Performance and Consistency Analysis for Distributed Deep Learning Applications

Danlin Jia*, Manoj Pravakar Saha', Janki Bhimani’, and Ningfang Mi*
* Northeastern University, Boston, USA
t Florida International University, Miami, USA

Abstract—Accelerating the training of Deep Neural Network
(DNN) models is very important for successfully using deep
learning techniques in fields like computer vision and speech
recognition. Distributed frameworks help to speed up the training
process for large DNN models and datasets. Plenty of works have
been done to improve model accuracy and training efficiency,
based on mathematical analysis of computations in the Con-
volutional Neural Networks (CNN). However, to run distributed
deep learning applications in the real world, users and developers
need to consider the impacts of system resource distribution. In
this work, we deploy a real distributed deep learning cluster
with multiple virtual machines. We conduct an in-depth analysis
to understand the impacts of system configurations, distribution
typologies, and application parameters, on the latency and cor-
rectness of the distributed deep learning applications. We analyze
the performance diversity under different model consistency and
data parallelism by profiling run-time system utilization and
tracking application activities. Based on our observations and
analysis, we develop design guidelines for accelerating distributed
deep-learning training on virtualized environments.

I. INTRODUCTION

Deep learning is currently used to solve many unsolved
problems in a plethora of disciplines. Due to the proliferation
of data and the boost of model complexity (i.e., over millions
of parameters), training time for a single DNN model can
range from days to months [1]. Since long training time
significantly slows down development and deployment of
deep learning models, an array of distributed deep learning
frameworks has been introduced to accelerate the DNN model
training [2], [3]. Parameter server architecture [4] is one of
the most common deep learning frameworks that distribute
workloads to a set of workers and save model parameters
in an array of parameter servers (PSs). Parameter server
architecture supports two different model consistency policies,
i.e., synchronous and asynchronous stochastic gradient descent
(SGD) [5]. Synchronous SGD updates model parameters once,
with all calculated gradients received from workers. Whereas,
asynchronous SGD updates model parameters immediately
when local gradients are received.

The issues of scalability and model consistency (i.e., how
the updated weights are synchronized between PSs and work-
ers) in distributed deep learning frameworks are evident.
The common problem is to decide the number of workers
and PSs, given limited computing resources. On top of that,
users need to consider how workers and PSs communicate
with each other to transfer data. Besides, how to configure
the hyper-parameters of the deep learning application itself
needs attention as well. There are many existing works [6]—
[8] that have been done to solve these problems. However,
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the proposed solutions either affect the performance of deep
learning applications or interfere with each other. For example,
allocating more workers, which can increase throughput, may
also slow down model convergence (e.g., accuracy improve-
ments). Therefore, the problem of accelerating training without
sacrificing prediction correctness turns out to be a complicated
combinatorial optimization problem. Therefore, in this paper,
we strive to investigate and understand the impacts of ma-
nipulations of system configurations, distribution topologies,
and application parameters on performance and correctness
of distributed DNN models. Particularly, we deploy a dis-
tributed deep learning cluster with multiple virtual machines
and construct various experiments to observe the performance
under various scenarios. We analyze how changes in one factor
affect others and discuss the possible solutions to achieve high

throughput and accuracy.

The major contributions of our work are as follows:
1) Analyzing run-time system resource consumption: We
collect run-time system utilization and communication traces
to characterize model consistency policies. We deliver insights
about how synchronous and asynchronous SGD utilize system
resources with respect to scheduling, data caching, IO activi-
ties, and network communications.
2) Studying the impact of parallelism on training proce-
dure: We conduct experiments with different levels of paral-
lelism varying the number of parameter servers and workers.
We compare training time and model accuracy under different
model consistency policies. We discuss essential concerns in
deploying distributed deep learning clusters.
3) Investigating the distribution of workloads: We study
the impact of the batch size on training time and accuracy.
We explore the relationship between workloads on workers
and parameter servers. We investigate the unavoidable CPU
idleness on individual workers due to the workload distribution

and network latency.
In the rest of this paper, we discuss the background and

motivation in Sec. II. We present the details of experiment
environments and system architecture in Sec. III. The ex-
perimental results and analysis of observations are shown in
Sec. IV. We present the related work in Sec. V. The conclusion
and our future work are discussed in Sec. VI.

