


through its cost function and the aim of every player is to minimize this cost function by
controlling its state. Roughly speaking, the state process of one player is associated with a
vertex of the network graph. When the graph is directed and if there is an arrow from j to
i, the cost function of player i depends on the state process of player j. Furthermore, when
the graph is random, the cost function of player i depends on the state process of player j
with some probability of the presence of an arrow from j to i.

The goal of studying the stochastic differential game problem on networks is to determine
and analyze the Nash equilibria of the game for different types of networks. There are two
extreme types of networks describes as follows.

On one hand, we can consider a fully connected network with interaction of mean-field
type, described in Figure 1(a). When the number of players goes to infinity, with appropriate
scaling, this kind of game can be approximated by a mean field game. This approximation
problem by mean field games has been widely discussed, for instance in Lasry and Lions
[9, 10, 11] and Lacker [8]. Stochastic games on infinite random networks have been proposed
and studied. For instance, Delarue [5] discussed a simple toy model with a large number of
players in mean field interaction when the graph connection between them is not complete but
is of Erdős-Rényi type. Recently, Caines and Huang [1, 2] investigated Graphon Mean Field
Games which relate infinite population equilibria on infinite networks to finite population
equilibria on finite networks.

On the other hand, the network can be very sparse, structured network. Detering, Fouque
& Ichiba [6] studied a particle system interacting through a one-dimensional directed chain
structure without the game aspect. Then Feng, Fouque & Ichiba [7] investigated linear-
quadratic games on a finite, directed chain of N vertices Figure 1(b), where there are arrows
from i+1 to i for i = 1, ..., N − 1 and a boundary condition at the vertex N . There are only
N − 1 directed edges in the network in contrast to the fully connected graph, where there
are

(
N
2

)
undirected edges. It is a complete opposite situation to the mean field games since

each player interacts only with its neighbor in a given direction on a directed chain network.
The objective of our paper is to investigate linear-quadratic stochastic differential games

on random directed networks and to find their open-loop Nash equilibria explicitly in a similar
spirit of the work by Carmona, Fouque and Sun [4]. We propose first a stochastic game
on a random directed chain network shown in Figure 2. Then, we generalize the result to
stochastic differential games on a random two-sided directed chain and on a random directed
tree structure as two extensions of random directed chain graphs. In this framework, the
graph represents interactions among players through the cost functions but not necessarily
reflects physical (spatial) distance among players. The notion of neighbor refers to the
presence of a link (edge) in the graph.

The paper is organized as follows. In Section 2, we study a stochastic game with infinite
players on a directed chain structure and construct an open-loop Nash equilibrium of the
system. We assume that the interaction between two neighbor is random but frozen in time
and i.i.d. among all the successive pairs of neighbors. Section 3 is devoted to the analysis of
an extension of Section 2, which considers a game for countably many players with random
double-sided interactions and studies the effect of random double-sided interactions on the
open-loop Nash equilibrium. We extend our results to a directed tree structure with random
interactions between players in the neighboring generations in Section 4. We conclude in
Section 5 and Appendix A includes some technical proofs and discussions.
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Figure 1: (a) Fully connected graph, (b) Finite directed chain graph.

2 Random Directed Chain Game

2.1 Setup and Assumptions

In Feng, Fouque & Ichiba [7], we have studied a stochastic game with infinite players on
a directed chain structure and found an open-loop Nash equilibrium of the system. In
this paper, we are still looking at an infinite-player system but assuming the interaction
between every two neighbors is random as follows. We introduce a binary random variable
Rn which represents the random interaction between player n and n + 1. The {Rn, n ≥ 1}
are independent and identically distributed random variables taking values in {0, 1} with
probabilities p0 and p1 = 1 − p0. When Rn is zero, we assume player n has no interaction
with player n+ 1. An example of the chain structure is shown in Figure 2.

1 2 3 4 × 5 6 · · · · · ·

Figure 2: Example of a Random Directed Chain: R1 = R2 = R3 = R5 = 1; R4 = 0

We assume the dynamics of the states of all players are given by the stochastic differential
equations of the form: for i ≥ 1

dX i
t = αi

tdt+ σdW i
t , 0 ≤ t ≤ T, (1)

where (W i
t )0≤t≤T , i ≥ 1 are one-dimensional independent standard Brownian motions. Here

and throughout the paper, the argument in the superscript represents index or label but not
the power. For simplicity, we assume that the diffusion is one-dimensional and the diffusion
coefficients are constant and identical denoted by σ > 0. The drift coefficients αi’s are
adapted to the filtration of the Brownian motions and satisfy E[

∫ T

0
|αi

t|2dt] < ∞ for i ≥ 1.
The system starts at time t = 0 from i.i.d. square-integrable random variables X i

0 = ξi,
independent of the Brownian motions and, without loss of generality, we assume E(ξi) = 0
for i ≥ 1.

In this model, each player i chooses its own strategy αi, in order to minimize its objective
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function given by:

J i(α) =EX,R

{∫ T

0

(1
2
(αi

t)
2 +

ε

2
(X i+Ri

t −X i
t)

2
)
dt+

c

2
(X i+Ri

T −X i
T )

2

}

=EX

{∫ T

0

(1
2
(αi

t)
2 +

ε

2
(X i+1

t −X i
t)

2 · p1
)
dt+

c

2
(X i+1

T −X i
T )

2 · p1
}
,

for some constants ε > 0, c ≥ 0 and α = (α1, α2, . . .) with αi ∈ R. According to the objective
function, if a player is not in interaction with its right neighbor, then we assume she has no
incentive to do anything. This is a Linear-Quadratic differential game on a directed chain
network, since the state X i of each player i interacts only with X i+1 of player i+ 1 through
the quadratic cost function for i ≥ 1.

Remark 1. When every player is connected with the next one, i.e. p1 = 1, we get back to
the stochastic game on a directed chain structure, studied in Feng, Fouque & Ichiba [7].

2.2 Open-Loop Nash Equilibrium

In this section, we search for an open-loop Nash equilibrium of the system among the admis-
sible strategies {αi

t, i ≥ 1, t ∈ [0, T ]}. We construct the equilibrium by using the Pontryagin
stochastic maximum principle (see [3] for stochastic maximum principle in the context of
mean-field games).

The corresponding Hamiltonian for player i is given by:

H i(x1, x2, · · · , yi,1, · · · , yi,ni , α1, α2, · · · ) =
ni∑

k=1

αkyi,k +
1

2
(αi)2 +

ε

2
(xi+1 − xi)2 · p1, (2)

assuming it is defined on real numbers xi, yi,k, αi, i ≥ 1, k ≥ 1, where only finitely many yi,k

are non-zero for every given i. Here, ni is a finite number depending on i with ni > i. This
assumption is checked in Remark 2 below. Thus, the Hamiltonian H i is well defined for
i ≥ 1.

The value of α̂i minimizing the Hamiltonian H i with respect to αi, when all the other
variables including αj for j 6= i are fixed, is given by the first order condition

∂αiH i = yi,i + αi = 0 leading to the choice: α̂i = −yi,i.

The adjoint processes Y i
t = (Y i,j

t ; j = 1, . . . , ni) and Z
i
t = (Z i,j,k

t ; 1 ≤ j ≤ ni, k ≥ 1) for
i ≥ 1 are defined as the solutions of the system of backward stochastic differential equations
(BSDEs): for i ≥ 1, 1 ≤ j ≤ ni





dY i,j
t = −∂xjH i(Xt, Y

i
t , αt)dt+

∞∑

k=1

Zi,j,k
t dW k

t

= −p1 · ε(X i+1
t −X i

t)(δi+1,j − δi,j)dt+
∞∑

k=1

Zi,j,k
t dW k

t ,

Y i,j
T = ∂xjgi(XT ) = p1 · c(X i+1

T −X i
T )(δi+1,j − δi,j);

(3)
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for 0 ≤ t ≤ T . Particularly, for j = i and j = i+ 1, it becomes:





dY i,i
t = p1 · ε (X i+1

t −X i
t) dt+

∞∑

k=1

Zi,i,k
t dW k

t , Y i,i
T = −p1 · c (X i+1

T −X i
T ),

dY i,i+1
t = −p1 · ε(X i+1

t −X i
t)dt+

∞∑

k=1

Zi,i+1,k
t dW k

t , Y i,i+1
T = p1 · c(X i+1

T −X i
T ).

(4)

Remark 2. When j 6= i, i + 1, dY i,j
t =

∞∑
k=1

Zi,j,k
t dW k

t and Y i,j
T = 0, which gives Zi,j,k

t ≡

0, 0 ≤ t ≤ T for all k. Thus Y i,j
t ≡ 0 , 0 ≤ t ≤ T for all j 6= i, i+ 1. There must be finitely

many non-zero Y i,j’s for every i. Hence, the Hamiltonian H i in (2) can be rewritten as

H i(x1, x2, · · · , yi,i, yi,i+1, α1, α2, · · · ) = αiyi,i + αi+1yi,i+1 +
1

2
(αi)2 +

ε

2
(xi+1 − xi)2 · p1.

We also note that Y i,i+1
t = −Y i,i

t and Zi,i+1,k
t = −Zi,i,k

t , so that it’s enough to find Y i,i
t .

Considering the BSDE system and its terminal condition, we make an ansatz of the form:

Y i,i
t =

∞∑

j=i

φi,j
t X

j
t , 0 ≤ t ≤ T (5)

for some deterministic scalar functions φt satisfying the terminal conditions: φi,i
T = p1c, φ

i,i+1
T =

−p1c, and φi,j
T = 0 for j ≥ i+ 2.

Substituting the ansatz, the optimal strategy α̂i and the controlled forward equation for
X i in (1) become 




α̂i
t = −Y i,i

t = −
∞∑
j=i

φi,j
t X

j
t ,

dXj
t = −

∞∑
k=j

φj,k
t Xk

t dt+ σdW j
t .

