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Abstract

Phase field theory for fracture is developed at large strains with an emphasis on a correct
introduction of surface stresses. This is achieved by multiplying the cohesion and gradient
energies by the local ratio of the crack surface areas in the deformed and undeformed
configurations and with the gradient energy in terms of the gradient of the order parameter in the
reference configuration. This results in an expression for the surface stresses which is consistent
with the sharp surface approach. Namely, the structural part of the Cauchy surface stress
represents an isotropic biaxial tension, with the magnitude of a force per unit length equal to the
surface energy. The surface stresses are a result of the geometric nonlinearities, even when
strains are infinitesimal. They make multiple contributions to the Ginzburg-Landau equation for
damage evolution, both in the deformed and undeformed configurations. Important connections
between material parameters are obtained using an analytical solution for two separating
surfaces, as well as an analysis of the stress-strain curves for homogeneous tension for different
degradation and interpolation functions. A complete system of equations is presented in the
undeformed and deformed configurations. All the phase field parameters are obtained utilizing
the existing first principle simulations for the uniaxial tension of Si crystal in the [100] and [111]
directions.
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1. Introduction

Phase field method for fracture. The Ginzburg-Landau or the phase field method is a powerful
approach for simulation of complex microstructures. The phase field approaches have some
advantages. In particular, they provide the possibility of describing the evolution of an arbitrary
and complex evolving crack geometry without requiring a priori information or additional
computational efforts to track crack paths. Interaction with discrete (precipitates, different
interfaces, and inclusions) and continuous heterogeneities does not require additional
computational efforts either. A phase field model is commonly associated with an order
parameter. There are different definitions for the order parameter, depending on the discipline
and the purpose. We refer to the order parameter as a thermodynamic variable which describes



some type of material instability/stability during microstructure evolutions such as fracture
(Amor, Marigo, & Maurini, 2009; Bourdin, Larsen, & Richardson, 2011; Farrahi, Javanbakht, &
Jafarzadeh, 2018; Hakim and Karma, 2009; Henry and Levine, 2004; Karma and Lobkovsky,
2004; Kuhn and Miiller, 2010; Levitas, Idesman, & Palakala, 2011; Levitas, Jafarzadeh, Farrahi,
& Javanbakht, 2018; Miehe, Aldakheel, & Raina, 2016; Miehe and Schénzel, 2014; Wang, Jin,
& Khachaturyan, 2002; Weinberg and Hesch, 2017), martensitic phase transformations (Levitas,
2013a, b; Levitas, 2014; Levitas and Javanbakht, 2010; Levitas and Warren, 2016), damage
(Mozaffari and Voyiadjis, 2015; Mozaffari and Voyiadjis, 2016), etc. For the martensitic phase
transformations, the order parameter is related to one of the following: (a) concentrations of
martensitic variants, (b) transformation strain tensor, (c) some components of the total strain
tensor, or (d) atomic shuffles (intracellular displacements). Fracture is also associated with the
displacement of some atoms, similar to the phase transformation. However, in the context of
fracture, the displacement of atomic planes leads to atomic bond breaking. Thus, an order
parameter ¢ is employed to describe the stability of the position of atomic planes during the
separation. The intact material, which is the solid state, corresponds to ¢ =0; the completely
broken (damaged) state has ¢ =1; and within each crack surface, which has a thin thickness, the
order parameter continuously varies from 1 to 0. The order parameter ¢ describes the bond
breaking, and to keep this feature, a single-well potential (Bourdin et al., 2011; Kuhn and Miiller,
2010; Levitas et al., 2011; Levitas et al., 2018; Miehe et al., 2016; Wang et al., 2002) is required
rather than the double-well one, which treats the crack propagation as a phase transformation
from solid to gas (Farrahi et al., 2018; Henry and Levine, 2004; Jafarzadeh, Farrahi, &
Javanbakht, 2019; Karma and Lobkovsky, 2004). Note that, in general, the phase field approach
to fracture is quite similar to the cohesive zone approach, but with a more advanced and flexible
kinetics that does not require a priori knowledge of the crack direction and remeshing.

Surface stresses within the phase field approach. The thickness of external surfaces and crack tip
radius are of the order of magnitude of few nanometers. Surface tension, been found to play
significant roles in the determination of mechanical properties of nanosized materials and
structures (Li and Mi, 2019). Thus, the surface stresses should play an essential role in nanoscale
simulations of nucleation and propagation of cracks. It is well known that isotropic biaxial
stresses with force per unit length 7 (Porter, Easterling, & Sherif, 2009) act on each material
interface or surface. For liquid-liquid and liquid-gas interfaces, the surface stresses are
independent of deformation because they do not support elastic stresses. The force per unit
length for these interfaces is equal to the surface energy, 7=y. This leads to a jump in the normal
stresses across the interface with the magnitude of 2y/r, where r is the mean interface radius.
However, for a solid surface or interface, the surface stresses have the deformation-dependent
part, which can be either tensile or compressive and is related to the surface elasticity.

The Griffith criterion for the crack propagation is based on the surface energy (Griffith,
1921) and does not account for the surface stresses. However, sharp corners and a sharp crack tip
are subjected to large surface stresses. Since it is difficult to measure the surface stresses, there is
not a lot of quantitative predictions for the effect of the surface stresses on the fracture. In the



sharp surface approach, the surface stress tensor (with a dimension of force per unit length, not
area) is related to the surface energy by the equation G, =yI +0y/0¢, , where &; is the surface strain

tensor and I is a two-dimensional surface unit tensor (Cammarata and Sieradzki, 1994). This
equation is usually used (Hu, Lee, & Li, 2018; Li and Wang, 2015; Ou, Wang, & Wang, 2008;
Wang and Li, 2013) to consider the effect of the surface stresses on fracture behavior using the
linear constitutive law 0y/0g;=Cs:&5, where C; is the surface elastic moduli tensor. The first part
of the surface stresses yI; is the structural part which is similar to that in liquids and gases and the
second term 0Oy/0g; is the strain-dependent part of the surface stresses. The first (elastic) part of
the surface stresses can be neglected in the small strain theory (Ou et al., 2008; Wang and Li,
2013) because it is shown in atomistic simulations that the components of Cs are of the same
order of magnitude as y (Li and Wang, 2015). Furthermore, the material parameters for
constituting the surface stresses are not known well. Another problem is uncertainty as to
whether strong heterogeneity across the surface fields of properties, strains, and stresses can be
formalized in terms of the resultant stresses without the moments (Levitas, 2014). However, in
the phase field approach, the elastic part of the surface stresses comes directly from the coupled
solution of the Ginzburg-Landau and elasticity equations. Thus, the elastic stresses localized
inside the diffuse (i.e., finite-width) surface present and consider the variation of elastic
properties across the surface, the finite surface width, and the heterogeneity of stresses across
and along the surface. This includes a description of the strain-dependent surface stresses with
much more details than any sharp surface model. Therefore, we only need to include the
structural contribution to the surface stresses, which is one of our goals in this paper. Such a
problem formulation was suggested in Levitas and Javanbakht (2010), Levitas (2013b), and
Levitas (2014) for the martensitic phase transformations. Thus, we will focus on the structural
contribution to the surface stresses only.

Wheeler and McFadden, (1997) suggested a general treatment of the interfacial stresses
for anisotropic diffuse phase interfaces (including anisotropic interface energy and tension).
They utilized the total energy per unit current volume and the gradient of the order parameter in
the deformed state. Such assumptions and application of the principle of least action (or
Noether’s theorem) resulted in an automatic appearance of the interfacial stresses. Similar
models, but coupled to mechanics, were developed in Anderson, McFadden, & Wheeler (2001)
and Lowengrub and Truskinovsky (1998). As it was shown in Levitas (2013b) and Levitas
(2014), stresses obtained in these works were correct for the thermodynamic equilibrium
condition and isotropic interfaces. However, they contained an additional hydrostatic pressure in
the bulk material for propagating interfaces; this is contradictory because the stresses were not
localized at the interface. Note that Hakim and Karma (2009) applied the Noether’s theorem-
based approach to fracture, in which the energy and the gradient of the order parameter were
determined in the reference configuration. Such a formulation did not lead to any surface stress,
highlighting the necessity of the utilization of the current configuration for such approaches. The
most advanced model for the interfacial stresses during phase transformations is developed in
Levitas (2013b) and Levitas and Javanbakht (2010) for small strains and in Levitas (2014) and
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Levitas and Warren (2016) for large strains. The approach in Levitas (2013b), Levitas (2014),
Levitas and Javanbakht (2010), and Levitas and Warren (2016) utilizes the gradient of the order
parameter in the current configuration, and the gradient and the double-well energy are defined
per unit current volume. A detailed literature review and a comparison of different approaches
for the introduction of the interfacial stresses for phase interfaces can be found in Levitas (2014)
and Levitas and Warren (2016).

