices to efficiently count the number of
vertices of each community in any range of contiguous vertex indices. We then design a data
structure extending a construction of [26], which maintains these counts for ranges of vertices,
and determines the partition of their counts only on an as-needed basis. This extension
results in an efficient technique to sample counts from the multivariate hypergeometric
distribution (Section D) which may be of independent interest. For r communities, this yields
an implementation with O(r · poly(log n)) overhead in required resources for each operation.

2.2 Directed Graphs
Lastly, we consider Kleinberg’s Small World model ([31, 37]) in Section E. While small world
models are proposed to capture properties of observed data such as small shortest-path
distances and large clustering coefficients [55], this important special case of Kleinberg’s
model, defined on two-dimensional grids, demonstrates the underlying geographical structures
of networks.

In this model, each vertex is identified via its 2D coordinate v = (vx, vy) ∈ [
√
n]2. Defining

the Manhattan distance as dist(u, v) = |ux − vx| + |uy − vy|, the probability that each
directed edge (u, v) exists is c/(dist(u, v))2. A common choice for c is given by normalizing
the distribution such that the expected out-degree of each vertex is 1 (c = Θ(1/ log n)). We
can also support a range of values of c = log±Θ(1) n. Since the degree of each vertex in
this model is O(log n) with high probability, we implement All-Neighbor queries, which in
turn can emulate Vertex-Pair, Next-Neighbor and Random-Neighbor queries. In contrast
to our previous cases, this model imposes an underlying two-dimensional structure of the
vertex set, which governs the distance function as well as complicates the individual edge
probabilities.

We implement All-Neighbors queries in the small world model by listing all neighbors
from closest to furthest away from the queried vertex, using poly(log n) resources per query.
The main challenge is to sample for the next closest neighbor, when the probabilities are
a function of the Manhattan distance on the lattice. Rather than sampling for a neighbor
directly, we partition the nodes based on their distance from v (there are Θ(d) vertices
at distance d). We first choose the next smallest distance partition with a neighbor using
rejection sampling techniques (Lemma 11) on the appropriate distribution. In the second
step, we generate all the neighbors within that partition using skip-sampling.
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2.3 Random Catalan Objects
Many important combinatorial objects can be interpreted as Catalan objects. One such
interpretation is a Dyck path; a one dimensional random walk on the line with n up
and n down steps, starting from the origin, with the constraint that the height is always
non-negative. We implement Height(t), which returns the position of the walk at time t,
and First-Return(t), which returns the first time when the random walk returns to the
same position as it was at time t. These queries are natural for several types of Catalan
objects. As noted previously, we can use standard bijections to translate the Dyck path
query implementations into natural queries for bracketed expressions and ordered rooted trees.
Specifically, Height values in Dyck paths are equivalent to depth in bracket expressions
and trees. The First-Return queries are more involved, and are equivalent to finding the
matching bracket in bracket expressions, and alternately to finding the next child of a node
in an ordered rooted tree (see Section 4.1).

Over the course of the execution, our algorithm will determine the height of a random
Dyck path at many different positions {x1, x2, · · · , xm} (with xi < xi+1), both directly as a
result of user given Height queries, and indirectly through recursive calls to Height. These
positions divide the sequence into contiguous intervals [xi, xi+1], where the height of the
endpoints yi, yi+1 have been determined, but none of the intermediate heights are known. The
important observation is that the unknown section of the path within an interval is entirely
determined by the positions and heights of the endpoints, and in particular is completely
independent of all other intervals. So, each interval [xi, xi+1] along with corresponding
heights {yi, yi+1}, represents a generalized Dyck problem with U up steps, D down steps,
and a constraint that the path never dips more than yi units below the starting height.

Height Queries

General Height(x) queries can then be answered by recursively halving the interval containing
x, by repeatedly sampling the height at the midpoint, until the height of position x is sampled.
We start by implementing a subroutine that given an interval [xi, xi+1] of length 2B,
containing 2U up and 2D down steps, determines the number of up steps U ′ = U+d assigned
to the first half of the interval (we parameterize U ′ with d in order to make the analysis
cleaner). Note that this is equivalent to answering the query Height(xi +B). This is done
by sampling the parameter d from a distribution {pd} where pd ≡ Sleft(d) · Sright(d)/Stotal.
Here, Sleft(d) (respectively Sright(d)) is the number of possible paths in the left (resp. right)
half of the interval when U + d up steps and D − d down steps are assigned to the first half,
and Stotal is the number of possible paths in the original 2B-interval.

The problem of determining the number of up steps in the first half of the interval
was solved for the unconstrained case (where the sequence is just a random permutation
of up and down steps) in [26]. Adding the non-negativity constraint introduces further
difficulties as the distribution over d has a CDF that is difficult to compute. We construct a
different distribution {qd} that approximates {pd} pointwise to a factor of O(log n) and has
an efficiently computable CDF. This allows us to sample from {qd} and leverage rejection
sampling techniques (see Lemma 11 in Section 2.5) to obtain samples from {pd}.

First-Return Queries

Note that First-Return(x) is only of interest when the first step after position x is upwards
(i.e. Height(x+ 1) > Height(x)), since this situation is important for complex queries to
random bracketed expressions and random rooted trees. Section 4.1 details the rationale
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for this definition based on bijections between these objects. First-Return queries are
challenging because we need to find the interval containing the first return to Height(x).
Since there could be up to Θ(n) intervals, it is inefficient to iterate through all of them.
To circumvent this problem, we allow each interval [xi, xi+1] to sample and maintain its
own boundary constraint ki instead of using the global non-negativity constraint. This
implies that the path within the interval [xi, xi+1] never reaches the height yi − ki or lower.
Additionally, we maintain a crucial invariant that states that this boundary is achieved
by the endpoint of lower height i.e. min(yi, yi+1). If the invariant holds, we can find the
interval containing First-Return(x) by finding the smallest determined position xj > x

whose sampled height yj ≤ Height(x), and considering the interval [xj−1, xj ] preceding xj .
We use an interval tree to update and query for the known heights.

Unfortunately, every Height query creates new intervals by sub-dividing existing ones,
potentially breaking the invariant. We re-establish the invariant for [xi, xi+1] by generating a
“mandatory boundary” h (a boundary constraint with the added restriction that some position
within the interval must touch the boundary), and then sampling a position xmid ∈ [xi, xi+1]
such that Height(xmid) = h (Figure 6). This creates new intervals [xi, xmid] and [xmid, xi+1],
both of which have a boundary constraint at h.

The first step of sampling the mandatory boundary is performed by binary searching
on the possible boundary locations using an appropriate CDF (Section 4.4.2). To find an
intermediate position touching this boundary, we parameterize the position with d, and
find the distribution {pd} associated with the various possibilities. Since we cannot directly
sample from this complicated distribution, we define a piecewise continuous probability
distribution q̂(δ) such that q̂(δ) approximates pbδc (Section 4.4.3). We then use this to define
a discrete distribution {qd} where qd =

∫ d+1
d

q̂(δ), where we can efficiently compute the CDF
of {qd} by integrating the piecewise continuous q̂(δ). The challenge here is to construct an
appropriate q̂(δ) that only has O(logO(1) n) continuous pieces. This allows us to again use
the rejection sampling technique (Lemma 11) to indirectly obtain a sample from {pd}.

2.4 Random Coloring of a Graph
Finally, we introduce a new model (Definition 10) for implementing huge random objects,
where the distribution is specified as a uniformly random solution to a huge combinatorial
problem. In this new setting, we will implement local query access to random q-colorings
of a given huge graph G of size n with maximum degree ∆. Since the implementation has
to run in sub-linear time, it is not possible to read the entire input G during a single query
execution.

Color Queries

Given a graph G with maximum degree ∆, and the number of colors q ≥ 9∆, we are able
to construct an efficient implementation for Color(v) that returns the final color of v in
a uniformly random q-coloring of G using only a sub-linear number of probes. Random
colorings of a graph are sampled using O(n log n) iterations of a Markov chain [22]. Each
step of the chain proposes a random color update for a random vertex, and accepts the
update if it does not create a conflict. This is an inherently sequential process, with the
acceptance of a particular proposal depending on all preceding neighboring proposals.

To make the runtime analysis simpler, we define a modified version of Glauber Dynamics
that proceeds in O(log n) epochs. In each epoch, all of the n vertices propose a random color
and update themselves if their proposals do not conflict with any of their neighbors. This
Markov chain is a special case of the one presented in [20] for distributed graph coloring, and
mixes in O(log n) epochs when q ≥ 9∆. In order to implement the query Color(v), it suffices



A. S. Biswas, R. Rubinfeld, and A. Yodpinyanee 27:13

to implement Accepted(v, t) that indicates whether the proposal for v was accepted in the
tth epoch. This depends on the prior colors of the potentially ∆ neighbors of v. Determining
the prior colors of all the neighbors w using recursive calls would result in ∆ invocations
of Accepted(w, t− 1) (at the preceding epoch t− 1). Naively, this gives a bound of ∆t on
the number of invocations. We can prune the recursions by only considering neighbors who
proposed the color c during some past epoch. This reduces the expected number of recursive
calls to t∆/q, since there are t∆ potential proposals and each one is c with probability 1/q.
If q is larger than t∆, the number of recursive calls is less than 1, which gives a sub-linear
bound on the total number of resulting invocations. Since the number of epochs t can be as
large as Θ(log n), this strategy will only work when q = Ω(∆ log n).

The improvement to q = Ω(∆) follows from the observation that for a neighbor w that
proposed color c at epoch t′, the recursive call corresponding to w can directly jump to
epoch t′. If the conflicting color c was indeed accepted at that epoch, we then step forwards
through epochs t′+ 1, t′+ 2, · · · , to check whether c was overwritten by some future accepted
proposal. This strategy dramatically reduces the recursive sub-problem size (given by the
epoch number t′), and furthermore we show that we do not have to step through too many
future epochs in order to check whether c was overwritten. This allows us to bound the
runtime by Õ

(
t∆(n/ε)6.12∆/q), where the overall coloring is sampled from a distribution

that is ε-close to uniform (see Definition 10).
One requirement for our strategy is the ability to access a valid initial coloring (the

initial state of the Markov Chain) through local probes, in addition to local probes to the
underlying graph structure. This assumption can be removed by using a result of [10], that
presents an LCA for ∆ + 1 graph coloring using ∆O(1) log n graph probes. Alternately, we
can assign random initial colors to the vertices, which may result in an invalid final coloring.
However, the Markov Chain will transform the initial invalid coloring into a valid one with
high probability.

2.5 Basic Tools for Efficient Sampling
In this section, we describe the main techniques used to sample from a distribution {pi}i∈[n],
which differs based on the type of access to {pi} provided to the algorithm. If the algorithm
is given cumulative distribution function (CDF) access to {pi}, then it is well known that
via O(log n) CDF evaluations, one can sample according to a distribution that is at most
n−c far from {pi} in L1 distance.

Sampling can be more challenging when when we can only access the probability distri-
bution function (PDF) of {pi}, The approach that we use in this work is to construct an
auxiliary distribution {qi} such that: (1) {qi} has an efficiently computable CDF, and (2) qi
approximates pi pointwise to within a polylogarithmic multiplicative factor for “most” of the
support of {pi}. The following Lemma inspired by [26] formalizes this concept.

I Lemma 11. Let {pi}i∈[n] and {qi}i∈[n] be distributions on [n] satisfying the following
conditions:
1. There is a logO(1) n time algorithm to approximate pi and qi up to a multiplicative(

1± 1
nc

)
factor.

2. We can generate an index i according to a distribution {q̂i}, where q̂i is a
(
1± 1

nc

)
multiplicative approximation to qi.

3. There exists a poly(log n)-time recognizable set S such that
1−

∑
i∈S

pi <
1
nc

For every i ∈ S, it holds that pi ≤ logO(1) n · qi
Then, with high probability we can use only logO(1) n samples from {q̂i} to generate an index
i according to a distribution that is O

( 1
nc

)
-close to {pi} in L1 distance.
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Proof. We begin by setting an upper bound U = logO(1) n on pi/qi for all i ∈ S. The
sampling proceeds in iterations, such that in each iteration we obtain an index i according
to the distribution {q̂i}. If i 6∈ S, this index is returned with probability p̃i/Uq̃i, where p̃i
and q̃i are the

(
1± 1

nc

)
multiplicative approximations to pi and qi, Otherwise, we repeat this

process until some output is returned.
The probability of returning index i ∈ S in a particular iteration is q̂i · (p̃i/Uq̃i), which is

in turn a
(
1± 1

nc

)
multiplicative approximation to pi/U . Hence, the probability of success in

a single iteration is roughly 1/U , and therefore we only need O(U log n) = logO(1) n iterations
(and the same number of samples from {q̂i}) in order to succeed with high probability. The
resulting distribution of indices approximates {pi} pointwise on the domain S, up to a factor
of
(
1± 1

nc

)
. Since the remainder of the domain contains at most 1

nc probability mass, the
output distribution is O

( 1
nc

)
close to {pi} in L1 distance. J

3 Local-Access Implementations for Random Undirected Graphs

In this section, we provide an efficient local access implementations for random undirected
graphs when the probabilities puv = P[(u, v) ∈ E] are given, and we can efficiently approximate
the following quantities: (1) the probability that there is no edge between a vertex u and
a range of consecutive vertices [a, b], namely

∏b
u=a(1 − pvu), and (2) the sum of the edge

probabilities (i.e., the expected number of edges) between u and vertices from [a, b], namely∑b
u=a pvu. In Section 1.2, we provide subroutines for computing these values for the Erdös-

Rényi model and the Stochastic Block model. We also begin by assuming perfect-precision
arithmetic, which we relax in Section B.1.

First, consider the adjacency matrix A of G, where each entry A[u][v] can exist in
three possible states: A[u][v] = 1 or 0 if the algorithm has determined that {u, v} ∈ E or
{u, v} /∈ E respectively, and A[u][v] = φ if whether {u, v} ∈ E or not will be determined
by future random choices (in fact, the marginal probability of P[(u, v) ∈ E] conditioned on
all prior samples is still puv). Our implementation also maintains the vector last (used in
the same sense as [18]), where last[v] records the neighbor of v returned in the last call
Next-Neighbor(v), or last[v] = 0 if no such call has been invoked. All cells of A and last
are initialized to φ and 0, respectively.

We use the Bernoulli random variable Xuv ∼ Bern(puv) when sampling the value of
A[u][v] = φ. For the sake of analysis, we will frequently view our random process as if the
entire table of random variables Xuv has been sampled up-front, and the algorithm simply
“uncovers” these variables instead of making coin-flips. Thus, every cell A[u][v] is originally
φ, but will eventually take the value Xuv.

Obstacles for maintaining A explicitly. Consider a naive implemention that fills out the
cells of A one-by-one as required by each query; equivalently, we perform Vertex-Pair queries
on successive vertices until a neighbor is found. There are two problems with this approach.
Firstly, the algorithm only finds a neighbor, for a Random-Neighbor or Next-Neighbor query,
with probability puv: for G(n, p) this requires 1/p iterations, which is already infeasible for
p = o(1/poly(log n)). Secondly, the algorithm may generate a large number of non-neighbors
in the process, possibly in random or arbitrary locations.
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3.1 Next-Neighbor Queries via Run-of-0’s Sampling
We implement Next-Neighbor(v) by sampling for the first index u > last[v] such that
Xvu = 1, from a sequence of Bernoulli RVs {Xv,u}u>last[v]. To do so, we sample a consecutive
“run” of 0’s with probability

∏u′

u=last[v]+1(1− pvu): this is the probability that there is no
edge between a vertex v and any u ∈ (last[v], u′], which can be computed efficiently by our
assumption. The problem is that, some entries A[v][u]’s in this run may have already been
determined (to be 1 or 0) by queries Next-Neighbor(u) for u > last[v]. To mitigate this
issue, we give a succinct data structure that determines the value of A[v][u] for u > last[v]
and, more generally, captures the state A, in Section 3.1.1. Using this data structure, we
ensure that our sampled run does not skip over any 1. Next, for the sampled index u of the
first occurrence of 1, we check against this data structure to see if A[v][u] is already assigned
to 0, in which case we re-sample for a new candidate u′ > u. Section 3.1.2 discusses the
subtlety of this issue.

We note that we do not yet try to handle other types of queries here yet. We also do
not formally bound the number of re-sampling iterations of this approach here, because the
argument is not needed by our final algorithm. Yet, we remark that O(log n) iterations suffice
with high probability, even if the queries are adversarial. This method can be extended
to support Vertex-Pair queries (but unfortunately not Random-Neighbor queries). See
Section A for full details.

3.1.1 Data structure
From the definition of Xuv, Next-Neighbor(v) is given by min{u > last[v] : Xvu = 1}. Let
Pv = {u : A[v][u] = 1} be the set of known neighbors of v, and wv = min{(Pv ∩ (last[v], n])}
be its first known neighbor not yet reported by a Next-Neighbor(v) query, or equivalently,
the next occurrence of 1 in v’s row on A after last[v]. If there is no known neighbor of v
after last[v], we set wv = n+ 1. Consequently, A[v][u] ∈ {φ, 0} for all u ∈ (last[v], wv), so
Next-Neighbor(v) is either the index u of the first occurrence of Xvu = 1 in this range, or
wv if no such index exists.

We keep track of last[v] in a dictionary, to avoid any initialization overhead. Each Pv
is maintained as an ordered set, which is also instantiated when it becomes non-empty.
When Next-Neighbor(v) returns u, we add v to Pu and u to Pv. We do not attempt to
maintain A explicitly, as updating it requires replacing up to Θ(n) φ’s to 0’s for a single
Next-Neighbor query in the worst case. Instead, we argue that last and Pv’s provide a
succinct representation of A via the following observation.

I Lemma 12. The data structures last and Pv’s together provide a succinct representation
of A when only Next-Neighbor queries are allowed. In particular, A[v][u] = 1 if and only
if u ∈ Pv. Otherwise, A[v][u] = 0 when u < last[v] or v < last[u]. In all remaining cases,
A[v][u] = φ.

Proof. The condition for A[v][u] = 1 clearly holds by constuction. Otherwise, observe
that A[v][u] becomes decided (i.e. its value is changed from φ to 0) during the first call to
Next-Neighbor(v) that returns a value u′ > u thereby setting last[v] = u′ =⇒ u < last[v],
or vice versa. J

3.1.2 Queries and Updates
We now present Algorithm 1, and discuss the correctness of its sampling process. The
argument here is rather subtle and relies on viewing the process as an “uncovering” of
the table of RVs Xuv (introduced in Section 3). Consider the following strategy to find
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Algorithm 1 Sampling Next-Neighbor.

1: procedure Next-Neighbor(v)
2: u← last[v]
3: wv ← min{(Pv ∩ (u, n]) ∪ {n+ 1}}
4: repeat
5: sample F ∼ F(v, u, wv)
6: u← F

7: until u = wv or last[u] < v

8: if u 6= wv
9: Pv ← Pv ∩ {u}

10: Pu ← Pu ∩ {v}
11: last[v]← u

12: return u

Next-Neighbor(v) in the range (last[v], wv). Suppose that we generate a sequence of
wv−last[v]−1 independent coin-tosses, where the ith coin Cvu corresponding to u = last[v]+i
has bias pvu, regardless of whether Xvu is decided or not. Then, we use the sequence 〈Cvu〉
to assign values to undecided random variables Xvu. The main observation here is that, the
decided random variables Xvu = 0 do not need coin-flips, and the corresponding coin result
Cvu can be discarded. Thus, we generate coin-flips until we encounter some u satisfying both
Cvu = 1 and A[v][u] = φ.

Let F(v, a, b) denote the probability distribution of the occurrence u of the first coin-flip
Cvu = 1 among the neighbors in (a, b). More specifically, F ∼ F(v, a, b) represents the
event that Cv,a+1 = · · · = Cv,F−1 = 0 and Cv,F = 1, which happens with probability
P[F = f ] =

∏f−1
u=a+1(1 − pvu) · pvf . For convenience, let F = b denote the event where

all Cvu = 0. Our algorithm samples F1 ∼ F(v, last[v], wv) to find the first occurrence of
Cv,F1 = 1, then samples F2 ∼ F(v, F1, wv) to find the second occurrence Cv,F2 = 1, and so
on. These values {Fi} are iterated as u in Algorithm 1. This process generates u satisfying
Cvu = 1 in increasing order, until we find one that also satisfies A[u][v] = φ (this outcome is
captured by the condition last[u] < v), or until the next generated u is equal to wv. Note
that once the process terminates at some u, we make no implications on the results of any
uninspected coin-flips after Cvu.

