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Abstract— In this paper, we propose a decentralized game-
theoretic pursuit policy for a heterogeneous group of pursuers
who individually attempt to, without any prescribed cooperative
pursuit strategy, capture a single evader who strives to delay
or avoid capture if possible. We assume that the pursuers
are rational (self-interested) agents who are not necessarily
connected via communication network. Our proposed pursuit
policy is motivated from the semi-cooperative pursuit policy
called relay pursuit [1] under which only the pursuer who can
capture the evader faster than the others is active while the rest
stay put. In contrast to the latter strategy, our proposed method
does not rely on geometric tools. It relies instead on reducing
the noncooperative pursuit-evasion game into a sequence of
maximum weighted bipartite matching problems which seek
to find the pursuer-evader assignments which will result in
minimum time of capture. To find the optimal assignment in
a decentralized manner, the graph matching problem at each
time instant is formulated as a static potential game whose pure
strategy Nash equilibria correspond to the optimal assignments.
Such equilibria are found by iteratively executing a game-
theoretic learning algorithm called Joint Strategy Fictitious
Play (JSFP) under which every pursuer synchronously takes
his best reply strategy (pursue or stay put), depending on
the joint actions of other pursuers, until they reach a Nash
equilibrium. We illustrate the performance of our method by
means of extensive numerical simulations.

I. INTRODUCTION

Pursuit-evasion games (PEGs) with multiple players re-

ceive a lot of attention at present due to their relevance

to applications involving decision makers with possibly

conflicting objectives. The game of pursuit and evasion, a

class of multiplayer dynamic game involving two (or more)

competitive players, was first formalized with the emergence

of differential game theory [2]. Since then, various types of

PEGs have been studied in the eyes of differential game

theory [3]–[6]. A special type of PEGs where the pursuers

have an additional duty to defend a target object or area from

the evaders is receiving a lot of attention [7]–[9] at present.

Meanwhile, there have also been, albeit fewer, studies on

intelligent evasion strategies [10], [11]. For a broader and

more thorough review on recent studies on PEGs, one can

refer to [12].

The classical differential game methods, however, often

face the curse of dimensionality as the number of players

increases. Moreover, they may not provide robust solutions
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in the presence of constraints due to, say, communication or

sensing limitations. The authors of [1], the main inspiration

of our present work, developed a practical and easy-to-

implement pursuit strategy, named relay pursuit, that could

deal with the aforementioned constraints. Under the latter

strategy, at every time instant, only one pursuer is assigned

as the active pursuer who is responsible to capture the evader,

whereas the other pursuers remain still. In particular, the

active pursuer is assigned by a decentralized algorithm based

on dynamic Voronoi diagrams.

The Voronoi-based assignment policy, however, is only ap-

plicable to PEGs involving a homogeneous group of pursuers

(i.e., every pursuer has the same maximum allowable speed).

Decentralized workspace partitioning for a heterogeneous

group of pursuers is possible but may degrade the merits

of relay pursuit strategy due to its computational intractabil-

ity [13]. In this paper, we aim to overcome the aforemen-

tioned issue, not with geometric tools, but with game theory.

In particular, we first formulate the active pursuer selection

problem associated with the relay pursuit strategy as an

optimization problem. We then reformulate the latter problem

as a potential game, a subclass of noncooperative games that

has been proven as a powerful tool for the game-theoretic

control of multi-agent systems [14], [15]. At last, we show

that, via proper selection of the pursuers’ individual utilities

and learning dynamics, a game-theoretic equivalent of relay

pursuit strategy, that is still decentralized but applicable to

PEGs involving a heterogeneous group of pursuers, emerges

as a commonly accepted pursuit policy among the group of

pursuers.

