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Abstract

Designing deep neural networks is an art that often involves an expensive search
over candidate architectures. To overcome this for recurrent neural nets (RNNs), we
establish a connection between the hidden state dynamics in an RNN and gradient
descent (GD). We then integrate momentum into this framework and propose a new
family of RNNs, called MomentumRNNs. We theoretically prove and numerically
demonstrate that MomentumRNNSs alleviate the vanishing gradient issue in training
RNNs. We study the momentum long-short term memory (MomentumLSTM) and
verify its advantages in convergence speed and accuracy over its LSTM counterpart
across a variety of benchmarks. We also demonstrate that MomentumRNN is
applicable to many types of recurrent cells, including those in the state-of-the-
art orthogonal RNNs. Finally, we show that other advanced momentum-based
optimization methods, such as Adam and Nesterov accelerated gradients with
a restart, can be easily incorporated into the MomentumRNN framework for
designing new recurrent cells with even better performance.

1 Introduction

Mathematically principled recurrent neural nets (RNNs) facilitate the network design process and
reduce the cost of searching over many candidate architectures. A particular advancement in RNNs
is the long short-term memory (LSTM) model [24] which has achieved state-of-the-art results in
many applications, including speech recognition [15], acoustic modeling [53, 51], and language
modeling [46]. There have been many efforts in improving LSTM: [19] introduces a forget gate
into the original LSTM cell, which can forget information selectively; [18] further adds peephole
connections to the LSTM cell to inspect its current internal states[17]; to reduce the computational
cost, a gated recurrent unit (GRU) [11] uses a single update gate to replace the forget and input gates
in LSTM. Phased LSTM [42] adds a new time gate to the LSTM cell and achieves faster convergence
than the regular LSTM on learning long sequences. In addition, [52] and [50] introduce a biological
cell state and working memory into LSTM, respectively. Nevertheless, most of RNNs, including
LSTMs, are biologically informed or even ad-hoc instead of being guided by mathematical principles.
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1.1 Recap on RNNs and LSTM

Recurrent cells are the building blocks of RNNs. A recurrent cell employs a cyclic connection to
update the current hidden state (h;) using the past hidden state (h;_;) and the current input data (x;)
[14]; the dependence of h; on h;_; and x; in a recurrent cell can be written as

h; = O'(Uht71 +Wgx, + b), Ty € Rd, and h;_1,h; € Rh7 t=1,2,---,T, @))]
where U € R"*" W € R"*9 and b € R" are trainable parameters; o(-) is a nonlinear activation
function, e.g., sigmoid or hyperbolic tangent. Error backpropagation through time is used to train
RNN, but it tends to result in exploding or vanishing gradients [4]. Thus RNNs may fail to learn long

term dependencies. Several approaches exist to improve RNNs’ performance, including enforcing
unitary weight matrices [1, 62, 25, 60, 38, 22], leveraging LSTM cells, and others [35, 30].

LSTM cells augment the recurrent cell with “gates” [24] and can be formulated as

iy = o(Uiphy—1 + Wixy + by), (4; : input gate)
¢; = tanh (Ughi—1 + Wgxy + bg), (¢ : cell input)
Ct = Ci_1+ 1 O Cy, (¢ : cell state) 2)
o =o(Uyhi—1 + Wy, + b,), (o; : output gate)
h; = 0; ® tanh ¢, (h; : hidden state)

where U, € R W, € R"*4 and b, € R" are learnable parameters, and ® denotes the
Hadamard product. The input gate decides what new information to be stored in the cell state, and the
output gate decides what information to output based on the cell state value. The gating mechanism
in LSTMs can lead to the issue of saturation [59, 8].