Obstacles for extending beyond Next-Neighbor queries. There are two main issues that
prevent this method from supporting Random-Neighbor queries. Firstly, while one might
consider applying Next-Neighbor starting from some random location u to find the minimum
u′ ≥ u where A[v][u′] = 1, the probability of choosing u′ will depend on the probabilities
pvu’s, and is generally not uniform. Secondly, in Section 3.1.1, we observe that last[v] and
Pv together provide a succinct representation of A[v][u] = 0 only for contiguous cells A[v][u]
where u ≤ last[v] or v ≤ last[u]: they cannot handle 0 anywhere else. Unfortunately, in order
to support Random-Neighbor queries, we will likely need to assign A[v][u] to 0 in random
locations beyond last[v] or last[u], which cannot be captured by the current data structure.
Specifically, to speed-up the sampling process for small pvu’s, we must generate many random
non-neighbors at once, but we cannot afford to spend time linear in the number of created
0’s to update our data structure. We remedy these issues via the following approach.
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3.2 Final Implementation Using Blocks
We begin this section by focusing first on Random-Neighbor queries, then extend the con-
struction to the remaining queries. In order to handle Random-Neighbor(v), we divide the
neighbors of v into blocks Bv = {B(1)

v , B
(2)
v , . . . , B

(i)
v , . . .}, so that each block contains, in

expectation, roughly the same number of neighbors of v. We implement Random-Neighbor(v)
by randomly selecting a block B(i)

v , filling in entries A[v][u] for u ∈ B(i)
v with 1’s and 0’s,

and then reporting a random neighbor from this block. As the block size may be large
when the probabilities are small, instead of using a linear scan, our Fill subroutine will be
implemented using the “run-of-0s” sampling from Algorithm 1 (see Section 3.1). Since the
number of iterations required by this subroutine is roughly proportional to the number of
neighbors, we choose to allocate a constant number of neighbors in expectation to each block:
with constant probability the block contains some neighbors, and with high probability it
has at most O(log n) neighbors.

As the actual number of neighbors appearing in each block will be different, we balance
out these discrepancies by performing rejection sampling. This equalizes the probability
of choosing any neighbor implicitly, without the knowledge of deg(v). Leveraging the fact
that the maximum number of neighbors in any block is O(log n), we show not only that
the probability of success in the rejection sampling process is at least 1/poly(log n), but the
number of iterations required by Next-Neighbor is also bounded by poly(log n), achieving
the overall poly(log n) complexities. Here, we will extensively rely on the assumption that
the expected number of neighbors for consecutive vertices,

∑b
u=a pvu, can be approximated

efficiently.

3.2.1 Partitioning and Filling the Blocks
We fix a sufficiently large constant L, and assign the vertex u to the d

∑u
i=1 pvi/Leth block

of v. Essentially, each block represents a contiguous range of vertices, where the expected
number of neighbors of v in the block is ≈ L (for example, in G(n, p), each block contains
≈ L/p vertices). We define Γ(i)(v) = Γ(v)∩B(i)

v , the neighbors appearing in block B(i)
v . Our

construction ensures that L− 1 < E
[
|Γ(i)(v)|

]
< L+ 1 for every i < |Bv| (i.e., the condition

holds for all blocks except possibly the last one).
Now, we show that with high probability, all the block sizes |Γ(i)(v)| = O(log n), and at

least a 1/3-fraction of the blocks are non-empty (i.e., |Γ(i)(v)| > 0), via the following lemmas
(proven in Section B).

I Lemma 13. With high probability, the number of neighbors in every block, |Γ(i)(v)|, is at
most O(log n).

I Lemma 14. With high probability, for every v such that |Bv| = Ω(log n) (i.e., E =
Ω(log n)), at least a 1/3-fraction of the blocks {B(i)

v }i∈[|Bv|] are non-empty.

We consider blocks to be in two possible states – filled or unfilled. Initially, all blocks are
considered unfilled. In our algorithm we will maintain, for each block B(i)

v , the set P (i)
v of

known neighbors of u in block B(i)
v ; this is a refinement of the set Pv in Section 3.1. We define

the behaviors of the procedure Fill(v, i) as follows. When invoked on an unfilled block B(i)
v ,

Fill(v, i) decides whether each vertex u ∈ B(i)
v is a neighbor of v (implicitly setting A[v][u]

to 1 or 0) unless Xvu is already decided; in other words, update P (i)
v to Γ(i)(v). Then B(i)

v is
marked as filled. We postpone the description of our implementation of Fill to Section 3.3,
instead using it as a black box.
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3.2.2 Putting it all together: Random-Neighbor queries

Algorithm 2 Block sampling.

procedure Random-Neighbor(v)
while True

sample B(i)
v ∼U Bv u.a.r.

if B(i)
v is not filled

Fill (v, i)
with probability |P (i)

v |
M

return u ∼U P (i)
v u.a.r

Consider Algorithm 2 for sampling a random neighbor via rejection sampling. For
simplicity, throughout the analysis, we assume |Bv| = Ω(log n); otherwise, invoke Fill(v, i)
for all i ∈ [|Bv|] to obtain the entire neighbor list Γ(v).

To obtain a random neighbor, we first choose a block B(i)
v uniformly at random, and

invoke Fill(v, i) if the block is unfilled. Then, we accept the sampled block for generating our
random neighbor with probability proportional to |P (i)

v |. More specifically, if M = Θ(log n)
is an upper bound on the maximum number of neighbors in any block (see Lemma 13), we
accept block B(i)

v with probability |P (i)
v |/M , which is well-defined (i.e., does not exceed 1)

with high probability. Note that if P (i)
v = ∅, we sample another block. If we choose to accept

B
(i)
v , we return a random neighbor from P

(i)
v . Otherwise, reject this block and repeat the

process again.
Since the returned vertex is always a member of P (i)

v , a valid neighbor is always returned.
We now show that the algorithm correctly samples a uniformly random neighbor and bound
the number of iterations required for the rejection sampling process.

I Lemma 15. Algorithm 2 returns a uniformly random neighbor of vertex v.

Proof. It suffices to show that the probability that any neighbor in Γ(v) is return with
uniform positive probability, within the same iteration. Fixing a single iteration and consider
a vertex u ∈ P (i)

v , we compute the probability that u is accepted. The probability that B(i)
v i

is chosen is 1/|Bv|, the probability that B(i)
v is accepted is |P (i)

v |/M , and the probability
that u is chosen among P (i)

v is 1/|P (i)
v |. Hence, the overall probability of returning u in a

single iteration of the loop is 1/(|Bv| ·M), which is positive and independent of u. Therefore,
each vertex is returned with the same probability. J

I Lemma 16. Algorithm 2 terminates in O(log n) iterations in expectation, or O(log2 n)
iterations w.h.p.

Proof. Using Lemma 14, we conclude that the probability of choosing a non-empty block
is at least 1/3. Since M = Θ(log n) by Lemma 13, the success probability of each iteration
is at least 1/(3M) = Ω(1/ log n), Thus, the number of iterations required is O(log2 n) with
high probability. J

3.3 Implementation of Fill

Lastly, we describe the implementation of the Fill procedure, employing the approach of
skipping non-neighbors, as developed for Algorithm 1. We aim to simulate the following
process: perform coin-tosses Cvu with probability pvu for every u ∈ B(i)

v and update A[v][u]’s
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Algorithm 3 Filling a block.

procedure Fill(v, i)
(a, b)← B

(i)
v

while a < b

sample u ∼ F(v, a, b)
B

(j)
u ← block containing v

if B(j)
u is not filled
P

(i)
v ← P

(i)
v ∪ {u}

P
(j)
u ← P

(j)
u ∪ {v}

a← u

mark B
(j)
u as filled

according to these coin-flips unless they are decided (i.e., A[v][u] 6= φ). We directly generate
a sequence of u’s where the coins Cvu = 1, then add u to Pv and vice versa if Xvu has not
previously been decided. Thus, once B(i)

v is filled, we will obtain P (i)
v = Γ(i)(v) as desired.

As discussed in Section 3.1, while we have recorded all occurrences of A[v][u] = 1 in P (i)
v ,

we need an efficient way of checking whether A[v][u] = 0 or φ. In Algorithm 1, last serves this
purpose by showing that A[v][u] for all u ≤ last[v] are decided as shown in Lemma 12. Here
instead, we maintain a single bit marking whether each block is filled or unfilled: a filled block
implies that A[v][u] for all u ∈ B(i)

v are decided. The block structure along with the mark
bits, unlike last, is capable of handling intermittent ranges of intervals, which is sufficient for
our purpose, as shown in the following lemma. This yields the implementation of Algorithm 3
for the Fill procedure fulfilling the requirement previously given in Section 3.2.1.

I Lemma 17. The data structures P (i)
v ’s and the block marking bits together provide a

succinct representation of A as long as modifications to A are performed solely by the Fill
operation in Algorithm 3. In particular, let u ∈ B(i)

v and v ∈ B(j)
u . Then, A[v][u] = 1 if and

only if u ∈ P (i)
v . Otherwise, A[v][u] = 0 when at least one of B(i)

v or B(j)
u is marked as filled.

In all remaining cases, A[v][u] = φ.

Proof. The condition for A[v][u] = 1 still holds by construction. Otherwise, observe that
A[v][u] becomes decided precisely during a Fill(v, i) or a Fill(u, j) operation, which thereby
marks one of the corresponding blocks as filled. J

Note that P (i)
v ’s, maintained by our implementation, are initially empty but may not

still be empty at the beginning of the Fill function call. These P (i)
v ’s are again instantiated

and stored in a dictionary once they become non-empty. Further, observe that the coin-flips
are simulated independently of the state of P (i)

v , so the number of iterations of Algorithm 3
is the same as the number of coins Cvu = 1 which is, in expectation, a constant (namely∑
u∈B(i)

v
P[Cvu = 1] =

∑
u∈B(i)

v
pvu ≤ L+ 1).

By tracking the resource required by Algorithm 3 we obtain the following lemma; note
that “additional space” refers to the enduring memory that the implementation must allocate
and keep even after the execution, not its computation memory. The log n factors in our
complexities are required to perform binary-search for the range of B(i)

v , or for the value u
from the CDF of F(u, a, b), and to maintain the ordered sets P (i)

v and P (j)
u .

I Lemma 18. Each execution of Algorithm 3 (the Fill operation) on an unfilled block B(i)
v ,

in expectation:
terminates within O(1) iterations (of its repeat loop);
computes O(log n) quantities of

∏
u∈[a,b](1− pvu) and

∑
u∈[a,b] pvu each;

uses an additional O(log n) time, O(1) random log n-bit words, and O(1) additional space.
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Observe that the number of iterations required by Algorithm 3 only depends on its random
coin-flips and independent of the state of the algorithm. Combining with Lemma 16, we
finally obtain polylogarithimc resource bound for our implementation of Random-Neighbor.

I Corollary 19. Each execution of Algorithm 2 (the Random-Neighbor query), with high
probability,

terminates within O(log2 n) iterations (of its repeat loop);
computes O(log3 n) quantities of

∏
u∈[a,b](1− pvu) and

∑
u∈[a,b] pvu each;

uses an additional O(log3 n) time, O(log2 n) random words, and O(1) additional space.

Supporting Other Query Types along with Random-Neighbor

Vertex-Pair(u,v): We simply need to make sure that Lemma 17 holds, so we first apply
Fill(u, j) on block B(j)

u containing v (if needed), then answer accordingly.
Next-Neighbor(v): We maintain last, and keep invoking Fill until we find a neighbor.
Recall that by Lemma 14, the probability that a particular block is empty is a small
constant. Then with high probability, there exists no ω(log n) consecutive empty blocks
B

(i)
v ’s for any vertex v, and thus Next-Neighbor only invokes up to O(log n) calls to

Fill.

We summarize the results so far with through the following theorem.

I Theorem 1. Given a random graph model defined by the probability matrix {puv}u,v∈[n],
and assuming that we can compute the the quantities

∏b
u=a(1 − pvu) and

∑b
u=a pvu in

O(logO(1) n) time, there exists an implementation for this model that supports local access
through Random-Neighbor, Vertex-Pair, and Next-Neighbor queries using O(logO(1) n)
running time, additional space, and random bits per query.

We have also been implicitly assuming perfect-precision arithmetic and we relax this
assumption in Section B.1. In the following Section 3.4, we show applications of Theorem 1
to the G(n, p) model, and the Stochastic Block model under random community assignment,
by providing formulas and by constructing data structures for computing the quantities
specified in Theorem 1.

3.4 Applications to Erdös-Rényi Model and Stochastic Block Model
In this section we demonstrate the application of our techniques to two well known, and
widely studied models of random graphs. That is, as required by Theorem 1, we must provide
a method for computing the quantities

∏b
u=a(1− pvu) and

∑b
u=a pvu of the desired random

graph families in logarithmic time, space and random bits. Our first implementation focuses
on the well known Erdös-Rényi model – G(n, p): in this case, pvu = p is uniform and our
quantities admit closed-form formulas.

Next, we focus on the Stochastic Block model with randomly-assigned communities.
Our implementation assigns each vertex to a community in {C1, . . . , Cr} identically and
independently at random, according to some given distribution R over the communities. We
formulate a method of sampling community assignments locally. This essentially allows us
to sample from the multivariate hypergeometric distribution, using poly(log n) random bits,
which may be of independent interest. We remark that, as our first step, we sample for the
number of vertices of each community. That is, our construction can alternatively support
the community assignment where the number of vertices of each community is given, under
the assumption that the partition of the vertex set into communities is chosen uniformly at
random.
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3.4.1 Erdös-Rényi Model
As pvu = p for all edges {u, v} in the Erdös-Rényi G(n, p) model, we have the closed-form
formulas

∏b
u=a(1−pvu) = (1−p)b−a+1 and

∑b
u=a pvu = (b−a+1)p, which can be computed

in constant time according to our assumption, yielding the following corollary.

I Corollary 2. There exists an algorithm that implements local access to a Erdös-Rényi G(n, p)
random graph, through Vertex-Pair, Next-Neighbor, and Random-Neighbor queries, while
using O(log3 n) time, O(log3 n) random bits, and O(log2 n) additional space per query with
high probability.

We remark that there exists an alternative approach that picks F ∼ F(v, a, b) directly
via a closed-form formula a+ d logU

log(1−p)e where U is drawn uniformly from [0, 1), rather than
binary-searching for U in its CDF. Such an approach may save some poly(log n) factors
in the resources, given the prefect-precision arithmetic assumption. This usage of the log
function requires Ω(n)-bit precision, which is not applicable to our computation model.

While we are able to generate our random graph on-the-fly supporting all three types
of queries, our construction still only requires O(m+ n) space (log n-bit words) in total at
any state; that is, we keep O(n) words for last, O(1) words per neighbor in Pv’s, and one
marking bit for each block (where there can be up to m + n blocks in total). Hence, our
memory usage is nearly optimal for the G(n, p) model:

I Corollary 4. The final algorithm in Section 3 can generate a complete random graph from
the Erdös-Rényi G(n, p) model using overall Õ(n+m) time, random bits and space, which is
Õ(pn2) in expectation. This is optimal up to O(poly(log n)) factors.

3.4.2 Stochastic Block model
In the Stochastic Block model, each vertex is assigned to some community Ci, i ∈ [r]. By
partitioning the product by communities, we may rewrite the desired formulas, for v ∈ Ci,
as
∏b
u=a(1− pvu) =

∏r
j=1(1− pij)|[a,b]∩Cj | and

∑b
u=a pvu =

∑r
j=1 |[a, b] ∩ Cj | · pij . Thus, it

suffices to design a data structure that is able to efficiently count the number of occurrences
of vertices of each community in any contiguous range (namely the value |[a, b]∩Cj | for each
j ∈ [r]), where the vertices are assigned communities according to a given distribution R. To
this end, we use the following lemma, yielding an implementation for the Stochastic Block
model using O(r poly(log n)) resources per query.

I Theorem 20. There exists a data structure that samples a community for each vertex
independently at random from R with 1

poly(n) error in the L1-distance, and supports queries
that ask for the number of occurrences of vertices of each community in any contiguous range,
using O(r poly(log n)) time, random bits, and additional space per query. Further, this data
structure may be implemented in such a way that requires no overhead for initialization.

I Corollary 3. There exists an algorithm that implements local access to a random graph
from the n-vertex Stochastic Block Model with r randomly-assigned communities, through
Vertex-Pair, Next-Neighbor, and Random-Neighbor queries, using O(r poly(log n)) time,
random bits, and space per query w.h.p.

We provide the full details of the construction in Section D. Our construction extends
a similar implementation in the work of [26] which only supports r = 2. The overall data
structure is a balanced binary tree, where the root corresponds to the entire range of indices
[n], and the children of each vertex correspond to the first and second half of the parent’s range.
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Each node3 holds the number of vertices of each community in its range. The tree initially
contains only the root, with the number of vertices of each community 〈|C1|, |C2|, · · · , |Cr|〉
sampled according to the multinomial distribution (for n samples from the distribution R).
The children are generated top-down on an as-needed basis according to the given queries.
The technical difficulties arise when generating the children, where one needs to sample the
counts assigned to either child from the correct marginal distribution. We show how to
sample such a count from the multivariate hypergeometric distribution, below in Theorem 21
(proven in Section D).

I Theorem 21. Given B marbles of r different colors, such that there are Ci marbles of color
i, there exists an algorithm that samples 〈s1, s2, · · · , sr〉, the number of marbles of each color
appearing when drawing l marbles from the urn without replacement, in O(r · poly(logB))
time and random words.

Proof of Theorem 20. Recall that R denotes the given distribution over integers [r] (namely,
the random distribution of communities for each vertex). Our algorithm generates and
maintains random variables X1, . . . , Xn (denoting the community assignment), each of which
is drawn independently from R. Given a pair (a, b), it uses Theorem 20 to sample the vector
C(a, b) = 〈c1, . . . , cr〉, where ck counts the number of variables in {Xa, . . . , Xb} that take on
the value k.

We maintain a complete binary tree whose leaves corresponds to indices from [n]. Each
node represents a range and stores the vector C for the corresponding range. The root
represents the entire range [n], which is then halved in each level. Initially the root samples
C(1, n) from the multinomial distribution according to R (see e.g., Section 3.4.1 of [32]).
Then, the children are generated on-the-fly as described above. Thus, each query can be
processed within O(r poly(log n)) time, yielding Theorem 20. J

Then, by embedding the information stored by the data structure into the state (as in
the proof of Lemma 51), we obtain the desired Corollary 3.

4 Implementing Random Catalan Objects

In the previous Section 3.4.2 on the Stochastic Block Model, we considered random sequences
of colored marbles. Next, we focus on an important variant of these sequences as Catalan
objects, which impose a global constraint on the types of allowable sequences. Specifically,
consider a sequence of n white and n black marbles, such that every prefix of the sequence
has at least as many white marbles as black ones. Our goal will be to support queries to a
uniformly random instance of such an object.

Figure 1 Simple Dyck path with n = 35 up and down steps.

3For clarity, “vertex” is only used in the sampled graph, and “node” is only used in the internal data
structures.
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One interpretation of Catalan objects is given by Dyck paths (Figure 1). A Dyck path
is essentially a 2n step balanced one-dimensional walk with exactly n up and down steps.
In Figure 1, each step moves one unit along the positive x-axis (time) and one unit up or
down the positive y-axis (position). The prefix constraint implies that the y-coordinate of
any point on the walk is ≥ 0 i.e. the walk never crosses the x-axis. The number of possible
Dyck paths (see Theorem 62) is the nth Catalan number Cn = 1

n+1 ·
(2n
n

)
. Many important

combinatorial objects occur in Catalan families of which these are an example.
We will approach the problem of partially sampling Catalan objects through Dyck paths.