The main contributions of this paper are as follows:

1) We present a formulation of the pursuer-target assign-

ment problem that arises in multiple-pursuer single-

evader PEGs as a potential game,

2) We show how to design the individual utilities of the

pursuers such that the maximization of the latter con-

tributes to the maximization of their global objective,

3) We utilize game-theoretic learning tools and in par-

ticular, the Joint Strategy Fictitious Play (JSFP) with

inertia algorithm to compute the pure strategy Nash

equilibrium of the game in a decentralized manner.

The rest of the paper is organized as follows. In Section II,

we formulate our multiple-pursuer single-evader PEG. In

Section III, we formulate the active pursuer selection prob-

lem that arises in the PEG as a constrained optimization

problem and briefly introduce potential games. In Section IV,



we reformulate the latter optimization problem as a potential

game and design the pursuers’ local utilities. In Section V,

we present the decentralized game-theoretic learning dynam-

ics based on JSFP with inertia. In Section VI, we present and

discuss the results of numerical simulations and, lastly in

Section VII, we provide concluding remarks and directions

for future research.

II. FORMULATION OF THE PURSUIT-EVASION GAME

We consider a class of multiplayer PEG involving N
pursuers and a single evader (target), all of which maneuver

in an unbounded 2D plane R
2 where there exist no obsta-

cles that hinder the motions of the players. The group of

pursuers, whose index set is denoted by IP = {1, ..., N},

is assumed to be heterogeneous; i.e., the maximum speed

of an individual pursuer may differ from each other. For

simplicity, let us denote the ith pursuer as Pi and the single

evader as E . In the proposed PEG, E continuously strives

to avoid or delay her capture, whereas every Pi attempts

to capture the latter only if this increases his local utility.

Note that no prescribed cooperative strategies are given to the

pursuers a priori. Suppose that each player (either pursuer

or evader) has an infinite sensing range, which allows them

to observe the current state (position) and previous action

(velocity vector) of every other player throughout the game.

Each player’s ensuing action, however, is assumed to be

unknown to any other player at any instant of time (even

among the pursuers due to, say, communication jamming).

Yet, since their previous actions are observable, it is fair to

assume that all pursuers have complete information about

each other’s maximum speed.

Let us denote by xi ∈ R
2 (resp., x0

i ∈ R
2) the position

of Pi at time t ≥ 0 (resp., t = 0) where i ∈ IP , and by

xe ∈ R
2 (resp., x0

e ∈ R
2) the position of E at time t ≥ 0

(resp., t = 0). Capture of E by Pi occurs if there is a time

instant t ≥ 0 at which the latter enters the capture zone of

the former, that is, xi ∈ Bε(xe) for a given capture radius

ε > 0, where Bε(xe) denotes the closed ball of radius ε > 0
centered at xe, that is, Bε(xe) := {x ∈ R

2 : ‖x−xe‖ ≤ ε},

and ‖ · ‖ denotes the Euclidean (vector) norm. Furthermore,

we denote by tc the corresponding time of capture, which is

equal to the smallest time t ≥ 0 at which capture occurs. In

addition, all the players follow single integrator dynamics,

that is,

ẋi(t) = viui(t), xi(0) = x0

i , i ∈ IP , (1)

ẋe(t) = veue(t), xe(0) = x0

e, (2)

where ui ∈ U (resp., ue ∈ U ) denotes the control input

of Pi (resp., E) at time t and U the input value set of the

players which is defined as U := S1∪{0}, where Sε denotes

the sphere of radius ε > 0 centered at the origin, that is,

Sε := {x ∈ R
2 : ‖x‖ = ε}.

Note that if ui ∈ S1 (resp., ue ∈ S1), the input

corresponds to the direction of motion of Pi (resp., E) along

with the maximum speed vi (resp., ve), whereas if ui = 0
(resp., ue = 0), then Pi (resp., E) does not move. Lastly,

let X denote the augmented state of all the players where

X = [xᵀ

1
, ...,xᵀ

N ,x
ᵀ

e ]
ᵀ.