The only phase field approaches to fracture that include the surface stresses were recently
developed in Levitas et al. (2018) and Jafarzadeh et al. (2019) for small strains. The approach in
Jafarzadeh et al. (2019) is a direct application of the approach for phase transformations from
Levitas (2013b) to fracture. However, it was shown in Levitas et al. (2018) that the approaches
to the interface stresses developed for phase transformations and based on energies per unit
volume of the deformed configuration could not be applied to the fracture problem. This is
because, within such an approach, a space between the crack surfaces also possesses a cohesion
energy, which violates an energy balance; thus, a new approach is required. Such an approach
was developed in Levitas et al. (2018). It also includes geometric nonlinearities even within the
small strain formulation: the cohesion and the gradient energies are determined per unit volume
in the reference configuration but are multiplied by the ratio of the current to the initial crack
surface area, dS/dSo. In the reference configuration, the space between the crack surfaces does
not appear and is not energetically penalized, resolving the contradiction above. At the same
time, a thermodynamic treatment of the potential with the ratio of the current to the initial crack
surface area results in the desired expression for the structural part of the surface stresses. The
general theory in Levitas et al. (2018) is illustrated by the finite element solutions of some model
problems.

In summary, we are not aware of any phase field model which includes the surface
stresses during fracture at large strains. As it was mentioned, the surface stresses are incorporated
in Levitas et al. (2018) by introducing some geometric nonlinearities. Thus, a strict treatment of
the surface stresses requires a thermodynamically consistent finite strain formulation. Also, at the
nanoscale, the material is exposed to large strain before and during fracture. Some of the recently
developed phase field models have incorporated a large strain formulation for fracture (Borden et
al., 2016; Miehe et al., 2016; Miehe and Schénzel, 2014; Weinberg and Hesch, 2017). However,
these papers do not include the surface stresses and have some drawbacks, which will be
discussed below.

Goals and outlook. Our goal in this paper is to develop a general thermodynamically consistent
large-strain phase field approach to fracture which includes the surface stresses. We will use the
main ideas for including the surface stresses from Levitas et al. (2018) for the small-strain
formulation and will advance and incorporate them into a large-strain approach. Thus, the
relationship between the current model and the one in Levitas et al. (2018) is similar to the
relationship between small (Levitas, 2013b) and large (Levitas, 2014) strain formulations for the
martensitic phase transformations with the interfacial stresses.
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Below is the main content of the paper. In Section 2, the integral laws of thermodynamics are
presented and localized in the undeformed configuration. A generalized thermodynamic surface
force which is conjugated to the order parameter is introduced at the external surface. This
allows a stricter treatment of the gradient-type materials. Then, the expression for stresses and
the driving force for the evolution of the order parameter for damage are derived. In Section 3,
boundary conditions for the order parameter are presented in both the undeformed and deformed
states. The structure of the free energy is suggested in Section 4, which leads to the correct
expression for the surface stresses. Thus, two terms which determine the surface energy, the
cohesive and the isotropic gradient energies, are multiplied by the ratio of the current to the
initial crack surface area, dS/dSo. This defines the surface energy per unit current area, similar to
the sharp surface approach with the surface tension (Porter et al., 2009). It is shown in Section 5,
where the corresponding expressions for the first Piola-Kirchhoff and Cauchy stress tensors are
derived, that each consists of the elastic and structural parts; the structural part appears due to the
multiplier dS/dSo in the expression for energy. It is shown that the structural part represents a
biaxial tension which its magnitude is equal to the surface energy, reproducing a proper
expression for the surface stresses. Detailed expressions for the Ginzburg-Landau equation for
the evolution of the order parameter are derived in Section 6. Remarkably, the elastic and surface
stresses both explicitly contribute to the evolution equation. In Section 7, a new family of
interpolation functions for the cohesive energy is introduced so that the damage starts at finite
strains with a significant jump in elastic moduli. An additional requirement for the interpolation
function is introduced to ensure a finite width of the damage zone within the crack surfaces.
Corresponding conditions and the interpolation function are found. A flexible degradation
function with a new parameter n, which is used to calibrate the shape of the stress-strain curve
for homogeneous tension, is also introduced. This allows for an improved description of the local
stress-stress curve at the nanoscale when it is known from the experiment or atomistic
simulations. Equilibrium stress-strain curves for any pair of work conjugates are shown in
Section 8. In Section 9, the stationary Ginzburg-Landau equation is solved for a static crack for
the chosen interpolation function. As expected, the equality of the gradient and the cohesive
energies at each point of the surface is shown and used in this section. Section 10 includes an
analytical expression of the surface stresses for the current model. A complete system of
equations is formulated in Section 11. All the phase field parameters are obtained utilizing the
existing first principle simulation results for an uniaxial tension of Si crystal in the [100] and
[111] directions in Section 12. Section 13 contains the concluding remarks and future outlooks.

Multiplication and the inner product of two second-order tensors A:{A..} and B:{Bl.j} are

y

denoted by A-B:{Aiijk} and A:B=A.B_, respectively; a®b = {aibj} stands for a dyadic

g
product of vectors @ = {a,-} and b={bj}. The norm of vector a is designated as |a| =\aa ;0

and I are second-order null and unit tensors; and A7, 4!, det A, and A are the transpose, inverse,
determinant, and material time derivatives of A4, respectively. V_ and V are the gradients with



respect to the undeformed and deformed configurations, respectively; V2 =V_-V_ is the

Laplacian operation in the undeformed configuration; and := stands for equality by definition.

2. Thermodynamic treatment

In particle kinematics, the path line of each particle in a continuous media is specifically
described by the vector r. Each material point is in the undeformed configuration (r=ro) at the
reference time (¢=fo) and in the deformed configuration r at the current time ¢, i.e., r=r(ro,t). The
motion of the material point is described by the deformation gradient tensor F =V.r=1+V.u,

where u=r—ry is the displacement vector.

The thermodynamic laws are presented below for an arbitrary volume Vo, which is cut from an
actual body, with external surfaces 4o that include cracks. Cracks do not refer to discontinuities
in the displacement field but regions with a sharp variation of the order parameter. The global
form of the first law of thermodynamics is presented as:

J.(po~v—h0 -no)dA0+.[G0¢5~n0dA0+Ipo(f~v+r)dVo =%Jp0 (U+0.5v-v)dV, . )

AO AO VO

Here po=P-ny is the traction vector acting on the undeformed area; P is the first nonsymmetric
Piola-Kirchhoff stress tensor, which is defined based on the undeformed configuration; and ny is
the unit outward normal to the undeformed surface. v =u is the material velocity and Ao is the
heat flux per unit undeformed area. U, f, and r are internal energy, body force vector and the heat
supply, respectively, all per unit mass. The generalized force Go'mo is introduced at the
undeformed surface, whose conjugate to produce work is the rate of change of the order
parameter ¢ . Without Gy, the terms which appear due to the dependence of the thermodynamic

free energy on the gradient of the order parameter V ¢ are not balanced for an arbitrary volume.

The rate of the total entropy production S; presents the second law of thermodynamics as a result
of combining the Clausius-Duhem inequality and the global entropy balance for the entire
volume Vo:

_d r h,
S g ot | gt [ Gemdh 20, @

where s is the entropy per unit mass, and 6>0 is temperature. The Gauss theorem 1is utilized to
transform the surface integrals into the integrals over volume and, after some simplification, the
first and second laws of thermodynamics are obtained as:

.f(P:FT—pOU—VO o+ pr+ V(G )+ (V.- P+ pof = pw)-v)dV, =05 3)

Vo

) r h
SFI(pos—pogd%Wo-g‘)Jd% 20. (4)
i



According to the principle of material frame-indifference, Eq. (3) should be satisfied independent
of the velocity of the observer vop with respect to a fixed frame. Thus, replacing the velocity v
with v—wo should not affect the energy balance. This results in v_. P+ p f - p,y=0 as the equation

of motion. We see that the generalized surface force does not change the equation of motion.
Shrinking the arbitrary volume to the infinitesimal volume transforms the global Eq. (3) and Eq.
(4) to their local forms:

P:F'—pU~V. -h+py+V.(G)=0; )
s . r h ) r 1 1
oS = pS = po g+ V= puS =yt oVl = V.0l 2 0. (6)

S

mass is defined as:

is the rate of entropy production per unit mass. The local energy dissipation rate per unit

t

pD=p,0S =P:F"—pU+p,05+V, -(Goqi)—évoa-ho >0, (7)

where we used Eq. (5) to resolve -V -k, + p,r. Splitting Eq. (7) into the mechanical and thermal
parts leads to two more strong inequalities. One is Fourier’s inequality —%Voe.ho >0, and the

other is the classical mechanical dissipation inequality with a new term at the end:
pD=P:F" —pU+pb65+V.-(G$) 0. (8)

Transforming U =U(F,s,$,V.¢) to w=U-O0s=w(F,0,0,V.#) leads to a more

convenient form of (mechanical) dissipation inequality to manipulate with:
pOD:P:FT—pot/}—pos9+Vo-(GO¢5)20. )
The last term is evaluated as

V. (Gh)=(V. G)p+G, Vp=(V. G)p+G, (V.4). (10)

Substituting Eq. (10) into Eq. (9) and differentiating y with respect to all of its variables give:

P n )i o [0 0 Y v 6 losl G- o Y | v 4
pOD—(P panj.F po(s+aej9 (po o Vv, G0j¢+[GO pOGVoqﬁJ (V.9)20. (11)

By assuming that the dissipation rate depends only on ¢, entropy s=-0y/86; Eq. (12) as an

explicit expression for the generalized force; and Eq. (13) for the constitutive equations for the
stress tensor, are obtained:



oy

v g (12)
_, v
=Py . (13)

It can be assumed that the dissipation rate also depends on (V ¢), and a dissipative contribution

to the generalized force Go may be added. Then, a traditional structure of the Ginzburg-Landau
equation will not be obtained. Dissipative stresses such as viscosity can then be added in Eq.
(13), as it was done for phase transformations in Levitas (2013b, 2014). However, we would like
to focus on fracture as the only dissipation mechanism. Therefore, the only residual term in Eq.