This, in turn, will allow us to implement access other random Catalan objects such as rooted
trees, and bracketed expressions. Specifically, we will want to answer the following queries:

Direction(t): Returns the value of the tth step in the Dyck path (whether the step is up
or down).
Height(t): Returns the y-position of the path after t steps (the number of up steps minus
the number of down steps among the first t steps). Since a Direction(t) query can be
simulated using the queries Height(t) and Height(t− 1), we will not explicitly discuss
the Direction queries in what follows.
First-Return(t): If the (t+ 1)th step is upwards i.e. Height(t+ 1) = Height(t) + 1, it
returns the smallest index t′ > t such that Height(t′) = Height(t). While it may not be
clear why this query is important, it will be useful for querying bracketed expressions
and random trees. (see Section 4.1).

4.1 Bijections to other Catalan objects
The Height query is natural for Dyck paths, but the First-Return query is important in
exploring other Catalan objects. For instance, consider a random well bracketed expression;
equivalently an uniform distribution over the Dyck language. One can construct a trivial
bijection between Dyck paths and words in this language by replacing up and down steps
with opening and closing brackets respectively (Figure 2). The Height query corresponds to
asking for the nesting depth at a certain position in the word, and First-Return(x) returns
the position after the matched closing bracket for the step (x→ x+ 1).

There is also a natural bijection between Dyck paths and ordered rooted trees (Figure 2),
by viewing the Dyck path as a transcript of the tree’s DFS traversal. Starting with the root,
for each “up-step” we move to a new child of the current node, and for each “down-step”,
we backtrack towards the root. Thus, the Height query returns the depth of a node. Also,
since the Dyck path is a DFS transcript of the tree, a First-Return query on the path can
be used to find successive children of a tree node (each return produces the next child). For
instance, in Figure 2, we can invoke First-Return thrice starting at the first yellow path
position to reveal the corresponding three children of the yellow tree node.

By definition, First-Return(x) is meaningful only when the step from x to x + 1 is
upwards, i.e. when Height(x+1) = Height(x)+1. We can also implement a Reverse-First-
Return query, which is just a standard First-Return query on the reversed Dyck path
(consider a reversal of the green dashed arrows in Figure 2). The reversal implies that
Reverse-First-Return(x) is only meaningful when Height(x − 1) = Height(x) + 1. In
terms of bijections, Reverse-First-Return is equivalent to finding a matching opening
bracket in bracketed expressions, and a Previous-Child query in rooted trees. We show
how to implement this query in Section 4.4.7. In the case where the height at x is larger
than both the heights at x− 1 and x+ 1 (boxed nodes in Figure 2), there is no meaningful
“first return” from the context of the bijections. Specifically, these nodes correspond to leaf
nodes in rooted trees, or to a terminal nesting level in the bracket expression.
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Figure 2 Bijections from Dyck paths to bracketed expressions and ordered rooted trees. Note
that the color coded positions on the path correspond to tree nodes, and the path itself is a DFS
traversal of the tree. The bijection to bracketed expressions proceeds by directly replacing up and
down steps with opening and closing brackets respectively (we color the brackets with the higher
endpoint of the corresponding step). Green dashed arrows show successive First-Return queries on
the path. Using the bijection, this is equivalent to revealing three child sub-trees in order from left to
right for the corresponding tree node, and also to finding matching brackets in bracketed expressions.
First-Return is not defined for the red boxed nodes in either forward or reverse direction, since
this position corresponds to a leaf node in the tree, or to a terminal nesting level in the bracket
expression.

Moving forwards, we will focus on Dyck paths for the sake of simplicity.

4.2 Catalan Trapezoids and Generalized Dyck Paths
In order to implement local access to random Dyck paths, we will need to analyze more
general Catalan objects. Specifically, we consider a sequence of U up-steps and D down-
steps, such that any prefix of the sequence containing U ′ up and D′ down steps satisfies
U ′ −D′ ≥ 1− k. This means that we start our Dyck path at a height of k − 1, and we are
never allowed to cross below zero (Figure 3). Note that the case k = 1 corresponds to the
standard description of Dyck paths, as mentioned previously (Figure 1).

Figure 3 Generalized Dyck path with U = 25, D = 22 and k = 3. Note that the boundary is
k − 1 = 2 units below the starting height.

We will denote the set of such generalized Dyck paths as Ck(U,D) and the number of
paths as Ck(U,D) = |Ck(U,D)|, which is an entry in the Catalan Trapezoid of order k [47].
We also use Ck(U,D) to denote the uniform distribution over Ck(n,m). Now, we state a
result from [47] without proof:

Ck(U,D) =


(
U+D
D

)
0 ≤ D < k(

U+D
D

)
−
(
U+D
D−k

)
k ≤ D ≤ U + k − 1

0 D > U + k − 1
(1)

For k = 1 and n = m, these represent the vanilla Catalan numbers i.e. Cn = C1(n, n)
(number of simple Dyck paths). Our goal is to sample from the distribution C1(n, n).
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Consider the situation after a sequence of Height queries to the Dyck path at vari-
ous locations 〈x1, x2, · · · , xm〉, such that the corresponding heights were sampled to be
〈y1, y2, · · · , ym〉. These revealed locations partition the path into disjoint intervals [xi, xi+1],
where the heights of the endpoints of each interval have been determined (as yi = Height(xi)).
We notice that these intervals can be generated independently of each other. Specifically,
the path within the interval [xi, xi+1] will be sampled from Ck(U,D), where k − 1 = yi,
U +D = xi+1 − xi, and U −D = yi+1 − yi. Moreover, since the heights of the endpoints yi
and yi+1 are known, this choice is independent of any samples outside the interval. Next,
in Section 4.3, we will show how one can determine heights within such an interval, and in
Section 4.4 we will move on to the more complicated First-Return queries.

4.3 Implementing Height queries
We implement Height(t) by showing how to efficiently determine the height of the path at
the midpoint of an existing interval [xi, xi+1] (with corresponding endpoint heights yi, yi+1),
which results in two sub-intervals that are half the size. Next, we extend this strategy to
determine the heights of arbitrary positions by recursively sub-dividing the relevant interval
(binary search). If the interval in question has odd length, we sample a single step from an
endpoint, and proceed with a shortened even length interval. Sampling a single step is easy
since there are only two outcomes (see proof of Theorem 28).

Figure 4 The 2B-interval is split into two equal parts resulting in two separate Dyck problems.
The green node (center) is the sampled height of the midpoint parameterized by the value of d. The
path considered in both sub-intervals starts at a yellow node (left and right edges) and ends at the
green node. From this perspective, the path on the right is reversed with up and down steps being
swapped. A possible path is shown in gray.

Our general recursive step is as follows. We consider an interval of length 2B comprising
of 2U up-steps and 2D down-steps where the sum of any prefix cannot be less than k − 1
i.e. the path within this interval should be sampled from Ck(2U, 2D). In order to make
the analysis simpler, we have assumed that the number of up and down steps are both
even. The case of sampling according to Ck(2U + 1, 2D + 1) works similarly with slightly
different formulae. Without loss of generality, we assume that D ≤ U ; if this were not the
case, we could simply flip the interval, swap the up and down steps, and modify the prefix
constraint to k′ = k + 2U − 2D (Figure 4). This ensures that the overall path in the interval
is non-decreasing in height, which will simpify our analysis.

We determine the height of the path B = U +D steps into the interval at the midpoint
(see Figure 4). This is equivalent to finding the number of up or down steps that get assigned
to the first half of the interval. We parameterize the possibilities by d and define pd to be the
probability that exactly U + d up-steps and D − d down steps get assigned to the first half
(with the remaining U − d up steps and D+ d down steps being assigned to the second half).

pd = Sleft(d) · Sright(d)
Stotal(d) (2)

ITCS 2020



27:26 Local Access to Huge Random Objects Through Partial Sampling

Here, Sleft(d) denotes the number of possible paths in the first half (using U + d up steps)
and Sright(d) denotes the number of possible paths in the second half (using U − d up steps).
Note that all of these paths have to respect the k-boundary constraint (cannot dip more than
k − 1 units below the starting height), where k = yi + 1. Moving forwards, we will drop the
d when referring to the path counts. We (conceptually) flip the second half of the interval,
such that the corresponding path begins from the end of the 2B-interval and terminates at
the midpoint (Figure 4). This results in a different starting point, and the prefix/boundary
constraint will also be different. Hence, we define k′ = k + 2U − 2D to represent the new
boundary constraint (since the final height of the 2B-interval is k′ − 1). Finally, Stotal is the
total number of possible paths in the 2B interval.

We cannot directly sample from this complicated distribution {pd}. Instead, we use the
rejection sampling strategy from Lemma 11. An important point to note is that in order
to apply this lemma, we must be able to approximate the pd values. However, we cannot
naively use the formula from Equation 2, since the values of {Sleft, Sright, Stotal} are too
large to compute explicitly. Lemma 67 in Section F.3 shows how to indirectly compute the
probabilty approximations. We also use the following lemma to bound the deviation of the
path with high probability. A proof is presented in Section F.2.

I Lemma 22. Consider a contiguous sub-path of a simple Dyck path of length 2n where the
sub-path is of length 2B comprising of U up-steps and D down-steps (with U + D = 2B).
Then there exists a constant c such that the quantities |B −U |, |B −D|, and |U −D| are all
< c
√
B log n with probability at least 1− 1/n2 for every possible sub-path.

This lemma allows us to ignore potential midpoint heights that cause a deviation greater
than c

√
B log n. A direct implication is that with high probability, the correctly sampled

value for d will be O(
√
B log n). In other words, the height of the midpoint takes on one of

only O(
√
B log n) distinct values with high probability. This immediately suggests a Õ(

√
B)

time algorithm for determining the midpoint height, by explicitly computing the probabilities
of each of these potential heights, and directly sampling from the resulting distribution.
However, we can go further and obtain a O(poly(log n)) time algorithm.

4.3.1 The Simple Case: Far Boundary
We first consider the case when the boundary constraint is far away from the starting point,
i.e. k is large. The following lemma (proof in Section F.2) shows that in this case, we can
safely ignore the constraint. Intuitively, this is because the boundary is so far away, that
with high probability, we do not hit it even if we choose a random unconstrained path.

I Lemma 23. Given a Dyck path sampling problem of length B with U up, D down steps, and
a boundary at k, there exists a constant c such that if k > c

√
B log n, then the distribution of

paths sampled without a boundary C∞(U,D) is O(1/n2)-close in L1 distance to the distribution
of Dyck paths Ck(U +D).

By Lemma 23, the problem of sampling from Ck(2U, 2D) reduces to sampling from the
hypergeometric distribution C∞(2U, 2D) when k > O(

√
B log n) i.e. the probabilities pd can

be approximated by:

qd =
(
B

D−d
)
·
(
B

D+d
)(2B

2D
)

This problem of sampling from the hypergeometric distribution is implemented using
O(poly(log n)) resources in [26] (see Lemma 54 in Section D). We also used this result
earlier in the paper in order to find the community assignments in the Stochastic Block
Model (Section 3.4.2).
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4.3.2 The Difficult Case: Intervals Close to Zero
The difficult case is when k = O(

√
B log n), and the previous approximation due to Lemma 23

no longer works. In this case, we cannot just ignore the boundary constraint, and instead we
have to analyze the true probability distribution given by pd. We obtain an expression for pd
by substituting the formula for generalized Catalan numbers as follows: (Equation 1) into
Equation 2.

Sleft = Ck(U + d,D − d) Sright = Ck′(U − d,D + d) Stotal = Ck(2U, 2D) (3)

Since the right interval is flipped in our analysis, this changes the prefix/boundary constraint,
and hence, the expression for Sright uses k′ = k + 2U − 2D. This also implies that k′ =
O(
√
B log n) (using Lemma 22). We can now use Equation 2 to evaluate the probabilties

pd = Sleft · Sright/Stotal. Recall that Sleft and Sright are the number of possible paths in
the left and right half of the interval, when exactly U + d up steps are assigned to the first
half, and Stotal is the total number of possible paths in the interval.

We will invoke the rejection sampling technique (Lemma 11), by constructing a different
distribution qd that approximates pd up to logarithmic factors over the vast majority of its
support (we ignore all |d| > Θ(

√
B log n) since the associated probability mass is negligible

by Lemma 22). In order to perform rejection sampling, we also need good approximations of
pd, which is acheved by Lemma 67 in Section F.3. Next, we define an appropriate qd that
approximates pd and also has an efficiently computable CDF . Surprisingly, as in Section 4.3.1,
we will be able to use the hypergeometric distribution for qd,

qd ≡
(
B

D−d
)
·
(
B

D+d
)(2B

2D
) =

(
B

D−d
)
·
(
B
U−d

)(2B
2D
)

However, the argument for why this qd is a good approximation to pd is far less straightforward.
First, we consider the case where k · k′ ≤ 2U + 1. In this case, we use loose bounds

for Sleft <
(
B

D−d
)
and Sright <

(
B
U−d

)
. These are true because

(
B

D−d
)
and

(
B
U−d

)
are the

total number of unconstrained paths in the left and right half respectively, and adding the
boundary constraint can only reduce the number of paths. We also prove the following
lemma in Section F.4 to bound the value of Stotal.

I Lemma 24. When kk′ > 2U + 1, Stotal > 1
2 ·
(2B

2D
)
.

Combining the three bounds, we conclude that pd < 1
2qd. Intuitively, in this case the

Dyck boundary is far away, and therefore the number of possible paths is only a constant
factor away from the number of unconstrained paths (see Section 4.3.1). The case where
the boundaries are closer (i.e. k · k′ ≤ 2U + 1) is trickier, since the individual counts need
not be close to the corresponding binomial counts. However, in this case we can still ensure
that the sampling probability is within poly-logarithmic factors of the binomial sampling
probability. We use the following lemmas to bound Sleft and Sright (proofs in Section F.4).

I Lemma 25. Sleft ≤ c1
k·
√

logn√
B
·
(
B

D−d
)
for some constant c1.

I Lemma 26. Sright ≤ c2
k′·
√
logn√
B

·
(
B
U−d

)
for some constant c2.

Finally, we obtain a diferent bound on Stotal for the near boundary case.

I Lemma 27. When kk′ ≤ 2U + 1, Stotal ≥ c3 k·k
′

B ·
(2B

2D
)
for some constant c3.
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Multiplying these inequalities together allows us to bound pd = Sleft · Sright/Stotal ≤
Θ(qd log n), implying pd/qd ≤ Θ(log n). Consequently, we can leverage Lemma 11 to obtain
a sample from {pd} using O(logO(1) n) samples from {qd}, thus determining the height of
the Dyck path at the midpoint of the interval.

I Theorem 28. Given an interval [xi, xi+1] (and the associated endpoint heights yi, yi+1) in
a Dyck path of length 2n, with the guarantee that no position between xi and xi+1 has been
sampled yet, there is an algorithm that returns the height of the path at the midpoint of xi
and xi+1 (or next to the midpoint if xi+1 − xi is odd). Moreover, this algorithm only uses
O(poly(log n)) resources.

Proof. If xi+1 − xi is even, we can set B = (xi+1 − xi)/2. Otherwise, we first sample a
single step from xi to xi + 1, and then set B = (xi+1 − xi − 1)/2. Since there are only two
possibilities for a single step, we can explicitly approximate the corresponding probabilities
using the strategy outlined in the proof of Lemma 67 (see Section F.3), and then sample
accordingly. This allows us to apply the rejection sampling from Lemma 11 using {qd} to
obtain samples from {pd} as defined above. J

I Theorem 29. There is an algorithm that provides sample access to a Dyck path of length
2n, by answering queries of the form Height(x) with the correctly sampled height of the Dyck
path at position x using only O(poly(log n)) resources per query.

Proof. The algorithm maintains a successor-predecessor data structure (e.g. Van Emde Boas
tree) to store all positions x that have already been determined. Each newly determined
position is added to this structure. Given a query Height(x), the algorithm first finds the
successor and predecessor (say a and b) of x among the already queried positions. This
provides us the guarantee required to apply Theorem 28, which allows us to query the height
at the midpoint of a and b. We then binary search by updating either the successor or
predecessor of x and repeat until we determine the height of position x. J

4.4 Supporting “First Return” Queries
In this section, we discuss more complex queries to a Dyck path. Specifically, we implement
First-Return(x) to allow the user to query the next time the path returns to Height(x).
The utility of this kind of query is illustrated through bijections to other random Catalan
objects in Section 4.1. An important detail here is that if the first step from x to x+ 1 is a
down-step, there is no well defined First-Return.

4.4.1 Maintaining a Boundary Invariant
Notice that after performing a set of Height queries 〈x1, x2, · · · , xm〉 to the Dyck path, many
different positions are revealed (possibly in adversarial locations). This partitions the path
into at most m+ 1 disjoint and independent intervals with known boundary conditions. The
first step towards finding the First-Return from position t would be to locate the interval
where the first return occurs. Even if we had an efficient technique to filter intervals, we
would want to avoid considering all Θ(m) intervals to find the correct one. In addition, the
fact that a specific interval does not contain the first return implies dependencies for all
subsequent samples.

We resolve these difficulties by maintaining a new invariant. Consider all positions whose
heights have have already been determined, either directly as a result of user given Height
queries, or indirectly due to recursive Height calls; 〈x1, x2, · · · , xm〉 in increasing order i.e.
xi < xi+1. Let the corresponding heights be 〈y1, y2, · · · , ym〉 i.e. Height(xi) = yi.
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I Invariant 30. For any interval [xi, xi+1] where the heights of the endpoints have been
determined to be yi and yi+1, and every other height in the interval has yet to determined, the
section of the Dyck path between positions xi and xi+1 is constrained to lie above min(yi, yi+1).

Figure 5 The set of intervals formed by a set of height samples. Each interval also has its own
boundary constraint (red). Invariant 30 implies that each boundary must coincide with one of the
interval endpoints. Note that the only interval which violates the invariant is the third last one
(shown in yellow box).

How can one maintain such an invariant? After determining the height of a particular
position xi as yi (with xi−1 < xi < xi+1), the invariant is potentially broken on either side of
xi. We re-establish the invariant by determining the height of an additional point on either
side (see Section 4.4.6 for details). Specifically, we use the following two step strategy to find
the additional point for some violating interval [xi, xi+1] (example violation in Figure 5):
1. Sample the lowest height h achieved by the walk between xi and xi+1 according to the

uniform distribution over all possible paths that respect the current boundary constraint
(see Section 4.4.2).

2. Find an intermediate position x such that xi < x < xi+1 and Height(x) = h (see
Section 4.4.3).

The newly determined position x produces two sub-intervals [xi, x] and [x, xi+1]. Since
h = Height(x) has been determined to be the minimum height in the overall range [xi, xi+1],
the invariant is preserved in the new intervals (see Figure 6). Lemma 37 in Section 4.4.5
shows how this invariant can help us efficiently search for the interval containing the first
return.

Figure 6 An interval [xi, xi+1] that violates the invariant is “fixed” by first sampling the lowest
height h achieved within the interval, and then generating a position x ∈ [xi, xi+1] such that
Height(x) = h.

4.4.2 Sampling the Lowest Achievable Height: Mandatory Boundary
First, we need to sample the lowest height h of the walk between xi and xi+1 (with
corresponding heights yi and yi+1). We will refer to h as the “mandatory boundary” in this
interval; i.e. no height in the interval may be lower than the boundary, but at least one
point must touch the boundary (have height h). We assume that yi ≤ yi+1 without loss of
generality; if this is not the case, swap xi and xi+1 and consider the reversed path. Say this
interval defines a generalized Dyck problem with U up steps, D down steps, and a boundary
that is k − 1 units below yi.
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Given any two boundaries klower and kupper on this interval (with klower < kupper ≤ yi),
we can count the number of possible generalized Dyck paths that violate the kupper boundary
but not the klower boundary as follows (see Figure 7):

P
kupper
klower

= Cklower (U,D)− Ckupper (U,D)

We define the current lower and upper boundaries as klow = k, kup = 0, and set kmid =

Algorithm 4 Finding the Mandatory boundary.

1: function Mandatory-Boundary(U,D, k)
2: klow ← k

3: kup ← 0
4: while klow < kup − 1
5: kmid ← b (klow+kup)

2 c
6: Ptotal ← Cklow(U,D)− Ckup(U,D)
7: P kmidklow

← Cklow(U,D)− Ckmid(U,D)

8: with probability P kmidklow
/Ptotal

9: kup ← kmid
10: else
11: klow ← kmid

12: return klow

(klow +kup)/2. Since we can compute the quantities P kupkmid
, P kmidklow

, and Ptotal = P
kup
klow

, we can
sample a single bit to decide if the “lower boundary” should move up or if the “upper boundary”
should move down. We then repeat this binary search until we find k′ = klow = kup − 1 and
k′ becomes the “mandatory boundary” (i.e. the walk reaches the height exactly k′ − 1 units
below yi but no lower.