1.2  Our Contributions

In this paper, we develop a gradient descent (GD) analogy of the recurrent cell. In particular, the
hidden state update in a recurrent cell is associated with a gradient descent step towards the optimal
representation of the hidden state. We then propose to integrate momentum that used for accelerating
gradient dynamics into the recurrent cell, which results in the momentum cell. At the core of the
momentum cell is the use of momentum to accelerate the hidden state learning in RNNs. The
architectures of the standard recurrent cell and our momentum cell are illustrated in Fig. 1. We
provide the design principle and detailed derivation of the momentum cell in Sections 2.2 and 2.4.
We call the RNN that consists of momentum cells the MomentumRNN. The major advantages of
MomentumRNN are fourfold:

o MomentumRNN can alleviate the vanishing gradient problem in training RNN.
o MomentumRNN accelerates training and improves the test accuracy of the baseline RNN.

e MomentumRNN is universally applicable to many existing RNNs. It can be easily implemented
by changing a few lines of the baseline RNN code.

o MomentumRNN is principled with theoretical guarantees provided by the momentum-accelerated
dynamical system for optimization and sampling. The design principle can be generalized to other
advanced momentum-based optimization methods, including Adam [28] and Nesterov accelerated
gradients with a restart [44, 61].

1.3 Related Work

Dynamical system viewpoint of RNNs. Leveraging the theory of dynamical system to improve
RNNSs has been an interesting research direction: [31] proposes a gated RNN, which is principled
by non-chaotical dynamical systems and achieves comparable performance to GRUs and LSTMs.
[57] proposes a weight initialization strategy inspired by dynamical system theory, which helps the
training of RNNs with ReLU nonlinearity. Other RNN algorithms derived from the dynamical system
theories include [45, 9, 10, 26]. Our work is the first that directly integrates momentum into an RNN
to accelerate the underlying dynamics and improve the model’s performance.

Momentum in Optimization and Sampling. Momentum has been a popular technique for accel-
erating (stochastic) gradient-based optimization [49, 20, 55, 28, 3, 48] and sampling algorithms
[13, 41] A particularly interesting momentum is the iteration-dependent one in NAG [44, 43, 2],
which has a significantly better convergence rate than constant momentum for convex optimization.
The stochastic gradient NAG that employs a scheduled restart can also be used to accelerate DNN
training with better accuracy and faster convergence [61].
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Figure 1: Illustration of the recurrent cell (left), Momentum/NAG cell (middle), and Adam/RMSProp
cell (right). We draw a connection between the dynamics of hidden states in the recurrent cell and
GD. We then introduce momentum to recurrent cell as an analogy of the momentum accelerated GD.

Momentum in DNNs. Momentum has also been used in designing DNN architectures. [21] develops
momentum contrast as a way of building large and consistent dictionaries for unsupervised learning
with contrastive loss. At the core of this approach is a momentum-based moving average of the queue
encoder. Many DNN-based algorithms for sparse coding are designed by unfolding the classical
optimization algorithms, e.g., FISTA [2], in which momentum can be used in the underpinning
optimizer [56, 7, 36, 27, 40].

1.4 Notation

We denote scalars by lower or upper case letters; vectors and matrices by lower and upper case bold
face letters, respectively. For a vector @ = (21, -+ ,x4)T € R%, we use ||z]| = (30, |2:]?)/2 to
denote its £3 norm. For a matrix A, we use AT (T in roman type) and A ~! to denote its transpose and
inverse, respectively. Also, we denote the spectral norm of A as ||A||. We denote the d-dimensional
standard Gaussian as N'(0, I;x ), where 0 is the d-dimensional zero-vector and I;x 4 is an identity
matrix. For a function ¢(x) : R? — R, we denote ¢! (x) as its inverse and V¢ (x) as its gradient.

2 Momentum RNNs

2.1 Background: Momentum Acceleration for Gradient Based Optimization and Sampling
Momentum has been successfully used to accelerate the gradient-based algorithms for optimization
and sampling. In optimization, we aim to find a stationary point of a given function f(x),x € R9.
Starting from x( € R4, GD iterates as @; = x;_1 — sV f(x;) with s > 0 being the step size. This
can be significantly accelerated by using the momentum [55], which results in
Po = ®o; Pt = ppi—1 + sV f(®e); = @01 — 1, 21, 3)
where 1 > 0 is the momentum constant. In sampling, Langevin Monte Carlo (LMC) [12] is used to
sample from the distribution 7 o< exp{— f(x)}, where exp{—f(x)} is the probability distribution
function. The update at each iteration is given by
Ty =xs 1 — sV f(x) +V2s€, s>0,t>1, € ~N(0,T54). 4)
We can also use momentum to accelerate LMC, which results in the following Hamiltonian Monte
Carlo (HMC) update [12]:
Po = To; Pt = Pr—1 — ¥SPi—1 — SNV f(Ti-1) + /2vsn€; T =241+ 5p, t>1,  (5)
where €; ~ N(0,1;x4) while v, 7, s > 0 are the friction parameter, inverse mass, and step size, resp.