(11) is a product of the dissipative force per unit mass X conjugated to ¢ as follows:

: 0 1 0
poD=p,X$>0: X:=——W+—Vc-(p —WJ (14)
Eq. (14)2 is the driving force for the evolution of the order parameter ¢ .

3. Boundary condition
The generalized force at the external surface is assumed to be zero as a boundary condition,
which is similar to the isolated boundary in the heat conduction problem:
oy

=0. 15

ov 4 (15)
Using Nanson’s equation dAdn=dAoJF T -no (Lai, Rubin, & Krempl, 2009), where the Jacobian J
is defined traditionally as J :=dV /dV, = p,/ p=detF , the boundary condition in Eq. (15) can

n,-Gy=n,-p,——

be expressed in the deformed configuration:

0 ) 0
n,-G,d4, = n, -poﬁd/lo =J 1n-F-,oOF"”qjdAz

nFpYidenF F p Y dh=np Y g4=nGds,
ov ¢ ov g oV

(16)

where G = pOy / OV ¢ is the generalized force conjugated to the order parameter at the surface
in the deformed configuration and Oy /oV g=F"'-0y/0Vp was used for the last

transformation. Finally, the boundary condition in the deformed configuration has the same form
as that in the undeformed configuration:
oy

G= —=0
nG=n- p@V(zﬁ . (17)

Thus, the normal component of the generalized force in the deformed configuration is zero as
well.



4. Expression of free energy

The Ginzburg-Landau free energy per unit mass is presented in the form of

ds ds
=y(F.¢V9)=—WW +y)+y; —=JF "
v =y(F,9,V.9) dSO(w o) +y s \ m|, (18)

0

where vV, w°, w° are the gradient, cohesion and elastic parts of the free energy and are all

1S a unit vector

defined per unit mass and calculated in the undeformed volume; m, =V ¢/ |V°¢
normal to the crack surface, i.e., orthogonal to the constant ¢ surfaces. ko and # are the
mutually-orthogonal unit vectors that are also orthogonal to my (see. Fig. la); m =V ¢/ |V¢| isa

unit vector in the direction of V¢ ; and k and ¢ are defined in the current configuration, which

are the mutually-orthogonal unit vectors both orthogonal to m (see. Fig. 1b).
Tst

Ost

N i

“ B |
TG N $=0 m —» p=const
to > g=const p |
I i ¢p=1
S p=1
(@) (b)

Fig. 1. a) Schematics of crack with the finite width surfaces described by the level surfaces of the order parameter
@ =const with the distribution of the surface Cauchy stresses in the current configuration. b) Mapping of (a) into the
reference configuration. Unit vectors m and m are normal to the crack surfaces and mutually orthogonal unit vectors
k and ¢, as well as ko and ¢, are within the crack surface. Surface Cauchy stresses are zero along m and have the same
components ¢* along k and ¢.

The multiplier dS/dS,=J ‘F " .m,|, which is the ratio of the current to the initial elemental

area at the crack surface, is included to obtain biaxial surface stresses with the magnitude of the
resultant force equal to the surface energy (see Fig. 1 and Eqgs. (27)-(31) below). The gradient
and the cohesive energies are both localized at the diffuse crack surfaces, and their sum
determines the surface energy. The energy of the elemental volume at one crack surface (defined
as the excess energy with respect to the bulk material, without elastic energy) with a spatial
coordinate &, along my is



+o S . 40 .
dr=0.5] "= (" +y*)p,dédS, = O-S(I Py’ +y )déo)dS = ydsS;
= dS, -
0 (19)
y=05[" py(y" +y)dE = pw" +y )by,
where the crack’s possession of two material surfaces is taken into account, /¢ is the width of the
crack surface (in which ¢ >0) in the reference configuration, and the subscript “av” denotes

averaging over one crack surface. Eq. (19) shows that the term y is the surface energy per unit
deformed area. Without the multiplier dS/dSo, this term would define the surface energy per unit
undeformed area yo. Thus, instead of yodSo, the term ydS is introduced, producing surface tension
in classical thermodynamics (see, e.g., (Porter et al., 2009)). Although dS/dSo in the small strain
theory is close to unity, it provides a finite contribution to the derivative of the free energy with
respect to strains, i.e., to stresses. Therefore, even in the small strain theory, some of the
geometric nonlinearities are retained for the reproduction of the surface stresses (Levitas et al.,
2018). The expression of each energy term is described below.

Gradient energy is defined in the undeformed configuration and is accepted in the conventional

form:
v \% 1 2
Py =Py (V.9 =2 BV.9) (20)
Cohesion energy is expressed as
P =y (9)=Af(9), Q1)

where A4 is the maximum cohesion energy corresponding to the fully broken bonds; f(¢) is an

interpolation function for the cohesion energy and will be determined below.

Elastic energy 1s expressed as the Taylor series of the elastic Lagrangian strain
tensor E =(F"-F —1I)/2. The k’-rank elastic moduli tensors Cj; are degraded by the
degradation function, /(¢):

PV =py(9.F)=py (9 E)=

1

I(¢)(%E:C2 :E+%(E CiE): B+ E:(E:C, :E):E+...J = I(¢)¥*(E), (22)

where W is the elastic energy of the damage-free material. In general, each C; can have a
different degradation function.

5. Expression of stress tensors

Egs. (13) is used to obtain the first Piola-Kirchhoff P and Cauchy o = P-F" /J stress tensors.
Stress tensors are split into an elastic part (with superscript e) and a surface part (with superscript
st):

10



P=P'+P"; o=0‘+0". (23)

Elastic stresses. The elastic part of the stress tensor is obtained according to the conventional
definition:

al//e a‘//e
p=pY _, .Y . 24
pO 8F pO aE s ( )
with
oy 1 1
81/;2 :I(¢)(C2:E+§E:C3:E+5(E:C4:E):E+...j, (25)

where Ow*/OF =F -0y /OE is used. The Cauchy elastic stress is:

O.):lpe,FTZ&F.a_'/’e.FszF.M.FT. (26)
cJ J oE OE

Surface stresses. Since dS/dSo depends on F, it produces a finite contribution to the stresses. This
leads to a desirable expression for the surface stresses. Thus,

P ) v Y =p — V+ NI -—m@m 'FﬁT.

Here m is normal to the constant ¢ surfaces, i.e., crack surface (see Fig. 1b) and the detailed
derivation is shown in the Appendix (Egs. (108)-(113)).

The true surface stresses are obtained as
L1 p, dS ds
" =—P" " F' =22 — (W +y Y I-m®m)=p— W  +y)I-m®m).
i T as @O J=p s W O ) (28)
They represent an isotropic biaxial tension along the crack surface with the magnitude of

st dS v c
o =p—— + .
p s, (v +y°) (29)

Thus, dS/dSo 1s multiplied to those terms of the free energy, which we would like to contribute to
the biaxial part of the Cauchy stress tensor. This is more evident in the small strain framework,

when dS/dS, = 1+(I -m®m): &, and d(dS/dSo)/de=I—m®m, where ¢ is the small strain tensor
(Levitas et al., 2018).

Operating with parameters averaged over the undeformed crack surface width /o, we obtain:

o,dV =o,, &dVo =0, &hodso =Pu d_S(WV V) &hodso =
P ds, Pav (30)

av av

Py +v),, hydS = yds,
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i.e., o h =y where h:=dV+dS is the width of the crack surface in the actual configuration. The

resultant force acting at each crack surface 7 with a spatial coordinate £ along m is

+o0 +00 das c +o0 ¢ dm
T=05[ " 0,dé=05[ p-—(y" +y)dE=0.5] (" +y )=

0.5[ " py (" +y)dé, =7,

where dm = pdSdé = p,dS,d&, 1s the elemental mass. Thus, introducing the factor dS/dSo in the

expression for energy, we obtained the isotropic biaxial surface tension with the resultant force
equal to the surface energy per unit crack surface in the actual configuration.

Total stresses. Combining all the contributions, we obtain the total first Piola-Kirchhoff stress
tensor as

P=P +P" :pOF-al-i-pod—S(l//V +y ) I-m®m)-F~'

32
oE das, ’ (32)
where we used the total true stress tensor as
e\ st ‘ d. ¢
c=0‘+0" :pF-ai-FT+p—S(1//V+1// YI-m®m). (33)

OF s,

Stresses Py and o are called the structural stresses at the surface because o reduces to a biaxial
stress tensor with the magnitude of the resultant force equal to the surface energy per unit current
area (see Eq. (31)).

Surface stresses in small strain theory. In the limit of small strains and rotations, one has
dS/dSo=1 as well as p=~po, while Eq. (27) and Eq. (28): reduce to:

o' =P =py’ +y)I-m®@m)+0, (34)

which are equal to the surface stresses in Levitas et al. (2018). Thus, while the large strain
formulation was required to introduce the surface stresses, the surface stresses do not disappear
or even change at small strains. This is why incorporating the large strain formulation is
essential, even for a small strain study, to introduce the surface stresses.