II. BACKGROUND AND MOTIVATION

In this section, we introduce the workflow of deep learning
training procedure. We investigate how the parameter server
architecture distributes DNN models and workloads, and ben-
efits from parallel Stochastic Gradient Descent (SGD). We
study and explore the challenges different types of model
consistency methods, i.e., synchronous and asynchronous.



A. Back-propagation

A DNN model is a set of stacked layers to learn a com-
plicated function F from data so that it can be applied to
new input (data) for predicting the output. Back-propagation
algorithm is used to train a DNN model , which consists of
three steps: 1) forward path that computes the associated
model parameters of the layers of network sequentially, 2)
backward path that performs gradient computations con-
versely with the chain rule, and 3) weights update that updates
model parameter weights for each layer with the manipulated
gradients [9], [10].

Back-propagation repeats the above three steps iteratively
until reaching the desired accuracy. We denote a cycle of
three steps as an iteration. Each iteration is responsible for
processing a portion of training data that is called a batch.
An epoch contains a set of iterations, which goes through the
whole training data set. Thus, the number of iterations equals
to the training data set size divided by the batch size. The total
training time is the summation of the duration of all epochs,
where the number of epochs is predefined or determined based
on the desired accuracy. Additionally, in an iteration, each
worker gets a portion of batch data to learn and compute their
local gradients. We call such a portion of batch data as mini-
batch, and the number of mini-batches is equal to the number
of workers in the cluster.

B. Distributed Deep Neural Networks

Millions of parameters define a typical DNN model. Train-
ing such DNN models from a large amount of data is compu-
tationally expensive and may take weeks to train on a single
machine. If the model or the training data is too large, then
they may not fit in the memory of a single machine. Thus, one
solution for addressing such situations is to spread the model

and/or data across multiple machines.

Model Parallelism: Model parallelism refers to the dis-
tributed training method that trains different layers of the
model across different machines. In a typical scenario, each
layer of the model can be fitted into the memory of a single
machine and is trained thereof. The forward and backward
paths then needs to be proceed sequentially among these
machines. Hence, model parallelism does not provide any
speed-up benefit. It should only be used when the model is
too large to fit into a single machine [11].

Data Parallelism: In this method, data is distributed across
multiple machines. Each machine trains the whole model
only on a subset of the data that is local. In every training
iteration, the weights of model parameters are aggregated and
updated in a centralized or decentralized fashion. In contrast to
model parallelism, data parallelism can help training process
converge faster by learning the subset of data in parallel [11]
on multiple machines.

C. Synchronous and Asynchronous PS Architecture

Stochastic gradient descent (SGD) is an algorithm that uses
randomly selected data samples as input to train the DNN
model in each epoch. SGD enables distributed DNN which
provides considerable training speed acceleration, as it takes

advantage of parallel data processing. However, how to share
model parameters and maintain model consistency across dif-
ferent nodes is an issue. Parameter server architecture was thus
proposed to provide an efficient mechanism for aggregating
and synchronizing model parameters among multiple nodes
[4]. As shown in Fig. 1, the parameter server framework con-
sists of parameter servers (PSs) and workers. The parameter
server framework supports parallel data processing by dividing
training data into partitions (or mini-batches) and distributing
mini-batches across workers. Each worker has a copy of the
DNN model, where the back-propagation is executed. The
calculated gradients are sent from each worker to the PSs
via a push call. After updating the weights, the PSs issue a
pull request to transfer the latest updated parameter weights
to workers.
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Fig. 1: Parameter server architecture.

Two policies that are commonly used for model consistency
in the parameter server framework are Synchronous SGD and
Asynchronous SGD.

Synchronous SGD (Sync-SGD): Figure 2 shows the events
during synchronous SGD. In a data-parallel setup with Sync-
SGD, each worker (e.g., Worker 1, ..., Worker IN) fetches
the latest weights from PS(s), computes and pushes its local
gradients (e.g., Awgl)) to PS(s). In case of multiple PSs, each
PS is responsible for updating a subset of model parameters.
Upon receiving the local gradients (e.g., Awl(l , sz(N))
from every worker, PS(s) average the gradients and use the
corresponding gradient subset to calculate the new parameter
weights (shaded regions in Figure 2). All the workers are
updated together with the new parameter weights (e.g., w;+1)
in a synchronized fashion by a call of pull. Under this Sync-
SGD policy, parameter server(s) compute the new parameter
weights only after they receive local gradients from all work-
ers, and synchronize the new weights after computation. Thus,
all workers have to start next iteration synchronously with the