2.2 Gradient Descent Analogy for RNN and MomentumRNN

Now, we are going to establish a connection between RNN and GD, and further leverage momentum
to improve RNNs. Let W = [W, b] and Z; = [x;, 1] in (1), then we have h; = o(Uh;_; + Wx;).
For the ease of notation, without ambiguity we denote W := W and x; := ;. Then the recurrent
cell can be reformulated as

ht = O'(Uht_l + W.’Bt) (6)



Moreover, let ¢(-) := o(U(+)) and u; := U~ Wz, we can rewrite (6) as

hi = ¢(hi—1 + uy). (7)
If we regard —u, as the “gradient” at the ¢-th iteration, then we can consider (7) as the dynamical
system which updates the hidden state by the gradient and then transforms the updated hidden state
by the nonlinear activation function ¢. We propose the following accelerated dynamical system to
accelerate the dynamics of (7), which is principled by the accelerated gradient descent theory (see
subsection 2.1):

Pt = ppi—1 — su; hy = d(hy1 — pr), (8)
where 1 > 0, s > 0 are two hyperparameters, which are the analogies of the momentum coefficient
and step size in the momentum-accelerated GD, respectively. Let v; := —Upy, we arrive at the
following dynamical system:

vy = pvi—1 +sWay; hy = o(Uhi_q 4+ vy). )

The architecture of the momentum cell that corresponds to the dynamical system (9) is plotted
in Fig. 1 (middle). Compared with the recurrent cell, the momentum cell introduces an auxiliary
momentum state in each update and scales the dynamical system with two positive hyperparameters
v and s.

Remark 1 Different parameterizations of (8) can result in different momentum cell architectures.
For instance, if we let vi = —pq, we end up with the following dynamical system:

Vi = Uvi_1 + S‘/R\fﬁct; ht = U(Uht_l + UVt), (10)

where W = U~'W is the trainable weight matrix. Even though (9) and (10) are mathematically
equivalent, the training procedure might cause the MomentumRNNs that are derived from different
parameterizations to have different performances.

Remark 2 We put the nonlinear activation in the second equation of (8) to ensure that the value of
hy is in the same range as the original recurrent cell.

Remark 3 The derivation above also applies to the dynamical systems in the LSTM cells, and we
can design the MomentumLSTM in the same way as designing the MomentumRNN.

2.3 Analysis of the Vanishing Gradient Issue: Momentum Cell vs. Recurrent Cell

Let hr and h, be the state vectors at the time step 1" and ¢, respectively, and we suppose T > t.
Furthermore, assume that £ is the objective to minimize, then

T-1 Ol 1 or T

%: 68h£ 'g};f B aaif I h, = ony - 1LY, ()
t T t T k T
where U7 is the transpose of U and D, = diag(c’(Uhy + Waxy41)) is a diagonal matrix with
o' (Uhy + Wz 1) being its diagonal entries. || [, - (DxU")||» tends to either vanish or explode
[4]. We can use regularization or gradient clipping to mitigate the exploding gradient, leaving
vanishing gradient as the major obstacle to training RNN to learn long-term dependency [47]. We
can rewrite (9) as

hy =0 (U(hi_1 — phy_2) + po~ ' (hy_1) + sWazy) , (12)
where 071(-) is the inverse function of o(-). We compute 9L /dh; as follows
oL 9L Ohy OL 14 Ohuis  OL Yt a oup

o= _ . = : = . D, [U b 13

Oh; ~ Ohr Oh, _ Ohr g Ohy  Ohr g el U7+ 2], (1)

where Dy, = diag(o’(U(hi — phi_1) + po~ " (hi) + sWaxry1)) and B = diag((c~") (he)). For
mostly used o, e.g., sigmoid and tanh, (071(-))’ > 1 and 3 dominates UT.? Therefore, with an
appropriate choice of u, the momentum cell can alleviate vanishing gradient and accelerate training.