6. Ginzburg-Landau equation

The time-dependent Ginzburg-Landau equation has the same origin for and application to any
structural changes: it is a linear relationship between the order parameter rate and the
thermodynamically-conjugate thermodynamic force. The linear relationship between X and ¢
leads to the generalized Ginzburg-Landau equation accounting for the surface stresses.

(s /ds)w” +y°))

' _|_ov
Hrs =L - T4V, — : (35)

12



where L is the kinetic coefficient, this guarantees that Eq. (14); is always satisfied. Note that the
initial homogeneity in density where V_p, =0 was assumed in writing Eq. (35).

6.1. Undeformed configuration

By elaborating Eq. (35), an explicit evolution for the order parameter is obtained; this is a
generalization of the Ginzburg-Landau to include the surface effects.

oS/ dsy” +y)
ov ¢

1 1 ' e d_S ' _
f¢(ro,f)+1(¢)‘1’ +AdS0f(¢)_V°

o [ds 2005V +y") oU|F T my)
* | ds, ov. ¢ ov. ¢

" +y)|=

V.- (B(dS | dS,)V $+ My +y°)) = B(dS 1 dS,Vp+ BV $-V (dS ] dS,)+ (36)

(V.- M+M-VJ)y" +y)+IM-V, (058(V.9) +Af(#))=
,B(dS/dSO)Vf¢+ﬁV°¢-Y+J(N+M-(F’T :VOF))(WV o)+
BIM -V N $-V ¢+ JAf ()M -V ¢,

where L:=L/ 0, and V.J=dJ/dr=(dJ/dF):dF /dr=JF " :V_F 1is used. Derivations
and final expressions of M, ¥, and N with the below definitions are given in Appendix (Egs.
(114)-(123)).

M::iFiT'moa Y:ZVO dSa N::VO'M' (37)
ov.¢ dS,

Finally, using Eqgs. (114)-(123), the Ginzburg-Landau equation in the undeformed configuration
Eq. (36) takes the form of

1. ' e dS 4 — d_S 2
70+ (DY +Ad_&)f(¢)_ﬂdso Vig+

T
JﬂVoqﬁ{mo-VoFl ‘?—mo

- +‘F’T~mO‘F’T:VOF +J(p" +p)x
T'mo‘

A-my®m,

: 38
[F7.v 4 ©5)

{(Vomo F'F"+my-VF"'-F"+m,-F'-VF7)

V.-m N
‘F—T,VO¢‘m0'F1'FT'mo_

-r
%.(V"FT'V°¢+FT'Vovo¢)'(1_mo®mo)'FI'FT'mO}+
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I-m,®m,

SR

(F7:VE)@" +p)+ VY4V 9),

As can be seen in Eq. (38), distinguishing between deformed and undeformed surfaces directly
affects the driving force of the crack nucleation and propagation. Also, the change in the stress
distribution due to the contribution of the surface stresses to the mechanical equilibrium equation
is another indirect effect of the coefficient dS/dSy on the Ginzburg-Landau equation.

6.1.1. Some simplifications
a) We approximate for small strains and rotations similar to Levitas et al. (2018), i.e., F~I+&+w,
and evaluating F'~I—-¢—® and F "~I—¢+w, and neglect all the products of small tensors. @ is
the small rotation tensor, which is the asymmetric part of the gradient of displacement. Then,
Substituting Egs. (125)-(127) into Eq. (36), we obtain the Ginzburg-Landau equation for a small
strain framework including the surface effects, which is also given in Levitas et al. (2018):

%é(ro,t)+l’(¢)‘1’e +A(1+(I-my®m,): &) f'(¢) =

BL+(I-my®m,):)Vip+pV ¢-V.e:(1-m,®m,)—

ﬂ(l+:////—;)(|Vo¢|Vomo (&-(I-my®m,))+V $-V &:(I-m,®m,)+ (39)
my-&-(mNV2p—m,- (VY. )-V.g-&-(I-m,®@m,)-(£:V.8))-
2pm-g-(I-my®@m,)-VV ¢-m,

b) By neglecting strains but retaining the gradient of small strains, i.e., for F~=I but retaining all
the gradients, we obtain

S0+ TGNV 4 A D)= VGV - (m T F " m 1V F )+

0.5ﬂ(1+z—éjvo¢-(VOFl +VF):(I-m,®m,), “
where I:V . F =V -F isused.
c) Keeping all terms except the gradients of F leads to
TN @Y AL T~ p LTI )
(41)

A-my@m, V_ -m,

FTvg _‘F‘T-V°¢‘mO.F1.FT.mO_

{Vom0 F'-F'
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-T
F—.V"qu-F’T VV$-(I-my®my)-F"'-F -m+
(F7-V.¢)

I-m,®m,

-1 -T
R T

V-V

d) For neglected surface stresses (dS/dSo=1), the Ginzburg-Landau equation reduces to the
standard form:

%qi(ro,t)w'(qﬁ)v L AF($) = FV. (42)

6.2. Deformed configuration

The following transformation is used to express the Ginzburg-Landau equation in the deformed
configuration:

Vo.a_‘/lzvo.[ﬁ_‘//ﬂsze(F‘.a_l//jzv(pl.ﬁ_l//jzp. (43)
ov._¢ oV V. ¢ oV oV g

Then the Ginzburg-Landau equation in the current configuration for an initially homogenous
material is

Do) a¢é:’t) +v-V¢—L{Z—W+V[F1 0((ds/ds,)y" +y/"))}:F , (44)

Dt Vg

where

pw" =dpy" =3 B9 =3 B(FT-V9) (45)

and

ZTS =J|F 7 my|=J|F 7V g|/|[V.4|=T\VY|I|[F" -Vg|=TI[F" m]|. (46)
0

In Eq. (44), the material time derivative of ¢ in the undeformed configuration is transformed to

the corresponding expression in the deformed configuration.

7. Specification of the cohesion energy and degradation function

The detailed analysis of the homogeneous solution and the main requirements of the cohesion
energy and the degradation function can be found in (Levitas et al., 2018). The well-known
requirements, are summarized below, as well as new requirements which we want to impose:
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a) The only existing energy in the intact state where ¢ =0, is the elastic energy. Thus,
£(0)=0and 7 (0)=1.

b) The maximum cohesion energy 4 is reached at the fully damaged state where ¢ =1, then,
AD=1.

c) The fully damaged state ¢ =1 cannot sustain any elastic energy, i.e., / (1)=0.

Thus, 1(¢) is employed as:
I(p)=(1-¢)"; n=1, 47)

which satisfies all the three mandatory requirements above; the parameter # is introduced so that
different stress-strain curves can be obtained.

d) The homogeneous (¥ =0) and stationary (¢3 = 0) state, leads to the equilibrium

form of the Ginzburg-Landau equation

W g ywe+ 4%
o ds,

f$)=0. (48)

It should be mentioned that, while calculating dS/dS,=J ‘F ‘T-mo‘ for a homogeneously

\&.

direction of m and the surface stress tensor can be eliminated numerically by setting dS/dSo=0

distributed order parameter, V. ¢=0 and m,=V ¢/ is undefined. The indeterminacy in the

and, consequently, zero surface stresses 6,=0 when Vg =0 .

When the homogeneous state is considered, we assume that the decohesion (cleavage)
plane is known and m is defined as orthogonal to it. Eq. (48) results in the following damage
equilibrium condition

o dS [
i) = (49)

which determines the equilibrium value of the order parameter ¢, for a given strain tensor E. If

the right-hand side of Eq. (49) is finite at ¢, =0, then the damage is absent below this value:

poc 495 1O
ds, 1'(0)

where dS” is the infinitesimal deformed area when ¢ starts to grow, i.e., at ¢, =0 when 4,>0.

¢, =0 (intact state) for (50)

Eq. (50) is the damage initiation condition. A similar condition was fulfilled for gradient damage
models in (Pham and Marigo, 2013)) where a clear elastic threshold is present, below which the
damage parameter does not evolve. After excluding the order parameter, Eq. (49), along with Eq.
(24) and Eq. (25) for the elastic stresses, represent the equilibrium stress-strain relationship.
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Because f'>0 and I'<0, if polynomial 7'(¢) starts with the same degree as 7'(¢) for ¢ —> 0,

the right-hand side of Eq. (50) is finite and there is a critical elastic energy at the start of damage.
For the degradation function in Eq. (47), 1'(¢,)=n(1—¢,)"" and ['(0)=n. Thus, to have a

nonzero value of strain for the damage initiation, f’(0) should be finite. Therefore, we choose
_ k¢2 + ¢ k>0
f(¢)_—k+1 » K= (51

For large k£ we have

2
tim /() = lim “ 8 i (72 ) = 7 (52)
Moreover, for k close to 0 we obtain
. L. 5 B
lim £ (#) = lim(kgp® + ) = 6. (53)

Such an analysis on the degradation function in essential, as a new degradation function was
introduced in Wilson, Borden, & Landis (2013) to address undesired consequences of the classic
quadratic function. Figure 2 shows /(¢) and f(¢) for various » and £.