same new parameter weights.
Asynchronous SGD (Async-SGD): In Async-SGD, every

worker independently pushes their local gradients to parameter
server(s) and pulls the latest parameter weights immediately
at the end of each layer. Figure 3 shows a simplified chain
of events during Async-SGD, where a PS partially updates
(shaded regions under PS) parameter weights upon receiving
local gradients from a worker and each worker pulls the latest
weights from PS asynchronously. Consequently, a worker in
Async-SGD can continue to train the model without waiting
for other workers. This speeds up the entire learning process
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but increases the calculation load on parameter servers as well.

D. Challenges in Model Consistency

Researchers have studied model consistency using mathe-
matical formulations [12], [13] and practical experiments [14],
[15], with assumptions that the physical computing resources
are over-provisioned. These works are conducted over suffi-
cient physical resources (CPU, memory, and network band-
width). However, the resources are limited and shared among
many applications in most of the real distributed deployment
infrastructures. Thus, it is not trivial to answer the question
of how to obtain the maximum throughput without sacrificing
accuracy with limited physical computing resources. Specif-
ically, we have identified the following main challenges that
exist in real distributed deep learning clusters.

Communication Overhead: Parameter server architecture
suffers from communication overhead, as each weights up-
date needs to trigger a bi-directional data communication.
Such communication overhead heavily depends on network
bandwidth and latency. This problem is even more intensive
in Sync-SGD because each worker needs to pull the new
parameter weights synchronously from PSs at the same time
which might lead to network congestion.

Staleness: Staleness happens when some of the workers

compute gradients using the parameter weights that may be
several gradient steps behind the latest updated parameter
weights. For example, parameter weights in PSs have already
been calculated at vector time N. However, PS later receives
some local gradients that were computed at vector time N —¢
(where N > t > 0) due to low computation power at the
corresponding worker or network communication delay. We

deep learning, a batch is evenly distributed across workers as
a set of mini-batches. If the worker number is fixed, then a
smaller batch size leads to more iterations in an epoch, which
can increase the frequency for weight updates in Sync-SGD
and thus add more computation load on PSs. On the other
hand, if the batch size is fixed, then increasing the number of
workers increases data parallelism but also decreases the mini-
batch size. Consequently, for Async-SGD, the frequency for
updating weights in an iteration is increased, which increases
the computation load on PSs as well. Therefore, we claim
that developers need to take into account the tradeoff between
data parallelism and computation load on PS as well as the
model consistency methods when deciding the sizes of batch

or mini-batch.
Idleness: There exists unavoidable idleness of computing

resources, as the latter iteration requires the results from the
former iteration. Although communication and computation
can be overlapped in the hidden layer level [6], the forward
path of the latter iteration needs an input of the parameter
weights updated at the last layer from the former iteration.
Figure 4 shows an example of a model with three layers. The
operations of push, update, and pull of layer 3 can execute
simultaneously with the backward path of layer 2 (L2_bw).
However, such simultaneous execution works for all layers
except layer 1, which introduces an idle period after the
backward path of layer 1 (L1_bw). This is because the forward
path of next iteration (e.g., iteration N+1 in Figure 4) cannot
start without receiving the updated parameter weights from
iteration N. We thus claim that the solid dependency between
two iterations causes idleness and limits the throughput, which
actually exhibits under both Sync- and Async-SGD policies.
We further notice that different system configurations and
hyper-parameters have various impacts on the idleness.
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III. ARCHITECTURE

In this section, we describe our system architecture and
experiment environment, including cluster configurations and
workload specifications.