We empirically corroborate that momentum cells can alleviate vanishing gradients by training a
MomentumRNN and its corresponding RNN on the PMNIST classification task and plot [|0L/0h]|2
for each time step ¢. Figure 2 confirms that unlike in RNN, the gradients in MomentumRNN do not
vanish. More details on this experiment are provided in the Appendix A.

’In the vanishing gradient scenario, | U]||z is small; also it can be controlled by regularizing the loss function.
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Figure 2: {5 norm of the gradients of the loss £ w.r.t. the state vector h; at each time step ¢ for RNN
(left) and MomentumRNN (right). MomentumRNN does not suffer from vanishing gradients.

2.4 Beyond MomentumRNN: NAG and Adam Principled Recurrent Neural Nets

There are several other advanced formalisms of momentum existing in optimization, which can be
leveraged for RNN architecture design. In this subsection, we present two additional variants of
MomentumRNN that are derived from the Nesterov accelerated gradient (NAG)-style momentum
with restart [44, 61] and Adam [28].

NAG Principled RNNs. The momentum-accelerated GD can be further accelerated by replacing the
constant momentum coefficient  in (9) with the NAG-style momentum, i.e. setting i to (t—1)/(t+2)
at the ¢-th iteration. Furthermore, we can accelerate NAG by resetting the momentum to O after
every F iterations, i.e. 4 = (¢ mod F)/((t mod F) + 3), which is the NAG-style momentum
with a scheduled restart of the appropriately selected frequency F' [61]. For convex optimization,
NAG has a convergence rate O(1/t?), which is significantly faster than GD or GD with constant
momentum whose convergence rate is O(1/t). Scheduled restart not only accelerates NAG to a linear
convergence rate O(a~")(0 < a < 1) under mild extra assumptions but also stabilizes the NAG
iteration [61]. We call the MomentumRNN with the NAG-style momentum and scheduled restart
momentum the NAG-based RNN and the scheduled restart RNN (SRRNN), respectively.

Adam Principled RNNs. Adam [28] leverages the moving average of historical gradients and entry-
wise squared gradients to accelerate the stochastic gradient dynamics. We use Adam to accelerate (7)
and end up with the following iteration

Pt = pupi—1 + (1 — p)ug; my = pmy_1 + (1 — fluy © ug; hy = ¢p(hy—1 — s P

t
Tt + €
where (1, 5, 3 > 0 are hyperparameters, € is a small constant and chosen to be 10~8 by default, and
®/4/- denotes the entrywise product/square root®. Again, let v; = —Up,, we rewrite (14) as follows

Vi
= _ 1— )Wy = _ 1-— chy =0(Uh:_ —_— ).
vi=puvi_1 + (1 — p)Way; my = fmy_1 + (1 — f)uy © ug; hy = o(Uhy 1+Sm+€)

As before, here u; := U~'Wz,. Computing U~ is expensive. Our experiments suggest that
replacing u; ® uy by Wa, © Wx, is sufficient and more efficient to compute. In our implementation,
we alsorelax vy = puvy_1 + (1 — p)Way to vy = pvy_1 + sW, that follows the momentum in the
MomentumRNN (9) for better performance. Therefore, we propose the AdamRNN that is given by
v
vi = pvi1 + sWay my = fmy_y + (1 - 5)(Way © Way); hy = o(Uhy—y + mit—f—e)
t
(15)
In AdamRNN, if p is set to 0, we achieve another new RNN, which obeys the RMSProp gradient
update rule [58]. We call this new model the RMSPropRNN.