'\ 74
T — n=2 084 —— 4o 7
.‘ \\ - =3 | | ____ o /’,'
06 4 ° \ 0.6 4 7 /7
\ \ - n=10 : /7
. ’I
\ 7
044 - 0.4 1 ’
\ ~ N 7
0.2 % o\ 0.2 - 7~ /”,
o ~ ~ P d ’a'
N\ ™ - ™~ ~ ~ ~ ‘f“
0 L = -‘ T = = —‘\ 0 i _-.—T T T T
0 0.2 0.4 0.6 0.8 ¢ 0 0.2 0.4 0.6 0.8 ¢
(a) (b)

Fig. 2. Effect of the material parameters on the a) degradation function 7(¢) and b) interpolation function f(¢).
Then Egs. (49) and (50) are simplified to

ds 2kg, +1
Y. =4 2. —  for V>V,

dS, (k+Dn(l1-4,) (54)
9,=0 for ¥ <YV,

where, the critical strain (elastic energy), which is the strain (elastic energy) at the initiation of

damage (subscript 7), is found from:
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ds’ 1
das, (k+hn’

According to Eq. (54) for ¢, =1, damage completes at finite strain for n=1 and at infinite strain

Y =W(E,)=A

(55)

for n>1.
The stability condition is now checked; because

o’y ds 5 as 2k

="V +A— f"($,)=n(n-1)(1-¢,)""" Y+ A——>0, 56
oF (@)Y, a5, f(@)=nn-1(1-4,) a5, k+1 (56)
the equilibrium solution in Eq. (54) is stable and corresponds to the minimum of the free energy
during the damage growth.

8. Equilibrium stress-strain curves

Here, the relationship between the second Piola-Kirchhoff stress 7" and the Lagrangian
strain £ is used in the one-dimensional problem and the simplest quadratic energy,

ie., W =0.5C,E* is considered, without the surface stresses. C is Young’s modulus. 7 is then

obtained as

_oy°
T = s =I($)C,E . (57)

Utilizing Eqgs. (48) and (57), we obtain
Tr=1,|-—2"; (58)

Now, let us calculate 7/ d¢ at ¢ = O ; thus,

dr _ . [[2GAf"  GAGT -1 |

d¢ r J2CAfT (59)
For I(¢)=(1—¢)" and f(¢) = (k¢ +#)/(k +1), we obtain
ar _ ., [ 2c4  C A1 = 1"k +1)/ (k+1)) _
dg r J=2C,4fT
(60)

—n(1— gy / 2G, 41" n(1=9)"*CA(1-¢)—(n—D(2kg+ 1)/ (k+1)
r J2C. 47T |

For the onset of damage ¢ =0:
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dT

d¢
¢=0
which is zero for 2n=k+1 and negative for 2n>k+1. For 2n>k+1, since dE/d¢$ >0 is always

2n
=0.5./nC,A4| 1- s
. ( k+1j (61)

true, the equilibrium tangential modulus d7/dE <0 at the onset of the damage. Thus, damage
starts at the strain at which the second Piola-Kirchhoff stress has its maximum, and the tangent
modulus jumps from Cs to the non-positive value (see Fig. 3 for k=1 and various »>1 and Fig. 6
for n=1 and k<1). Then, after the initiation of damage and during it, the second Piola-Kirchhoff
stress decreases. While not necessarily valid for other stresses and strains (see Fig. 4, 5), this is
more realistic than in some previous models (Levitas et al., 2018) in which the damage always
starts at an infinitesimal strain and the elastic modulus continuously decreases from its value in
the undamaged state.

T; and E; can then be calculated by substituting W°=0.5C>E? in Eq. (55), as follows:
as
as, (k+n’

W =0.5C,E> = 4 (62)

resulting in

£ \JAdsS" / dsS, . T = \/AczdS* /dS, , (63)
"G k+Dn ’ Jk+Dn

which are equal to the strain and stress at the peak point when 2n>k+1. Since dS™ /dS, also

depends on E;, Eq. (63) is dependent on E;, which can be easily solved for different models. In
the first approximation dS” / dS, =1, we obtain explicit relationships

E:L~ T:A (64)
o JC(k+Dn BN TES R

Thus, the strain at the damage initiation and the corresponding stress, in addition to the
magnitude of the cohesion energy, can be controlled by the parameters in the degradation
function n and in the interpolation function k. Eq. (64) is important in the sense that, for given n
and £, it determines A4 in terms of the elastic energy (or maximum E; or T;) at the beginning of
damage. As we will see in Eq. (67), 4 is also the total work until the damage completes. Then,
the parameters n and k produce portioning between the works in the elastic region and after the
initiation of damage until the fracture completes.

Excluding the order parameter from Egs. (49) and (57) leads to the equilibrium stress-
strain relationship. Figure 3 shows the uniaxial equilibrium second Piola-Kirchhoff stress vs.
Lagrangian strain (7-E) curves for different values of n and k=1.
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Fig. 3. Normalized second Piola-Kirchhoff stress 7" vs. Lagrangian strain £ for uniaxial tension for different » and
k=1.

Using the relationship between the first Piola-Kirchhoff stress and second Piola-Kirchhoff stress,

P=FT =I(§)C,FE=051(¢)C,F(F*-1); F=(1+2E)", (65)

we plot the first Piola-Kirchhoff stress against its work-conjugate strain, i.e., F, in Fig. 4.

P/JAC, —
15 T — - n:Z
- - n=3
1.2 A
- .= =10
~
0.9 - N
~ N
Y ~ \
0.6 4 >
~ -
03 - “~. R .
- - .~
= - -— | - - "‘-:‘_:_n— -
O T T T

1 1.5 2 2.5 F/\/TCQ

Fig. 4. Normalized first Piola-Kirchhoff stress P vs. deformation gradient F for uniaxial tension for different » and
k=1.

For the uniaxial loading along the normal-to-the-crack direction, the work increment per unit

current volume is J~'PdF =%dF =od(InF), 1.e., the work-conjugate of Cauchy stress o is the

logarithmic strain In F. The Cauchy stress o1 in the normal direction is defined as
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av, av, 1
o,=J 'RF, =RF—=PF, “—=h
av FF,FdV, 'F,F,

ds ds,
=h—g ad o =RT— . (66)

The Cauchy stress o vs. In F'is presented in Fig. 5 under the assumption dS/dSo=~1. For both P
and o, the elastic part is nonlinear, and for n close to 1, the stresses continue to slightly grow
after the damage starts before they decrease.

o4

2.8 1
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24 - ---
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n(F/[4/G)

Fig. 5. Normalized Cauchy stress o vs. In F for uniaxial tension for different » and k=1.

To investigate the effect of &k on stress-strain curves, Figure 6 shows the equilibrium solution of
the 7-E curve for various k and n=1.

T/AC, =0
1.4 4
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~
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Fig. 6. Normalized second Piola-Kirchhoff stress 7 vs. Lagrangian strain £ for uniaxial tension for different £ and
n=1.
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As can be deduced from Fig. 6, the peak point and the start of damage are equal and coincide for
k<1. The general condition for this coincidence was discussed in Eq. (61) and after it. For £>1,
the damage initiates before the peak point of 7, producing the nonlinear portion of the 7-E curve.
The damage initiation and the peak point of 7 both decrease as k increases.

Calibration of A. We consider the general three-dimensional homogenous state, and evaluate the
elastic work per unit undeformed volume:

FpdET = [ 0 ST = [y ()= () -0 (1.0)- )

I (E,) =100 (0) + (S, / S) (S () - £(0)) =4S, / S,

The equality dy =0y /0F):dF" + (0w / 0¢)d¢ = (0w / OF):dF" has been used; oy /0¢=0
is used because of the thermodynamic equilibrium condition; /(1)=0; 7(0)=1; ¥¢(0)=0; f(0)=0;
and f{1)=1. Here So, and S, are the surfaces of the crack in the reference configuration and
current configuration at ¢ =1, respectively. Eq. (67) is valid for any type of nonlinear

hyperelastic materials. For one-dimensional homogenous tension, the elastic work is equal to the
area under the stress-strain curve.

The elastic work within the reference volume Sod, where d is the initial thickness of the cohesive
layer, should be equal to the created surface energy. Thus, (A4S, /S,)S,d =2yS,, and the

maximum cohesion energy, i.e., the parameter 4, is obtained as:

2y
A==
(68)

Note that, since the normal-to-the-crack surface stress is zero at ¢=1 , and if all the other
stresses are also zero in the experiment, S, =S, and y is the surface energy per undeformed

arca.

9. Stationary solution

The stationary Ginzburg-Landau equation in the stress-free case is:

2 49
,HVD¢—Ad¢, (69)

where the deformation of the diffuse surfaces is neglected. Integration of Eq. (69) over ¢ (see
Levitas et al. (2018) for more details) leads to

Ly =ar@=v v, (70)
According to Eq. (70), the excess of the cohesion energy is equal to the gradient energy.
Allowing for our specific interpolation function Eq. (51), in the one-dimensional case, Eq. (70)

leads to
ﬁ(ﬁ)z _2r kP + ¢ (71)

2 ' déE, d k+1
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Finally, the solution of Eq. (71) yields an explicit expression for the two diffuse crack surfaces
profile:

I

Jig +Jkg+1 =k +Jk+De VEDRT e g (72)
$=0 |§o|2‘§on

where ¢ =1 corresponds to the separation plane at & =0, and

g = /W In(Jk +k+1) (73)

is the transition plane from the damaged state to the intact state. For k=0 and infinity, Eqgs. (72)
and (73) lead to:

=|1- e 0 0 00 = ﬁ;
/ ( ﬂd|§|] |§|<§ \/7 for k=0 and

$=0 (AR (74)

-2 ﬁLd“fo‘
p=e ; &y =0, for k=co.