(6)

Differentiating the ansatz (5) and substituting (6) leads to:

dY i,i
t =

∞∑
j=i

[Xj
t φ̇

i,j
t dt+ φi,j

t dX
j
t ]

=
∞∑
k=i

(
φ̇i,k
t −

k∑
j=i

φi,j
t φ

j,k
t

)
Xk

t dt+ σ
∞∑
k=i

φi,k
t dW k

t .
(7)

Here φ̇t represents the time derivative of φt. Comparing the martingale terms and drift
terms of the two Itô’s decompositions (4) and (7) of Y i,i

t , the martingale terms give the
deterministic (and therefore adapted) processes Zi,i,k

t :

Zi,i,k
t = 0 for k < i, and Zi,i,k

t = σφi,k
t for k ≥ i. (8)
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Moreover, the drift terms show that the functions φt must satisfy the system of Riccati
equations :

φ̇i,i
t = φi,i

t · φi,i
t − p1 · ε, φi,i

T = p1 · c,
φ̇i,i+1
t = φi,i

t · φi,i+1
t + φi,i+1

t · φi+1,i+1
t + p1 · ε, φi,i+1

T = −p1 · c,
` ≥ i+ 2 : φ̇i,`

t =
l∑

j=i

φi,j
t φ

j,`
t , φi,`

T = 0,

(9)

The Riccati system is solvable and the solutions only depend on the “distance” ` − i.
Thus, if we define φj−i

t := φi,j
t for all i ≥ 1, j ≥ i and p := p1, we can rewrite the system (9)

φ̇0
t = φ0

t · φ0
t − pε, φ0

T = pc,

φ̇1
t = 2φ0

t · φ1
t + pε, φi,i+1

T = −pc,
k ≥ 2 : φ̇k

t =
k∑

j=0

φj
tφ

k−j
t , φk

T = 0.

(10)

Lemma 1. With c ≥ 0, and ε > 0, the solution to the Riccati system (10) satisfies

∞∑

k=0

φk
t = 0; φ0

t =
√
p · (−ε− c

√
pε)e2

√
pε(T−t) + ε− c

√
pε

(−√
ε− c

√
p)e2

√
pε(T−t) −√

ε+ c
√
p
> 0 when p 6= 0, (11)

for 0 ≤ t ≤ T . Moreover, the functions φk
t ’s are obtained by a series expansion of the

generating function St(z) =
∑∞

k=0 z
k φk

t , z ≤ 1 of the sequence {φ`} given by St(1) ≡ 0, and
if z < 1,

St(z) =
√
p ·

(
− ε(1− z)− c(1− z)

√
pε(1− z)

)
e2
√

pε(1−z)(T−t) + ε(1− z)− c(1− z)
√
pε(1− z)

(
−

√
ε(1− z)−√

pc(1− z)
)
e2
√

pε(1−z)(T−t) −
√
ε(1− z) +

√
pc(1− z)

(12)

for every 0 ≤ t ≤ T .

Proof. Define the generating function St(z) =
∑∞

k=0 z
k φ

(k)
t where 0 ≤ z < 1 and φ

(k)
t = φk

t

in (10) to avoid confusion with derivation. Then substituting (10), we obtain

Ṡt(z) =
∞∑

k=0

zkφ̇
(k)
t = (St(z))

2 − pε(1− z), 0 ≤ t ≤ T ; ST (z) = pc(1− z). (13)

• For z = 1, we get the ODE: Ṡt(1) = (St(1))
2 , ST (1) = 0. The solution is St(1) ≡ 0 for all

t. Because the series defining St(1) may not converge, we take a sequence {zn} → 1. The
limit of St(zn) converges to the ODE above, and we can get the conclusion. Then we deduce:

∞∑

k=0

φ
(k)
t = 0, i.e., φ

(0)
t = −

∞∑

k=1

φ
(k)
t .
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• For z 6= 1, the solution to the Riccati equation (12) satisfies:

St(z) =

(
− pε(1− z)− pc

√
pε(1− z)(1− z)

)
e2
√

pε(1−z)(T−t) + pε(1− z)− pc
√
pε(1− z)(1− z)

(
−

√
pε(1− z)− pc(1− z)

)
e2
√

pε(1−z)(T−t) −
√
pε(1− z) + pc(1− z)

−−−→
T→∞

√
pε(1− z),

which gives (12).

Remark 3. It follows from Lemma 1 that the forward dynamics (6) can be formally written
as:

dX i
t = −

∞∑

j=0

φj
tX

i+j
t dt+ σdW i

t = φ0
t ·

( ∞∑

j=1

−φj
t

φ0
t

X i+j
t −X i

t

)
dt+ σdW i

t (14)

for i ≥ 1, 0 ≤ t ≤ T . This is a mean-reverting type process, since φ0
t > 0. We also see that

this system is invariant under the shift of indices of individuals. In particular, the law of X i

is the same as the law of X1 for every i.

Here is a a summary of this section on the random infinite player game.

Proposition 1. An open-loop Nash equilibrium for the random infinite-player game with
cost functionals J i is determined by (14), where {φj

t , 0 ≤ t ≤ T ; j ≥ 0} are the unique
solution to the infinite system (10) of Riccati equations.

2.3 Stationary Solution and Catalan Markov Chain

By taking T → ∞, we look at the stationary solution of the Riccati system (10) satisfying
φ̇j
· = 0 for all j. Without loss of generality, we assume ε = 1. Otherwise the solution

should be multiplied by
√
ε for all {φk, k ≥ 1}. Then the system gives the solutions and the

recurrence relation:

φ0 =
√
p, φ1 = −

√
p

2
, and

n∑

k=0

φkφn−k = 0.

This is closely related to the recurrence relation of Catalan numbers. By using a moment
generating function method as in Appendix A.1, we obtain the stationary solution:

φ0 =
√
p, φ1 = −

√
p

2
, and φk = − (2k − 3)!

(k − 2)! k! 22k−2

√
p for k ≥ 2.

Let q0 = − φ0

√
p
= −1, q1 = − φ1

√
p
=

1

2
, and qk = − φk

√
p
=

(2k − 3)!

(k − 2)!k!

1

22k−2
for k ≥ 2. By

lemma 1, we have the relation:
∞∑
k=0

qk = 0. Then we consider the continuous-time Markov
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chain M(·) with state space N and Catalan generator matrix

Q =




q0 q1 q2 q3 · · ·
0 q0 q1 q2

. . .

0 0 q0 q1
. . .

. . . . . . . . . . . .



. (15)

Note that the transition probabilities of the continuous-time Markov chain M(·), called a
Catalan Markov chain, are pi,j(t) = P(M(t) = j|M(0) = i) = (etQ)i,j, i, j ≥ 1, t ≥ 0.
With replacement of φj

t , t ≥ 0 by the stationary solution φj in (1) and assuming σ = 1,
the infinite particle system (X i

· , i ≥ 1) can be represented formally as a linear stochastic
evolution equation:

dXt =
√
pQXtdt+ dWt; t ≥ 0, (16)

where X. = (Xk
. , k ≥ 1) with X0 = x0 and W. = (W k

. , k ≥ 1). Its solution is:

Xt = et
√
pQx0 +

∫ t

0

e(t−s)
√
pQdWs; t ≥ 0.

Without loss of generality, let us assume X0 = 0. Then, for t ≥ 0

X i
t =

∫ t

0

∞∑

j=i

(exp((t− s)
√
pQ))i,jdW

j
s =

∫ t

0

∞∑

j=i

pi,j(t− s)dW j
s

=

∫ t

0

∞∑

j=i

P(M(t− s) = j|M(0) = i)dW j
s = EM

[∫ t

0

∞∑

j=i

1(M(t−s)=j)dW
j
s |M(0) = 0

]
;

where the expectation is taken with respect to the probability induced by the Markov chain
M(·), independent of the Brownian motions (W j

· , j ∈ N0). This is a Feynman–Kac represen-
tation formula for the infinite particle system X· in (16) associated with the continuous-time
Markov chain M(·). We can compute explicitly the corresponding transition probability
(pi,j(·)).

Proposition 2. The Gaussian process X i
t , i ≥ 1 , t ≥ 0 in (16), corresponding to the

Catalan Markov chain, is given by

X i
t =

∞∑

j=i

∫ t

0

(exp(
√
pQ(t− s)))i,jdW

j
s =

∞∑

j=i

∫ t

0

pj−i (t− s)2(j−i)

(j − i)!
· F (j−i)(−p(t− s)2)dW j

s

=
∞∑

j=i

∫ t

0

pj−i (t− s)2(j−i)

(j − i)!
· ρj−i(−p(t− s)2) e−

√
p (t−s) · dW j

s ,

(17)
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where W j
· , j ∈ N are independent standard Brownian motions and ρi(·) is defined by

ρi(x) =
1

2i

2i−1∑

j=i

(i− 1)!

(2j − 2i)!!(2i− j − 1)!
· (−x)− j

2 , (18)

for i ≥ 1, and ρ0(x) = 1 for x ≤ 0. Moreover, when p 6= 0, the asymptotic variance of X i
t ,

i ≥ 1 is finite, i.e.

lim
t→∞

Var(X i
t) = lim

t→∞
Var(X1

t ) =
1√
2 p
.

Proof. Given in Appendix A.2.

3 Random Two-sided Directed Chain Game

To extend the investigation of random directed chain in Section 2, we will consider a linear-
quadratic stochastic game for countably many players with random double-sided interac-
tions over a finite time horizon [0, T ] . We shall study the effect of random double-sided
interactions on the open-loop Nash equilibrium and compare it with the random one-sided
(directed) chain interaction in Section 2. To represent the random interactions of player n
in two directions, we introduce the binary random variables Rn and Ln. The Rn’s for n ∈ Z

are independent and identically distributed random variables taking values in {0, 1} with
probabilities p0 and p1 = 1 − p0. The Ln’s for n ∈ Z are also independent and identically
distributed random variables taking values in {0, 1} with probabilities q0 = 1 − q1 and q1.
{Rn, n ∈ Z} is independent of {Ln, n ∈ Z}. When Rn is one, we assume player n is interact-
ing with player n+ 1. When Ln is one, we assume player n is interacting with player n− 1.
The random variable Rn affects the left arrow on the right of site n and the random variable
Ln affects the right arrow on the left of site n. Examples of the chain structure are shown
in Figure 3.