), (14)

Remark 4 Both AdamRNN and RMSPropRNN can also be derived by letting vi = —p; and
W := U~'W as in Remark 1. This parameterization yields the following formulation for AdamRNN
= = = UVt
Vi =puvi_1+sWaxy; my=pmy_ 1+ (1 — ) (Wxy © Way); hy =c(Uhy_ 1 + ——).
t = UVi—1 t ¢ = Bmy_1 + ( B)( t t) t ( t—1 \/ﬁ—l—e)

Here, we simply need to learn W and U without any relaxation. In contrast, we relaxed U~! to an
identity matrix in (15). Our experiments suggest that both parameterizations yield similar results.

3In contrast to Adam, we do not normalize p; and m. since they can be absorbed in the weight matrices.



Table 1: Best test accuracy at the MNIST and PMNIST tasks (%). We use the baseline results reported
in [22], [62], [60]. All of our proposed models outperform the baseline LSTM. Among the models
using N = 256 hidden units, RMSPropLSTM yields the best results in both tasks.

MODEL N # PARAMS MNIST PMNIST
LSTM 128 =~ 68K 98.70[22]1,97.30 [60] 92.00 [22],92.62 [60]
LSTM 256 ~ 270K 98.90 [22], 98.50 [62]  92.29 [22], 92.10 [62]
MOMENTUMLSTM 128 =~ 68K 99.04 + 0.04 93.40 £ 0.25
MOMENTUMLSTM 256 =~ 270K 99.08 £ 0.05 94.72 +£0.16
ADAMLSTM 256 =~ 270K 99.09 £0.03 95.05 £ 0.37
RMSPROPLSTM 256 ~ 270K 99.15 = 0.06 95.38 £0.19
SRLSTM 256 =~ 270K 99.01 £0.07 93.82 £1.85

3 Experimental Results

In this section, we evaluate the effectiveness of our momentum approach in designing RNNSs in terms
of convergence speed and accuracy. We compare the performance of the MomentumLLSTM with
the baseline LSTM [24] in the following tasks: 1) the object classification task on pixel-permuted
MNIST [32], 2) the speech prediction task on the TIMIT dataset [1, 22, 62, 38, 23], 3) the celebrated
copying and adding tasks [24, 1], and 4) the language modeling task on the Penn TreeBank (PTB)
dataset [39]. These four tasks are among standard benchmarks to measure the performance of RNNs
and their ability to handle long-term dependencies. Also, these tasks cover different data modalities
— image, speech, and text data — as well as a variety of model sizes, ranging from thousands to
millions of parameters with one (MNIST and TIMIT tasks) or multiple (PTB task) recurrent cells
in concatenation. Our experimental results confirm that MomentumLL.STM converges faster and
yields better test accuracy than the baseline LSTM across tasks and settings. We also discuss the
AdamLSTM, RMSPropLSTM, and scheduled restart LSTM (SRLSTM) and show their advantage
over MomentumLSTM in specific tasks. Computation time and memory cost of our models versus
the baseline LSTM are provided in Appendix D. All of our results are averaged over 5 runs with
different seeds. We include details on the models, datasets, training procedure, and hyperparameters
used in our experiments in Appendix A. For MNIST and TIMIT experiments, we use the baseline
codebase provided by [5]. For PTB experiments, we use the baseline codebase provided by [54].

3.1 Pixel-by-Pixel MNIST

In this task, we classify image samples of hand-written digits from the MNIST dataset [33] into one
of the ten classes. Following the implementation of [32], we flatten the image of original size 28 X
28 pixels and feed it into the model as a sequence of length 784. In the unpermuted task (MNIST),
the sequence of pixels is processed row-by-row. In the permuted task (PMNIST), a fixed permutation
is selected at the beginning of the experiments and then applied to both training and test sequences.
We summarize the results in Table 1. Our experiments show that MomentumLSTM achieves better
test accuracy than the baseline LSTM in both MNIST and PMNIST digit classification tasks using
different numbers of hidden units (i.e. N = 128, 256). Especially, the improvement is significant on
the PMNIST task, which is designed to test the performance of RNNs in the context of long-term
memory. Furthermore, we notice that MomentumLSTM converges faster than LSTM in all settings.
Figure 3 (left two panels) corroborates this observation when using N = 256 hidden units.