Thus, the intact phase is at a finite distance of {, from the separation plane unless £ is infinity.
This is in contrast to the other models (Levitas et al., 2018). Figure 7 represents a damage
distribution of the crack in the reference configuration, at the position xo=0 in an infinite bar for
various k.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Fig. 7. Finite-width profile of the crack surfaces. >0 is one surface, =0 is the separation plane, and &<O0 is

another surface. Damage zone has a finite width &, = \/ (k+1)pd / (ky) ln(\/E ++/k+1) from each side.

In the general case,

23



B.dd 2y ﬂzﬁ
R Ui Wy i (75)

Since f(0)=0 and the integrand in Eq. (75) has a singularity at ¢ =0, the finite or infinite
values of the integral and, consequently, &, depend on the behavior of the function f(¢) at
¢ —0.Since £(0)=0 and, for infinitesimal ¢, we generally have f(¢)=¢~,

_ 1-0.5¢
lim1 ¢ = ! a<?2;
-0 1-0.5 1-0.5«
$-0 d¢* ) 1_¢1—0.5a
I — = lim =0 a>2; (76)
1 /f(¢ ) Z—><(>) 1-0.5«
t d¢* )
I — =—limlng =0 a=2.
VAT N

Thus, if we have ¢“ for infinitesimal ¢,

&y =0 o =2
(77)

&, 1s finite  a<2.

Note that, for k=, we have a =2, and for finite k&, we have « = 1. Finite & is physical and
practical because it allows one to avoid the damage in the entire region in the numerical solution
for localized cracks. This condition was met for gradient damage models in Pham and Marigo,
(2013) and is one of the reasons which for the current model a=1 was chosen. This condition
was not listed in Levitas et al. (2018) and is formulated for the first time here.

Calibration of B. Due to the definition of surface energy (see Eq. (19)), £ can be related to y and
d:

r=05] o vy = [ o, = A[ 7 gag, =24, 1 g = 2AB] [T =

s k* +k)
J2ABT (D) [ kg +pdp= p= = 74
! (2k+ DV k=2l +k + 2k+1))

Eq. (70) was utilized in derivations and Eq. (68) was used for 4. Note that the crack has two
surfaces, explaining the factor of 0.5 in the definition Eq. (19). This is different from what is

(78)

presented in some other phase field models for fracture (Borden et al., 2016; Miehe and
Schénzel, 2014; Weinberg and Hesch, 2017). Using Eqgs. (73) and (78) we obtain for the especial
cases of k=0: f=9yd/16=0.5625yd; £»=0.75d, k=1: p=0.708yd; o=1.05d, and k=o0: f=yd and ;

Cor=00.,
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We would like to make an important point as to why the free energy terms p ¢ and
pow " should be expressed per unit undeformed volume. The damage distribution ¢ and the
cohesion interpolation function f(¢), in the undeformed and deformed configurations, are

represented in Fig. 8a and Fig. 8b, respectively.

Extra nonphysical
(cohesion) energy
i this deformed
region

(a) (b)
Fig. 8. Schematic crack profile (dashed lines) and the plot of the interpolation function f (solid lines) a) for the
current model, with the energy defined per unit undeformed volume, and b) if the energy is defined per unit
deformed volume.

In the empty region of width W between the two crack surfaces, ¢ =1 and f(¢)=1. Therefore,

the expression of the cohesion energy, if defined per unit deformed volume, adds an extra
nonphysical cohesion energy per unit current crack area pw ()W = AW in the region
between the two separated planes (see Fig. 8b). This violates an energy balance, which is why
we did not use the cohesion energy per unit deformed volume and could not use the approach for
introducing the surface stresses developed in (Levitas, 2013b; Levitas, 2014; Levitas and
Javanbakht, 2010; Levitas and Warren, 2016) based on the deformed configuration. Our current
approach based on including the term dS/dSo in Eq. (18) also involves the deformed state in term
of dS. However, this deformation is along the crack surfaces and does not involve deformation
producing the empty space.

10. Analytical expression for surface stresses

Inserting Eq. (73) and Eq. (78) into Eq. (72) leads to a more convenient form of the surface
profile for the current model and the particular case of k=1, where £=0.708yd and &y;=1.05d:

&l

Jo+p+1=(42)e 12 |g]<1.05d; (79)

$=0 |£]>1.054.

Based on Eq. (29), and using Egs. (51), (68), and (70), we obtain
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o dS 4y kg’ + ¢
ot =p VT 80
Pas, d i+l (80)

A plot of &m0 kI +9
PO O Ty pyds 1 ds,  (k+1)d

width parameter d is presented in Fig. 9. The maximum magnitude of & is 1/d at xo=0 (which is

for k=1 with ¢(&,) from Eq. (79) for several surface

the same for any k).

Fig. 9. Distribution of the surface stress " for several interface widths d shown near curves and k=1.

Since all the curves in Fig. 9 correspond to the same surface energy, the resultant surface force,
which is equal to the surface energy and proportional to the area below the curves, is the same. It
is clear that in all the curves &"d coincide. As it is shown in Eq. (73), for the same surface
energy, the surface width & is proportional to d.

It was demonstrated in Levitas et al. (2018) that the effect of the surface stresses on the stress
field of the crack tip is important for nanoscale d and negligible for a sufficiently large d. Even
without the surface stresses the local elastic stress field near the crack tip strongly depends on d
(Levitas et al. 2018) but the surface stresses decay faster (oc1/d ) than the elastic stresses

(oc 1/\d ), as d increases.

11. Complete system of the equations
The final system of equations is collected below.
11.1. Kinematics

Large strains
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F=I+Vu; E=05(F"-F-I).

Small strains

£ =0.5(Vu+VuT).

11.2. Helmholtz free energy per unit mass and its contributions

dS v c e
=— W +y)+y;
y dSO('// )ty

k¢® + ¢
k+1

P =S BV.B AW =A@ 1)

Large strains

d—S:J‘F’T-mO

; m,=V. ¢/|V,
o V4V

5

o’ =(1-9) [%E:C2 :E+%(E:C3 :E):E-i—...j,
Small strains

d_S:1+(1—m0®m0):g; m,=V ¢/|V.¢
ds,

o’ =1-9¢) (%g:C2 :«9+%(£:C3 :g):g-l-...j;

5

11.3. Phase field parameters
Damage distribution

k
bzl

Jig +Jkg=1 =k +k+Dye VEDHT gl

¢ = 0 |§0| Z §0t >
Gradient and cohesive energy coefficients
16(k> +k 2
(2@k+DJkP+k—madk?+k+2k+n)

Location of the furthest damaged plane
. 4k +D)In(Vk +k+1) p
" 20k + OV + k — VKR 1k + 2k +1)

Elastic energy at damage initiation
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11.4. Stress tensor
Large strains
P=P°+P;

P’ =(1—¢5)”F-(C2 :E+%E:C3 :E+...j;

B

P =poj?S(l/lv +y ) I-m®m)-F'; m=V¢/|V¢
0

o=0,+t0,;

o, :}(1_@"17.(('2 :EJF%(E:C3 :E)-l—...j-FT;

o =pj—§;(l/fv +y ) I -m®m).

Small strains
c=0,+0,;

o, =(1—¢)"(C2 Z€+%£:C3 :£+...);
o' =py’ +y ) I-m®m); m=V¢/|Vg;.
11.5. Ginzburg-Landau equation

11.5.1. Reference configuration
Compact form

b

oy 2@ 1dS) +w“>)}

ior =1 -2%
¢("o>f)—L{ o0 N

L=p,L= 0 m, - P-m, <0;
L otherwise.

Detailed form (large strains)
l . ds das _,
=o(r, )+ 1'( V' +A— f'(p)=pf—V ¢+
L¢5(o )+1'(9) dSOf(¢) 'BdSO ¢

F'-m
|
Jﬂvo¢'[m0‘V0F ‘I;‘T—O

+|F T my|FT :VOF}LJ(l//V +y©)x
m,|

A-m@m,

{(Vomo-FI-FT+mo-VoF1~FT+mo-F"VoFT>' F7.v.g
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V.-m e
=0 m, - F' - F7" -m,—

[F7-v 4
(II;_TT'—.VVL;)Z'(VC’F_T'V°¢+F_T’Vevo¢)'(1_mo®mo)'F_l'F_T'mo}+
Jm,-F~' .F—T.I‘;#S’Z‘O.((F—T :VOF)(WV +‘//C)+,5VOVO¢'VO¢).