−1 × 0 × 1

(a) L0 = L1 = 0 ; R−1 = R0 = 1

−1 ×× 0 1

(b) L0 = R−1 = 0 ; R0 = L1 = 1

Figure 3: Examples of Two-sided Directed Chain

We assume the dynamics of the states of all players are given by the one-dimensional
stochastic differential equations of the form: for i ∈ Z

dX i
t = αi

tdt+ σdW i
t , 0 ≤ t ≤ T, (19)

where (W i)0≤t≤T , i ∈ Z are independent, standard Brownian motions, independent of the
initial values X i

0 := ξi , i ∈ Z , the initial values ξi are i.i.d. with finite second moments
for i ∈ Z , a positive constant σ > 0 is fixed and αi

· is a control of player i adapted to the

filtration of the Brownian motions with E[
∫ T

0
|αi

t|2dt] <∞ for i ∈ Z .
In order to take into account the two-sided feature of the model, we introduce the pa-

rameter p ∈ (0, 1), which will measure the strength of the asymmetry between the right
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and left interactions. Notice that if p = 0 or 1, the chain is one-sided as already treated
in Section 2. We shall see how this parameter p and the weighted average pp1 + (1 − p)q1
appear in the Nash equilibrium.

In the model, player i controls its own strategy αi in order to minimizes the objective
function defined by

J i(α) = EX,L,R

{∫ T

0

(1
2
(αi

t)
2 +

ε

2
p (X i+Ri

t −X i
t)

2 +
ε

2
(1− p) (X i

t −X i−Li

t )2
)
dt

+
c

2
p (X i+Ri

T −X i
T )

2 +
c

2
(1− p) (X i

T −X i−Li

T )2
}

(20)

= EX

{∫ T

0

(1
2
(αi

t)
2 +

ε

2
p · p1(X i+1

t −X i
t)

2 +
ε

2
(1− p) · q1(X i

t −X i−1
t )2

)
dt

+
c

2
p · p1(X i+1

T −X i
T )

2 +
c

2
(1− p) · q1(X i

T −X i−1
T )2

}
,

:= EX

[ ∫ T

0

f i(Xt, α
i
t)dt+ gi(XT )

]
,

where f i(x, αi) :=
1

2
(αi)2 +

ε

2
p · p1(xi+1 − xi)2 +

ε

2
(1− p) · q1(xi − xi−1)2 ,

gi(x) :=
c

2
p · p1(xi+1 − xi)2 +

c

2
(1− p) · q1(xi − xi−1)2,

for some constants ε > 0, c ≥ 0, and x = (xi, i ∈ Z) , α = (αi : i ∈ Z) with αi ∈ R .
Each player optimizes the cost determined by the mixture of two criteria: distance from the
right neighbor in the directed chain with weight p and distance from the left neighbor with
weight 1− p. Here, the superscript i indicates the index but not the power. The functions
f i and gi denote the running cost and terminal cost of player i , respectively. To simplify
some notations, let us write S := R

Z and S2 := R
Z×Z .

3.1 Open-Loop Nash Equilibrium

We search for Nash equilibrium of the system among strategies {αi, i ∈ Z}. We construct
an open-loop Nash equilibrium by the Pontryagin stochastic maximum principle. The cor-
responding Hamiltonian for player i is defined by

H i(x, y, α) :=
∞∑

k=−∞
αk yi,k + f i(x, αi) ; (21)

=

ni∑

k=−ni

αk yi,k +
1

2
(αi)2 +

ε

2
p · p1(xi+1 − xi)2 +

ε

2
(1− p) · q1(xi − xi−1)2 ,

for x, α ∈ S , y ∈ S2 , i ∈ Z , where only finitely many yi,k are non-zero for every given i.
Here, ni is a finite positive number depending on i with ni > |i|. This assumption is checked
in Remark 4 below. Thus, the Hamiltonian H i is well defined for every i.

The value of α̂i minimizing the Hamiltonian H i with respect to αi, when all the other
variables including αj for j 6= i are fixed, is given by the first order condition

∂αiH i = yi,i + αi = 0 leading to the choice: α̂i = −yi,i.
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The adjoint processes Y i
t = (Y i,j

t ;−ni ≤ j ≤ ni) and Z
i
t = (Zi,j,k

t ;−ni ≤ j ≤ ni, k ∈ Z) for
i ∈ Z are defined as the solutions of the system of backward stochastic differential equations
(BSDEs): for i ∈ Z, −ni ≤ j ≤ ni





dY i,j
t = −∂xjH i(Xt, Y

i
t , αt)dt+

∞∑
k=−∞

Zi,j,k
t dW k

t

= −
(
εp p1(X

i+1
t −X i

t)(δj,i+1 − δj,i) + ε(1− p) q1(X
i
t −X i−1

t )(δj,i − δj,i−1)

)
dt

+
∞∑

k=−∞
Zi,j,k

t dW k
t ,

Y i,j
T = ∂xjgi(XT )

= cp p1(X
i+1
T −X i

T )(δj,i+1 − δj,i) + c(1− p) q1(X
i
T −X i−1

T )(δj,i − δj,i−1);
(22)

for 0 ≤ t ≤ T . Particularly, for j = i, it becomes:





dY i,i
t = [εp p1(X

i+1
t −X i

t)− ε(1− p) q1(X
i
t −X i−1

t )] dt+
∞∑

k=−∞
Zi,i,k

t dW k
t

= [−ε
(
pp1 + (1− p)q1

)
X i

t + εpp1X
i+1
t + ε(1− p)q1X

i−1
t ] dt+

∞∑
k=−∞

Zi,i,k
t dW k

t ,

Y i,i
T = c

(
pp1 + (1− p)q1

)
X i

T − cpp1X
i+1
T − c(1− p)q1X

i−1
T ,

(23)

Claim 1. In the case of a deterministic two-sided directed chain, i.e. p0 = q0 = 0, p1 =
q1 = 1 and 0 < p < 1, we have for i ∈ Z ,

Y i,i−1
· + Y i,i

· + Y i,i+1
· ≡ 0 , Zi,i−1

· + Zi,i
· + Zi,i+1

· ≡ 0 . (24)

This is quite different from the one-sided directed chain case where the effect of player i− 1
does not appear.

Proof. First, for the relation among player i and players i± 1 , note from (21) that for each
i ∈ Z ,

∂iH
i :=

∂H i

∂xi
(x, y, α) = −εp(xi+1 − xi) + ε(1− p)(xi − xi−1),

∂i+1H
i :=

∂H i

∂xi+1
(x, y, α) = εp(xi+1 − xi), ∂i−1H

i :=
∂H i

∂xi−1
(x, y, α) = −ε(1− p)(xi − xi−1),

and hence,

∂iH
i = −(∂i+1H

i + ∂i−1H
i) , and ∂ig

i = −(∂i+1g
i + ∂i−1g

i) .

Thus, (according to (22)), we claim that for i ∈ Z ,

Y i,i−1
· + Y i,i

· + Y i,i+1
· ≡ 0 , Zi,i−1

· + Zi,i
· + Zi,i+1

· ≡ 0 ,
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Remark 4. We can also see from (22) that Y i,j
· ≡ 0 , Zi,j,k

· ≡ 0 whenever j 6= i−1, i, i+1 .
Thus there must be finitely many non-zero Y i,j’s for every i.

For each i ∈ Z , we make the ansatz

Y i,i
t =

∞∑

k=−∞
φi,k
t X

k
t + ψi

t ; i ∈ Z , 0 ≤ t ≤ T , (25)

where (φi,j
· , i, j ∈ Z) , (ψi

· , i ∈ Z) are some differentiable deterministic functions satisfying
terminal conditions: φi,i

T = c
(
pp1 + (1 − p)q1

)
, φi,i+1

T = −cpp1, φi,i−1
T = −c(1 − p)q1, φ

i,k
T =

0 otherwise and ψi
T = 0 for i ∈ Z; and φi,k

· is assumed to be shift invariant, that is, it
depends only on the difference k− i but not on the values i, k themselves. Substituting the
ansatz, the optimal strategy α̂i and the forward equation for X i in (19) become





α̂i
t = −Y i,i

t = −
∞∑

k=−∞
φi,k
t X

k
t − ψi

t,

dXj
t = (−

∞∑
k=−∞

φi,k
t X

k
t − ψi

t)dt+ σdW j
t .

(26)

Using the “dot” notation for derivatives with respect to t and differentiating the ansatz (25)
and substituting (26) leads to:

dY i,i
t =

∞∑

k=−∞
φi,k
t dXk

t + (ψ̇i
t +

∞∑

j=−∞
φ̇i,j
t X

j
t )dt

=
[ ∞∑

`=−∞
(−

∞∑

k=−∞
φi,k
t φ

k,`
t + φ̇i,`

t )X`
t + ψ̇i

t −
∞∑

k=−∞
φi,k
t ψ

k
t

]
dt+ σ

∞∑

k=−∞
φi,k
t dW k

t .