Figure 7 P kup

klow
counts all the paths that dip at least kup units below the starting point, but do

not dip klow units below the starting point. kmid would lie halfway between these boundaries.

4.4.3 Determining First Position that Touches the “Mandatory
Boundary”

Now that we have a “mandatory boundary” k, we just need to generate a position x ∈ [xi, xi+1]
with Height(x) = yi − k + 1, according to the uniform distribution over all paths that touch,
but do not violate the boundary at k. In fact, we will do something stronger by determining
the first time the walk touches the boundary after xi. As before, we assume that this interval
contains U up steps and D down steps.
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Figure 8 Zooming into the error in Figure 5. We generate a position x (yellow) on the boundary
(red), such that the section of the path to the left of x never approaches the red boundary (it respects
the orange boundary).

We will parameterize the position x the number of up-steps d between xi and x (See
Figure 8). implying that x = xi + 2d+ k − 1. Given a specific d, we want to compute the
number of valid paths that result in d up-steps before the first approach to the boundary.
Note that unlike Section 4.3, d is used here to parameterize the (horizontal) x-position of the
desired point. We will calculate the probability pd associated with a particular position by
counting the total number of paths to the left and right of the first approach and multiplying
them together.

As in Section 4.3.2, we define Sleft to be the number of paths in the sub-interval before
the first approach (left side of Figure 8), Sright to be the number of paths following the first
approach, and Stotal to be the total number of paths that touch the “mandatory boundary”
at k (note that these quantities are functions of U,D, k and d, but we drop the parameters
for the sake of clarity):

Sleft = Ck(d, d+ k − 2) Sright = C1(U − d,D − d− k + 1) Stotal = Ck(U,D)− Ck−1(U,D)

Our goal is to generate d from the distribution {pd} where pd = Sleft · Sright/Stotal. The
application of Lemma 11 requires us to approximate {pd} with a “well behaved” {qd} (one
whose CDF can be efficiently estimated). Since qd only needs to approximate pd up to
poly(log n) factors, we focus on obtaining poly(log n) approximations to the path counts
{Sleft, Sright, Stotal}. Using Equation 1, we obtain approximations for Sleft and Sright
(Lemma 31 and Lemma 32 with proofs in Section F.5).

I Lemma 31. If d > log4 n, then Sleft(d) = Θ
(

22d+k
√
d
e−rleft(d) · k−1

d+k−1

)
where rleft(d) =

(k−2)2

2(2d+k−2) . Furthermore, rleft(d) = O(log2 n).

I Lemma 32. If U +D−2d−k > log4 n, then Sright(d) = Θ
(

2U+D−2d−k
√

U+d−2d−k
e−rright(d) · U−D+k

U−d+1

)
where rright(d) = (U−D−k−1)2

4(U+D−2d−k+1) . Furthermore, rright(d) = O(log2 n).

Our general strategy will be to integrate continuous versions of these approximations in
order to obtain a CDF of some approximating distribution. Unfortunately, the continuous
approximation functions obtained do not admit closed form integrals. The main culprit is
the exponential term in both expressions. We tackle this issue by noticing that the values
of the exponents are bounded by O(log2 n) over the majority of the range of d. Within
this range of d values, the exponential term may be further simplified by taking a piecewise
constant approximation, where each of the pieces corresponds to a fixed value of the floor of
the corresponding exponent. This technique is elaborated in Section 4.4.4.
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We start by considering the “problematic” values of d that are outside the range of the
two preceding lemmas. These values are the ones where d < log4 n or 2d > U+D−k− log4 n.
Since d is the number of up steps in the left sub-interval, d ≥ 0. Further, since the length of
the right sub-interval nust be non-negative (see Figure 8), we get U +D − 2d− k + 1 ≥ 0.
Thus, we define the “problematic” set:

R =
{
d | 0 ≤ d < log4 n or − 1 < 2d− U −D + k < log4 n

}
(4)

Clearly, we can bound the size of this set as |R| = O(log4 n). An immediate consequence of
Lemma 31 and Lemma 32 is the following.

I Corollary 33. When d 6∈ R, Sleft(d) ·Sright(d) = Θ
(

2U+D√
d(U+D−2d−k)

· e−r(d) · k−1
d+k−1 ·

U−D+k
U−d+1

)
where r(d) = O(log2 n).

4.4.4 Estimating the CDF
We use these observations to construct a suitable {qd} that can be used to invoke the
rejection sampling lemma (Lemma 11). We will achieve this by constructing a piecewise
continuous function q̂, such that q̂(δ) approximates pbδc, and then use the integral of q̂ to
define the discrete distribution {qd}. As stated in the previous section, we can leverage the
fact that when d 6∈ R, the floor of the exponent br(d)c only takes O(log2 n) distinct values
(consequence of Corollary 33). Since the “problematic” set R only has O(log4 n) values, we
can also deal with these remaining values by simply creating |R| additional continuous pieces
in the function q̂. We begin by rewriting pd = Θ

(
K · f(d) · e−r(d)) where:

K = 2U+D

Stotal
= 2U+D

Ck(U,D)− Ck−1(U,D) f(d) = (k − 1)(U −D + k)√
d(U +D − 2d− k)(d+ k − 1)(U − d+ 1)

(5)

Notice that K is a constant and f(d) is a function whose integral has a closed form. Using
the fact that r(d) = O(log2 n) (Corollary 33), and |R| = O(log4 n), we obtain the following
lemma:

I Lemma 34. Given the piecewise continuous function

q̂(δ) =
{
pbδc if bδc ∈ R
K · f(δ) · exp (−br(bδc)c) if bδc 6∈ R

=⇒ pd = Θ

 d+1∫
d

q̂(δ)


Furthermore, q̂(δ) has O(log4 n) continuous pieces.

Proof. For d ∈ R, the integral trivially evaluates to exactly pd. For d 6∈ R, it suffices to show
that pd = Θ (q̂(δ)) for all δ ∈ [d, d + 1). We already know that pd = Θ

(
K · f(d) · e−r(d)).

Moreover, for any δ ∈ [d, d+ 1), the exponential term e−br(bδc)c in q̂(δ) is within a factor of
e of the original e−r(bδc) term.

For all O(log4 n) values d ∈ R, q̂(δ) is constant on the interval [d, d+ 1]. Since r(d) =
O(log2 n) by Corollary 33, the exponential term e−br(bδc)c in q̂(δ) taken on at most O(log2 n)
values. Thus, q̂ is continuous for a range of δ correspoding to a fixed value of br(bδc)c, and
so, we conclude that q̂ is piecewise continuous with O(log2 n) pieces. J

Now, we have everything in place to define the distribution {qd} that we will be sampling
from. Specifically, we will define qd and it’s CDF Qd as follows (N is the normalizing factor):

qd =

 d+1∫
d

q̂(δ)

 · 1
N Qd =

 d+1∫
0

q̂(δ)

 · 1
N where N =

dmax+1∫
0

q̂(δ) (6)
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To show that these can be computed efficiently, it suffices to show that any integral of q̂(δ)
can be efficiently evaluated. This follows from the fact that q̂ is piecewise continuous with
O(log4) pieces (Lemma 34), each of which has a closed form integral (since f(d) defined in
Equation 5 has an integral).

I Lemma 35. Given the function q̂d defined in Lemma 34, it is possible to approximate the
integral

∫ d2+1
d1

q̂(δ) to a multiplicative factor of
(
1± 1

n2

)
, in poly(log n) time for any valid

d1, d2 ∈ Z (the bounds must be such that di ≥ 0 and U +D − 2di − k + 1 ≥ 0).

Proof. We will compute the integral by splitting it up into O(log4 n) continuous pieces and
then approximating the integral over each piece. The pieces corresponding to values of d ∈ R
can be explicitly computed as

∫ d+1
d

q̂(δ) = pd (recall that we can compute pd using Lemma 67
from Section F.3).

The more interesting pieces are over the range of δ where bδc 6∈ R. Such a piece is given by
a continuous range of values [δmin, δmax] ⊆ [d1, d2 +1], such that for any δ ∈ [δmin, δmax], the
value of br(bδc)c is a constant E. We begin the calculation of q̂(δ) = K·f(δ)·exp(−E), by first
computing a

(
1± 1/n3) multiplicative approximation to lnK = (U +D) ln 2− lnStotal, using

the strategy in Lemma 67 (Section F.3). Since f(δ) has a closed form integral (Equation 5),
we can also compute F =

∫ δmax
δmin

f(δ). Using the fact that the exponent is constant over the
range [δmin, δmax], we can write the logarithm of the integral as:

ln

 dmax∫
dmin

q̂(δ)

 = ln
(
K · e−E · F ·

)
= (U +D) · ln 2− lnStotal + lnF − E

If this value is smaller than −3 lnn, we can safely ignore it since it contrbuted less than
1/n3 to the probability mass. On the flipside, the logarithm is guaranteed to be bounded by
O(1). This upper bound is a result of the fact that

∫
q̂(δ) = O(

∑
pd) = O(1), where both

the sum and the integral are taken over the entire valid range of d. This means that we
can exponentiate to obtain the true value of the piecewise integral up to a multiplicative
approximation of (1 ± 1/n3). Adding the integrals of all the O(log4 n) pieces together
produces the final desired value of the integral. J

Now, we are finally ready to use Lemma 11 to sample d from the distribution {pd},
using the efficient sampling procedure for {qd}. The only other requirement is the ability to
approximate the pd values, which follows from Lemma 67.

I Theorem 36. Given a sub-interval [xi, xi+1] of a random Dyck path of length 2n, such that
the only determined heights in the interval are yi = Height(xi) and yi+1 = Height(xi+1),
and a mandatory boundary constraint at k, there exists an algorithm that generates a point x
within the interval such that Height(x) = yi − k + 1, using poly(log n) time, random bits,
and additional space.

4.4.5 Finding the Correct Interval: First-Return Query
As before, consider all positions that have been queried already 〈x1, x2, · · · , xm〉 (in increasing
order) along with their corresponding heights 〈y1, y2, · · · , ym〉. We wish to find the first return
to height yi after xi (where yi = Height(xi)). Our strategy begins by using Invariant 30 to
find the interval I = [xk, xk+1] containing First-Return(xi).

I Lemma 37. Assuming that Invariant 30 holds, the interval (xj−1, xj ] containing
First-Return(xi) is obtained by setting j to be either the smallest index f > i such that
yf ≤ yi or setting j − 1 = i.
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Figure 9 There are only two possible intervals (yellow boxes) that could contain First-Return(xi);
either the interval adjacent to xi, or the interval [xf−1, xf ], where f is the smallest index such that
yf < xi.

Proof. We assume the contrary i.e. there exists some k 6= f and k 6= i + 1 such that the
correct interval is (xk−1, xk]. Since yf < yi, the position of first return to yi happens in the
range (xi, xf ]. So, the only possibility is i+ 1 < k ≤ f − 1. By the definition of yf , we know
that both yk and yk−1 are strictly larger than yi. Invariant 30 implies that the boundary for
this interval (yk−1, yk] is at min(yk−1, yk) > yi. So, it is not possible for the first return to
be in this interval. J

The good news is that there are only two intervals that we need to worry about, one of
which is just the adjacent one [xi, xi+1]. The problem of finding the other interval that may
contain the first return boils down to finding the smallest index f > i such that yf ≤ yi. To
this end, we define M[a,b] as the minimum determined height in the range of positions [a, b].

One solution is to maintain a range tree R [14] over the range [2n]. Assuming that
2n = 2l, we can view R as a complete binary tree with depth r. Every non-leaf node is
denoted by R[a,b], and corresponds to a range [a, b] ⊆ [2n] that is the union of the ranges of
its children. Each R[a,b] stores the value M[a,b] which is is the minimum determined height
in the range of positions [a, b], or ∞ if none of the heights have been revealed. The leaf nodes
are denoted as {Ri}i∈[2n], and correspond to the singleton range corresponding to position
i ∈ [2n]. Note that a node at depth l′ will correspond to a range of size 2l−l′ , with the root
being associated with the entire range [2n].

We say that the range [a, b] is canonical if it corresponds to a range of some R[a,b] in R.
By the property of range trees, any arbitrary range can be decomposed into a disjoint union
of O(log n) canonical ranges. We implement R to support the following operations:

Update(x, y): Update the height of the position x to y.
This update affects all ranges [ai, bi] containing x. So, for each [ai, bi] we set M[ai,bi] =
min

(
M[ai,bi], y

)
.

Query(a, b): Return the minimum boundary height in the range [a, b].
We decompose [a, b] into O(log n) canonical ranges 〈r1, r2, · · · 〉, and return the minimum
of all the Mri values as M[a,b] (since [a, b] is the union of all ri).

Now, we can binary search for f by guessing a value f ′ and checking if Query(xi, xf ′) ≤ yi.
Overall, this requires O(log n) calls to Query, each of which makes O(log n) probes to the
range tree. To avoid an initialization overhead, we only create the node R[a,b] during the
first Update affecting a position x ∈ [a, b]. Since a call to Update can create at most O(log n)
new nodes in R, the additional space required for each Height or First-Return query is
still bounded.

I Theorem 38. There is an algorithm using O(logO(1) n) resources per query that provides
access to a random Dyck path of length 2n, by answering queries of the form First-Return(xi)
with the correctly sampled smallest position x′ > xi, where the Dyck path first returns to
Height(xi).
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Proof. In order to make the presentation simpler, we ensure that the next determined position
after xi is xi+1 (in other words xi+1 = xi+1). This can be done by invoking Height(xi+1),
if needed. If Height(xi + 1) = yi+1 < yi, we can terminate because First-Return(xi) is not
defined. Otherwise, we notice that in this setting, the first return cannot lie in the adjacent
interval [xi, xi+1] = [xi, xi + 1].

Hence, we proceed to finding the smallest value f such that yf ≤ yi, by using the range
tree data structure described above. Since Height(xf−1) > yi ≤ Height(xf ) by definition,
the interval (xf−1, xf ] must contain at least one position at height yi. We determine the
height at the midpoint of this interval, and then fix the potential violation of Invariant 30 by
finding another point along with its height. This essentially breaks up the interval [xf−1, xf ]
into O(1) sub-intervals, each at most half the size of the original. Based on the newly revealed
heights, we again find the (newly created) sub-interval containing the first return in O(1)
time. We repeat up to O(log n) times, reducing the size of the intervals in consideration,
until the position of the first return is revealed. J

4.4.6 Maintaining Height Queries under Invariant 30

Finally, we show that the boundary constraints introduced in order to maintain Invariant 30 do
not interfere with the implementation of Height queries. As before, we consider the currently
revealed heights 〈y1, y2, · · · , ym〉, along with the corresponding positions 〈x1, x2, · · · , xm〉
(in increasing order). Say that we are now presented with a query Height(x), where
xi < x < xi+1. As in Section 4.3, we swap xi and xi+1 if necessary in order to ensure
that yi < yi+1. Due to Invariant 30, we know that the lowest achievable height in the
interval [xi, xi+1] is yi, i.e. the boundary constraint for the left half becomes k = 1 instead of
k = yi + 1, since the constrained boundary is at height yi. Similarly, the boundary constraint
for the right half becomes k′ = 2U − 2D + 1.

The algorithm for determining the height at the midpoint xmid of [xi, xi+1] can proceed
as described in Section 4.3. Of course, in this scenario, the boundary is never far away, and
therefore we should always use the strategy in Section 4.3.2. The second step is to re-establish
Invariant 30 in the newly created sub-interval [xmid, xi+1]4, using the two step strategy from
Section 4.4.1. This involves determining the height of one additional point x′ ∈ [xmid, xi+1].
Finally, we can continue with the height sampling algorithm from Theorem 29, by recursively
halving one of the newly created intervals (the one containing x). Figure 10 illustrates the
aforementioned three steps.

Hence, we can combine results from Theorem 29 and Theorem 38 to obtain the following:

I Theorem 6. There is an algorithm using O(logO(1) n) resources per query that provides
access to a uniformly random Dyck path of length 2n by implementing the following queries:

Height(t) returns the position of the walk after t steps.
First-Return(t): If Height(t + 1) > Height(t), then First-Return(t) returns the
smallest index t′, such that t′ > t and Height(t′) = Height(t) (i.e. the first time the
Dyck path returns to the same height). Otherwise, if Height(t + 1) < Height(t), then
First-Return(t) is not defined.

4Note that the invariant is not broken for the [xi, xmid] sub-interval since yi + 1 was the original
boundary constraint. In general, the invariant will be automatically preserved for one of the sub-intervals;
the side corresponding to min(yi, yi+1).
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Figure 10 Performing Height queries while maintaining Invariant 30. The first step is to
determine the height at the midpoint xmid of an existing interval [xi, xi+1] that contains x. Next,
we re-establish Invariant 30 by sampling an additional point x′ within the violating interval Finally,
we recurse on the appropriate sub-interval (yellow box).

4.4.7 Reverse-First-Return Queries
For the sake of completeness, we also sketch how to implement a Reverse-First-Return
query, which is just a standard First-Return query on the reversed Dyck path. This
type of query was motivated in Section 4.1, and can be applied to positions x where
Height(x− 1) = Height(x) + 1.

Note that Invariant 30 remains unchanged as it is symmetric to reversal of the Dyck path.
Specifically, the invariant on a particular interval does not change if we swap the endpoints
of the interval. First, we can find the correct interval containing Reverse-First-Return(x),
by using an analog of Lemma 37.

I Lemma 39. Assuming Invariant 30, the interval [xj , xj+1) containing Reverse-First-
Return(xi) is obtained by setting j to be either the largest index f < i such that yf ≤ yi or
setting j + 1 = i.

Since the range tree defined in Section 4.4.5 allows us to query the minimum in arbitrary
contiguous ranges, we can also use it to find the appropriate f for Lemma 39 through binary
search. Once we have found an interval that is known to contain the Reverse-First-Return,
we can follow the strategy from the proof of Theorem 38; recursively sub-dividing the relevant
interval and finding the newly created sub-interval that contains the return, until we converge
on the correct return position.

5 Random Coloring of a Graph

A valid q-coloring of a graph G = (V,E) is a vector of colors X ∈ [q]V , such that for all
(u, v) ∈ E, Xu 6= Xv. We present a sub-linear time algorithm to provide local access to a
uniformly random valid q-coloring of an input graph. Specifically, we implement Color(v),
which returns the color Xv of node v, where X is a uniformly random valid coloring. The
implementation can access the input graph G through a sub-linear number of neighborhood
queries. A neighborhood query of the form All-Neighbors(v) returns a list of neighbors of
v. The implementation can also access a tape of public random bits R.

Moreover, multiple independent instances of Color that are given access to the same
public tape of random bits R, should output color values consistent with a single X, regardless
of the order and content of the queries received. Unlike our previous results, the choice of
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X only depends on R, and the Color implementations do not need to use any additional
memory to maintain consistency. For a formal description of this model, see Definition 10.
This model is essentially a generalization of Local Computation Algorithms [48]. Given a
computation problem with input x and a set of valid outputs F (x), LCAs provide query
access to some y ∈ F (x) using only a sub-linear number of probes to x. This makes it feasible
to consider sub-linear algorithms for problems where the output size is super-linear. Our
model has the additional restriction that the output must be drawn uniformly at random
from F (x), rather than just being an arbitrary member. Since the number of possible outputs
(|F (x)|) may be exponential, it is not possible to encode all the requisite random bits in
sub-linear space. Therefore, we use a source of public randomness R.

Sequential Algorithm for Random Coloring

We consider graphs with max degree ∆, and q = Θ(∆), since this is the regime where this
problem is feasible [22]. In the sequential setting, [22] used the technique of path coupling
to show that for q > 2∆, one can sample an uniformly random coloring by using a simple
Markov chain. The Markov chain proceeds in T steps. The state of the chain at time t
is given by Xt ∈ [q]|V |. Specifically, the color of vertex v at step t is Xt

v. In each step
of the Markov process, a vertex and a color are sampled uniformly at random i.e. a pair
(v, c) ∼U V × [q]. Subsequently, if the recoloring of vertex v with color c does not result
in a conflict with v’s neighbors, i.e. c 6∈ {Xt

u : u ∈ Γ(v)}, then the vertex is recolored i.e.
Xt+1
v ← c. After running this chain for T = O(n log(n/ε)) steps, the Markov chain is mixed,

implying that the distribution of resulting colors is ε close to the uniform distribution in L1
distance.