Detailed form (small strains)

%¢(r0,t)+1'(¢)\ye +A(1+(I-m,®m,):€) f'($) =
B(1+(I-m,®m,):&)Vip+BV.$-V.&:(1-m,®@m,)-

ﬂ(uZ—QJ(Ivoqﬁlvomo (& (T=m, ®m,))+V 4V &:(1-m,@m,)+ o7
m, - (mNV2g—m,-(VV.$) )~V g-&-(I-m,®m,)-(£:V.8))-

2pm;-¢-(I-my®@m,)-VV ¢-m,,

11.5.2. Deformed configuration
o((dS/ds)w" +y°
Dy(r,1) _ 8¢(r,t)+v.V¢L[_é;_l//+V{F,‘ (@S 1ds,)y" +y ))J:F];

Dt Ot oV ¢
(98)

L=p,L=

— 10 m-c-m<0;
L otherwise.

11.6. Momentum balance equation
Large strains

V.- P+p,f=p,w- (99)

Small strains
V-o+pf=pv. (100)

11.7. Boundary condition for ¢

Reference configuration

7
——=0 =1 =0.
n, N , or ¢ or ¢ (101)

Deformed configuration

n-——=0, or ¢=1or ¢=0. (102)
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12. Parameter calibration

In this section, we calibrate the phase field parameters and the stress-strain curves for
homogenous uniaxial tension. The Cauchy stress o1 vs. the engineering strain e; curves along the
crystallographic (and loading) directions <100> and <111> of the perfect crystal of silicon (Si)
with a diamond lattice are taken from the first principle simulations in Cerny, Rehdk, Umeno, &
Pokluda (2012). Our equations must be transformed into the stress and strain measures presented
in (Cerny et al., 2012). For stresses, Eq. (66) is used and simplified to

o1=Pi/(1+exrtes) and  ay=(1+e1)Ti/(1+extes). (103)
Components of the engineering and Lagrangian strains are related as
Ei=ei+0.5¢. (104)

As Eq. (103) shows, the Cauchy stress depends on the other components of the strain tensor as
well. Thus, e2 and ez must be evaluated to obtain o1. We use the known elastic constants
C11=C»=C33=166, C12=C13=C23=63, C14=Cs5=Cs6=80 GPa (Hennig, Wadehra, Driver, Parker,
Umrigar, & Wilkins, 2010) with axis 1 along the direction [100]. By rotating the elastic matrix,
we obtain the elastic constants for the coordinate system with axis 1 along direction [111]:
C11=204.043, C2=194.543, (C33=194.543, C12=43.968, C23=53.435, C13=44.054, C44=60.957,
Cs5=70.5, Ce6=61.0 GPa. Inverting the elastic matrices leads to compliance, and for the case of
only one nonzero component 770, we obtain

E1=0.0076T1/(1-@)", E2=E3=—0.0021T, /(1—¢)" for [100] and

E1=0.0053T1/(1-¢)", E2=E3=—-0.0009T1/(1-¢)" for [111],
where the stresses are in GPa. To plot the g-e curves, we combine Egs. (104), (105), and (49),
exclude the order parameter and resolve for o (for convenience, the superscript 1 is eliminated

(105)

from here on). The obtained o-e curve is shown in Fig. 10.
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Fig. 10. Cauchy stress-engineering strain diagrams for the homogeneous phase field solution for loading in the a)
[111] and b) [100] directions. Eq. (105) are utilized. Solid lines and dashed lines correspond to k=1 and k=15,
respectively. Points represent the first principle simulation results from (Cerny et al., 2012)).

We vary parameter 4 to achieve the best fit and use n=1 and two different values of k=1 and 15.
It is clear that k=15 gives a better correspondence with the first principle simulations in (Cerny et
al., 2012), but there is still room for improvement. The main reason for the discrepancy is related
to our desire to keep the theory simple and use the linear relationship between 7 and E before
damage starts. However, if we sacrifice the accuracy for small strains and change C> to 110 GPa
for [100] and 121 GPa for [111], i.e., change Eqgs. (105) to

E1=0.0091 T1/(1-@)", Ex=E3=—0.0021T, /(1- )" for [100] and

(106)
E1=0.008371/(1-@)", E2=E3=—0.0009T1/(1—- )" for [111],

we obtain a much better description of the larger strains (Fig. 11), especially for k=15.
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Cauchy stress, o (GPa)
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(b)
Fig. 11. Cauchy stress-engineering strain diagrams for the homogeneous phase field solution for loading in the a)

[111] and b) [100] directions. Eq. (106) are utilized. Solid lines and dashed lines correspond to k=1 and k=15,
respectively. Points represent the first principle simulation results from (Cerny et al., 2012).

All the parameters for our phase field are presented in Table 1 which are based on the dashed
lines, i.e., k=15 in Fig. 11.

Table 1
Phase field parameters for Si for tension in the [100] and [111]
directions. The references are shown in front of each parameter.

Crystallographic directions [100] [111]
n (best fit) 1 1
C> (GPa) (best fit) 110 121
A (GPa) (best fit) 6.0 42
y (J/m?*) (Messmer and Bilello, 1981) 1.34 1.14
d (nm) [current model, Eq. (68)] 0.45 0.54
do (nm) [from Eq. (107)] 0.54 0.1
N (Levitas et al., 2018) 0.83 1.7

B x10° (N) [current model, Eq. (78)] 0.57  0.58
&o (nm) [current model, Eq. (73)] 093 1.1

Knowing 4, (2, and the surface energy y, we can obtain d from Eq. (68). The gradient coefficient
is then determined from Eq. (78) as f=0.938yd and £,,=2.06d is obtained from Eq. (73).
The distance between two <100> and <111> planes do is given as

a=do,100=0.539 nm (Cerny et al., 2012); do.111= a/\3=0.311 nm, (107)

where a is the lattice constant. The value N:=d/do reported in Table 1 is close to 1, as would be
expected for a nanoscale model, i.e., the distance between two crack surfaces is equal to the
distance between the two nearest atomic planes (Levitas et al., 2018). The small discrepancy
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appears because some data (e.g., surface energy) are taken from different studies and due to use
of the second-order elasticity. Therefore, surface stresses cannot be neglected for this material
with small values of V.

13. Concluding remarks

A thermodynamically consistent phase field approach to the fracture in large strain framework is
presented. One of the main contributions is the introduction of the surface stresses, which
requires large-strain formulation even for infinitesimal strains. Another necessity of the large-
strain formulation is to avoid artificial penalization of the cohesive energy in the space between
crack surfaces. Therefore, cohesive and gradient energies should be defined in the reference
configuration, and only strains along the crack surface are allowable in their expressions. In solid
surfaces, the surface stresses consist of the elastic and structural parts. The elastic contribution to
the surface stresses results automatically from the solution of the coupled Ginzburg-Landau and
mechanics equations. After comparing the total surface stresses from the model with experiments
or atomistic simulations, one can develop a more sophisticated constitutive development for the
elastic surface stresses, if necessary. Thus, the main focus is on the structural part, which also
exists within the liquid-liquid and liquid-gas interfaces. The critical point is that a physical
phenomenon such as surface stresses is resulted by utilizing geometric nonlinearities. Thus, the
gradient and the cohesion energies are multiplied by the ratio of areas of elemental crack
surfaces after deformation and before it, dS/dSo. This leads to the desired isotropic biaxial surface
tension, with the force per unit length equal to the surface energy per unit deformed surface. The
explicit expression for the damage evolution equation has been obtained for the fully
geometrically nonlinear formulation, which leads to significant complication of the equation.
Several approximate expressions for the Ginzburg-Landau equation under different geometric
simplifications are presented. Without introducing some geometrically nonlinear terms, we could
not introduce consistent surface stresses, even at small strains. This highlights the necessity of
starting with a fully geometrically nonlinear formulation even for small strains. The surface
stresses affect the driving force of fracture in two ways. First, they disturb the mechanical
equilibrium equation by means of the additional contribution to the stress field which arises from
the surface stresses. In an other words, the mechanical equilibrium equation is changed from

Vo'+pf=pv (V.-P'+pf=py) to V-(c'+c")+pf=pv (V. -(P°+P)+p,f=
P, ). Second, it leads to several additional sophisticated terms in the Ginzburg-Landau
equation. At the level of the specific models:

1) A more general degradation function was introduced, including an additional material
parameter n in comparison to the traditional physical or fitting parameters in any phase field

approach to fracture. This parameter allows an improved description of the local stress-stress
curve at the nanoscale when it is known from atomistic simulations.
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2) The interpolation function for the cohesive energy introduced in this model leads to the crack
surface with a finite width of the damaged zone. This is in contrast to all the previous phase field
models, in which the intact phase is mathematically located at infinity.

3) The damage initiation criterion is formulated in the current model. Parameters n and & produce
portioning of the total stress work into the elastic work before damage initiation and during
damage.

Implementation of the derived equations for the surface stresses and the Ginzburg-Landau
equation into a finite element code and the solution of some boundary-value problems will be
considered in the next paper. Generalization for the anisotropic surface energy (Clayton and
Knap, 2015; Hakim and Karma, 2009; Mozaffari and Voyiadjis, 2015) can also be performed in
future work. The most popular method is to consider the anisotropic gradient energy (Wheeler
and McFadden, 1997) in addition to the anisotropic cohesion energy, in which the peak stress for
homogenous states is anisotropic as well. The other generalization of the developed theory can
be performed for the interaction between crack propagation and phase transformation
(Mamivand, Asle Zaeem, & El Kadiri, 2014), plasticity (Mozaffari and Voyiadjis, 2016; Ruffini
and Finel, 2015).