(27)

Comparing the finite variation and local martingale parts of the semimartingale decomposi-
tions ((23) and (27)), we derive

Zi,i,k
t ≡ σφi,k

t ; 0 ≤ t ≤ T , i ∈ Z; (28)

and the following system of ordinary differential equations of Riccati type:

ψ̇i
t =

∞∑

k=−∞
φi,k
t ψ

k
t ,

φ̇i,j
t =

∞∑

k=−∞
φi,k
t φ

k,j
t + δj,i+1 · εp p1 − δj,i · ε

(
pp1 + (1− p)q1

)
+ δj,i−1 · ε(1− p) q1

(29)

for 0 ≤ t ≤ T , i, j ∈ Z with the terminal conditions

φi,i
T = c

(
pp1+(1−p)q1

)
, φi,i+1

T = −c pp1 , φi,i−1
T = −c (1−p)q1, φi,j

T ≡ 0 , j 6= i−1, i, i+1 ,
(30)

and ψi
T ≡ 0 for i ∈ Z .
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3.2 Discussion of the Riccati System (29)

Since we make the ansatz (25) shift invariant, that is, φi,k
· depends only on the difference

k − i , we may write φi,k
· = ϕk−i

· for some function ϕj
t , j ∈ Z , 0 ≤ t ≤ T . Here, note that

the superscript j is the index but not the power. Then we may rewrite (29) for φi,k
· as the

following ordinary differential equation for ϕj
· , j ∈ Z :

ϕ̇j
t =

∞∑

k=−∞
ϕk
t ·ϕj−k

t +δj,1·εp p1−δj,0·ε
(
pp1+(1−p)q1

)
+δj,−1·ε(1−p) q1 ; j ∈ Z , 0 ≤ t ≤ T ,

(31)
i.e., 




ϕ̇0
t =

∞∑
k=−∞

ϕk
t · ϕ−k

t − ε
(
pp1 + (1− p)q1

)
,

ϕ̇1
t =

∞∑
k=−∞

ϕk
t · ϕ1−k

t + εp p1,

ϕ̇−1
t =

∞∑
k=−∞

ϕk
t · ϕ−1−k

t + ε(1− p) q1,

ϕ̇j
t =

∞∑
k=−∞

ϕk
t · ϕj−k

t otherwise,

(32)

with ϕ0
T = c

(
pp1+(1− p)q1

)
, ϕ−1

T = −c(1− p) q1 , ϕ
+1
T = −cp p1 , ϕj

T ≡ 0 , j 6= −1, 0, 1 .

Remark 5. According to equation (32), the sum
∞∑

j=−∞
ϕj
t satisfies

d

dt

∞∑

j=−∞
ϕj
t =

( ∞∑

j=−∞
ϕj
t

)2
,

∞∑

j=−∞
ϕj
T = 0 . (33)

This ordinary differential equation has a unique solution

∞∑

j=−∞
ϕj
t ≡ 0 ; 0 ≤ t ≤ T . (34)

The generating function St(z) :=
∞∑

k=−∞
zkϕk

t , z ∈ C \ {0} , if it is well defined (and the

superscript j of zj is the power), satisfies the one-dimensional Riccati equation

Ṡt(z) =
∞∑

j=−∞
zjϕ̇k

t =
∞∑

j,k=−∞
ϕk
tϕ

j−k
t zj +

1

z
· ε(1− p)q1 + z · εp p1 − ε

(
pp1 + (1− p)q1

)

=
∞∑

k=−∞

∞∑

`=−∞
ϕk
tϕ

`
tz

k+` −
(
1− 1

z

)
ε(1− p)q1 − (1− z)εpp1

= [St(z)]
2 −

[(
1− 1

z

)
ε(1− p)q1 + (1− z) εpp1

]

= [St(z)]
2 − ε T (z) ; z ∈ C , 0 ≤ t ≤ T

(35)
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with ST (z) = c T (z), where T (z) = (1− 1
z
) (1− p)q1 + (1− z) pp1 .

• For z± =

(
pp1+(1−p)q1

)
±

√(
pp1+(1−p)q1

)2

−4pp1 (1−p)q1

2pp1
= 1 or

(1− p)q1
pp1

, T (z±) = 0. Then we

get the ODE: Ṡt(z
±) = (St(z

±))2 , ST (z
±) = 0. The solution is St(z

±) = 0. Then we can
conclude: ∞∑

k=−∞
(z±)kϕk

t = 0.

• For z ∈ C \ {0} and z 6= 1 or
(1− p)q1
pp1

, the solution St(z) is given by

St(z) =
∞∑

k=−∞
zkϕk

t = b(z) · (b(z) + q(z)) · eb(z)(T−t) − (b(z)− q(z)) · e−b(z)(T−t)

(b(z) + q(z)) · eb(z)(T−t) + (b(z)− q(z)) · e−b(z)(T−t)
−−−→
T→∞

b(z);

b(z) :=
√
ε T (z) =

[(
1− 1

z

)
ε(1− p)q1 + (1− z) εpp1

]1/2
,

q(z) := c T (z) =
(
1− 1

z

)
c(1− p)q1 + (1− z) cpp1 .

(36)

3.2.1 Stationary Solution for Two-sided Directed Chain Game

In this section, we want to see how the values p , p1 , q1 affect the game. For our analysis
let us consider the limits φ

j
t := limT→∞ ϕj

t of ϕ
j
t for t ≥ 0 , j ∈ Z , as T → ∞ and take

them as a stationary solution of (32). As T → ∞ , we have obtained from (36)

lim
T→∞

∞∑

j=−∞
zjϕj

t = lim
T→∞

St(z) = b(z) =
∞∑

j=−∞
zjφj

t ; t ≥ 0 , z ∈ {z : b(z) ∈ R, b(z) > 0} ,

where b(·) does not depend on t . Hence, the limit φ
j
t does not depend on t , and we

write it as constant φj for every j ∈ Z . Also, substituting this observation into (29) with
ψi
T = 0 , we observe ψi

t ≡ 0 , and hence, we obtain a dynamics for the stationary equilibrium:

dX i
t = −

∞∑

k=−∞
φi−kXk

t dt+ σdW i
t ; X i

0 = ξi ; i ∈ Z , t ≥ 0 . (37)

We shall identify the values φj , j ∈ Z and behaviors of X i
· , i ∈ Z .

The function b(z) can be rewritten as

b(z) =
√
ε
[(

1− 1

z

)
(1− p)q1 + (1− z) pp1

]1/2

=
√
ε ·

√
pp1 + (1− p)q1

[
1−

(
z

p p1
pp1 + (1− p)q1

+
1

z

(1− p)q1
pp1 + (1− p)q1

)]1/2

=
√
ε
(
pp1 + (1− p)q1

) [
1−

(
z w +

v

z

)]1/2
(38)
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for z ∈ C \ {0} ∩ {1±√
1−4wv
2w

} and define w = pp1
pp1+(1−p)q1

, v = (1−p)q1
pp1+(1−p)q1

, where 0 < p <

1, 0 ≤ p1 ≤ 1 and 0 ≤ q1 ≤ 1. First, by inequalities, we have wv =
pp1(1− p)q1(

pp1 + (1− p)q1
)2 ∈

[0, 1
4
].

• When wv = 0, i.e. p1 = 0 or q1 = 0, we get back to Section 2, one direction random chain
game. For example, when q1 = 0, each player is interacted with her/his neighbor with a
probability of pp1.
• In the case when wv = pp1 (1− p)q1 ∈ (0, 1

4
] , i.e. 0 < p1 ≤ 1 and 0 < q1 ≤ 1, we expand

formally

b(z) =
√
ε
(
pp1 + (1− p)q1

) ∞∑

i=0

(
1/2

i

)
(−1)i

(
z w +

v

z

)i

=
√
ε
(
pp1 + (1− p)q1

) ∞∑

i=0

(
1/2

i

)
(−1)i

i∑

k=0

(
i

k

)
wkvi−kz2k−i =

∞∑

j=−∞
zjφj ,

(39)

and hence, comparing the coefficients of zj and letting B = pp1 + (1− p)q1 , we obtain

φ0 =
√
εB

∞∑

`=0

(
1/2

2`

)(
2`

`

)
(−1)2`w`v` = 2F1(−1/4, 1/4, 1, 4wv) , (40)

φj =
√
εB

∞∑

`=0

(
1/2

2`+ j

)(
2`+ j

`+ j

)
(−1)2`+jw`+jv`

=
√
εB (−1)jwj

(
1/2

j

)
2F1

(
− 1

4
+
j

2
,
1

4
+
j

2
, 1 + j, 4wv

)
,

φ−j =
√
εB

∞∑

`=0

(
1/2

2`+ j

)(
2`+ j

`

)
(−1)2`+jw`+jv`

=
√
εB (−1)jwjv

1
1
− j

(
1/2

j

)
cosh

((
j − 1

2

)
tanh−1(

√
wv)

)

(41)

for j ≥ 1 , where tanh−1(·) is the inverse hyperbolic tangent function and 2F1(·) is the
hypergeometric function defined by

2F1(a1, a2; b1; z) :=
∞∑

n=0

(a1)n · (a2)n
(b1)n · n! · zn ; z ∈ C

with the rising factorial (a)0 = 1 , (a)n = a(a+ 1) · · · (a+ n− 1) for a ∈ C , n ≥ 1 .

3.2.2 Special Case: Catalan Markov Chain of the Deterministic Two-sided

Chain Game

When the chain is deterministic, i.e., p1 = q1 = 1, the stationary solution is give in (40) -

(41) by taking w = pp1
pp1+(1−p)q1

= p , v = (1−p)q1
pp1+(1−p)q1

= 1− p and B = pp1 + (1− p)q1 = 1.
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Remark 6. When the chain is deterministic and the interaction is symmetric, i.e. p1 =
q1 = 1 and p = 1

2
, solutions (40) - (41) suggest to take w = pp1

pp1+(1−p)q1
= 1/2 and

v = (1−p)q1
pp1+(1−p)q1

= 1/2 , and we obtain simpler forms:

φ0 =
2
√
2 ε

π
, φj = (−1)j ·

√
2ε

π

(
1/2

j

)
Γ(1 + j)

Γ((3 + 2j)/2)
, (42)

φ−j = (−1)j ·
√
ε(3j +

√
3)

2
√
2 3j

(
1/2

j

)
; j ≥ 1 .