3.2 TIMIT Speech Dataset

We study how MomentumLL.STM performs on audio data with speech prediction experiments on the
TIMIT speech dataset [16], which is a collection of real-world speech recordings. As first proposed
by [62], the recordings are downsampled to 8kHz and then transformed into log-magnitudes via a
short-time Fourier transform (STFT). The task accounts for predicting the next log-magnitude given
the previous ones. We use the standard train/validation/test separation in [62, 34, 6], thereby having
3640 utterances for the training set with a validation set of size 192 and a test set of size 400.

The results for this TIMIT speech prediction are shown in Table 2. Results are reported on the test
set using the model parameters that yield the best validation loss. Again, we see the advantage
of MomentumLSTM over the baseline LSTM. In particular, MomentumLSTM yields much better
prediction accuracy and faster convergence speed compared to LSTM. Figure 3 (right two panels)
shows the convergence of MomentumLSTM vs. LSTM when using N = 158 hidden units.
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Figure 3: Train and test loss of MomentumLSTM (blue), AdamLSTM (green), RMSPropLSTM
(orange), SRLSTM (cyan), and LSTM (red) for MNIST (left two panels) and TIMIT (right two
panels) tasks. MomentumL.STM converges faster than LSTM in both tasks. For MNIST, AdamLSTM
and RMSPropLSTM converge fastest. For TIMIT, MomentumLSTM and SRLSTM converge fastest.

Table 2: Test and validation MSEs at the end of the epoch with the lowest validation MSE for the
TIMIT task. All of our proposed models outperform the baseline LSTM. Among models using
N = 158 hidden units, SRLSTM performs the best.

MODEL N # PARAMS VAL. MSE TEST MSE
LSTM 84 ~ 83K 14.87 £ 0.15 (15.42 [22,34]) 14.94 £ 0.15 (14.30 [22, 34])
LSTM 120 =~ 135K 11.77 £0.14 (13.93 [22, 34]) 11.83+0.12 (12.95 [22, 34])
LSTM 158 =~ 200K 9.33 +£0.14 (13.66 [22, 34]) 9.37 +£0.14 (12.62 [22, 34])
MOMENTUMLSTM 84 ~ 83K 10.90 +0.19 10.98 +0.18
MOMENTUMLSTM 120 =~ 135K 8.00 £ 0.30 8.04 +0.30
MOMENTUMLSTM 158 =~ 200K 5.86 +0.14 5.87+0.15
ADAMLSTM 158 =~ 200K 8.66 £0.15 8.69 +0.14
RMSPROPLSTM 158 ~ 200K 9.13+£0.33 9.17 £0.33
SRLSTM 158 =~ 200K 5.81+0.10 5.83+0.10
MomentumLSTM —— AdamLSTM RMSPropLSTM ——— SRLSTM —— LSTM
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Figure 4: Train loss vs. iteration for (left) copying task with sequence length 2K and (right) adding
task with sequence length 750. AdamLSTM and RMSPropLSTM converge faster and to better final
losses than other models. MomentumLSTM and SRLSTM converge to similar losses as LSTM.

Remark: The TIMIT dataset is not open for public, so we do not have access to the preprocessed data
from previous papers. We followed the data preprocessing in [62, 34, 6] to generate the preprocessed
data for our experiments and did our best to reproduce the baseline results. In Table 2 and 5, we
include both our reproduced results and the ones reported from previous works.

3.3 Copying and Adding Tasks

Two other important tasks for measuring the ability of a model to learn long-term dependency are
the copying and adding tasks [24, 1]. In both copying and adding tasks, avoiding vanishing/explod-
ing gradients becomes more relevant when the input sequence length increases. We compare the
performance of MomentumLSTM over LSTM on these tasks. We also examine the performance of
AdamLSTM, RMSPropLSTM, and SRLSTM on the same tasks. We define the copying and adding
tasks in Appendix A.4 and summarize our results in Figure 4. In copying task for sequences of length
2K, MomentumLSTM obtains slightly better final training loss than the baseline LSTM (0.009 vs.
0.01). In adding task for sequence of length 750, both models achieve similar training loss of 0.162.
However, AdamLSTM and RMSPropLSTM significantly outperform the baseline LSTM.