In this paper, we assume that the active pursuers chase the

evader by adopting a pure pursuit strategy, that is,

uPP
i (xi,xe) = ξi/‖ξi‖, (3)

where ξi = xe − xi denotes the relative position vector of

E with respect to Pi. The evader, on the other hand, tries to

delay or avoid capture by any of the pursuers. To this aim,

let E play a pure evasion strategy against Pi† where i† ∈ IP
represents the index of the pursuer who is the closest to E ,

i.e., i† = argmini∈IP
‖ξi‖. The pure evasion strategy is

described as

uPE
e (X ) = ξi†/‖ξi†‖. (4)

Note that the selection of i† is irrespective of whether this

pursuer is really an active pursuer or not especially because

the ensuing actions of pursuers at the next time instant is

assumed to be unknown to the evader.

As will be explained in detail in the next section, each

pursuer is assumed to be a rational (self-interested) decision

maker to fit them in the framework of game theory. In

other words, our proposed game-based pursuit policy will

not allow cooperative capture of E by more than one pursuer

to occur. Therefore, it is justifiable to assume that Pi for all

i ∈ IP will always play a two-player game only between

himself and E . In turn, the latter assumption leads us to

decompose the proposed N -player PEG into N two-player

games. Then, along with an additional assumption that each

active pursuer employs the pure-pursuit strategy given in (3)

and E employs the pure-evasion strategy given in (4), an

estimate of the time-to-capture, which is the time it will

take for Pi to capture E , can be computed by solving the

following quadratic equation [11]:

(v2e − v2i )φ
2 + 2(〈ξi, veue〉 − εvi)φ+ ‖ξi‖

2 = ε2. (5)

As long as Pi is faster than E (i.e., vi > ve), (5) admits a

non-negative solution for any ξi ∈ R
2 [11]. Recall, however,

that the evader’s ensuing control input ue is not assumed to

be known to any of the pursuers a priori. Thus, the pursuers

cannot predict the exact time that will take them to capture

E since they are not aware of the motion of the evader at

the next moment. For this reason, each pursuer will instead

compute his time-to-capture under the assumption that E
will continue to apply the pure evasion strategy against the

pursuer that she was evading at the previous time instant; we

denote such (expected) time-to-capture by ϕ(xe,xi).

III. THE ACTIVE PURSUER SELECTION PROBLEM

In this section, we formulate the active pursuer selection

problem, a special class of pursuer-target assignment prob-

lem that arises when applying the relay pursuit strategy to

multiple-pursuer single-evader PEGs, as a simple optimiza-

tion problem. The pursuer-target assignment problem is in

essence a bipartite matching problem in which the nodes

represent the pursuers and targets and the weighted edges



represent, for example, time-to-capture. The Voronoi-based

relay pursuit strategy in [1], for instance, matches the pursuer

with minimum time-to-capture to the evader in a geometric

way. The active pursuer selection problem under the relay

pursuit strategy can be described as follows (for any time

t ≥ 0):

max
[

−
∑

i∈IP

aiϕ(xe,xi)
]

,

s.t.
∑

i∈IP

ai = 1. (6)

where ai is an assignment of Pi (i.e., ai = 1 if Pi is assigned

to the task of capturing E and ai = 0 otherwise). The goal of

the pursuers is to maximize the global objective (6) at every

time instant t in a decentralized manner. Note that in this

problem the pursuers aim to maximize their current payoffs

only. In [1], for instance, the active pursuer is selected in a

myopic way under the Voronoi-based assignment policy. In

game theory, these pursuers are considered myopic agents

who take into account neither state transition nor future

payoffs when making their current decisions.