5.1 Modified Glauber Dynamics based on a Distributed Algorithm
Now we define a modified Markov chain as a special case of the Local Glauber Dynamics
presented in [20]. The modified Markov chain proceeds in epochs. We denote the initial
coloring of the graph by the vector X0 and the state of the coloring after the kth epoch by
Xk. In the kth epoch, every node attempts to recolor itself simultaneously in a conservative
manner, as described below:

Sample |V | colors 〈c1, c2, · · · , cn〉 from [q], where cv is the color proposed by vertex v.
For each vertex v, we set Xk

v to cv, if and only if for all neighbors w of v, Xk−1
w 6= cv and

cw 6= cv. Specifically, a vertex v is recolored if and only if its proposed color cv does not
conflict with any of it’s neighbors current colors (at the end of the previous epoch), or
their current proposals.

This procedure is a special case of the Local Glauber Dynamics, which was presented in
[20] as a distributed algorithm for sampling a random coloring.5 In the distributed setting,
our epochs correspond to synchronous rounds, where many vertices recolor themselves
simultaneously.

In order to bound the mixing time of this Markov chain, [20] uses the standard technique
of path coupling, introduced in [8]. The argument begins by considering two initial states of
the Markov Chains, say two colorings X0 and Y0, that differ at only one vertex. Formally,
we can define the distance between two colorings d(X,Y) as the number of vertices v such

5Note that [20] also uses a marking probability γ, which indicates the likelihood of any vertex
participating in a given round. For our purposes, it suffices to set γ = 1.
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that Xv 6= Yv, which results in the condition d(X0,Y0) = 1. A coupling is a joint evolution
rule for a pair of states (X0,Y0) → (X1,Y1), such that both of the individual evolutions
(X0 → X1) and (Y0 → Y1) have the same transition probabilities as the original Markov
Chain. We can directly use the result from the coupling defined in [20].

I Lemma 40. If q = 2α∆, then there exists a coupling (X0,Y0)→ (X1,Y1), such that if
d(X0,Y0) = 1, then E[d(X1,Y1)] ≤ 1−

(
1− 1

2α
)
e−3/α + 1/2α

1−1/α

I Corollary 41. If q ≥ 9∆ and d(X0,Y0) = 1, then E[d(X1,Y1)] < 1
e1/3

The path coupling lemma from [8] uses a coupling on adjacent states to bound the mixing
time.

I Lemma 42 (Simplified Path Coupling from [8]). If there exists a coupling (X0,Y0) →
(X1,Y1) defined for states where d(X0,Y0) = 1, such that E[d(X1,Y1) | X0,Y0] ≤ β (for
β < 1), then, the mixing time τmix(ε) = O(ln(nε−1)/ ln β−1).

I Corollary 43. If q ≥ 9∆, then the chain is mixed after τmix(ε) = 3
(
lnn+ ln( 1

ε )
)
epochs.

5.1.1 Naive Reduction from Distributed Algorithms
Using the technique of Parnas and Ron [46], one can modify a distributed algorithm for a graph
problem to construct a Local Computation Algorithm for the same problem. Specifically, given
a k-round distributed algorithm on a network of max degree ∆, we can simulate the behaviour
and outcome of a single node v by simulating the full algorithm on the k-neighborhood of v.
The simulation only requires us to probe this k-neighborhood, which contains O(∆k) nodes.
However, the aforementioned distributed algorithm for Glauber Dynamics used O(log n)
rounds, implying a probe complexity of ∆O(logn), which is super-linear. We show how to
reduce the probe complexity by appropriately pruning the k-neighborhood.

5.2 Local Coloring Algorithm
Given query access to the adjacency matrix of a graph G with maximum degree ∆ and a
vertex v, the algorithm has to output the color assigned to v after running t = O(lnn) epochs
of Modified Glauber Dynamics. We want to be able to answer such queries in sub-linear time,
without simulating the entire Markov Chain. We will define the number of colors as q = 2α∆
where α > 1.

The proposals at each epoch are a vector of color samples Ct ∼U [q]n, where Ct
v is the

color proposed by v in the tth epoch. Since each of these Ct
v values are independent uniform

samples from [q], instances of our algorithm will be able to access them in a consistent
manner using the public random bits R.

We also use Xt to denote the final vector of vertex colors at the end of the tth epoch.
Finally, we define indicator variables χtv to indicate whether the color Ct

v proposed by vertex
v was accepted at the tth epoch: χtv = 1 if and only if for all neighbors w ∈ Γ(v), we satisfy
the condition Ct

v 6= Xt−1
w and Ct

v 6= Ct
w (i.e. the proposed color does not conflict with any

neighboring proposal or any neighbor’s color from the preceding epoch). So, the color of a
vertex v after the tth epoch Xt

v is set to be Ci
v where i ≤ t is the largest index such that

χiv = 1. While the proposals Ct
v can simply be read off the public random tape R, it is not

clear how we can determine the χtv values efficiently. Computing Xt
v is quite simple if we

know the values χiv for all i ≤ t. So, we focus our attention on the query Accepted(v, t) that
returns χtv.
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5.2.1 Local Access to an Initial Valid Coloring
One caveat that we have not addressed is how we should initialize the Markov Chain. The
starting state can be any valid coloring of G, but we have to be able to access the initial colors
of requisite vertices in sub-linear time. One option is to simply assume that we have oracle
access to an arbitrary valid coloring. We can also invoke a result from [10] that provides a
Local Computation Algorithm for (∆ + 1)-coloring of a graph. Specifically, they provide local
access to the color of any vertex using O(∆O(1) log n) queries to the underlying graph, such
that the returned colors are consistent with some valid coloring. Integrating their routine
into our algorithm incurs a multiplicative poly(∆) overhead for each query.

Another option is to (uniformly) randomly intialize the colors of the vertex independently
of its neighbors. Although the initial coloring may be invalid, one can show that with high
probability, the final coloring after running the Markov Chain is valid. The intuitive reasoning
is that each vertex attempts to recolor itself O(log n) times, and each attempt suceeds with
constant probabiltity at least 1− 1/α (Lemma 44). Furthermore, we can union bound to
claim that all the vertices get re-colored at least once with high probability. After a vertex is
re-colored once, it can no longer be in conflict with any of its neighbor’s colors, and therefore
we obtain a final coloring that is valid. For the sake of simplicity, we will assume that our
algorithm can access the initial colors of any vertex v through a public C0

v.

5.2.2 Naive Coloring Implementations
Our general strategy to determine χtv will be to check for all neighbors w of v, whether w
causes a conflict with v’s proposed color in the tth epoch. One naive way to achieve this, is to
iterate backwards from epoch t, querying to find out whether w’s proposal was accepted, until
the most recent accepted proposal (latest epoch t′ < t such that χt′w = 1) is found. At this
point, if Ct′

w = Ct
v, then the current color of w conflicts with v’s proposal. Otherwise there

is no conflict, and we can proceed to the next neighbor. However, this process potentially
makes ∆ recursive calls to a sub-problem that is only slightly smaller i.e. T (t) ≤ ∆ · T (t− 1).
This leads to a running time upper bound of ∆t which is superlinear for the desired number
of epochs t = Ω(log n) (the mixing time).

We can prune the number of recursive calls by only processing the neighbors w which
actually proposed the color Ct

v during some epoch. In this case, the expected number of
neighbors that have to be probed recursively is less than t∆/q (since the total number of
neighbor proposals over t epochs is at most t∆, and there are q possible colors). So, the overall
runtime is upper bounded by (t∆/q)t. For this algorithm, if we allow q > t∆ = Ω(∆ log n)
colors, the runtime becomes sub-linear. So, we can use this simple algorithm only when q is
sufficiently large. However, we want a sub-linear time algorithm for q = O(∆).

5.2.3 A Sub-linear Time Algorithm for q = O(∆)

The expected number of neighbors that need to be checked recursively can always be t∆/q
in the worst case. The crucial observation is that even though these recursive calls seem
unavoidable, we can aim to reduce the size of the recursive sub-problem, and thus bound the
number of levels of recursion.

Algorithm 5 shows our final procedure for generating χtv, where c = Ct
v is v’s proposal

at epoch t. We iterate through all neighbors w of v, checking for conflicts (Line 3). The
condition c 6= Ct

w can be checked by reading Ct
w off the public random tape (Line 4). If no

conflict is seen, we proceed to check whether c 6= Xt−1
w .
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Algorithm 5 Checking if proposal is accepted.

1: procedure Accepted(v, t)
2: c← Ct

v . Find the current proposal using the public random bits
3: for w ← Γ(v) . Iterate through the neighbors, checking for conflicts
4: if Ct

w = c . Check for conflict with neighbor’s current proposal
5: return 0
6: for t′ ← [t, t− 1, t− 2, · · · , 1, 0] . Check for conflict with neighbor’s prior state
7: if Ct′w = c and Accepted(w, t′) . Potential conflict with neighbor’s color
8: overwritten← false . Check if color c is overwritten by a future

proposal
9: for t̃← [t′+1,t′+2,t′+3,··· ,t−1]

10: if Accepted(w, t̃)
11: overwritten← true
12: break
13: if not overwritten
14: return 0 . Conflict! This proposal is not accepted
15: break
16: return 1 . No conflicts! This proposal is accepted

To achieve this, we iterate through all the epochs in reverse order (line 6) to check
whether the color c was ever proposed for vertex w. If not, we can ignore w. Otherwise
let’s say that the most recent proposal for c was at epoch t′ i.e. Ct′

w = c. Now, we directly
“jump” to the (t′)th epoch and recursively check if this proposal was accepted (line 7). If the
proposal Ct′

w was not accepted, we keep iterating back in time until we find the next most
recent epoch when c was proposed by w, or until we run out of epochs. When we find the
most recent epoch t′ in which c was accepted i.e. χt′w = 1, we successively consider epochs
t′ + 1, t′ + 2, t′ + 3, · · · , t − 1, to see whether, the color c was overwritten (line 9) by an
accepted proposal in a future epoch. This is done by recursively invoking Accepted(w, t′ + i)
in order to compute χt′+iw (line 10). If at any of these subsequent iterations, we see that
a different proposal was accepted (thus overwriting the color c), then neighbor w does not
cause a conflict, and we can move on to the next neighbor. Otherwise, we have seen that
χt
′

w = 1 (color c was accepted) and every subsequent proposal until the current epoch t was
rejected; this implies that color c survived as the color of neighbor w, i.e. Xt−1

w = c. This
leads to a conflict with v’s current proposal for color c (line 14) and hence χtv = 0. If we
exhaust all the neighbors and don’t find any conflicts (line 16) then χtv = 1.

Now we analyze the runtime of Accepted by constructing and solving a recurrence relation.
We will use the following lemma to evaluate the expectation of products of relevant random
variables.

I Lemma 44. The probability that any given proposal is rejected P[χtv = 0] is at most 1/α.
Moreover, this upper bound holds even if we condition on all the values in C except Ct

v.

Proof. A rejection can occur due to a conflict with at most 2∆ possible values in {Ct
w,Xt−1

w |w∈
Γ(v)}. Since there are 2α∆ colors, the rejection probability is at most 1/α. J

I Definition 45. We define Tt to be a random variable indicating the number of recursive
calls performed during the execution of Accepted(v, t) while computing a single χtv.
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I Definition 46. We define W t
t′ to be a random variable indicating the number of calls to

Accepted that are required, to check whether a color c assigned at epoch t′ was overwritten
at some epoch before t.

Using B(p) to denote the Bernoulli random variable with bias p, we obtain an expression for
W t
t′ (using ≤ to denote stochastic dominance).

W t
t′ ≤

[
Tt′+1 + B

(
1
α

)
· Tt′+2 + B

(
1
α2

)
· Tt′+3 + · · ·+ B

(
1

αt−t′−2

)
· Tt−1

]
(7)

The above Equation 7 conservatively assumes that the call to Accepted(v, t′ + 1) in line 10
is always invoked (resulting in Tt′+1 invocations of Accepted). However, the next call to
Accepted(v, t′ + 2) occurs only if the previous one was not accepted, which happens with
probability ≤ 1/α (Lemma 44). This produces the B(1/α) · Tt′+2 term in the expression.
In general, Accepted(v, t′ + i) is only invoked if the preceding i − 1 calls to Accepted all
returned 0. This event happens with probability at most 1/αi−1.

Next, we prove our main lemma that bounds the number of recursive calls to Accepted.

I Lemma 47. Given graph G and q = 2α∆ colors, for α > 4.5, the expected number of
recursive calls to the procedure Accepted while computing a single χtv = Accepted(v, t) is
E[Tt] = O

(
e1.02t/α).

Proof. We start by constructing a recurrence for the expected number of calls to Accepted
used by the algorithm. When checking a single neighbor w, the algorithm iterates through
all the epochs t′ such that Ct′

w = c (in reality, only the last occurence matters, but we are
looking for an upper bound). If such a t′ is found (which happens with probability 1/q
independently for each trial), there is a recursive call to Accepted(w, t′), which in turn results
in Tt′ recursive calls to Accepted. If we find that χt′w = 1 (i.e. w was colored to c at epoch
t′), we will need to proceed to check whether the color was subsequently overwritten, which
requires an additional W t

t′ calls to Accepted. Summing up over all neighbors and epochs,
we obtain the following bound:

Tt ≤
∑

w∈Γ(v)

t∑
t′=1

P
[
Ct′

w = c
]
·
[
Tt′ +W t

t′
]

(8)

≤ ∆ ·
t∑

t′=1

B
(

1
q

)
·

[
Tt′ + Tt′+1 + B

(
1
α

)
· Tt′+2 + B

(
1
α2

)
· Tt′+3 + · · ·

· · ·+ B
(

1
αt−t′−2

)
· Tt−1

]
(9)

≤ ∆ · B
(

1
q

)
·

[
t−1∑
t′=1

Tt′ +
t−1∑
t′=1

Tt′ ·
(

1 + B
(

1
α

)
+ B

(
1
α2

)
+ · · ·

)]
(10)

In the last step, we just grouped together all the terms corresponding to the same epoch
(note that we include additional terms since it’s an upper bound). Using Lemma 44 and
the fact that P[Ct′

w = c] is independent of all other events, we can write a recurrence for the
expected number of probes.

E[Tt] ≤ ∆ · 1
2α∆

[
t−1∑
t′=1

Tt′ +
t−1∑
t′=1

Tt′ ·
(

1 + 1
α

+ 1
α2 + · · ·

)]
≤ 1

2α ·
t−1∑
t′=1

Tt′ ·
[
1 + α

α− 1

]
(11)
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Now, we make the assumption that E[Tt′ ] ≤ ekt/α, and show that this satisfies the expectation
recurrence for the desired value of k. First, we sum the geometric series:

t−1∑
t′=1

E[Tt′ ] =
t−1∑
t′=1

ekt
′/α <

ekt/α − 1
ek/α − 1

<
ekt/α

ek/α − 1

The expectation recurrence to be satisfied then becomes:

E[Tt] ≤
1

2α ·
ekt/α

ek/α − 1
·
[
1 + α

α− 1

]
= ekt/α · 2α− 1

2α(α− 1)(ek/α − 1)
= ekt/α · f(α, k)

We notice that for k = 1.02 and α > 4.5, f(α) < 1. This can easily be verified by checking
that f(α, 1.02) decreases monotonically with α in the range α > 4.5. Thus, our recurrence is
satisfied for k = 1.02, and therefore the expected number of calls is O(e1.02t/α). J

I Theorem 7. Given neighborhood query access to a graph G with n nodes, maximum degree
∆, and q = 2α∆ ≥ 9∆ colors, we can generate the color of any given node from a distribution
of color assignments that is ε-close (in L1 distance) to the uniform distribution over all valid
colorings of G, in a consistent manner, using only O((n/ε)3.06/α∆ log(n/ε)) time, probes,
and public random bits per query.

Proof. Since q ≥ 9∆, we can use Corollary 43 to obtain τmix(ε) ≤ 3(lnn + ln 1/ε). Also,
since α > 4.5, we can invoke Lemma 47 to conclude that the number of calls to Accepted is
O(n3.06/αε−3.06/α). Finally, we note that each call to Accepted(v, t) potentially reads O(t∆)
color proposals from the public random tape, while iterating through all ≤ ∆ neighbors of v in
all t epochs. Since t ≤ 3 ln(n/ε), this implies that the algorithm uses O((n/ε)3.06/α∆ log(n/ε))
time and random bits, which is sub-linear for α > 3.06. J

6 Open Problems

There are many interesting directions to pursue in this area. Below, we provide a few
examples of random objects that may admit local access implementations.

Small Description Size
Provide a local access implementation of degree queries for undirected random graphs,
even for G(n, p). How about ith neighbor queries?
For simple models such as G(n, p), provide a local access implementation of a Random-
Triangle(v) query, that returns a uniformly random triangle containing vertex v.
Provide a memory-less local access implementation of basic queries for undirected random
graphs.
Given an ordered graph such as a lattice, provide an implementation to locally access
a random perfect matching. Interesting special cases of this problem include random
domino and lozenge tilings.

Huge Description Size
Provide a faster local access implementation for sampling the color of a specified vertex
in a random q-coloring of a bounded degree graph G.
Improve the local access implementation for sampling the color of a specified vertex in a
random q-coloring of G, by supporting smaller values of q (smaller than 9∆). We remark
that this problem in particular should be feasible, by simulating a faster mixing Markov
chain. The important question is whether you can you get down to q = 2∆?
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Given query access to an input graph G and starting vertex v, provide a local access
implementation for sampling the location of a random walk starting at v after t steps.
This may be feasible in certain restricted classes of graphs.
Given query access to an input DNF formula, provide an implementation to access the
truth value of a single variable in a uniformly random satisfying assignment.
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A Further Analysis and Extensions of Algorithm 1: Sampling
Next-Neighbor without Blocks

A.1 Performance Guarantee
This section is devoted to showing the following lemma that bounds the required resources per
query of Algorithm 1. We note that we only require efficient computation of

∏
u∈[a,b](1−pvu)

(and not
∑
u∈[a,b] pvu), and that for the G(n, p) model, the resources required for such

computation is asymptotically negligible.
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I Theorem 48. Each execution of Algorithm 1 (the Next-Neighbor query), with high
probability,

terminates within O(log n) iterations (of its repeat loop);
computes O(log2 n) quantities of

∏
u∈[a,b](1− pvu);

aside from the above computations, uses O(log2 n) time, O(log n) random N -bit words,
and O(log n) additional space.

Proof. We focus on the number of iterations as the remaining results follow trivially. This
proof is rather involved and thus is divided into several steps.

Specifying random choices

The performance of the algorithm depends on not only the random variables Xvu’s, but also
the unused coins Cvu’s. We characterize the two collections of Bernoulli variables {Xvu} and
{Yvu} that cover all random choices made by Algorithm 1 as follows.

Each Xvu (same as Xuv) represents the result for the first coin-toss corresponding to cells
A[v][u] and A[u][v], which is the coin-toss obtained when Xvu becomes decided: either Cvu
during a Next-Neighbor(v) call when A[v][u] = φ, or Cvu during a Next-Neighbor(u) call
when A[u][v] = φ, whichever occurs first. This description of Xvu respects our invariant
that, if the generation process is executed to completion, we will have A[v][u] = Xvu in
all entries.
Each Yvu represents the result for the second coin-toss corresponding to cell A[v][u],
which is the coin-toss Cvu obtained during a Next-Neighbor(v) call when Xvu is already
decided. In other words, {Yvu}’s are the coin-tosses that should have been skipped but
still performed in Algorithm 1 (if they have indeed been generated). Unlike the previous
case, Yvu and Yuv are two independent random variables: they may be generated during
a Next-Neighbor(v) call and a Next-Neighbor(u) call, respectively.

As mentioned earlier, we allow any sequence of probabilities pvu in our proof. The success
probabilities of these indicators are therefore given by P[Xvu = 1] = P[Yvu = 1] = pvu.