Table 3: Model test perplexity at the end of the epoch with the lowest validation perplexity for the
Penn Treebank language modeling task (word level).

MODEL # PARAMS VAL. PPL TEST PPL

LSTM ~ 24M 61.96 £0.83  59.71 £ 0.99 (58.80 [37])
MOMENTUMLSTM  ~ 24M 60.71+0.24 58.62 +0.22
SRLSTM ~ 24M 61.12 £ 0.68 58.83 £0.62

3.4 Word-Level Penn TreeBank

To study the advantage of MomentumLSTM over LSTM on text data, we perform lan-
guage modeling on a preprocessed version of the PTB dataset [39], which has been
a standard benchmark for evaluating language models.  Unlike the baselines used in

the (P)MNIST and TIMIT experiments which MomentumLSTM SRLSTM LSTM
contain one LSTM cell, in this PTB experiment, 7o 8.0
we use a three-layer LSTM model, which con- & 6.0 § 7.0
tains three concatenated LSTM cells, as the base- ¢ 5.0 - 6.0
line. The size of this model in terms of the num- @ ' 3 5.0
= 4.0 - \
ber of parameters is also much larger than those . : N:“’" 4.0 —
in the (P)MNIST and TIMIT experiments. Ta- Neration "Fpoch

ble 3 shows the test and validation perplexity

(PPL) using the model parameters that yield the Figure 5: Train (left) and test loss (right) of
best validation loss. Again, MomentumLSTM MomentumLSTM (blue), SRLSTM (cyan), and
achieves better perplexities and converges faster LSTM (red) for the Penn Treebank language mod-
than the baseline LSTM (see Figure 5). eling tasks at word level.

3.5 NAG and Adam Principled Recurrent Neural Nets

We evaluate AdamLSTM, RMSPropLSTM and SRLSTM on all tasks. For (P)MNIST and TIMIT
tasks, we summarize the test accuracy of the trained models in Tables 1 and 2 and provide the plots
of train and test losses in Figure 3. We observe that though AdamLSTM and RMSPropLSTM work
better than the MomentumLSTM at (P)MNIST task, they yield worse results at the TIMIT task.
Interestingly, SRLSTM shows an opposite behavior - better than MomentunLSTM at TIMIT task
but worse at (P)MNIST task. For the copying and adding tasks, Figure 4 shows that AdamLSTM
and RMSPropLSTM converge faster and to better final training loss than other models in both tasks.
Finally, for the PTB task, both MomentumLLSTM and SRLSTM outperform the baseline LSTM (see
Figure 5 and Table 3). However, in this task, AdamLSTM and RMSPropLSTM yields slightly worse
performance than the baseline LSTM. In particular, test PPL for AdamLSTM and RMSPropLSTM
are 61.11 £ 0.31, and 64.53 £ 0.20, respectively, which are higher than the test PPL for LSTM
(59.71 £ 0.99). We observe that there is no model that win in all tasks. This is somewhat expected,
given the connection between our model and its analogy to optimization algorithm. An optimizer
needs to be chosen for each particular task, and so is for our MomentumRNN. All of our models
outperform the baseline LSTM.

4 Additional Results and Analysis

Beyond LSTM. Our interpretation of hidden state dynamics in RNNs as GD steps and the use of
momentum to accelerate the convergence speed and improve the generalization of the model apply
to many types of RNNs but not only LSTM. We show the applicability of our momentum-based
design approach beyond LSTM by performing PMNIST and TIMIT experiments using the orthogonal
RNN equipped with dynamic trivialization (DTRIV) [6]. DTRIV is currently among state-of-the-art
models for PMNIST digit classification and TIMIT speech prediction tasks. Tables 4 and 5 consist of
results for our method, namely MomentumDTRIV, in comparison with the baseline results. Again,
MomentumDTRIV outperforms the baseline DTRIV by a margin in both PMNIST and TIMIT tasks
while converging faster and overfitting less (see Figure 6). Results for AdamDTRIV, RMSPropDTRIV,
and SRDTRIV on the PMNIST task are provided in Appendix C.