A. System Architecture

In this work, we develop a parameter server architecture on a
virtualized CPU cluster. Fig. 5 shows our implementation of a
real distributed deep learning cluster. On top of our CPU-based
infrastructure, the virtual machine (VM) hypervisor resides on
the host OS, which monitors five homogeneous VMs. The
guest OS preserves computing resources to VMs. Our cluster
specifications are summarized in Tab. I.  Specifically, we
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Fig. 5: System architecture.

install a distributed deep learning framework, named Apache
MXNet [17], to support distributed learning in our virtualized
cluster. The reason we choose this particular framework is that
previous works [17], [18] have claimed that MXNet promises
the same accuracy with shorter training time, compared with
other frameworks, e.g., TensorFlow [19] and Caffe [20].
MXNet supports both CPU and GPU deep learning. To com-
pile MXNet with CPU nodes in our cluster, we add the BLAS
(Basic Linear Algebra Subprograms) library and the LAPACK
(Linear Algebra Package) library in each VM for numerical
computations and other operations. We also construct the
deep learning cluster through cluster managers (e.g., Yarn and
Kubernetes) that help manage resource allocation among VMs.

In our cluster, VMs are communicated with each other via
Secure Shell (SSH).

TABLE I: System specifications.

[ Component | Specs
Host Server Dell PowerEdge R420
Host Processor Speed 2.20GHz
Host Memory Data Rate 1333 MHz

Host OS Ubuntu 18.04.2 LTS

Host Disk NVMe SAMSUNG PM963 2TB
Guest OS Ubuntu 16.04.5 LTS

Per VM Memory Capacity | 8GB

Per VM CPU number 8

Network Protocol

Secure Shell (SSH)

B. Parameter Server Deployment

We deploy our distributed deep learning cluster on virtual
machines. We use one virtual node as a cluster manager,
where deep learning workloads are submitted, and the others
as working nodes (or executors) to execute deep learning tasks.
Fig. 6 shows our deployment architecture.

Cluster Manager

MXNet API

submit
applications

G| |2 &) |GD
u Worker u Worker u Worker u Worker
MXNet API MXNet API MXNet API MXNet AP1

Executor Executor Executor Executor

Fig. 6: Parallel deployment of MXNet instances for distributed
deep learning.

The MXNet API needs to be installed on each node, in-
cluding both the cluster manager and executors. Users submit
applications to the cluster manager. The MXNet scheduler
residing on the cluster manager then spawns a number of PSs
and workers based on the user specification. MXNet instan-
tiates PS or worker processes cyclically across all executors.
As shown in Fig. 6, four executors (each runs on one VM)
in our cluster have the same number of PSs and workers. For



example, we configure the MXNet scheduler to launch one PS
and two workers evenly on each executor (or VM). Thus, we
have a total of four PSs and eight workers in our infrastructure.
We find that to avoid unbalanced workloads, it is necessary to
launch PSs and workers that are multiple of four in our case.

C. Workload Specifications

In this work, we use image classification benchmarks with
the Cifar10 [21] training data set that contains 60k 32x32 color
images of 10 different classes of objects, such as vehicles,
dogs, and cats. We conduct experiments on two classic DNN
models, i.e., ResNet-18 [22] and Inception-vl [23]. These
DNN models have multiple layers to learn model parameters
and can be configured with different hyper-parameters (e.g.,
learning rate and momentum). Particularly, ResNet-18 [22] is
a convolutional neural network with 18 layers; and Inception-
vl [23] is also a convolutional neural network with 27 layers.
Both of these models contain millions of parameters. We
apply an adaptive learning rate based on the number of weight
updates that have been performed. We set the momentum to
0.9 (i.e., a common choice to reduce noisy data by averaging
gradients) and feed each worker with the same number of
images in one batch. We evaluate the DNN training perfor-
mance with the metric of the top-1 accuracy. The accuracy is
the measure of resemblance between the predicted and actual
labels. Particularly, the top-1 accuracy means that given the
actual label, what is the possibility that the top 1 predicted
label is the same as the actual.

IV. EXPERIMENTS AND ANALYSIS

In this section, we describe our experimental methodology
to systematically study the performance and consistency of
distributed deep learning on a virtualized framework. Specifi-
cally, we first understand the system resource consumption of
distributed deep learning applications under different updating
methods. Second, we investigate the impact of data parallelism
and parameter distribution on training time and accuracy.
Thirdly, we study the impact of various batch sizes on training
time and accuracy. Finally, we dive into the hidden layer
level to investigate the impact of configurations on computing
resource idleness.