Characterizing iterations

Suppose that we compute Next-Neighbor(v) and obtain an answer u. Then Xv,last[v]+1 =
· · · = Xv,u−1 = 0 as none of u′ ∈ (last[v], u) is a neighbor of v. The vertices considered in
the loop of Algorithm 1 that do not result in the answer u, are u′ ∈ (last[v], u) satisfying
A[v][u′] = 0 and Yv,u′ = 1; we call the iteration corresponding to such a u′ a failed iteration.
Observe that if Xv,u′ = 0 but is undecided (A[v][u′] = φ), then the iteration is not failed,
even if Yv,u′ = 1 (in which case, Xv,u′ takes the value of Cv,u′ while Yv,u′ is never used).
Thus we assume the worst-case scenario where all Xv,u′ are revealed: A[v][u′] = Xv,u′ = 0
for all u′ ∈ (last[v], u). The number of failed iterations in this case stochastically dominates
those in all other cases.6

6There exists an adversary who can enforce this worst case. Namely, an adversary that first makes
Next-Neighbor queries to learn all neighbors of every vertex except for v, thereby filling out the whole A
in the process. The claimed worst case then occurs as this adversary now repeatedly makes Next-Neighbor
queries on v. In particular, a committee of n adversaries, each of which is tasked to perform this series of
calls corresponding to each v, can always expose this worst case.
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Then, the upper bound on the number of failed iterations of a call Next-Neighbor(v) is
given by the maximum number of cells Yv,u′ = 1 of u′ ∈ (last[v], u), over any u ∈ (last[v], n]
satisfying Xv,last[v]+1 = · · · = Xvu = 0. Informally, we are asking ”of all consecutive cells
of 0’s in a single row of {Xvu}-table, what is the largest number of cells of 1’s in the
corresponding cells of {Yvu}-table?”

Bounding the number of iterations required for a fixed pair (v, last[v])

We now proceed to bounding the number of iterations required over a sampled pair of
{Xvu} and {Yvu}, from any probability distribution. For simplicity we renumber our indices
and drop the index (v, last[v]) as follows. Let p1, . . . , pL ∈ [0, 1] denote the probabilities
corresponding to the cells A[v][last[v] + 1 . . . n] (where L = n− last[v]), then let X1, . . . , XL

and Y1, . . . , YL be the random variables corresponding to the same cells on A.
For i = 1, . . . , L, define the random variable Zi in terms of Xi and Yi so that
Zi = 2 if Xi = 0 and Yi = 1, which occurs with probability pi(1− pi).
This represents the event where i is not a neighbor, and the iteration fails.
Zi = 1 if Xi = Yi = 0, which occurs with probability (1− pi)2.
This represents the event where i is not a neighbor, and the iteration does not fail.
Zi = 0 if Xi = 1, which occurs with probability pi.
This represents the event where i is a neighbor.

For ` ∈ [L], define the random variable M` :=
∏`
i=1 Zi, and M0 = 1 for convenience. If

Xi = 1 for some i ∈ [1, `], then Zi = 0 and M` = 0. Otherwise, logM` counts the number of
indices i ∈ [`] with Yi = 1, the number of failed iterations. Therefore, log(max`∈{0,...,L}M`)
gives the number of failed iterations this Next-Neighbor(v) call.

To bound M`, observe that for any ` ∈ [L], E[Z`] = 2p`(1− p`) + (1− p`)2 = 1− p2
` ≤ 1

regardless of the probability p` ∈ [0, 1]. Then, E[M`] = E[
∏`
i=1 Zi] =

∏`
i=1 E[Zi] ≤ 1 because

Z`’s are all independent. By Markov’s inequality, for any (integer) r ≥ 0, Pr[logM` > r] =
Pr[M` > 2r] < 2−r. By the union bound, the probability that more than r failed iterations
are encountered is Pr[log(max`∈{0,...,L}M`) > r] < L · 2−r ≤ n · 2−r.

Establishing the overall performance guarantee

So far we have deduced that, for each pair of a vertex v and its last[v], the probability that
the call Next-Neighbor(v) encounters more than r failed iterations is less that n · 2−r, which
is at most n−c−2 for any desired constant c by choosing a sufficiently large r = Θ(log n).
As Algorithm 1 may need to support up to Θ(n2) Next-Neighbor calls, one corresponding
to each pair (v, last[v]), the probability that it ever encounters more than O(log n) failed
iterations to answer a single Next-Neighbor query is at most n−c. That is, with high
probability, O(log n) iterations are required per Next-Neighbor call, which concludes the
proof of Theorem 48. J

A.2 Supporting Vertex-Pair Queries
We extend our implementation (Algorithm 1) to support the Vertex-Pair queries: given
a pair of vertices (u, v), decide whether there exists an edge {u, v} in the generated graph.
To answer a Vertex-Pair query, we must first check whether the value Xuv for {u, v} has
already been assigned, in which case we answer accordingly. Otherwise, we must make a
coin-flip with the corresponding bias puv to assign Xuv, deciding whether {u, v} exists in the
generated graph. If we maintained the full A, we would have been able to simply set A[u][v]
and A[v][u] to this new value. However, our more efficient Algorithm 1 that represents A
compactly via last and Pv’s cannot record arbitrary modifications to A.

ITCS 2020
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Observe that if we were to apply the trivial implementation of Vertex-Pair, then by
Lemma 12, last and Pv’s will only fail capture the state A[v][u] = 0 when u > last[v] and
v > last[u]. Fortunately, unlike Next-Neighbor queries, a Vertex-Pair query can only set
one cell A[v][u] to 0 per query, and thus we may afford to store these changes explicitly.7 To
this end, we define the set Q = {{u, v} : Xuv is assigned to 0 during a Vertex-Pair query},
maintained as a hash table. Updating Q during Vertex-Pair queries is trivial: we simply
add {u, v} to Q before we finish processing the query if we set A[u][v] = 0. Conversely, we
need to add u to Pv and add v to Pu if the Vertex-Pair query sets A[u][v] = 1 as usual,
yielding the following observation. It is straightforward to verify that each Vertex-Pair
query requires O(log n) time, O(1) random N -bit word, and O(1) additional space per query.

I Lemma 49. The data structures last, Pv’s and Q together provide a succinct representation
of A when Next-Neighbor queries (modified Algorithm 1) and Vertex-Pair queries are
allowed. In particular, A[v][u] = 1 if and only if u ∈ Pv. Otherwise, A[v][u] = 0 if
u < last[v], v < last[u], or {v, u} ∈ Q. In all remaining cases, A[v][u] = φ.

We now explain other necessary changes to Algorithm 1. In the implementation of
Next-Neighbor, an iteration is not failed when the chosen Xvu is still undecided: A[v][u]
must still be φ. Since Xvu may also be assigned to 0 via a Vertex-Pair(v, u) query, we must
also consider an iteration where {v, u} ∈ Q failed. That is, we now require one additional
condition {v, u} /∈ Q for termination (which only takes O(1) time to verify per iteration). As
for the analysis, aside from handling the fact that Xvu may also become decided during a
Vertex-Pair call, and allowing the states of the algorithm to support Vertex-Pair queries,
all of the remaining analysis for correctness and performance guarantee still holds.

Therefore, we have established that our augmentation to Algorithm 1 still maintains
all of its (asymptotic) performance guarantees for Next-Neighbor queries, and supports
Vertex-Pair queries with complexities as specified above, concluding the following corollary.
We remark that, as we do not aim to support Random-Neighbor queries, this simple algorithm
here provides significant improvement over the performance of Random-Neighbor queries
(given in Corollary 19).

I Corollary 50. Algorithm 1 can be modified to allow an implementation of Vertex-Pair
query as explained above, such that the resource usages per query still asymptotically follow
those of Theorem 48.

B Omitted Details from Section 3: Undirected Random Graph
Implementations

B.1 Removing the Perfect-Precision Arithmetic Assumption
In this section we remove the prefect-precision arithmetic assumption. Instead, we only
assume that it is possible to compute

∏b
u=a(1− pvu) and

∑b
u=a pvu to N -bit precision, as

well as drawing a random N -bit word, using polylogarithmic resources. Here we will focus on
proving that the family of the random graph we generate via our procedures is statistically
close to that of the desired distribution. The main technicality of this lemma arises from
the fact that, not only the implementation is randomized, but the agent interacting with
the implementation may choose their queries arbitrarily (or adversarially): our proof must
handle any sequence of random choices the implementation makes, and any sequence of
queries the agent may make.

7The disadvantage of this approach is that the implementation may allocate more than Θ(m) space
over the entire graph generation process, if Vertex-Pair queries generate many of these 0’s.
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Observe that the distribution of the graphs constructed by our implementation is governed
entirely by the samples u drawn from F(v, a, b) in Algorithm 3. By our assumption, the
CDF of any F(v, a, b) can be efficiently computed from

∏u′

u=a(1− pvu), and thus sampling
with 1

poly(n) error in the L1-distance requires a random N -bit word and a binary-search in
O(log(b − a + 1)) = O(log n) iterations. Using this crucial fact, we prove our lemma that
removes the perfect-precision arithmetic assumption.

I Lemma 51. If Algorithm 3 (the Fill operation) is repeatedly invoked to construct a graph
G by drawing the value u for at most S times in total, each of which comes from some
distribution F′(v, a, b) that is ε-close in L1-distance to the correct distribution F(v, a, b) that
perfectly generates the desired distribution G over all graphs, then the distribution G′ of the
generated graph G is (εS)-close to G in the L1-distance.

Proof. For simplicity, assume that the algorithm generates the graph to completion according
to a sequence of up to n2 distinct blocks B = 〈B(u1)

v1 , B
(u2)
v2 , . . .〉, where each B(ui)

vi specifies
the unfilled block in which any query instigates a Fill function call. Define an internal
state of our implementation as the triplet s = (k, u,A), representing that the algorithm is
currently processing the kth Fill, in the iteration (the repeat loop of Algorithm 3) with
value u, and have generated A so far. Let tA denote the terminal state after processing
all queries and having generated the graph GA represented by A. We note that A is used
here in the analysis but not explicitly maintained; further, it reflects the changes in every
iteration: as u is updated during each iteration of Fill, the cells A[v][u′] = φ for u′ < u

(within that block) that has been skipped are also updated to 0.
Let S denote the set of all (internal and terminal) states. For each state s, the implementa-

tion samples u from the corresponding F′(v, a, b) where ‖F(v, a, b)−F′(v, a, b)‖1 ≤ ε = 1
poly(n) ,

then moves to a new state according to u. In other words, there is an induced pair of
collection of distributions over the states: (T , T ′) where T = {Ts}s∈S , T ′ = {T′s}s∈S , such
that Ts(s′) and T′s(s′) denote the probability that the algorithm advances from s to s′ by
using a sample from the correct F(v, a, b) and from the approximated F′(v, a, b), respectively.
Consequently, ‖Ts − T′s‖1 ≤ ε for every s ∈ S.

The implementation begins with the initial (internal) state s0 = (1, 0,Aφ) where all
cells of Aφ are φ’s, goes through at most S = O(n3) other states (as there are up to n2

values of k and O(n) values of u), and reach some terminal state tA, generating the entire
graph in the process. Let π = 〈sπ0 = s0, s

π
1 , . . . , s

π
`(π) = tA〉 for some A denote a sequence

(“path”) of up to S+ 1 states the algorithm proceeds through, where `(π) denote the number
of transitions it undergoes. For simplicity, let TtA(tA) = 1, and TtA(s) = 0 for all state
s 6= tA, so that the terminal state can be repeated and we may assume `(π) = S for every π.
Then, for the correct transition probabilities described as T , each π occurs with probability
q(π) =

∏S
i=1 Tsi−1(si), and thus G(GA) =

∑
π:sπ

S
=tA q(π).

Let T min = {Tmin
s }s∈S where Tmin

s (s′) = min{Ts(s′),T′s(s′)}, and note that each Tmin
s

is not necessarily a probability distribution. Then,
∑
s′ Tmin

s (s′) = 1− ‖Ts − T′s‖1 ≥ 1− ε.
Define q′, qmin,G′(GA),Gmin(GA) analogously, and observe that qmin(π) ≤ min{q(π), q′(π)}
for every π, so Gmin(GA) ≤ min{G(GA),G′(GA)} for every GA as well. In other words,
qmin(π) lower bounds the probability that the algorithm, drawing samples from the correct
distributions or the approximated distributions, proceeds through states of π; consequently,
Gmin(GA) lower bounds the probability that the algorithm generates the graph GA.
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Next, consider the probability that the algorithm proceeds through the prefix πi =
〈sπ0 , . . . , sπi 〉 of π. Observe that for i ≥ 1,∑

π

qmin(πi) =
∑
π

qmin(πi−1) · Tmin
sπ
i−1

(sπi ) =
∑
s,s′

∑
π:sπ

i−1=s,sπ
i

=s′
qmin(πi−1) · Tmin

s (s′)

=
∑
s′

Tmin
s (s′) ·

∑
s

∑
π:sπ

i−1=s
qmin(πi−1) ≥ (1− ε)

∑
π

qmin(πi−1).

Roughly speaking, at least a factor of 1 − ε of the “agreement” between the distribu-
tions over states according to T and T ′ is necessarily conserved after a single sampling
process. As

∑
π q

min(π0) = 1 because the algorithm begins with s0 = (1, 0,Aφ), by an
inductive argument we have

∑
π q

min(π) =
∑
π q

min(πS) ≥ (1 − ε)S ≥ 1 − εS. Hence,∑
GA

min{G(GA),G′(GA)} ≥
∑
GA

Gmin(GA) ≥ 1 − εS, implying that ‖G − G′‖1 ≤ εS, as
desired. In particular, by substituting ε = 1

poly(n) and S = O(n3), we have shown that
Algorithm 3 only creates a 1

poly(n) error in the L1-distance. J

We remark that Random-Neighbor queries also require that the returned edge is drawn
from a distribution that is close to a uniform one, but this requirement applies only per query
rather then over the entire execution of the generator. Hence, the error due to the selection
of a random neighbor may be handled separately from the error for generating the random
graph; its guarantee follows straightforwardly from a similar analysis.

B.2 Bounding Block Sizes
I Lemma 13. With high probability, the number of neighbors in every block, |Γ(i)(v)|, is at
most O(log n).

Proof. Fix a block B(i)
v , and consider the Bernoulli RVs {Xvu}u∈B(i)

v
. The expected number

of neighbors in this block is E
[
|Γ(i)(v)|

]
= E

[∑
u∈B(i)

v
Xvu

]
< L + 1. Via the Chernoff

bound,

P
[
|Γ(i)(v)| > (1 + 3c log n) · L

]
≤ e−

3c logn·L
3 = n−Θ(c)

for any constant c > 0. J

I Lemma 14. With high probability, for every v such that |Bv| = Ω(log n) (i.e., E =
Ω(log n)), at least a 1/3-fraction of the blocks {B(i)

v }i∈[|Bv|] are non-empty.

Proof. For i < |Bv|, since E
[
|Γ(i)(v)|

]
= E

[∑
u∈B(i)

v
Xvu

]
> L−1, we bound the probability

that B(i)
v is empty:

P[B(i)
v is empty] =

∏
u∈B(i)

v

(1− pvu) ≤ e
−
∑

u∈B(i)
v

pvu ≤ e1−L = c

for any arbitrary small constant c given sufficienty large constant L. Let Ti be the indicator
for the event that B(i)

v is not empty, so E1− c. By the Chernoff bound, the probability that
less than |Bv|/3 blocks are non-empty is

P
[∑

i∈[|Bv|] Ti <
|Bv|

3

]
< P

[∑
i∈[|Bv|−1] Ti <

|Bv−1|
2

]
≤ e−Θ(|Bv|−1) = n−Ω(1)

as |Bv| = Ω(log n) by assumption. J



A. S. Biswas, R. Rubinfeld, and A. Yodpinyanee 27:51

C Next-Neighbor Implementation with Deterministic Performance
Guarantee

In this section, we construct data structures that allow us to sample for the next neighbor
directly by considering only the cells A[v][u] = φ in the Erdös-Rényi model and the Stochastic
Block model. This provides poly(log n) worst-case performance guarantee for implementations
supporting only the Next-Neighbor queries. We may again extend this data structure
to support Vertex-Pair queries, however, at the cost of providing poly(log n) amortized
performance guarantee instead.

In what follows, we first focus on the G(n, p) model, starting with Next-Neighbor queries
(Section C.1) then extend to Vertex-Pair queries (Section C.2. We then explain how this
result may be generalized to support the Stochastic Block model with random community
assignment in Section C.3.

C.1 Data structure for next-neighbor queries in the Erdös-Rényi model

Algorithm 6 Alternate implementation.

procedure Next-Neighbor(v)
w ← minKv, or n+ 1 if Kv = ∅
t← count(v)
sample F ∼ ExactF(p, t)
if F ≤ t

u← pick(v, F )
Ku ← Ku ∪ {v}

else
u← w

if u 6= n+ 1
Kv ← Kv \ {u}

update(v, u)
last[v]← u

return u

Recall that Next-Neighbor(v) is given by min{u > last[v] : Xvu = 1} (or n + 1 if no
satisfying u exists). To aid in computing this quantity, we define:

Kv = {u ∈ (last[v], n] : A[v][u] = 1},
wv = minKv, or n+ 1 if Kv = ∅,
Tv = {u ∈ (last[v], wv) : A[v][u] = φ}.

The ordered set Kv is only defined for ease of presentation: it is equivalent to (last[v], n]∩Pv,
recording the known neighbors of v after last[v] (i.e., those that have not been returned as
an answer by any Next-Neighbor(v) query yet). The quantity wv remains unchanged but is
simply restated in terms of Kv. Tv specifies the list of candidates u for Next-Neighbor(v)
with A[v][u] = φ; in particular, all candidates u’s, such that the corresponding RVs Xvu = 0
are decided, are explicitly excluded from Tv.

Unlike the approach of Algorithm 1 that simulates coin-flips even for decided Xvu’s,
here we only flip undecided coins for the indices in Tv: we have |Tv| Bernoulli trials to
simulate. Let F be the random variable denoting the first index of a successful trial out of
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|Tv| coin-flips, or |Tv|+ 1 if all fail; denote the distribution of F by ExactF(p, |T |). The CDF
of F is given by P[F = f ] = 1− (1− p)f for f ≤ |Tv| (i.e., there is some success trial in the
first f trials), and P[F = |Tv| + 1] = 1. Thus, we must design a data structure that can
compute wv, compute |Tv|, find the F th minimum value in Tv, and update A[v][u] for the F
lowest values u ∈ Tv accordingly.

Let k = dlog ne. We create a range tree, where each node itself contains a balanced
binary search tree (BBST), storing last values of its corresponding range. Formally, for
i ∈ [0, n/2j) and j ∈ [0, k], the ith node of the jth level of the range tree, stores last[v] for
every v ∈ (i · 2k−j , (i+ 1) · 2k−j ]. Denote the range tree by R, and each BBST corresponding
to the range [a, b] by B[a,b]. We say that the range [a, b] is canonical if it corresponds to a
range of some B[a,b] in R.

Again, to allow fast initialization, we make the following adjustments from the given
formalization above: (1) values last[v] = 0 are never stored in any B[a,b], and (2) each B[a,b]
is created on-the-fly during the first occasion it becomes non-empty. Further, we augment
each B[a,b] so that each of its node maintains the size of the subtree rooted at that node:
this allows us to count, in O(log n) time, the number of entries in B[a,b] that is no smaller
than a given threshold.

Observe that each v is included in exactly one B[a,b] per level in R, so k + 1 = O(log n)
copies of last[v] are stored throughout R. Moreover, by the property of range trees, any
interval can be decomposed into a disjoint union of O(log n) canonical ranges. From these
properties we implement the data structure R to support the following operations. (Note
that R is initially an empty tree, so initialization is trivial.)

count(v): compute |Tv|.
We break (last[v], wv) into O(log n) disjoint canonical ranges [ai, bi]’s each corresponding
to some B[ai,bi], then compute t[ai,bi] = |{u ∈ [ai, bi] : last[u] < v}|, and return

∑
i t[ai,bi].