Coming back to general p ∈ (0, 1) , we have by numerical evaluation,

φ0 > 0 , φj < 0 , j ∈ Z ,

and hence, (37) can be seen as a linear evolution equation. Without loss of generality, we

assume ε = 1 and σ = 1. Since we have the relation :
∞∑

k=−∞
φk = 0 in Remark 5, we can

consider a continuous-time Markov chain M(·) in the state space Z with generator matrix

Q = −




. . . . . . . . . . . . . . . . . . . . .

. . . · · · φ−1 φ0 φ1 . . . . . . . . .

. . . φ−k · · · φ−1 φ0 φ1 . . . . . .

. . . φ−(k+1) · · · · · · φ−1 φ0 φ1 . . .
. . . . . . . . . . . . . . . . . . . . .




. The infinite particle system (37)

can be represented as a stochastic evolution equation:

dXt = QXtdt+ dWt, (43)

where X· = (Xk
· , k ∈ Z) with X0 = ξ := (ξi, i ∈ Z) , W· := (W i

· , i ∈ Z) . The solution is:

Xt = ξetQ +

∫ t

0

e(t−s)QdWs; t ≥ 0, (44)

where euQ , u ≥ 0 forms the semigroup induced by the continuous-time Markov chain with
the generator Q and the transition probability matrix function pi,j(t) , i, j ∈ Z , t ≥ 0 in
the state space Z . Without loss of generality, let us assume X0 = 0. With these transition
probability matrix function, we may write the solution of (37) as

X i
t =

∫ t

0

∞∑

j=−∞
pi,j(t− s)dW j

s ; i ∈ Z , t ≥ 0 . (45)

The variance of X i
t is given by

Var(X i
t) =

∫ t

0

∞∑

j=−∞
[pi,j(t− s)]2ds <∞ . (46)
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Proposition 3. The Gaussian process X0
t , t ≥ 0 in (43), corresponding to the (Catalan)

Markov chain, is given by

X0
t =

∞∑

j=−∞

∫ t

0

(exp(Q(t− s)))0,jdW
j
s

=
∞∑

`=0

∑̀

m=−`

∫ t

0

(t− s)4`F (2`)(−(t− s)2)

(2`)!

(
2`

`+m

)
p`+m(1− p)`−mdW 2m

s

+
∞∑

`=0

∑̀

m=−(`+1)

∫ t

0

(t− s)4`+2F (2`+1)(−(t− s)2)

(2`+ 1)!

(
2`+ 1

`+ 1 +m

)
p`+1+m(1− p)`−mdW 2m+1

s ,

(47)

where W j
· , j ∈ Z¸ are independent standard Brownian motions and F (k)(x) = ρk(x)e

−√−x ,
with

ρk(x) =
1

2k

2k−1∑

j=k

(j − 1)!

(2j − 2k)!!(2k − j − 1)!
(−x)− j

2 , for k ≥ 1.

and ρ0(x) = 1 for x ≤ 0.

Proof. Given in Appendix A.3.

4 Random Directed Tree Game

Motivated by the discussion about the deterministic directed infinite tree game in Feng,
Fouque & Ichiba [7], we now look at a random tree structure. The connection and similarity
between random and non-random cases is illustrated in Corollary 10.

4.1 Setup and Assumptions

We describe a stochastic game on a directed tree where the interaction between every two
players in the neighboring generation is random. All players have a fixed number of potential
players in the next generation to interact with, denoted by a finite positive integer M . That
is, for n, k ≥ 1, player (n, k) is the k-th individual of the n-th generation and she can interact
with the players in the (n + 1)-th generation labelled as {(n + 1,M(k − 1) + j) : 1 ≤ j ≤
M}. We introduce the i.i.d. binary random variables Nn,k,M(k−1)+j, valued in {0, 1}, which
represent the random interaction between player (n, k) and player (n+ 1,M(k − 1) + j) for
1 ≤ j ≤ M , present with probability p, where 0 < p < 1. When Nn,k,M(k−1)+j is zero, we
assume player (n, k) has no interaction with player (n + 1,M(k − 1) + j) for 1 ≤ j ≤ M .
We assume the dynamics of the states of the players are given by the stochastic differential
equations of the form:

dXn,k
t = αn,k

t dt+ σdW n,k
t , 0 ≤ t ≤ T, (48)

where (W n,k
t )0≤t≤T , n, k ≥ 1 are one-dimensional independent standard Brownian motions.

We assume that the diffusion is one-dimensional and the diffusion coefficients are constant

95



and identical denoted by σ > 0. The drift coefficients αn,k’s are adapted to the filtration of
the Brownian motions and satisfy E[

∫ T

0
|αn,k

t |2dt] <∞. The system starts at time t = 0 from

i.i.d. square-integrable random variables Xn,k
0 = ξn,k independent of the Brownian motions

and, without loss of generality, we assume E(ξn,k) = 0 for every pair of (n, k).
In this model, each player (n, k) chooses its own strategy αn,k in order to minimize its

objective function of the form:

Jn,k(α) =EN,X

{∫ T

0

(
1

2
(αn,k

t )2 (49)

+
ε

2

( 1

N
M∑

j=1

Nn,k,M(k−1)+j X
n,k,M(k−1)+j
t −Xn,k

t

)2

· 1N 6=0

)
dt

+
c

2

( 1

N
M∑

j=1

Nn,k,M(k−1)+j X
n,k,M(k−1)+j
T −Xn,k

T

)2

· 1N 6=0

}

where N :=
M∑
j=1

Nn,k,M(k−1)+j for some constants ε > 0, c ≥ 0 and α = (αn,k : n ≥ 1, 1 ≤

k ≤ Mn−1) with αn,k ∈ R. When the player has no connection with any player in the next
generation, her insentive is to choose αn,k = 0.

Conditioning on
M∑
j=1

Nn,k,M(k−1)+j = dn,k where 0 ≤ dn,k ≤ M , and denoting pdn,k
=

P (
M∑
j=1

Nn,k,M(k−1)+j = dn,k) =

(
M

dn,k

)
pdn,k (1− p)M−dn,k , we get

Jn,k(α) = EX

{∫ T

0

(
1

2
(αn,k

t )2 +
ε

2

M∑

dn,k=1

pdn,k
· 1(

M
dn,k

)
∑

I∈Sdn,k

( 1

dn,k

∑

j∈I
Xn+1,j

t −Xn,k
t

)2
)
dt

(50)

+
c

2

M∑

dn,k=1

pdn,k
· 1(

M
dn,k

)
∑

I∈Sdn,k

( 1

dn,k

∑

j∈I
Xn+1,j

T −Xn,k
T

)2
}
,

where Sdn,k
= {(i1, · · · , idn,k

) : M(k − 1) + 1 ≤ i1 < · · · < idn,k
≤ Mk} denotes the set of

all possible combinations of dn,k elements between M(k− 1) + 1 and Mk with an increasing
order.
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4.2 Open-Loop Nash Equilibrium

We search for an open-loop Nash equilibrium of the directed random tree system among
strategies {αn,k;n ≥ 1, k ≥ 1}. The Hamiltonian for player (n, k) is of the form:

Hn,k(xm,l, yn,k;m,l, αm,l;m ≥ 1, 1 ≤ l ≤Mm−1) =
Nn∑

m=1

Mm−1∑

l=1

αm,lyn,k;m,l +
1

2
(αn,k)2

+
ε

2

M∑

dn,k=1

pdn,k
· 1(

M
dn,k

)
∑

I∈Sdn,k

( 1

dn,k

∑

j∈I
xn+1,j − xn,k

)2

,

assuming it is defined on Y n,k
t ’s where only finitely many Y n,k;m,l

t ’s are non-zero for every
given (n, k). Here, Nn represents a depth of this finite dependence, a finite number depending
on n with Nn > n for n ≥ 1. This assumption is checked in Remark 7 below. Thus, the
Hamiltonian Hn,k for player (n, k) is well defined for n ≥ 1.

The adjoint processes Y n,k
t = (Y n,k;m,l

t ; m ≥ 1, 1 ≤ l ≤ Mm−1) and Zn,k
t = (Zn,k;m,l;p,q

t ;
m, p ≥ 1, 1 ≤ l ≤ Mm−1, 1 ≤ q ≤ Mp−1) for n ≥ 1, 1 ≤ k ≤ Mn−1 are defined as the
solutions of the backward stochastic differential equations (BSDEs):

dY n,k;m,l
t = −∂xm,lHn,k(Xt, Y

n,k
t , αt)dt+

∞∑

p=1

Mp−1∑

q=1

Z
n,k;m,l;p,q
t dW p,q

t (51)

= −ε

M∑

dn,k=1

pdn,k
· 1(

M
dn,k

)
∑

I∈Sdn,k

( 1

dn,k

∑

j∈I
X

n+1,j
t −X

n,k
t

)( 1

dn,k

∑

j∈I
δ(m,l),(n+1,j) − δ(m,l),(n,k)

)
dt

+
∞∑

p=1

Mp−1∑

q=1

Z
n,k;m,l;p,q
t dW p,q

t ,

with terminal condition:

Y
n,k;m,l
T = c ·

M∑

dn,k=1

pdn,k
· 1(

M
dn,k

)
∑

I∈Sdn,k

( 1

dn,k

∑

j∈I
X

n+1,j
T −X

n,k
T

)( 1

dn,k

∑

j∈I
δ(m,l),(n+1,j) − δ(m,l),(n,k)

)
.