A. Resource Utilization

In this experiment, we set four PSs and eight workers. We
fix the batch size to 128. We summarize the profile statistics
for Inception-v1 and ResNet-18 under Sync- and Async-SGD
in Tab. II. The memory and CPU utilization is provided
by dstat, and MXNet’s data profiler collects the rest of the
data. As DNN training is an iterative procedure, where each
iteration has the same workload characteristics, we focus on

both overall statistics and average statistics over iterations.
We first measure the system resource utilization, regard-

ing CPU and memory, and calculate the average resource
utilization over four VMs. As shown in Tab. II, both Sync-
and Async-SGD are resource-intensive, and their resource
utilization is similar. We track the I/O activities regarding reads
and writes and observe that more write requests are triggered

TABLE II: Profiling statistics (Tra. = Training, util. = utiliza-
tion, R/W num. = Read/Write number, WU = Weights update,
Incp. = Inception-v1, Res. = ResNet-18).

Profile Sync-SGD Async-SGD
DNN Model Incp. Res. Incp. Res.
CPU util. 95% 96% 96% 98%
Memory util. 65% 98% 65% 96%

R/W num. 4/3500 | 80/1600 | 3/1500 | 50/2000

WU num. 931 4067 7448 32536
WU time (ms) 6.327 5.659 10.117 9.279

Ave. pull (ms) 42 53 52 63
Ave. push (ms) 1114 2534 86 104

than read ones. We anticipate the reason is that in distributed
deep learning, we persist checkpoints after each epoch that
introduces many write I/Os. The relatively low number of
reads is because the dataset (i.e., Cifar10) is small enough

to be cached in the memory of each node in our cluster.
We analyze the traces of the application activities performed

by PSs. We find that as workers send gradients and receive
weights independently in Async-SGD, the number of weight
updates (i.e., WU num.) is N times of that in Sync-SGD,
where N is the number of workers (i.e., 8 in our setup).
Moreover, the average time (i.e., WU time) consumed by PSs
to compute new weights for Sync-SGD is shorter than that
for Async-SGD. This indicates that if we do not schedule a
sufficient number of PSs in the deep learning cluster, then
PSs can be overloaded and degrade the overall performance,
especially in Async-SGD.

We further collect the communication traces to calculate the
average duration (i.e., Ave. pull or Ave. push) of a pull or push
call for a worker. Both Sync- and Async-SGD have a similar
average pull duration. However, Sync-SGD has an average
push duration ten times longer than that of Async-SGD. This is
because Sync-SGD needs to wait for all workers to finish their
computation tasks before calling push. This observation indi-
cates that compute efficiency, network latency and bandwidth
should be well balanced across multiple workers in Sync-SGD.
Long lag in the operations of a worker or communication
congestion can deteriorate the performance of distributed deep
learning.

B. Data Parallelism

Distributed deep learning takes advantage of parallel data-
processing to accelerate training. Nonetheless, as the degree
of parallelism increases, the accuracy might be affected due
to synchronization overhead [15]. Therefore, we conduct ex-
periments with different numbers of workers to investigate the
impact of data parallelism on distributed deep learning. We fix
the number of PSs (i.e., 8) but change the number of workers
to 4, 8, and 12.

Fig 7-(a) shows the top-1 accuracy of ResNet-18 across
training epochs for different numbers of workers using Async-
SGD. We observe that for Async-SGD (lines with triangle
markers), the accuracy drops significantly on an average
across all epochs by more than 0.2 when the number of
parallel workers is increased from 4 to 12. Moreover, the
drop in accuracy increases further for higher epochs. The
final accuracy of Async-SGD drops by around 0.35 as the
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worker number increases. However, such an impact of an
increasing number of workers on Sync-SGD is limited, which
only exhibits a decrease of 0.08, see solid lines in Fig. 7-(b).

This observation is consistent with our discussion of stal-
eness in Sec. II. Async-SGD experiences higher staleness
with the number of workers increases. Out of many workers,
some compute gradients using model parameters that may be
several iterations behind the most updated model parameters,
which consequently reduces the accuracy. Furthermore, as
the staleness is proportional to the number of workers, more
workers mean a higher possibility of staleness. To verify our
observation, we plot the run time staleness across different
worker numbers for Async-SGD in Fig. 8. We observe that
the staleness of 12 workers (i.e., PS§W12) reaches 4 at epoch
13, while the maximum staleness of 8 and 4 workers is 2 and
1, respectively. The number of staleness is expected to increase
if we run more epochs.