In this section, we present a way to find an optimal

solution to (6) by formulating the latter as a (static) potential

game [16]. To that end, let us consider a finite N -player

strategic form game with the set of players N , admissible

action sets {Ai}, and local utility functions {Ji : A → R},

where A denotes the joint set of admissible actions of

the pursuers, i.e., A := ×
|N |
i=1

Ai, where | · | denotes the

cardinality of a set. Let a ≡ (ai, a−i) denote the joint

action profile, where ai denotes the action of player i and

a−i the joint admissible action set of all the players but

player i, i.e., a−i = {aj}j∈N\{i}. The joint admissible action

set of all the players but player i is denoted as A−i :=
×j∈N\{i}Aj . The game discussed above is represented as

the tuple G := (N , {Ai}i∈N , {Ji}i∈N ). Next, we introduce

two key definitions in game theory.

Definition 1 (Pure Strategy Nash Equilibrium): The joint

action profile a? is a pure strategy Nash equilibrium of the

game G, if there is no unilateral motive for each player to

pick a different (pure strategy) action under the assumption

that the other pursuers are committed to their current actions,

that is,

Ji(a
?
i , a

?
−i) ≥ Ji(ai, a

?
−i),

for all ai ∈ Ai and i ∈ N .

Note that not all games are guaranteed to possess pure

strategy Nash equilibria. To solve (6), however, we need

to formulate a game with at least one pure strategy Nash

equilibrium such that this equilibrium aligns with the optimal

solution of the problem. To that end, let us introduce potential

games:

Definition 2 (Exact Potential Game): For a finite game G,

if there exists a function P : A → R such that

Ji(a
′
i, a−i)− Ji(ai, a−i) =

P(a′i, a−i)− P(ai, a−i),

for all ai, a
′
i ∈ Ai, a−i ∈ A−i, and i ∈ IP , then G is an

exact potential game with exact potential P .

The interpretation of Definition 2 is that the difference in

the player’s utility caused by a change on his own action

leads to the same change on the potential function. Most

importantly, any ordinal potential game (a more general class

that includes exact potential game) is known to have a finite

improvement path along which the potential function mono-

tonically increases, and its end point corresponds to a Nash

equilibrium. In other words, potential games are guaranteed

to have at least one pure strategy Nash equilibrium.

Finally, we introduce the main problem of our present

work, that is the formulation of (6) as a potential game.

Problem 1: Let Gt = (IP , {Ai}i∈IP
, {J t

i }i∈IP
) be a

finite game corresponding to the pursuer-target assignment

problem for an arbitrary time t ≥ 0, where Ai = {0, 1}
for all i ∈ IP (0 means stay and 1 means pursue). Define

the local utility functions J t
i and potential function ψ of the

game such that the pursuers can find the maximizer of the

global objective in (6) in a decentralized manner. Then, find

such optimal joint assignment a?.

IV. LOCAL UTILITY DESIGN

A potential game-based optimization method consists of

two phases: utility design and learning dynamics design [14].

In this section, we discuss the former phase. The fact

that a group of pursuers compete for a limited resource

(i.e., target) allows us to view (6) as a distributed resource

allocation problem for which there exist various local utility

designs [17]. Most of these utilities, however, are exclusively

designed for unconstrained optimization problems. Thus, in

order to leverage the existing utility designs, we must first

remove the constraint on the maximum number of pursuers

that can be assigned to the evader in (6). One possible method

is to add a penalty function to the global objective in (6) such

that if there are more than one pursuers assigned to the target

then the penalty dominates the reward. This penalty method,

however, may no longer assure the optimality of resulting

pure strategy Nash equilibria. Instead, let us claim a new

objective function as the following:

J t(a;X ) :=

{

− 1

γ

∑

i∈IP
aiϕ(xe,xi), if γ > 0

−∞, if γ = 0
(7)

where γ :=
∑

i∈IP
ai denotes the number of active pursuers

under assignment a. Note that the optimal joint action profile

a? that maximizes (7) also maximizes (6), and vice versa.

This is because, if there exists a pursuer whose expected

time-to-capture is the smallest in the group, the average time-

to-capture is at its minimum (i.e., J t is at its maximum) only

if that pursuer is active. In other words, J t is maximized

under the joint action profile a = (ai? = 1, a−i? = 0) where

i? = argmini∈IP
ϕ(xe,xi). Thus, as of this point, we will

seek to maximize (7) instead of (6).