Remark 7. For every (m, l) 6= (n, k) or (n+ 1, i) for M(k − 1) + 1 ≤ i ≤ Mk, dY n,k;m,l
t =

∞∑
p=1

Mp−1∑
q=1

Zn,k;m,l;p,q
t dW p,q

t and Y n,k;m,l
T = 0 implies Zn,k;m,l;p,q

t = 0 for all (p, q). Thus there are

finitely many non-zero Y n,k;m,l’s for every (n, k) and the Hamiltonian can be rewritten as

Hn,k(xm,l, yn,k;n,k, yn,k;n+1,i, αm,l;m ≥ 1, 1 ≤ l ≤Mm−1,M(k − 1) + 1 ≤ i ≤Mk)

=αn,kyn,k;n,k +
Mk∑

i=M(k−1)+1

αn+1,iyn,k;n+1,i +
1

2
(αn,k)2

+
ε

2

M∑

dn,k=1

pdn,k
· 1(

M
dn,k

)
∑

I∈Sdn,k

( 1

dn,k

∑

j∈I
xn+1,j − xn,k

)2

.

(52)
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Remark 8. For every (n, k), we will solve (51) when (m, l) = (n, k) in the following discus-
sion. Other non-zero Y n,k;m,l’s in (51) are solvable with the similar method.

When (m, l) = (n, k), (51) becomes:





dY n,k;n,k
t = ε

M∑

dn,k=1

pdn,k
· 1(

M
dn,k

)
∑

I∈Sdn,k

( 1

dn,k

∑

j∈I
Xn+1,j

t −Xn,k
t )dt+

∞∑

p=1

Mp−1∑

q=1

Zn,k;n,k;p,q
t dW p,q

t ,

Y n,k;n,k
T = −c

M∑

dn,k=1

pdn,k
· 1(

M
dn,k

)
∑

I∈Sdn,k

( 1

dn,k

∑

j∈I
Xn+1,j

T −Xn,k
T

)
.

(53)
To simplify the equation system, we use the result: for all dn,k ∈ [M(k − 1) + 1,Mk]

pdn,k
· 1(

M
dn,k

)
∑

I∈Sdn,k

1

dn,k

∑

j∈I
xn+1,j = pdn,k

1

dn,k

1(
M
dn,k

)
∑

I=(i1,··· ,idn,k
)∈Sdn,k

(xn+1,i1 + · · ·+ xn+1,idn,k )

= pdn,k

1

dn,k

1(
M
dn,k

) ·
(
M − 1

dn,k − 1

)
(xn+1,M(k−1)+1 + · · ·+ xn+1,Mk)

= pdn,k

1

M

Mk∑

j=M(k−1)+1

xn+1,j,

which gives:

M∑

dn,k=1

pdn,k
· 1(

M
dn,k

)
∑

I∈Sdn,k

1

dn,k

∑

j∈I
xn+1,j = (1− p0)

1

M

Mk∑

j=M(k−1)+1

xn+1,j.

Then we can rewrite system (53) as:





dY n,k;n,k
t = ε(1− p0)

( 1

M

Mk∑

j=M(k−1)+1

Xn+1,j
t −Xn,k

t

)
dt+

∞∑

p=1

Mp−1∑

q=1

Zn,k;n,k;p,q
t dW p,q

t ,

Y n,k;n,k
T = −c(1− p0)

( 1

M

Mk∑

j=M(k−1)+1

Xn+1,j
T −Xn,k

T

)
.

(54)
By minimizing the Hamiltonian with respect to αn,k, we can get an open-loop Nash

equilibrium: α̂n,k = −yn,k;n,k for all (n, k). Considering the BSDE system, we make the
ansatz of the form:

Y n,k;n,k
t =

∞∑

i=n

M i−nk∑

j=M i−n(k−1)+1

φn,k; i,j
t X i,j

t , (55)

for some deterministic scalar function φt depending on (n, k). According to (54), the func-
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tions satisfy the terminal conditions:

•φn,k;n,k
T = c(1− p0);

•φn,k;n+1,j
T = −c(1− p0)

1

M
, for M(k − 1) + 1 ≤ j ≤Mk;

•φn,k;n+`,j
T = 0, for ` ≥ 2,M `(k − 1) + 1 ≤ j ≤M `k.

Using the ansatz, the optimal strategy α̂n,k and the forward equation for Xn,k
· in (48)

become: 



α̂n,k
t = −Y n,k;n,k

t = −
∞∑

i=n

M i−nk∑

j=M i−n(k−1)+1

φn,k; i,j
t X i,j

t ,

dXn,k
t = −

∞∑

i=n

M i−nk∑

j=M i−n(k−1)+1

φn,k; i,j
t X i,j

t dt+ σdW n,k
t ,

(56)

which gives: for 0 ≤ t ≤ T

dX i,j
t = −

∞∑

r=i

Mr−ij∑

s=Mr−i(j−1)+1

φi,j; r,s
t Xr,s

t dt+ σdW i,j
t .

Define a set Su,v = {i : Mu(v − 1) + 1 ≤ i ≤ Muv, i ∈ N}. Differentiating the ansatz
(55) and substituting (56), we obtain:

dY n,k;n,k
t =

∞∑

i=n

∑

j∈Si−n,k

(φ̇n,k; i,j
t X i,j

t dt+ φn,k; i,j
t dX i,j

t )

=
∞∑

i=n

∑

j∈Si−n,k

φ̇n,k; i,j
t X i,j

t dt+
∞∑

i=n

∑

j∈Si−n,k

φn,k; i,j
t

[
−

∞∑

r=i

∑

s∈Sr−i,j

φi,j: r,s
t Xr,s

t dt+ σdW i,j
t

]

=
∞∑

i=n

∑

j∈Si−n,k

φ̇n,k; i,j
t X i,j

t dt−
∞∑

i=n

∞∑

r=i

∑

j∈Si−n,k

∑

s∈Sr−i,j

φn,k; i,j
t φi,j; r,s

t Xr,s
t dt

+ σ
∞∑

i=n

∑

j∈Si−n,k

φn,k; i,j
t dW i,j

t

def
= I− II + III.

(57)

For the first and third terms, we have

I =
∞∑

i=n

∑

j∈Si−n,k

φ̇n,k; i,j
t X i,j

t dt =
∞∑

r=n

Mr−nk∑

s=Mr−n(k−1)+1

φ̇n,k; r,s
t Xr,s

t dt;

III = σ
∞∑

i=n

∑

j∈Si−n,k

φn,k; i,j
t dW i,j

t = σ
∞∑

r=n

Mr−nk∑

s=Mr−n(k−1)+1

φn,k; r,s
t dW r,s

t .
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Then, for the second term, we have

II =
∞∑

i=n

∞∑

r=i

∑

j∈Si−n,k

∑

s∈Sr−i,j

φn,k; i,j
t φi,j; r,s

t Xr,s
t dt =

∞∑

r=n

Mr−nk∑

s=Mr−n(k−1)+1

( r∑

i=n

φ
n,k; i,d s

Mr−i e
t φ

i,d s

Mr−i e; r,s
t

)
Xr,s

t dt,

where dxe denotes here the smallest integer greater than or equal to x.

Thus equation (57) can be written as:

dY n,k;n,k
t = I− II + III (58)

=
∞∑

r=n

Mr−nk∑

s=Mr−n(k−1)+1

(
φ̇n,k; r,s
t −

r∑

i=n

φ
n,k; i,d s

Mr−i e
t φ

i,d s

Mr−i e; r,s
t

)
Xr,s

t dt (59)

+ σ
∞∑

r=n

Mr−nk∑

s=Mr−n(k−1)+1

φn,k; r,s
t dW r,s

t .

Now comparing the two Itô’s decompositions (54) and (58), we obtain first the processes
Zn,k;n,k;p,q

t from the martingale terms :

Zn,k;n,k;p,q
t = σφn,k; p,q

t for p ≥ n and Mp−n(k−1)+1 ≤ q ≤Mp−nk ; Zn,k;n,k;p,q
t = 0, otherwise.

Then we obtain from the drift terms:

• φ̇n,k;n,k
t = φn,k;n,k

t φn,k;n,k
t − ε(1− p0), φn,k;n,k

T = c(1− p0); (60)

=⇒φn,k;n,k
t ≡ φi,j; i,j

t for any pairs (n, k), (i, j);

• for M(k − 1) + 1 ≤ ` ≤Mk,

φ̇n,k;n+1,`
t = φn,k;n,k

t φn,k;n+1,`
t + φn,k;n+1,`

t φn+1,`;n+1,`
t + ε(1− p0)

1

M
(60)
= 2φn,k;n,k

t φn,k;n+1,`
t + ε(1− p0)

1

M
, φn,k;n+1,`

T = −c(1− p0)
1

M
; (61)

• for m ≥ n+ 2, Mm−n(k − 1) + 1 ≤ ` ≤Mm−nk,

φ̇n,k;m,`
t =

m∑

i=n

φ
n,k; i,d `

Mm−i e
t φ

i,d `

Mm−i e;m,`

t , φn,k;m,`
T = 0. (62)

4.3 Discussion about the Solution

Remark 9. Since by definition, p0 = (1− p)M = E
[
1
{

M
∑

j=1
Nn,k,M(k−1)+j 6=0}

]
for any (n, k), the

above equation system (60)-(62) depends on p and M .
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Theorem 1. The solution of the system (60)-(62) are independent of n, k and depend on
the ”depth” i, i.e.,

φn,k;n+i,`
t = φm,j;m+i,˜̀

t , t ≥ 0

for every suitable pairs (n, k), (m, j) and every suitable i, `, ˜̀∈ N0. Thus the system is closed
for {φn,k;m,`

t , m ≥ n, Mm−n(k − 1) + 1 ≤ ` ≤Mm−nk} and the solutions exist.

Proof. First, (60) is a simple Riccati equation for φn,k;n,k and it is independent of (n, k).
Thus, its solution φn,k;n,k

t exists uniquely for every (n, k) with φn,k;n,k
t ≡ φm,j;m,j

t , t ≥ 0 for
any suitable pairs (n, k), (m, j). This is depth 0.