We also compare the training time for ResNet-18, as shown

in Fig. 7-(c). When we change the worker number from 4 to
12, the training time decreases accordingly for both Sync-
and Async-SGD because high parallelism offers fast data
processing speed. We further breakdown the training time
to communication time and computation time for Sync-SGD,
see Fig. 7-(d). We denote the communication time as to how
long workers are waiting for PSs to send the latest updated
parameters, and denote the computation time as the time that
workers spend to finish the forward and backward paths. We
observe that the computation time decreases as the number
of workers increases, while the communication time across
different worker numbers is similar, as shown in Fig. 7-(d).
We also notice that Async-SGD takes less time to train the
same model, Fig. 7-(c). The reason is that Async-SGD updates
model parameters with each worker asynchronously without
waiting for the other. Although we observe that Async-SGD
has higher communication congestion in Tab. II, the overall

training time of Async-SGD is shorter than Sync-SGD, as the
bottleneck of the performance is worker’s throughput. The rea-
son we do not breakdown training time for Async-SGD is that
the training behavior of each worker is heterogeneous, which
makes the overlap between computation and communication
non-deterministic and hard to observe at the system level.

C. Parameter Distribution

We conduct similar experiments with different PS numbers.
Our observation is that various PS numbers have the same
convergence trends, which means parameter distribution has
limited impacts on model accuracy under both Sync- and
Async-SGD algorithms, see Fig. 9-(a) and (b). We anticipate
this is because model accuracy is determined by gradients
calculated on workers, not by weights-updating executed on
PSs. The mathematical proof aligning with our real systems

observation can be found in [12].
Fig. 9-(c) further shows the overall training time. When

the PS number increases, the training time increases for
both Sync- and Async-SGD. We break the overall training
time to computation and communication for Sync-SGD, as
shown in Fig. 9-(d). We observe that both computation and
communication time increases. This is because increasing the
PS number incurs higher communication overhead among PSs
and increases CPU intensity on each VM as more PS processes
are launched. Furthermore, because PS uses the distributed
key-value store fundamentally, it may take longer for each
PS to query and find the desired potion of parameters if the
number of PSs increases. We also observe that Async-SGD
has shorter training time than Sync-SGD, which is consistent
with the observation in Fig. 7-(c).

D. Batch Size

We change batch size from 16 to 512 to train Inception-vl
under both Sync- and Async-SGD. We set 4 workers and 4
PSs. The training time (left side y-axis) and accuracy (right
side y-axis) after three epochs are shown in Fig. 10. Training
time decreases as we increase the batch size. However, this
inverse relationship is not linear. Training time improvement
gradually decreases. As shown in Fig. 10, the maximum
relative improvement rates are 51% and 54% for Sync- and
Async-SGD, respectively, when the batch size increases from
16 to 32. Smaller batch size leads to more updates within
an epoch, which increases the workload on PS and results in
higher execution time. This observation indicates that when
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Fig. 9: Impacts of parameter distribution on accuracy and training time.

we set a smaller batch size, it is beneficial to allocate more
PSs to the cluster. We also observe that Sync- and Async-
SGD have similar training time for each epoch across different
batch sizes. However, Async-SGD achieves marginally lower
training time because of the asynchronous weight updates.
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Fig. 10: Training time and accuracy of Inception-vl1.

We further observe that larger batch size leads to lower
accuracy. Particularly, when we set batch size as 16, the
accuracy after three epochs can reach 0.79 and 0.74 for Sync-
and Async-SGD, respectively. However, when we increase the
batch size to 512, the accuracy drops to 0.52 and 0.44. We
explain that when batch size increases, the number of iterations
within an epoch decreases, which consequently cannot provide
enough weight updates to achieve high accuracy. This can also
explain why Async-SGD has higher accuracy than Sync-SGD
after three epochs, as the number of updates of Async-SGD

is [N times as many as that of Sync-SGD.
Our experimental results indicate there is a trade-off be-

tween training time and accuracy across different batch sizes.
Although the larger batch size provides faster training speed, it
inversely degrades accuracy. When we have a large batch size
(e.g., 512), we have to run more epochs to obtain the same
accuracy as the small batch size (e.g., 16), which unfortunately
may expand the total training time.