The value t[ai,bi] is obtained by counting the entries of B[ai,bi] that is at least v, then
subtract it from bi − ai + 1; we cannot count entries less than v because last[u] = 0 are
not stored.
pick(v, F ): find the F th minimum value in Tv (assuming F ≤ |Tv|).
We again break (last[v], wv) into O(log n) canonical ranges [ai, bi]’s, compute t[ai,bi]’s, and
identify the canonical range [a∗, b∗] containing the ith smallest element (i.e., [ai, bi] with
the smallest b satisfying

∑
j≤i t[aj ,bj ] ≥ F assuming ranges are sorted). Binary-search in

[a∗, b∗] to find exactly the ith smallest element of T . This is accomplished by traversing
R starting from the range [a∗, b∗] down to a leaf, at each step computing the children’s
T[a,b]’s and deciding which child’s range contains the desired element.
update(v, u): simulate coin-flips, assigning Xvu ← 1, and Xv,u′ ← 0 for u′ ∈ (last[v], u)∩
Tv.
This is done implicitly by handling the change last[v]← u: for each BBST B[a,b] where
v ∈ [a, b], remove the old value of last[v] and insert u instead.

It is straightforward to verify that all operations require at most O(log2 n) time and O(log n)
additional space per call. The overall implementation is given in Algorithm 6, using the same
asymptotic time and additional space. Recall also that sampling F ∼ ExactF(p, t) requires
O(log n) time and one N -bit random word for the G(n, p) model.

C.2 Data structure for Vertex-Pair queries in the Erdös-Rényi model
Recall that we define Q in Algorithm 1 as the set of pairs (u, v) where Xuv is assigned to 0
during a Vertex-Pair query, allowing us to check for modifications of A not captured by
last[v] and Kv. Here in Algorithm 6, rather than checking, we need to be able to count such
entries. Thus, we instead create a BBST Q′v for each v defined as:
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Q′v = {u : u > last[v], v > last[u], and Xuv is assigned to 0 during a Vertex-Pair query}.

This definition differs from that of Q in Section A.2 in two aspects. First, we ensure that
each A[v][u] = 0 is recorded by either last (via Lemma 12) or Q′v (explicitly), but not
both. In particular, if u were to stay in Q′v when last[v] increases beyond u, we would have
double-counted these entries 0 not only recorded by Q′v but also implied by last[v] and Kv.
By having a BBST for each Q′v, we can compute the number of 0’s that must be excluded
from Tv, which cannot be determined via last[v] and Kv alone: we subtract these from any
counting process done in the data structure R.

Second, we maintain Q′v separately for each v as an ordered set, so that we may identify
non-neighbors of v within a specific range – this allows us to remove non-neighbors in specific
range, ensuring that the first aspect holds. More specifically, when we increase last[v], we
must go through the data structure Q′v and remove all u < last[v], and for each such u,
also remove v from Q′u. There can be as many as linear number of such u, but the number
of removals is trivially bounded by the number of insertions, yielding an amortized time
performance guarantee in the following theorem. Aside from the deterministic guarantee,
unsurprisingly, the required amount of random words for this algorithm is lower than that of
the algorithm from Section A (given in Theorem 48 and Corollary 50).

I Theorem 52. Consider the Erdös-Rényi G(n, p) model. For Next-Neighbor queries
only, Algorithm 6 is an implementation that answers each query using O(log2 n) time,
O(log n) additional space, and one N -bit random word. For Next-Neighbor and vertex
pair queries,an extension of Algorithm 6 answers each query using O(log2 n) amortized time,
O(log n) additional space, and one N -bit random word.

C.3 Data structure for the Stochastic Block model
We employ the data structure for generating and counting the number of vertices of each
community in a specified range from Section 3.4.2. We create r different copies of the
data structure R and Q′v, one for each community, so that we may implement the required
operations separately for each color, including using the count subroutine to sample F ∼
ExactF via the corresponding CDF, and picking the next neighbor according to F . Recall
that since we do not store last[v] = 0 in R, and we only add an entry to Kv, Pv or Q′v after
drawing the corresponding Xuv, the communities of the endpoints, which cover all elements
stored in these data structures, must have already been determined. Thus, we obtain the
following corollary for the Stochastic Block model.

I Corollary 53. Consider the Stochastic Block model with randomly-assigned communit-
ies. For Next-Neighbor queries only, Algorithm 6 is an implementation that answers
each query using O(r poly(log n)) time, random words, and additional space per query.
For Next-Neighbor and Vertex-Pair queries, Algorithm 6 answers each query using
O(r poly(log n)) amortized time, O(r poly(log n)) random words, and O(r poly(log n)) addi-
tional space per query additional space, and one N -bit random word.

D Sampling from the Multivariate Hypergeometric Distribution

Consider the following random experiment. Suppose that we have an urn containing B ≤ n
marbles (representing vertices), each occupies one of the r possible colors (representing
communities) represented by an integer from [r]. The number of marbles of each color in the
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urn is known: there are Ck indistinguishable marbles of color k ∈ [r], where C1 + · · ·+Cr = B.
Consider the process of drawing ` ≤ B marbles from this urn without replacement. We would
like to sample how many marbles of each color we draw.

More formally, let C = 〈c1, . . . , cr〉, then we would like to (approximately) sample a
vector SC

` of r non-negative integers such that

Pr[SC
` = 〈s1, . . . , sr〉] =

(
C1
s1

)
·
(
C2
s2

)
· · ·
(
Cr
sr

)(
B

C1+C2+···+Cr

)
where the distribution is supported by all vectors satisfying sk ∈ {0, . . . , Ck} for all

k ∈ [r] and
∑r
k=1 sk = `. This distribution is referred to as the multivariate hypergeometric

distribution.
The sample SC

` above may be generated easily by simulating the drawing process,
but this may take Ω(`) iterations, which have linear dependency in n in the worst case:
` = Θ(B) = Θ(n). Instead, we aim to generate such a sample in O(r poly(log n)) time with
high probability. We first make use of the following procedure from [26].

I Lemma 54. Suppose that there are T marbles of color 1 and B − T marbles of color 2 in
an urn, where B ≤ n is even. There exists an algorithm that samples 〈s1, s2〉, the number of
marbles of each color appearing when drawing B/2 marbles from the urn without replacement,
in O(poly(log n)) time and random words. Specifically, the probability of sampling a specific
pair 〈s1, s2〉 where s1 + s2 = T is approximately

(
B/2
s1

)(
B/2
T−s1

)
/
(
B
T

)
with error of at most n−c

for any constant c > 0.

In other words, the claim here only applies to the two-color case, where we sample the
number of marbles when drawing exactly half of the marbles from the entire urn (r = 2 and
` = B/2). First we generalize this claim to handle any desired number of drawn marbles `
(while keeping r = 2).

I Lemma 55. Given C1 marbles of color 1 and C2 = B − C1 marbles of color 2, there
exists an algorithm that samples 〈s1, s2〉, the number of marbles of each color appearing when
drawing ` marbles from the urn without replacement, in O(poly(logB)) time and random
words.

Proof. For the base case where B = 1, we trivially have SC
1 = C1 and SC

0 = C2. Otherwise,
for even B, we apply the following procedure.

If ` ≤ B/2, generate C′ = SC
B/2 using Lemma 54.

If ` = B/2 then we are done.
Else, for ` < B/2 we recursively generate SC′

` .
Else, for ` > B/2, we generate SC′

B−` as above, then output C− SC′
B−`.

On the other hand, for odd B, we simply simulate drawing a single random marble from the
urn before applying the above procedure on the remaining B − 1 marbles in the urn. That
is, this process halves the domain size B in each step, requiring logB iterations to sample
SC
` . J

Lastly we generalize to support larger r.

I Theorem 21. Given B marbles of r different colors, such that there are Ci marbles of color
i, there exists an algorithm that samples 〈s1, s2, · · · , sr〉, the number of marbles of each color
appearing when drawing l marbles from the urn without replacement, in O(r · poly(logB))
time and random words.
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Proof. Observe that we may reduce r > 2 to the two-color case by sampling the number of
marbles of the first color, collapsing the rest of the colors together. Namely, define a pair
D = 〈C1, C2 + · · ·+ Cr〉, then generate SD

` = 〈s1, s2 + . . .+ sr〉 via the above procedure. At
this point we have obtained the first entry s1 of the desired SC

` . So it remains to generate
the number of marbles of each color from the remaining r − 1 colors in ` − s1 remaining
draws. In total, we may generate SC

` by performing r iterations of the two-colored case. The
error in the L1-distance may be established similarly to the proof of Lemma 51. J

I Theorem 56. Given B marbles of r different colors in [r], such that there are Ci marbles
of color i and a parameter k ≤ r, there exists an algorithm that samples s1 + s2 + · · ·+ sk,
the number of marbles among the first k colors appearing when drawing ` marbles from the
urn without replacement, in O(poly(logB)) time and random words.

Proof. Since we don’t have to find the individual counts, we can be more efficient by
grouping half the colors together at each step. Formally, we define a pair D = 〈D1, D2〉
where D1 = C1 + C2 + · · · + Cr/2 and D2 = Cr/2+1 + · · · + Cr−1 + Cr. We then generate
〈D′1, D′2〉 = SD

` .
If k < r/2, we recursively solve the problem with the first r/2 colors, B ← D′1, and the
original value of k.
If k > r/2, we recurse on the last r/2 colors, B set to D′2, and k set to k − r/2. In this
case, we add D′1 to the returned value.
Otherwise, k = r/2 and we can return D′1.

The number of recursive calls is O(log r) = O(logB) (since r ≤ B). So, the overall runtime
is O(poly(logB)). J

E Local-Access Implementations for Random Directed Graphs

In this section, we consider Kleinberg’s Small-World model [31, 37] where the probability that
a directed edge (u, v) exists is min{c/(dist(u, v))2, 1}. Here, dist(u, v) is the Manhattan
distance between u and v on a

√
n ×
√
n grid. We begin with the case where c = 1, then

generalize to different values of c = log±Θ(1)(n). We aim to support All-Neighbors queries
using poly(log n) resources. This returns the entire list of out-neighbors of v.

E.1 Implementation for c = 1
Observe that since the graphs we consider here are directed, the answers to the All-Neighbor
queries are all independent: each vertex may determine its out-neighbors independently.
Given a vertex v, we consider a partition of all the other vertices of the graph into sets
{Γv1,Γv2, . . .} by distance: Γvk = {u : dist(v, u) = k} contains all vertices at a distance k from
vertex v. Observe that |Γvk| ≤ 4k = O(k). Then, the expected number of edges from v to
vertices in Γvk is therefore |Γvk| · 1/k2 = O(1/k). Hence, the expected degree of v is at most∑2(

√
n−1)

k=1 O(1/k) = O(log n). It is straightforward to verify that this bound holds with high
probability (use Hoeffding’s inequality). Since the degree of v is small, in this model we
can afford to perform All-Neighbors queries instead of Next-Neighbor queries using an
additional poly(log n) resources.

Nonetheless, internally in our implementation, we generate our neighbors one-by-one
similarly to how we process Next-Neighbor queries. We perform our sampling in two phases.
In the first phase, we compute a distance d, such that the next neighbor closest to v is at
distance d. We maintain last[v] to be the last computed distance. In the second phase, we
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generate all neighbors of v at distance d, under the assumption that there must be at least
one such neighbor. For simplicity, we generate these neighbors as if there are full 4d vertices
at distance d from v: some generated neighbors may lie outside our

√
n×
√
n grid, which

are simply discarded. As the running time of our implementation is proportional to the
number of implementation neighbors, then by the bound on the number of neighbors, this
assumption does not asymptotically worsen the performance of the implementation.

E.1.1 Phase 1: Generate the distance D
Let a = last[v] + 1, and let D(a) to denote the probability distribution of the distance where
the next closest neighbor of v is located, or ⊥ if there is no neighbor at distance at most
2(
√
n − 1). That is, if D ∼ D(a) is drawn, then we proceed to Phase 2 to generate all

neighbors at distance D. We repeat the process by sampling the next distance from D(a+D)
and so on until we obtain ⊥, at which point we return our answers and terminate.

To generate the next distance, we perform a binary search: we must evaluate the CDF
of D(a). The CDF is given by P[D ≤ d] where D ∼ D(a), the probability that there is
some neighbor at distance at most d. As usual, we compute the probability of the negation:
there is no neighbor at distance at most d. Recall that each distance i has exactly |Γvi | = 4i
vertices, and the probability of a vertex u ∈ Γvi is not a neighbor is exactly 1− 1/i2. So, the
probability that there is no neighbor at distance i is (1− 1/i2)4i. Thus, for D ∼ D(a) and
d ≤ 2(

√
n− 1),

P[D ≤ d] = 1−
d∏

i=a

(
1− 1

i2

)
= 1−

d∏
i=a

(
(i− 1)(i+ 1)

i2

)4i

= 1−
(

(a− 1)a

aa−1 · (d+ 1)d

dd+1

)4

where the product enjoys telescoping as the denominator (i2)4i cancels with (i2)4(i−1) and
(i2)4(i+1) in the numerators of the previous and the next term, respectively. This gives us a
closed form for the CDF, which we can compute with 2−N additive error in constant time
(by our computation model assumption). Thus, we may generate the distance D ∼ D(a)
using O(log n) time and one random N -bit word.

E.1.2 Phase 2: Sampling neighbors at distance D
After sampling a distance D, we now have to generate all the neighbors at distance D. We
label the vertices in ΓvD with unique indices in {1, . . . , 4D}. Note that now each of the 4D
vertices in ΓvD is a neighbor with probability 1/D2. However, by Phase 1, this is conditioned
on the fact that there is at least one neighbor among the vertices in ΓvD, which may be
difficult to generate when 1/D2 is very small. We can emulate this naïvely by repeatedly
sampling a “block”, composing of the 4D vertices in ΓvD, by deciding whether each vertex
is a neighbor of v with uniform probability 1/D2 (i.e., 4D identical independent Bernoulli
trials), and then discarding the entire block if it contains no neighbor. We repeat this process
until we finally generate one block that contains at least one neighbor, and use this block as
our output.

For the purpose of making the sampling process more efficient, we view this process
differently. Let us imagine that we are given an infinite sequence of independent Bernoulli
variables, each with bias 1/D2. We then divide the sequence into contiguous blocks of length
4D each. Our task is to find the first occurrence of success (a neighbor), then report the
whole block hosting this variable.

This first occurrence of a successful Bernoulli trial is given by sampling from the geometric
distribution, X ∼ Geo(1/D2). Since the vertices in each block are labeled by 1, . . . , 4D, then
this first occurrence has label X ′ = X mod 4D. By sampling X ∼ Geo(1/D2), the first X ′
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Bernoulli variables of this block is also implicitly determined. Namely, the vertices of labels
1, . . . , X ′ − 1 are non-neighbors, and that of label X ′ is a neighbor. The sampling for the
remaining 4D −X ′ vertices can then be performed in the same fashion we generate next
neighbors in the G(n, p) case: repeatedly find the next neighbor by sampling from Geo(1/D2),
until the index of the next neighbor falls beyond this block.

Thus at this point, we have generated all neighbors in ΓvD. We can then update last[v]←
D and continue the process of larger distances. Sampling each neighbor takes O(log n) time
and one random N -bit word; the resources spent sampling the distances is also bounded by
that of the neighbors. As there are O(log n) neighbors with high probability, we obtain the
following theorem.

I Theorem 57. There exists an algorithm that generates a random graph from Kleinberg’s
Small World model, where probability of including each directed edge (u, v) in the graph is
1/(dist(u, v))2 where dist denote the Manhattan distance, using O(log2 n) time and random
log n-bit words per All-Neighbors query with high probability.

E.2 Implementation for c 6= 1
Observe that to support different values of c in the probability function c/(dist(u, v))2, we
do not have a closed-form formula for computing the CDF for Phase 1, whereas the process
for Phase 2 remains unchanged. To handle the change in the probability distribution Phase
1, we consider the following, more general problem. Suppose that we have a process P that,
one-by-one, provide occurrences of successes from the sequence of independent Bernoulli trials
with success probabilities 〈p1, p2, . . .〉. We show how to construct a process Pc that provide
occurrences of successes from Bernoulli trials with success probabilities 〈c · p1, c · p2, . . .〉
(truncated down to 1 as needed). For our application, we assume that c is given in N -bit
precision, there are O(n) Bernoulli trials, and we aim for an error of 1

poly(n) in the L1-distance.

E.2.1 Case c < 1
We use rejection sampling in order to construct a new Bernoulli process.

I Lemma 58. Given a process P outputting the indices of successful Bernoulli trials with
bias 〈pi〉, there exists a process Pc outputting the indices of successful Bernoulli trials with
bias 〈c · pi〉 where c < 1, using one additional N -bit word overhead for each answer of P.

Proof. Consider the following rejection sampling process to simulate the Bernoulli trials. In
addition to each Bernoulli variable Xi with bias pi, we generate another coin-flip Ci with
bias c. Set Yi = Xi · Ci, then P[Yi = 1] = P[Xi = 1] · P[Ci] = c · pi, as desired. That is, we
keep a success of a Bernoulli trial with probability c, or reject it with probability 1− c.

Now, we are already given the process P that “handles” Xi’s, generating a sequence of
indices i with Xi = 1. The new process Pc then only needs to handle the Ci’s. Namely,
for each i reported as success by P, Pc flips a coin Ci to see if it should also report i, or
discard it. As a result, Pc can generate the indices of successful Bernoulli trials using only
one random N -bit word overhead for each answer from P. J

Applying this reduction to the distance sampling in Phase 1, we obtain the following corollary.

I Corollary 59. There exists an algorithm that generates a random graph from Kleinberg’s
Small World model with edge probabilities c/(dist(u, v))2 where c < 1, using O(log2 n) time
and random log n-bit words per All-Neighbors query with high probability.
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E.2.2 Case c > 1
Since we aim to sample with larger probabilities, we instead consider making k ·c independent
copies of each process P, where k > 1 is a positive integer. Intuitively, we hope that the
probability that one of these process returns an index i will be at least c · pi, so that we may
perform rejection sampling to decide whether to keep i or not. Unfortunately such a process
cannot handle the case where c · pi is large, notably when c · pi > 1 is truncated down to 1,
while there is always a possibility that none of the processes return i.

I Lemma 60. Let k > 1 be a constant integer. Given a process P outputting the indices of
successful Bernoulli trials with bias 〈pi〉, there exists a process Pc outputting the indices of
successful Bernoulli trials with bias 〈min{c · pi, 1}〉 where c > 1 and c · pi ≤ 1− 1

k for every i,
using one additional N -bit word overhead for each answer of k · c independent copies of P.

Proof. By applying the following form of Bernoulli’s inequality, we have

(1− pi)k·c ≤ 1− k · c · pi

1 + (k · c− 1) · pi
= 1− k · c · pi

1 + k · c · pi − pi
≤ 1− k · c · pi

1 + (k − 1) = 1− c · pi

That is, the probability that at least one of the implementations report an index i is
1− (1− pi)k·c ≥ c · pi, as required. Then, the process Pc simply reports i with probability
(c · pi)/(1− (1− pi)k·c) or discard i otherwise. Again, we only require N -bit of precision for
each computation, and thus one random N -bit word suffices. J

In Phase 1, we may apply this reduction only when the condition c · pi ≤ 1− 1
k is satisfied.

For lower value of pi = 1/D2, namely for distance D <
√
c/(1− 1/k) = O(

√
c), we may

afford to generate the Bernoulli trials one-by-one as c is poly(log n). We also note that the
degree of each vertex is clearly bounded by O(log n) with high probability, as its expectation
is scaled up by at most a factor of c. Thus, we obtain the following corollary.

I Corollary 61. There exists an algorithm that generates a random graph from Kleinberg’s
Small World model with edge probabilities c/(dist(u, v))2 where c = poly(log n), using
O(log2 n) time and random words per All-Neighbors query with high probability.

F Omitted Proofs for the Dyck Path Implementation

I Theorem 62. There are 1
n+1

(2n
n

)
Dyck paths for length 2n (construction from [53]).