Next, substituting φn,k;n,k
t ≡ φm,j;m,j

t into the first line of (61), we see for everyM(k−1)+
1 ≤ ` ≤Mk, (61) is a first-order linear differential equation for φn,k;n+1,` and it depends only

on p0, ε and M but not on (n, k). Thus, we claim that the solution {φn,k;n+1,`+M(k−1)
t , 1 ≤

` ≤M} of (61) exists uniquely. They are identical among the depth 1, i.e.,

φ
n,k;n+1,`+M(k−1)
t ≡ φ

m,j;m+1,˜̀+M(j−1)
t for 1 ≤ `, ˜̀≤M. (63)

Form = n+2 and 1 ≤ ˜̀≤M2 in (62), we have the derivative of the function φ
n,k;n+2,˜̀+M2(k−1)
t

of depth 2:

φ̇
n,k;n+2,˜̀+M2(k−1)
t =

n+2∑

i=n

φ
n,k; i,

⌈

˜̀

Mn+2−i

⌉

+M i−n(k−1)

t φ
i,
⌈

˜̀

Mn+2−i

⌉

+M i−n(k−1);n+2,˜̀+M2(k−1)

t

= φn,k;n,k
t φ

n,k;n+2,˜̀+M2(k−1)
t + φ

n,k;n+1,
⌈

˜̀

M

⌉

+M(k−1)

t φ
n+1,

⌈

˜̀

M

⌉

+M(k−1);n+2,˜̀+M2(k−1)

t

+ φ
n,k;n+2,˜̀+M2(k−1)
t φ

n+2,˜̀+M2(k−1);n+2,˜̀+M2(k−1)
t

= 2φn,k;n,k
t φ

n,k;n+2,˜̀+M2(k−1)
t + φ

n,k;n+1,
⌈

˜̀

M

⌉

+M(k−1)

t φ
n+1,

⌈

˜̀

M

⌉

+M(k−1);n+2,˜̀+M2(k−1)

t ,

where the last term has the function of the depth 1:

φ
n+1,

⌈

˜̀

M

⌉

+M(k−1);n+2,˜̀+M2(k−1)

t = φ
n+1,

⌈

˜̀

M

⌉

+M(k−1);n+2,˜̀′+M
[
⌈

˜̀

M

⌉

+M(k−1)−1
]

t

= φ
n,k;n+1,˜̀′+M(k−1)
t according to equation (63),

where ˜̀′ = ˜̀+ M − M
⌈

˜̀

M

⌉
satisfies 1 ≤ ˜̀′ ≤ M . Thus, the differential equation for

φ
n,k;n+2,˜̀+M2(k−1)
t is reduced to a first order linear differential equation depending on the

functions φn,k;n,k
t and φ

n,k;n+1,˜̀+M(k−1)
t of depths 1, 2 . The solutions {φn,k;n+2,˜̀+M2(k−1)

t , 1 ≤
˜̀≤M2} of depth 2 exist and are identical.

When m > n+2 in (62), we proceed the discussion recursively by using a similar method,

that is, we can reduce the differential equation for the function φ
n,k;m,˜̀+Mm−n(k−1)
t of depth

m−n to a first order linear differential equation depending on functions {φn,k; i,˜̀+M i−n(k−1)
t , n ≤

i < m, 1 ≤ ˜̀≤M i−n} of shallower depths less than m−n. Then we verify that the solutions

{φn,k;m,˜̀+Mm−n(k−1)
t , 1 ≤ ˜̀≤ Mm−n} of (62) exist uniquely and identical among the depth

m− n for every given m > n+ 2.
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From above, we can conclude the solution φn,·;m,· of the system exist, depending only on
the ”depth” m − n. Therefore, the system (60)-(62) can be reduced to a closed system for
{φn,k;m,`

t , m ≥ n, Mm−n(k − 1) + 1 ≤ ` ≤Mm−nk}.

Remark 10. If we assume that each individual (n, k) is in interaction with its all potential
players in the (n + 1)-th generation, i.e., p = 1, p0 = 0, the model becomes the same as the
system of the deterministic tree model in in Feng, Fouque & Ichiba [7].

Proof. When Nn,k ≡ M(> 0), the functions only depend on the depth. Thus equations
(60)-(62) above become

Ψ̇m
t := φ̇n,k;n+m,`

t =
n+m∑

i=n

Ψi−n
t ·Ψn+m−i

t − δm,0ε+ δm,1ε
1

M
=

m∑

i=0

Ψi
t ·Ψm−i

t − δm,0ε+ δm,1ε
1

M
,

Ψm
T = δm,0c− δm,1c

1

M
.

It is the same as the Riccati system of the deterministic tree model in Feng, Fouque & Ichiba
[7] with M = d.

As a consequence of Theorem 1, the infinite-player stochastic game on the random tree
model has an open-loop Nash equilibrium:

Proposition 4. An open-loop Nash equilibrium for the infinite-player stochastic game on the
random tree with cost functionals (49) is determined by (56), where {φn,k;i,j, i ≥ n, M i−n(k−
1) + 1 ≤ j ≤ M i−nk} are the unique solution to the infinite system (60)-(62) of Riccati
equations.

5 Conclusion

We studied a linear-quadratic stochastic differential game on a random directed chain net-
work by assuming the interaction between every two neighbors exists with a probability p.
We constructed an open-loop Nash equilibria in the case of infinite chain and computed the
stationary solution explicitly, named Catalan functions. The equilibrium is characterized by
interactions with all the players in one direction of the chain weighted by Catalan functions
and the probability of interaction p. The asymptotic variance of a player’s state converges
to a finite limit depending on p in the infinite time limit, which is different from the be-
havior of the nearest neighbor dynamics discussed in Detering, Fouque & Ichiba [6]. In the
particular case with the probability of interaction equal to 1, we obtain the deterministic
directed chain structure studied in Feng, Fouque & Ichiba [7]. The random directed game
model is extended to games on a random two-sided directed chain structure and a random
tree structure.
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A Appendix

A.1 Stationary Solution of the Riccati System (10)

By taking T → ∞ and assuming ε = 1, the constant solution of the moment generating
function (13) satisfying Ṡt(z) = 0 is S(z) =

√
p(1− z). We can then find constant solutions

for φ functions by taking Taylor expansion and comparing it with S(z) =
∑∞

k=0 z
k φ(k),

because

S(z) =
√
p(1− z) =

√
p
√
1− z =

√
p

∞∑

k=0

(
1
2

k

)(
− z

)k

=
√
p−

√
p

2
z −√

p
∞∑

k=2

(2k − 3)!!

2kk!
zk.

A.2 Proof of Proposition 2

We have the results: q0 = −1, q1 =
1

2
,

k∑
j=0

qjqk−j = 0 for k ≥ 2. Then, it is easily seen that

(
√
pQ)2 = p (I − B) with B having 1 ’s on the upper second diagonal and 0 ’s elsewhere,

i.e.,

(
√
pQ)2 =




p −p 0 · · ·
0 p −p . . .

. . . . . . . . .


 = −p J∞(−1) , J∞(λ) :=




λ 1 0 · · ·
0 λ 1

. . .
. . . . . . . . .


 .

Here, J∞(λ) is the infinite Jordan block matrix with diagonal components λ .
The matrix exponential of

√
pQt , t ≥ 0 , is written formally as

exp(
√
pQt) = F (−pQ2t2) = F (J∞(−1) · p t2) , t ≥ 0 , F (x) := exp(−

√
−x) , x ∈ C .

Since a smooth function of a Jordan block matrix can be expressed as

F (J∞(λ)) = F (λI+B) =
∞∑

k=0

F (k)(λ)

k!
Bk =




F (λ) F (1)(λ) F (2)(λ)
2!

· · · F (k)(λ)
k!

· · ·
. . . . . . . . . . . .

. . . . . . . . .


 ,

we get

exp(
√
pQt) = F (J(−∞) · p t2) = F ((−I +B) · p t2) =

∞∑

k=0

F (k)(−pt2)
k!

(B pt2)k

=
∞∑

k=0

pk t2kF (k)(−pt2)
k!

Bk.

The (j, k) -element of exp(
√
pQt) is formally given by

(exp(
√
pQt))j,k =

pk−j t2(k−j) · F (k−j)(−pt2)
(k − j)!

, j ≤ k ,
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F (k)(x) :=
dkF

dxk
(x) ; x > 0 , k ∈ N ,

and (exp(
√
pQt))j,k = 0 , j > k for t ≥ 0 . Here the k -th derivative F (k)(x) of F (·) can

be written as F (k)(x) = ρk(x)e
−√−x , where ρk(x) satisfies the recursive equation

ρk+1(x) = ρ′k(x) +
ρk(x)

2
√−x ; k ≥ 0 ,

with ρ0(x) = 1 , x ∈ C . By mathematical induction, we may verify

ρk(x) =
1

2k

2k−1∑

j=k

(j − 1)!

(2j − 2k)!!(2k − j − 1)!
(−x)− j

2 , k ≥ 1. (64)

Therefore, substituting them into (17), we obtain the formula of Gaussian process.
Next, it follows from (17) that for t ≥ 0 , the variance of the Gaussian process X i

· , i ≥ 1
is given by

Var(X i
t) = Var(X1

t ) = Var
( ∞∑

j=1

∫ t

0

pj−1 (t− s)2(j−1)

(j − 1)!
F (j−1)(−p(t− s)2)dW j

s

)

=
∞∑

j=0

∫ t

0

p2j (t− s)4j

(j!)2
|ρj(−p(t− s)2)|2e−2

√
p(t−s)ds.

(65)

Since it can be shown that

ρj(−ν2) =
1

2jνj
·
√

2ν

π
· eν ·Kj−(1/2)(ν) ; j ≥ 1 , (66)

where Kn(x) is the modified Bessel function of the second kind defined by

Kn(x) =

∫ ∞

0

e−x cosh t cosh(nt)dt ; n > −1, x > 0.