E. Idleness of Computing Resources

Distributed deep learning applications speedup training pro-
cedure by resolving task dependencies and parallelizing com-
munication and computation of consecutive layers. However,
there is a strong dependency between the backward path
of the previous iteration with the forward path of the next
iteration. The next iteration requires the output of the previous
iteration as an input. While the next iteration is waiting for the
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Fig. 11: Impact of configurations on idleness.

completion of the previous iteration, the idleness of computing
resources on the worker side unavoidably exhibits.
To investigate idleness under different configurations, we

use the idleness ratio, which is the ratio of the idle period
where workers are waiting for updated model parameters from
PSs to the training time of the current iteration, to measure
the percent of idle computing resources. We first conduct
experiments across different ratios of PSs to workers (e.g.,
1:3, 2:2, and 3:1) on Inception-v1. Fig. 11-(a) shows that the
idleness decreases as the ratio of PS to worker increases (i.e.,
having less workers than PSs). This is because the workload
on each worker increases when the number of workers is
reduced. Then, the idle period becomes relatively shorter when
comparing with the calculation time on workers, therefore the
idleness ratio deceases. We further change the batch size to
32, 64, and 128 on Inception-vl, as shown in Fig. 11-(b).
Similarly, the idleness decreases upon increasing the batch
size because more workload is assigned to each worker when
the batch size increases. The last factor that may affect idleness
is network latency that can incur different communication
time. As shown in Fig. 11-(c), we manually change the
network latency in virtual machine configurations from 10ms
to 100ms and 200ms. The idleness increases dramatically from
10% to 72% upon increasing the network latency from 10ms to
200ms. This is because longer network latency causes longer
waiting (idle) time on workers.

The observed idleness is evident for both Sync- and Async-
SGD. We can shrink the idleness by increasing the workload
on workers and deploying the deep learning cluster with low
network latency. However, we remark that such idleness cannot
be completely eliminated due to the aforementioned strong
dependency between two consecutive iterations, no matter
Sync- or Async-SGD is used.

V. RELATED WORK

Real-world deployments of distributed deep learning infras-
tructure are highly heterogeneous. The different categories



of methods introduced to train DNN models efficiently on
distributed infrastructure include - model consistency (e.g.,
synchronous, or asynchronous), parallelism of computation
and communication (e.g., scheduling), parameter distribution
(e.g., centralized PS, or decentralized all-reduce), parameter
compression (e.g., quantization), and optimization algorithms

(e.g., hyper-parameter search) [5], [11].
Although Sync-SGD with PS ensures model consistency,

the synchronization overhead and idle time wasted by waiting
for slow workers hinder scaling [11]. Recent work suggests
the use of backup workers to accelerate Sync-SGD [15]. Other
researchers attempt to circumvent the above issues by utilizing
Async-SGD, but introduces model inconsistency due to stale
gradients and reduces convergence speed. Using staleness-
aware Async-SGD can reduce convergence time [13].

Another research direction is to improve training efficiency
through efficient scheduling of communication and computa-
tion. One interesting work [6] proposes the parameter slicing
and priority-based parameter update to reduce communication
delay. [2], [7] propose to reduce training time by dynamically
allocating computational resources in a cluster during run-
time based on resource-performance models. Some researchers
also examine hyper-parameter based optimization techniques.
These techniques include adaptive learning rate in a PS-worker
architecture with Async-SGD, and dynamic learning rates to
account for heterogeneous workers [3].

VI. CONCLUSION

This paper begins up posing a simple question for investiga-
tion: “how to obtain the maximum throughput without sacrific-
ing accuracy with limited physical computing resources?”. By
conducting experiments in a distributed deep learning cluster,
We revealed that training of deep learning models may have
drastically varying behaviors of model accuracy and training
time with respect to different model consistency methods,
application configurations, and system specifications. We thus
delivered insights and guidelines of how to take full advantage
of distributed deep learning clusters in deploying deep learning
applications. For example, there is a tradeoff between data
parallelism and computation load on PS, which needs to be
considered when configuring the batch and mini-batch sizes.
Idleness on workers is caused by the strong dependency
between consecutive iterations, which exhibits under both
Sync- and Async-SGD and should be taken into account
for improving resource utilization. In the future, we plan to
leverage our insights to design new techniques and solutions
that aim to speed up the training procedure and meanwhile
maintain high model accuracy, and conduct experiments on
more complicated models with larger datasets.
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