Computational Time Comparison. We study the computational efficiency of the proposed
momentum-based models by comparing the time for our models to reach the same test accuracy
for LSTM. When training on the PMNIST task using 256 hidden units, we observe that to reach
92.29% test accuracy for LSTM, LSTM needs 767 min while MomentumLSTM, AdamLSTM,
RMSPropLSTM, and SRLSTM only need 551 min, 225min, 416 min, and 348 min, respectively.
More detailed results are provided in Appendix D.



Table 4: Best test accuracy on the PMNIST tasks (%) for MomentumDTRIV and DTRIV. We provide
both our reproduced baseline results and those reported in [6]. MomentumDTRIV yields better
results than the baseline DTRIV in all settings.

N # PARAMS PMNIST (DTRIV) PMNIST (MOMENTUMDTRIV)

170 =~ 16K 95.21 £ 0.10 (95.20 [6]) 95.37 +0.09
360 ~ 69K 96.45 £+ 0.10 (96.50 [6]) 96.73 + 0.08
512 ~ 137K 96.62 + 0.12 (96.80 [6]) 96.89 + 0.08

Table 5: Test and validation MSE of MomentumDTRIV vs. DTRIV at the epoch with the lowest
validation MSE for the TIMIT task. MomentumDTRIV yields much better results than DTRIV.

MODEL N # PARAMS VAL. MSE TEST MSE
DTRIV 224 ~ 83K 4.74 +0.06 (4.75[6]) 4.70 +0.07 (4.71 [6])
DTRIV 322 =~ 135K 1.924+0.17(3.39[6]) 1.87+£0.17(3.76 [6])
MOMENTUMDTRIV 224 =~ 83K 3.10 +0.09 3.06 -+ 0.09
MOMENTUMDTRIV 322 = 135K 1.21 +0.05 1.17 +0.05
MomentumDTRIV DTRIV
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Figure 6: Train and test loss of MomentumDTRIV (blue) and DTRIV (red) for PMNIST (left two
panels) and TIMIT (right two panels) tasks. MomentumDTRIV converges faster than DTRIV in both
tasks. For PMNIST task, DTRIV suffers from overtting while MomentumDTRIV overfits less.
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Figure 7: Ablation study of the effects of momentum and step size on MomentumLSTM’s perfor-
mance. We use N = 256/158 hidden units for MNIST/TIMIT task. Green denotes better results.

Effects of Momentum and Step Size. To better understand the effects of momentum and step size
on the final performance of the trained MomentumLSTM models, we do an ablation study and include
the results in Figure 7. The result in each cell is averaged over 5 runs.

5 Conclusion

In this paper, we propose a universal framework for integrating momentum into RNNs. The resulting
MomentumRNN achieves significant acceleration in training and remarkably better performance
on the benchmark sequential data prediction tasks over the RNN counterpart. From a theoretical
viewpoint, it would be interesting to derive a theory to decipher why training MomentumRNN
converges faster and generalizes better. From the neural architecture design perspective, it would be
interesting to integrate momentum into the design of the standard convolutional and graph convo-
lutional neural nets. Moreover, the current MomentumRNN requires calibration of the momentum
and step size-related hyperparameters; developing an adaptive momentum for MomentumRNN is of
interest.



6 Broader Impact and Ethical Considerations

Recurrent neural net (RNN) is among the most important classes of deep learning models. Improving
training efficiency and generalization performance of RNNs not only advances image classification
and language modeling but also benefits epidemiological models for pandemic disease prediction.
RNNSs have also been successfully used for the molecular generation [29]. Developing better RNNs
that enable modeling of long term dependency, such as our Momentum RNN, has the potential to
facilitate life science research. In order to fullfill that potential, more development is needed. For
example, the current MomentumRNN requires calibration of the momentum and step size-related
hyperparameters; developing an adaptive momentum for MomentumRNN is of great research interest.
Finally, we claim that this paper does not have any ethical issue or leverage biases in data.
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