Note that Levitas et al. (2018) developed a phase field model for fracture, which is valid for an
arbitrary scale, from nano to macro. Development of the current paper can be implemented for
that model as well. However, the contribution of the surface stresses is essential at the nanoscale
only.

Appendixes. Some derivations

e Here we obtain explicit expression for 4 a5 in Eq. (27) is such way
dF dS,

d ds _

‘:a’J
dF dS, dF

Ly [F d—F\F m\+J \F cmy|=JF T |F7m|-
(108)
dg([ m@m)-F~',

0

JIFT -m|(m®m)-F" =J|F" -m|(I-m®m)-F7 =

where the equality dJ/dF =JF~" was used, and the second derivative was manipulated by

defining
d B d ~ N2
2 = gm0 (109

In the component form
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= d%m(F,;Tmoijka,‘l )1/2 B 2‘1"1 .mo‘ d;nn (F_,»Z]mojmokE{T) -
. (110)
— " m om F.T.
[ om | aE,, "

Now we use dF,'/dF, =-F,;'F.'" which is a consequence of the equations F™'-F =1,

Jjm~ ni
dF'-F +F"'-dF =0,and dF ' = —F ' -dF -F . Then we continue from the last term in Eq.
(109):
= T FR L my T = e i T =
‘F‘T-mo‘ ‘F"T-mo‘
1 ! (F,'V.¢,)(F'V.g ) F.' =- ! ! Vg VHF' =
[F7om,| (Vg S R T (g T (1)
2
_ Tl (V¢) > mmmiFvni—l — _‘F—T . mo‘mmmiE;T,
[F7my| (V.9)
which is the component form of
Z=—|F" -m|(m®m)-F". (112)
Note that we also used
Vé=F" V4, Vg =F"V.4,. (113)
e Let us calculate M, which is defined from Eq. (37) as
0 0 12
=—|F " m|=——(F " -m)-(m,-F")) . 114
Gv gt el =gy (F 7 my)-(my - F ) (114)

In a component form

0 - 12 1 0 )
L vg (Fij oo F 1) ) Z‘F‘T .mo‘ ov.¢, (F"f "y, my, F T) B
(115)
1 _ .\ Om 1 o
‘FT_mO‘( iijOk ;kr)av();l |VO¢HF—T O‘mOkEf IF;/_T(I.iI_mijOI)ﬂ
where we used
om, _O(V/IVg|) (3V.4/V.4)|V.4-(0V.4/V.$)OV.S e

aV.g V.4 (V.9
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IVY-(VH/VH)OVS I-m,®m,
(V.9) Vel

Finally, in index-free notations, we have

I-my®@m,

= . _1. _T.
M=m, F"'-F vy

(117)

Since (I-m,®my)-my=my—m,=0 and, consequently (I-m,®m,)-Vp=0 thus,
M -V ¢ =0 and the last term in Eq. (36) vanishes.

e Yisdefined in Eq. (37) as

Y=V, % = (J|F*T m0|) =JV ((F 7" -m,)-(m, -F’l))l/2 +HFTmy |V .. (118)
0

°

For the first term on the right side, we use

, _ 12 1 o
Y= ((FJ "my my, F') )’, = m(mof}f Fmy ),, =
! (119)
o) (o, Frl F moy +my, FF my ).
0
Thus, in the direct tensor notations, Y is
Y :ﬁ((mo-VOF"l)-<F"T -mo)+V°m0-F"l .F" -m0)+‘F"T -mO‘VOJ =
0
F'm 120
J(myVF " +Vm F) o J[FT om [F7 oV F = (120)
‘F -mo‘
J(mVF+Vm F)m+J|FTm|F 7 :VF.
We have used V_J = %{_:VQF =JF " :V_F and V_m can be evaluated as
VV PV P-(VV.S-V B/ |V POV —
Vo v Y _V- B|V.8-(V.V.$ 2 9/|V.¢|)®V. ¢ _yy g lom®m (121)
V.4 (V.9) v.4|

which is a symmetric tensor. Note that m, -V m, =0 and therefore V ¢-V m,=0 while
evaluating V _¢-Y in Eq. (36).

e Scalar N is defined in Eq. (37) as
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my, F; ol (Ij,—mojm()l)

N=V. M= - /2
(E,;Tvo¢mﬂfvo¢n)
] A +m,
F,'V,
ﬁ( V.4, +EIVS, 1)m0k ]Ey‘iT([ﬂ_mo/‘mOl)'

We used my,;,;my, =0,

ie, V.m,-m,=0, which comes from my m,, =m,; m, =
0.5(my;m,;), =0

, where the symmetry property of v s, is used from Eq. (121). Thus,

I -
N:(Vomo'F_l'F_T+m0-VQF_l-F‘T+m0-F‘1.VOF_T)'M_

P v
‘Fv—gqj‘ FF T m — (123)
F'-v¢

— = _ (VF' - V¢+F " -VV ) (I-my®m,)-F" -F’
(F"-V_ )

2
One can evaluate the scalar V_-m, =V _- Ve _Vpmm V.V.g m, .

TVl V.9
e Here, we simplify Eq. (18)2 and Eqgs.(114), (118), and (122) for the small strains and
rotations in such a manner:
as T r L0\2 112
&, =J|F T my|=J((F 7 -my)-(my-F)) " =J[(I-g-0)-my)-(m,-(I-£+®))] =

(124)
J(1=2(my®@my):€)" =(1+1:8)(1-(m,®m,): &) =1+(I ~m,®@m,): &.

We neglect the higher-order terms in & and @ and their combination. Using ‘F ’T~m0‘ ~

1—(m,®m,): & from Eq. (124), we obtain

oF - - - -
_ | ’"0‘:5(1 (my®my):&) _ 2my -5 LM Sy (125)
ov ¢ oV ¢ \&4

Using Eq. (124) again, we obtain
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Y=V (dS/dS) =V, (1+(I-m,®m,): &)=

(126)
Vv, ((I—m0 ®m0):g) =(I-my®m,):V e-2m &-Vm,
Then, by utilizing Eq. (125), we obtain
N=V . .M=-2V,. mo.g.w =2V m,: g.% -
V.4 V.4
/ ® (127)
2m, V¢ #— 2m,-&-(mV>p—m,-(V.V.$) )/ (V. $).

The direct simplification of M, ¥, and N from Egs. (117), (120), and (123) is given as follows.
We neglect the higher-order terms in ¢; thus, (I —&)-(I —g) = I —2& . M is simplified as

o I-m,Qm, I-m®m,

M=m .F_I.F ~m -(I-&)-(-&)-——— =
0 ‘F—T.Vo¢‘ 0 ( ) ( ) |V°¢|
1 ® 1 ® (128)
mo.(l_zg).Mz_zmo.g.M,
V.4 V.4
where (I—m0 ®m0)-m0 =m,—m, =0 was used. Similarly, Y is
4 -1 FﬁT'mo -T -T
Y=J(m,VF"+V.m,F )-T—+J\F .mO\F 'V F =~
‘F‘ -mo‘
I—¢)
(—mO-VOg+VOm0-(l—8))-(7f¢+I:Vogz
[F7 | (129)
-m,Ve-(I-¢)m+Vm I-¢)-(I-¢)-m+I1:V g=
-m,Ve-I-m+Vm, (I-2¢)-m+1:V e=
~V.e:(m,®m)+V.m (I-2&)-m+1:Ve=V g:(I-m,®m)-2V.m &-m,,
where we used V _m, -m, = 0 . And for N
N:(VomO-F“-F‘T+m0-VOF‘I-F‘T+m0-F‘1-VOF‘T):I_”;°—®m°—
[F7-v 4
V., m; 1 T
Y (e FVFTom )=
[F7.v. 4 (g ) (130)
-T
£ Ve V°¢2 -(VOF’T-V°¢+F’T-VOVO¢)-(I—m0®m0).F*1.F*T.moz
(F"-v.9)
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(V- (I=8)- (=) =y V.2 -(I—&) —my (I —£)-V g): -0 Do _

V.4
V. -m,
© O (I—g)-(I—€)-m, —
Z R
(I-8)-V.
W'(_V°8.V°¢+(I_5)'VOVO¢)’(I_”’0®mo)-(1—8)-(1—8)-m0.
Since (I—my®@m,)-(I—&)-(I—&)-my=(I—m,®m,)-m, =0, the last term vanishes
and
N=(V°m0.(1—25)—2m0.vog):l—|m+§n%_
V|°V’;10 mo-(I_zg)-mO:(Vomo_zvomo.g_zmo_vog):l_p)%
v o 1 ® ° (131)
o mo(mO—ZmO-g).mO:_zvcmo; 8'M _
|V0¢ |V°¢
2m0 'Vog . %—2’"0 &€ (mOVf¢—m0 .(V°V°¢)T)/(Vo¢)2,

where we used V.my:(I-my®my)=V -m —m,-Vm,-my=V_-m; and m,-myV, -m,=
V. -m,. Eqs (128)-(131) are the same as Eq. (125)-(127) from a different derivation. We did not

introduce the rotation tensor into the derivations here because it vanishes, similar to Eq. (124).
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