Then substituting (66) into (65) and using the change of variables, we obtain

Var(X1
t ) =

1√
p

∞∑

k=1

∫ √
p t

0

2

π

ν2k+1

(k!)2 4k
(
Kk−(1/2)(ν)

)2
dν +

1− e−2
√
pt

2
√
p

; t ≥ 0.

Using the following identities from the special functions

∫ ∞

0

tα−1(Kν(t))
2dt =

√
π

4Γ((α + 1)/2)
Γ
(α
2

)
Γ
(α
2
− ν

)
Γ
(α
2
+ ν

)
,

√
2

4
x

√
x2 −

√
x4 − 16 =

∞∑

k=0

(
4k

2k

)
1

2k + 1

1

x4k
, for x ≥ 2,
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we obtain the limit of variance of X1
t , as t→ ∞ , i.e.,

lim
t→∞

Var(X1
t ) =

1

2
√
p
+

1√
p

∞∑

k=1

∫ ∞

0

2 s2k+1

π(k!)24k
· [Kk−(1/2)(s)]

2ds

=
1

2
√
p
+

1√
p

∞∑

k=1

2

π (k!)24k

∫ ∞

0

s2k+1[Kk−(1/2)(s)]
2ds

=
1

2
√
p
+

1√
p

∞∑

k=1

2

π(k!)24k
· π Γ(k + 1) Γ(2k + (1/2))

8 Γ(k + (3/2))

=
1

2
√
p

∞∑

k=0

(
4k

2k

)
1

2k + 1

1

24k
=

1

2
√
p

·
√
2

4
2
√
22 − 0 =

1√
2p
.

A.3 Proof of Proposition 3

We assume ε = 1, pk = −φk = limT→∞ ϕk
t . According to the equations (32), for the fully

directed two-sided chain and , we have:
∞∑

k=−∞
pk p−k = 1,

∞∑
k=−∞

pk p1−k = −p,
∞∑

k=−∞
pk p−1−k =

−(1−p),
∞∑

k=−∞
pk pj−k = 0 for other j. Then it is easily seen that Q2 = I−(pB∗+(1−p)B∗)

with B∗ having 1 ’s on the upper second diagonal and 0 ’s elsewhere, and B∗ having 1 ’s
on the lower second diagonal and 0 ’s elsewhere i.e.,

Q2 =




. . . . . . . . . . . . . . . . . . . . .

. . . −(1− p) 1 −p 0
. . . . . .

. . . 0 −(1− p) 1 −p 0
. . .

. . . . . . 0 −(1− p) 1 −p . . .

. . . . . . . . . . . . . . . . . . . . .




,

B∗ =




. . . . . . . . . . . . . . . . . . . . .

. . . 0 0 1 0
. . . . . .

. . . 0 0 0 1 0
. . .

. . . . . . 0 0 0 1
. . .

. . . . . . . . . . . . . . . . . . . . .




, B∗ =




. . . . . . . . . . . . . . . . . . . . .

. . . 1 0 0 0
. . . . . .

. . . 0 1 0 0 0
. . .

. . . . . . 0 1 0 0
. . .

. . . . . . . . . . . . . . . . . . . . .




.
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If we look at the power of pB∗ + (1− p)B∗:

pB
∗
+ (1 − p)B∗ =















.
. .

.
. .

.
. .

.
. .

.
. .

.
. .

.
. .

.
. . 0 1 − p 0 p 0

.
. .

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.















;

(pB
∗
+ (1 − p)B∗)

2
=















.
. .

.
. .

.
. .

.
. .

.
. .

.
. .

.
. .

.
.
. (1 − p)2 0 2p(1 − p) 0 p2

.
.
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.















;

(pB
∗
+ (1 − p)B∗)

3
=















. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
. (1 − p)3 0 3p(1 − p)2 0 3p2(1 − p) 0 p3

. .
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.















;

(pB
∗
+ (1 − p)B∗)

4
=















. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

.
.
. (1 − p)4 0 4p(1 − p)3 0 6p2(1 − p)2 0 4p3(1 − p) 0 p4

.
.
.

. .
.

. .
.

. . .
. . .

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.















;

· · · · · · · · · · · ·

We find the diagonal increases following the binomial expansion and we have formulas
to generalize the result:





k even :(pB
∗
+ (1 − p)B∗)

k
=

















.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

. .
.

.
. .

( k
k
2
−1

)

p
k
2
−1

(1 − p)
k
2
+1

0
( k
k
2

)

p
k
2 (1 − p)

k
2 0

( k
k
2
+1

)

p
k
2
+1

(1 − p)
k
2
−1

.
.
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

















k odd :(pB
∗
+ (1 − p)B∗)

k
=

















.
. .

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

. .
. 0

( k
k+1
2

−1

)

p
k+1
2

−1
(1 − p)

k−1
2

+1
0

( k
k+1
2

)

p
k+1
2 (1 − p)

k−1
2 0

.
.
.

.
. .

.
. .

.
. .

.
. .

.
. .

.
. .

.
. .

















i.e.,

k even : ((pB
∗
+ (1 − p)B∗)

k
)i,j =







( k

k
2

+ m

)

p
k
2
+m

(1 − p)
k
2
−m

, j = i + 2m, and −
k

2
≤ m ≤

k

2
m ∈ Z;

0, otherwise.

k odd : ((pB
∗
+ (1 − p)B∗)

k
)i,j =











( k

k+1
2

+ m

)

p
k+1
2

+m
(1 − p)

k−1
2

−m
, j = i + 2m + 1, and −

k + 1

2
≤ m ≤

k − 1

2
;

0, otherwise.

The matrix exponential of Qt , t ≥ 0 is written formally by

exp(Qt) = F (−Q2t2) , t ≥ 0 , F (x) := exp(−
√
−x) , x ∈ C .

Since a smooth function can be expressed as

F (λI +B) =
∞∑

k=0

F (k)(λ)

k!
Bk =

∑

k odd

F (k)(λ)

k!
Bk +

∑

k even

F (k)(λ)

k!
Bk.
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So

exp(Qt) = F ((−I + pB∗ + (1− p)B∗)t
2) =

∞∑

k=0

t2kF (k)(−t2)
k!

(pB∗ + (1− p)B∗)
k.

The (i, j) -element of exp(Qt) , is formally given by

(exp(Qt))i,j =





∑

k even

t2kF (k)(−t2)

k!

( k

k
2

+ m

)

p
k
2
+m

(1 − p)
k
2
−m

· 1
− k

2
≤m≤ k

2
, j = i + 2m, m ∈ Z,

∑

k odd

t2kF (k)(−t2)

k!

( k

k+1
2

+ m

)

p
k+1
2

+m
(1 − p)

k−1
2

−m
· 1

−
k+1
2

≤m≤
k−1
2

, j = i + 2m + 1, m ∈ Z.

=





∞
∑

`=0

t4`F (2`)(−t2)

(2`)!

( 2`

` + m

)

p
`+m

(1 − p)
`−m

· 1−`≤m≤`, j = i + 2m, m ∈ Z,

∞
∑

`=0

t4`+2F (2`+1)(−t2)

(2` + 1)!

( 2` + 1

` + 1 + m

)

p
`+1+m

(1 − p)
`−m

· 1−(`+1)≤m≤`, j = i + 2m + 1, m ∈ Z.

where F (k)(x) := dkF
dxk (x) ; x > 0 , k ∈ N . Here the k -th derivative F (k)(x) of F (·)

can be written as F (k)(x) = ρk(x)e
−√−x , where

ρk(x) =
1

2k

2k−1∑

j=k

(j − 1)!

(2j − 2k)!!(2k − j − 1)!
(−x)− j

2 , for k ≥ 1,

and ρ0(x) = 1 for x ≤ 0.
Thus the Gaussian process X0

t , t ≥ 0 , corresponding to the Markov chain, is

X
0
t : =

∞
∑

j=−∞

∫

t

0

(exp(Q(t − s)))0,jdW
j
s

=
∑

j even

∫

t

0

(exp(Q(t − s)))0,jdW
j
s +

∑

j odd

∫

t

0

(exp(Q(t − s)))0,jdW
j
s

=

∞
∑

m=−∞

∫

t

0

∞
∑

`=0

(t − s)4`F (2`)(−(t − s)2)

(2`)!

( 2`

` + m

)

p
`+m

(1 − p)
`−m

· 1−`≤m≤` dW
2m
s

+

∞
∑

m=−∞

∫

t

0

∞
∑

`=0

(t − s)4`+2F (2`+1)(−(t − s)2)

(2` + 1)!

( 2` + 1

` + 1 + m

)

p
`+1+m

(1 − p)
`−m

· 1−(`+1)≤m≤` dW
2m+1
s

=

∞
∑

`=0

∑̀

m=−`

∫

t

0

(t − s)4`F (2`)(−(t − s)2)

(2`)!

( 2`

` + m

)

p
`+m

(1 − p)
`−m

dW
2m
s

+

∞
∑

`=0

∑̀

m=−(`+1)

∫

t

0

(t − s)4`+2F (2`+1)(−(t − s)2)

(2` + 1)!

( 2` + 1

` + 1 + m

)

p
`+1+m

(1 − p)
`−m

dW
2m+1
s ,

(67)

where W k
. (·) , k ∈ Z are independent standard Brownian motions.

Thus, the variance is given by

Var(X
0
t ) = Var

(

∞
∑

`=0

∑̀

m=−`

∫

t

0

(t − s)4`F (2`)(−(t − s)2)

(2`)!

( 2`

` + m

)

p
`+m

(1 − p)
`−m

dW
2m
s

)

+ Var
(

∞
∑

`=0

∑̀

m=−(`+1)

∫

t

0

(t − s)4`+2F (2`+1)(−(t − s)2)

(2` + 1)!

( 2` + 1

` + 1 + m

)

p
`+1+m

(1 − p)
`−m

dW
2m+1
s

)

.

(68)
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