Proof from [53]. Consider all possible sequences containing n+1 up-steps and n down-steps
with the restriction that the first step is an up-step. We say that two sequences belong to the
same class if they are cyclic shifts of each other. Because of the restriction, the total number
of sequences is

(2n
n

)
and each class is of size n+ 1. Now, within each class, exactly one of the

sequences is such that the prefix sums are strictly greater than zero. From such a sequence,
we can obtain a Dyck sequence by deleting the first up-step. Similarly, we can start with a
Dyck sequence, add an initial up-step and consider all n+ 1 cyclic shifts to obtain a class.
This bijection shows that the number of Dyck paths is 1

n+1
(2n
n

)
. J

F.1 Approximating Close-to-Central Binomial Coefficients
We start with Stirling’s approximation which states that

m! =
√

2πm
(m
e

)m(
1 +O

(
1
m

))
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We will also use the logarithm approximation when a better approximation is required:

log(m!) = m logm−m+ 1
2 log(2πm) + 1

12m −
1

360m3 + 1
1260m5 − · · · (12)

This immediately gives us an asymptotic formula for the central binomial coefficient as:

I Lemma 63. The central binomial coefficient can be approximated as:(
n

n/2

)
=
√

2
πn

2n
(

1 +O
(

1
n

))
Now, we consider a “off-center” Binomial coefficient

(
n
k

)
where k = n+c

√
n

2 .

I Lemma 64.(
n

k

)
=
(
n

n/2

)
e−c

2/2exp
(
O(c3/

√
n)
)

Proof from [52]. We consider the ratio: R =
(
n
k

)
/
(
n
n/2
)
:

R =
(
n
k

)(
n
n/2
) = (n/2)!(n/2)!

k!(n− k)! =
c
√
n/2∏
i=1

n/2− i+ 1
n/2 + i

(13)

=⇒ logR =
c
√
n/2∑
i=1

log
(
n/2− i+ 1
n/2 + i

)
(14)

=
c
√
n/2∑
i=1

− 4i
n

+O
(
i2

n2

)
= −c

2n

2n +O
(

(c
√
n)3

n2

)
= −c

2

2 +O
(
c3√
n

)
(15)

=⇒
(
n

k

)
=
(
n

n/2

)
e−c

2/2exp
(
O(c3/

√
n)
)

(16)

J

F.2 Dyck Path Boundaries and Deviations
I Lemma 65. Given a random walk of length 2n with exactly n up and down steps, consider
a contiguous sub-path of length 2B that comprises of U up-steps and D down-steps i.e.
U +D = 2B. Both |B − U | and |B −D| are O(

√
B log n) with probability at least 1− 1/n4.

Proof. We consider the random walk as a sequence of unbiased random variables {Xi}2ni=1 ∈

{0, 1}2n with the constraint
2n∑
i=1

Xi = n. Here, 1 corresponds to an up-step and 0 corresponds

to a down step. Because of the constraint, Xi, Xj are negatively correlated for i 6= j which
allows us to apply Chernoff bounds. Now we consider a sub-path of length 2B and let
U denote the sum of the Xis associated with this subpath. Using Chernoff bound with
E[X] = B, we get:

P
[
|U −B| < 3

√
B log n

]
= P

[
|U −B| < 3

√
log n√
B

B

]
< e−

9 logn
3 = 1

n3

Since U and D are symmetric, the same argument applies. J

I Corollary 66. With high probability, every contiguous sub-path of length 2B (with U up
and D down steps such that U + D = 2B) in the random walk satisfies the property that
|B − U | and |B −D| are upper bounded by c

√
B log n w.h.p. 1− 1/n2 (for some constant c).
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Proof. We can simply apply Lemma 65 and union bound over all n2 possible contiguous
sub-paths. J

I Lemma 22. Consider a contiguous sub-path of a simple Dyck path of length 2n where the
sub-path is of length 2B comprising of U up-steps and D down-steps (with U + D = 2B).
Then there exists a constant c such that the quantities |B −U |, |B −D|, and |U −D| are all
< c
√
B log n with probability at least 1− 1/n2 for every possible sub-path.

Proof. As a consequence of Theorem 62, we can sample a Dyck path by first sampling a
balanced random walk with n up steps and n down steps and adding an initial up step. We
can then find the corresponding Dyck path by taking the unique cyclic shift that satisfies
the Dyck constraint (after removing the initial up-step). Any interval in a cyclic shift is the
union of at most two intervals in the original sequence. This affects the bound only by a
constant factor. So, we can simply use Corollary 66 to finish the proof. Notice that since
|U −D| ≤ |B − U |+ |B −D|, |U −D| = O(

√
B log n) comes for free. J

I Lemma 23. Given a Dyck path sampling problem of length B with U up, D down steps, and
a boundary at k, there exists a constant c such that if k > c

√
B log n, then the distribution of

paths sampled without a boundary C∞(U,D) is O(1/n2)-close in L1 distance to the distribution
of Dyck paths Ck(U +D).

Proof. We use D and R to denote the set of all valid Dyck paths and all random sequences
respectively. Clearly, D ⊆ R. Since the random walk/sequence distribution is uniform on R,
and by Corollary 66 we see that at least 1− 1/n2 fraction of the elements of R do not violate
the boundary constraint. Therefore, |D| ≥ (1− 1/n2)|R|, and so the L1 distance between
the uniform distributions on D and R is O(1/n2). J

F.3 Estimating the Sampling Probabilities
I Lemma 67. Given a Dyck sub-path problem within a global Dyck path of size 2n and a
probability expression of the form pd = Sleft·Sright

Stotal
, there exists a poly(log n) time oracle

that returns a
(
1± 1/n2) multiplicative approximation to pd if pd = Ω(1/n2) and returns 0

otherwise.

Proof. We first compute a 1 + 1/n3 multiplicative approximation to ln pd. Using O(log n)
terms of the series in Equation 12, it is possible to estimate the logarithm of a factorial up
to 1/nc additive error. So, we can use the series expansion from Equation 12 up to O(log n)
terms. The additive error can also be cast as multiplicative since factorials are large positive
integers.

The probability pd can be written as an arithmetic expression involving sums and products
of a constant number of factorial terms. Given a 1 ± 1/nc multiplicative approximation
to la = ln a and la = ln b, we wish to approximate ln(ab) and ln(a + b). The former
is trivial since ln(ab) = la + lb. For the latter, we assume a > b and use the identity
ln(a+ b) = ln a+ ln(1 + b/a) to note that it suffices to approximate ln(1 + b/a). We define
l̃a = la · (1±O(1/nc)) and l̃b = lb · (1±O(1/nc)). In case l̃b − l̃a < −c lnn =⇒ b/a < 1/nc,
we approximate ln(a+ b) by ln a since ln(1 + b/a) = O(1/nc) in this case.

Otherwise, we notice that max(a, b) = O
(
(n!)2) =⇒ max(la, lb) = o(n3) =⇒ la − lb =

o(n3). This is true because if we write out the expression for pd = Sleft ·Sright/Stotal in terms
of sums and products of factorials, the largest possible value will be a product of at most two
terms that are present in the numerator/denominator of a binomial term (see the expression
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for generalized Catalan numbers in Equation 1). Hence, the claim max(a, b) = O
(
(n!)2)

follows from the fact that the numerators/denominators of the relevant binomial coefficient
in Equation 1 are at most n!. Using this fact, we obtain the following:

1 + ẽlb−l̃a = 1 + b

a
· eO

(
lb−la
nc

)
= 1 + b

a
·
(

1±O
(

1
nc−3

))
=
(

1 + b

a

)
·
(

1±O
(

1
nc−3

))
In other words, the value of c decreases every time we have a sum operation. Since there
are only a constant number of such arithmetic operations in the expression for pd, we can
set c to be a high enough constant when approximating the factorials, cewhich allows us
to obtain the desired 1 ± 1/n3 multiplicative approximation to ln pd. If ln pd < −3 lnn,
we approximate pd = 0. Otherwise, we can exponentiate the approximation to obtain
p̃d = pd · e−O(lnn/n3) = pd

(
1±O(1/n2)

)
. J

F.4 Omitted Proofs from Section 4.3: Sampling the Height

I Lemma 68. For x < 1 and k ≥ 1, we claim that 1− kx < (1− x)k < 1− kx+ k(k−1)
2 x2

I Lemma 25. Sleft ≤ c1
k·
√

logn√
B
·
(
B

D−d
)
for some constant c1.

Proof. This involves some simple manipulations.

Sleft =
(

B

D − d

)
−
(

B

D − d− k

)
(17)

=
(

B

D − d

)
·
[
1− (D − d)(D − d− 1) · · · (D − d− k + 1)

(B −D − d+ k)(B −D − d+ k − 1) · · · (B −D − d+ 1)

]
(18)

≤
(

B

D − d

)
·

[
1−

(
D − d− k + 1
B −D + d+ k

)k]
(19)

≤
(

B

D − d

)
·

[
1−

(
U + d+ k − (U −D + d+ k − 1)

U + d+ k

)k]
(20)

≤
(

B

D − d

)
·

[
1−

(
U + d+ k −O(

√
B log n)

U + d+ k

)k]
(21)

≤ Θ
(
k
√

log n√
B

)
·
(

B

D − d

)
(22)

J

I Lemma 26. Sright ≤ c2
k′·
√
logn√
B

·
(
B
U−d

)
for some constant c2.

Proof.

Sright =
(

B

U − d

)
−
(

B

U − d− k′

)
(23)

=
(

B

U − d

)
·
[
1− (U − d)(U − d− 1) · · · (U − d− k′ + 1)

(B − U − d+ k′)(B − U − d+ k′ − 1) · · · (B − U − d+ 1)

]
(24)
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. . . ≤
(

B

U − d

)
·

[
1−

(
U − d− k′ + 1
B − U + d+ k′

)k′]
(25)

≤
(

B

U − d

)
·

[
1−

(
2D − U − d− k + 1

2U −D + k + d

)k′]
(26)

≤
(

B

U − d

)
·

[
1−

(
U + k + d− (2U − 2D + 2d+ 2k − 1)

U + k + d

)k′]
(27)

≤
(

B

U − d

)
·

[
1−

(
U + k + d−O(

√
B log n)

U + k + d

)k′]
(28)

≤ Θ
(
k′
√

log n√
B

)
·
(

B

U − d

)
(29)

J

I Lemma 69. Stot ≥
(2B

2D
)
·
[
1−

(
1− k′

2U+1

)k]
.

Proof.

Stot =
(

2B
2D

)
−
(

2B
2D − k

)
(30)

=
(

2B
2D

)
·
[
1− (2D)(2D − 1) · · · (2D − k + 1)

(2B − 2D + k)(2B − 2D + k − 1) · · · (2B − 2D + 1)

]
(31)

≥
(

2B
2D

)
·

[
1−

(
2D − k + 1

2B − 2D + 1

)k]
(32)

≥
(

2B
2D

)
·

[
1−

(
2U − (2U − 2D + k − 1)

2U + 1

)k]
(33)

≥
(

2B
2D

)
·

[
1−

(
(2U + 1)− k′

2U + 1

)k]
(34)

≥
(

2B
2D

)
·

[
1−

(
1− k′

2U + 1

)k]
(35)

(36)

J

I Lemma 24. When kk′ > 2U + 1, Stotal > 1
2 ·
(2B

2D
)
.

Proof. When kk′ > 2U + 1 =⇒ k > 2U+1
k′ , we will show that the above expression is

greater than 1
2
(2B

2D
)
. Defining ν = 2U+1

k′ > 1, we see that (1− 1
ν )k ≤ (1− 1

ν )ν . Since this is
an increasing function of ν and since the limit of this function is 1

e , we conclude that

1−
(

1− k′

2U + 1

)k
>

1
2 J
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I Lemma 27. When kk′ ≤ 2U + 1, Stotal ≥ c3 k·k
′

B ·
(2B

2D
)
for some constant c3.

Proof. Now we bound the term 1−
(

1− k′

2U+1

)k
, given that kk′ ≤ 2U + 1 =⇒ kk′

2U+1 ≤ 1.
Using Bernoulli’s inequality, we know that (1− x)n ≤ 1/(1 + nx) for x ∈ [0, 1] and n ∈ N.
Since the term k′/(2U + 1) is positive and ≤ 1 (since kk′ ≤ 2U + 1), we can apply this as
follows:

1−
(

1− k′

2U + 1

)k
(37)

≥ 1− 1
1 + kk′

2U+1
=

kk′

2U+1

1 + kk′

2U+1
= kk′

2U + 1 ·
1

1 + kk′

2U+1
(38)

≥ kk′

2U + 1 ·
1
2

(
Since kk′

2U + 1 ≤ 1
)

(39)

≥ kk′

Θ(B) (40)

J

F.5 Omitted Proofs from Section 4.4: First-Return Queries

I Lemma 31. If d > log4 n, then Sleft(d) = Θ
(

22d+k
√
d
e−rleft(d) · k−1

d+k−1

)
where rleft(d) =

(k−2)2

2(2d+k−2) . Furthermore, rleft(d) = O(log2 n).

Proof. In what follows, we will drop constant factors: Refer to Figure 8 for the setup. The
left section of the path reaches one unit above the boundary (the next step would make it
touch the boundary). The number of up-steps on the left side is d and therefore the number
of down steps must be d + k − 2. This inclues d down steps to cancel out the upwards
movement, and k − 2 more to get to one unit above the boundary. The boundary for this
section is k′ = k − 1. This gives us:

Sleft(d) =
(

2d+ k − 2
d

)
−
(

2d+ k − 2
d− 1

)
(41)

=
(

2d+ k − 2
d

)[
1− d

d+ k − 1

]
=
(

2d+ k − 2
d

)
k − 1

d+ k − 1 (42)

Now, letting z = 2d + k − 2, we can write d = z−(k−2)
2 =

z− k−2√
z

√
z

2 . Using Lemma 22, we
see that k−2√

z
should be O(

√
log n). If this is not the case, we can simply return 0 because

the probability associated with this value of d is negligible. Since z > log4 n, we can apply
Lemma 64 to get:

Sleft(d) = Θ
((

z

z/2

)
e

(k−2)2
2z

k − 1
d+ k − 1

)
= Θ

(
22d+k
√
d
e

(k−2)2
2(2d+k−2)

k − 1
d+ k − 1

)
J

I Lemma 32. If U +D−2d−k > log4 n, then Sright(d) = Θ
(

2U+D−2d−k
√

U+d−2d−k
e−rright(d) · U−D+k

U−d+1

)
where rright(d) = (U−D−k−1)2

4(U+D−2d−k+1) . Furthermore, rright(d) = O(log2 n).
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Proof. The right section of the path starts from the original boundary. Consequently, the
boundary for this section is at k′ = 1. The number of up-steps on the right side is U − d and
the number of down steps is D − d− k + 1. This gives us:

Sright(d) =
(
U +D − 2d− k + 1

U − d

)
−
(
U +D − 2d− k + 1

U − d+ 1

)
(43)

=
(
U +D − 2d− k + 1

U − d

)[
1− D − d− k − 1

U − d+ 1

]
(44)

=
(
U +D − 2d− k + 1

U − d

)
U −D + k

U − d+ 1 (45)

Now, letting z = U +D − 2d− k + 1, we can write U − d = z+(U−D+k−1)
2 =

z+U−D+k−1√
z

√
z

2 .
Using Lemma 22, we see that k−2√

z
should be O(

√
log n). If this is not the case, we can simply

return 0 because the probability associated with this value of d is negligible. Since z > log4 n,
we can apply Lemma 64 to get:

Sright(d) = Θ
((

z

z/2

)
e

(U−D+k−1)2
2z

U −D + k

U − d+ 1

)
(46)

= Θ
(

2U+D−2d−k
√
U +D − 2d− k

e
(U−D+k−1)2

2(U+D−2d−k+1)
U −D + k

U − d+ 1

)
(47)

J

G Additional related work

Random graph models

The Erdös-Rényi model, given in [17], is one of the most simple theoretical random graph
model, yet more specialized models are required to capture properties of real-world data.
The Stochastic Block model (or the planted partition model) was proposed in [29] originally
for modeling social networks; nonetheless, it has proven to be an useful general statistical
model in numerous fields, including recommender systems [33, 49], medicine [51], social
networks [21, 44], molecular biology [11, 36], genetics [9, 30, 13], and image segmentation [50].
Canonical problems for this model are the community detection and community recovery
problems: some recent works include [12, 40, 3, 2]; see e.g., [1] for survey of recent results.
The study of Small-World networks is originated in [55] has frequently been observed, and
proven to be important for the modeling of many real world graphs such as social networks
[15, 54], brain neurons [6], among many others. Kleinberg’s model on the simple lattice
topology (as considered in this paper) imposes a geographical that allows navigations, yielding
important results such as routing algorithms (decentralized search) [31, 37]. See also e.g.,
[43] and Chapter 20 of [16].

Generation of random graphs

The problem of local-access implementation of random graphs has been considered in the
aforementioned work [24, 41, 18], as well as in [35] that locally generates out-going edges on
bipartite graphs while minimizing the maximum in-degree. The problem of generating full
graph instances for random graph models have been frequently considered in many models
of computations, such as sequential algorithms [39, 7, 45, 38], and the parallel computation
model [4].
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Query models

In the study of sub-linear time graph algorithms where reading the entire input is infeasible,
it is necessary to specify how the algorithm may access the input graph, normally by defining
the type of queries that the algorithm may ask about the input graph; the allowed types of
queries can greatly affect the performance of the algorithms. While Next-Neighbor query
is only recently considered in [18], there are other query models providing a neighbor of a
vertex, such as asking for an entry in the adjacency-list representation [28], or traversing
to a random neighbor. On the other hand, the Vertex-Pair query is common in the study
of dense graphs as accessing the adjacency matrix representation [27]. The All-Neighbors
query has recently been explicitly considered in local algorithms [19].

Other constructions of huge pseudorandom functions that are permutations or random
hash functions were given in [34, 42, 35].

ITCS 2020


	Introduction
	Related Work
	Applications

	Model and Overview of our Techniques
	Undirected Graphs
	Applications to Random Graph Models

	Directed Graphs
	Random Catalan Objects
	Random Coloring of a Graph
	Basic Tools for Efficient Sampling

	Local-Access Implementations for Random Undirected Graphs
	Next-Neighbor Queries via Run-of-0's Sampling
	Data structure
	Queries and Updates

	Final Implementation Using Blocks
	Partitioning and Filling the Blocks
	Putting it all together: Random-Neighbor queries

	Implementation of Fill
	Applications to Erdös-Rényi Model and Stochastic Block Model
	Erdös-Rényi Model
	Stochastic Block model


	Implementing Random Catalan Objects
	Bijections to other Catalan objects
	Catalan Trapezoids and Generalized Dyck Paths
	Implementing Height queries
	The Simple Case: Far Boundary
	The Difficult Case: Intervals Close to Zero

	Supporting ``First Return'' Queries
	Maintaining a Boundary Invariant
	Sampling the Lowest Achievable Height: Mandatory Boundary
	Determining First Position that Touches the ``Mandatory Boundary''
	Estimating the CDF
	Finding the Correct Interval: First-Return Query
	Maintaining Height Queries under Invariant 30
	Reverse-First-Return Queries


	Random Coloring of a Graph
	Modified Glauber Dynamics based on a Distributed Algorithm
	Naive Reduction from Distributed Algorithms

	Local Coloring Algorithm
	Local Access to an Initial Valid Coloring
	Naive Coloring Implementations
	A Sub-linear Time Algorithm for q = O(Delta)


	Open Problems
	Further Analysis and Extensions of Algorithm 1: Sampling Next-Neighbor without Blocks
	Performance Guarantee
	Supporting Vertex-Pair Queries

	Omitted Details from Section 3: Undirected Random Graph Implementations
	Removing the Perfect-Precision Arithmetic Assumption
	Bounding Block Sizes

	Next-Neighbor Implementation with Deterministic Performance Guarantee
	Data structure for next-neighbor queries in the Erdös-Rényi model
	Data structure for Vertex-Pair queries in the Erdös-Rényi model
	Data structure for the Stochastic Block model

	Sampling from the Multivariate Hypergeometric Distribution
	Local-Access Implementations for Random Directed Graphs
	Implementation for c=1
	Phase 1: Generate the distance D
	Phase 2: Sampling neighbors at distance D

	Implementation for c != 1
	Case c < 1
	Case c > 1


	Omitted Proofs for the Dyck Path Implementation
	Approximating Close-to-Central Binomial Coefficients
	Dyck Path Boundaries and Deviations
	Estimating the Sampling Probabilities
	Omitted Proofs from Section 4.3: Sampling the Height
	Omitted Proofs from Section 4.4: First-Return Queries

	Additional related work