In our problem, the global objective (7) is selected as a

potential function of Gt such that an increase in the potential



function aligns with an increase in the global objective; i.e.,

a pure strategy Nash equilibrium of Gt is the maximizer

of (7) and, since both (6) and (7) share the same optimal

solutions, the maximizer of (6). Note that (7) has no limit

on the number of pursuers assigned to the evader. Hence,

we can apply any proper utility design from the literature,

that include, to name a few, the equally shared utility (ESU),

wonderful life utility (WLU), and Shapley value (SV) [17].

Among these many choices, we will particularly use the

WLU [18] as the local utility function of an individual

pursuer, which corresponds to the marginal contribution

made by the pursuer to the global objective. More precisely,

J t
i ((ai, a−i);X ) :=

J t((ai, a−i);X )− J t((∅, a−i);X ). (8)

If ai = 0, regardless of the value of γ, substituting (7) into

(8) yields J t
i = 0. If ai = 1 and γ = 1, on the other hand,

J t
i = ∞. Lastly, if ai = 1 and γ > 1, from (8) we obtain

J t
i ((ai, a−i);X )

=
1

γ − 1

∑

j∈IP\{i}

ajϕ(xe,xj)−
1

γ

∑

j∈IP

ajϕ(xe,xj)

=
1

γ(γ − 1)

[

γ
∑

j∈IP\{i}
ajϕ(xe,xj)−

(γ − 1)
∑

j∈IP

ajϕ(xe,xj)

]

=
1

γ(γ − 1)

∑

j∈IP

ajϕ(xe,xj)−
1

γ − 1
ϕ(xe,xi).

For brevity, let ϕ̄(X ;a) := (1/γ)
∑

i∈IP
aiϕ(xe,xi) denote

the average time-to-capture of all the active pursuers. Then

the results above are collected to define the local utility

function of Pi as follows:

J t
i ((ai, a−i);X ) :=










0, if ai = 0,

∞, if (γ = 1) ∧ (ai = 1),
1

γ−1

(

ϕ̄(X ;a)− ϕ(xe,xi)
)

, if (γ > 1) ∧ (ai = 1).

(9)

The interpretation of (9) is that Pi receives no reward if he

chooses to remain still, whereas he receives a positive (resp.,

negative) reward if the average time-to-capture ϕ(xe,xi) is

greater (resp., less) than ϕ̄(X ;a). If Pi is currently the only

active pursuer in assignment a, he receives an infinite reward.

Therefore, if the action of chasing the target gives him a

positive reward (or there is no other active pursuer), Pi is

encouraged to pursue the target in the ensuing time step.

Proposition 1: Let ve < vi for all i ∈ IP . Given J t

and J t
i defined in (7) and (9), respectively, the game Gt =

(IP , {Ai}i∈IP
, {J t

i }i∈IP
) is an exact potential game with

exact potential P = J for any instant of time t ≥ 0.

Proof: By setting P = J t, Gt is classified as an

identical interests plus dummy game [19] in which the local

utility function J t
i corresponds to the sum of an identical

interest function F , which is a function of the joint action

profile of all the pursuers, a, and a dummy function Q, which

is a function of the joint action profile of all the pursuers but

Pi, a−i. More precisely,

J t
i ((ai, a−i);X ) = F((ai, a−i);X , t) +Qi((∅, a−i);X , t),

∀ai ∈ Ai, a−i ∈ A−i, i ∈ IP .

Comparing with (8), we see that F(a;X ) ≡ J t(a;X ) and

Qi(a−i;X ) ≡ J t((∅, a−i);X ). Since the identical interest

function F is an exact potential of an identical interests plus

dummy game [19], we conclude that Gt is an exact potential

game with exact potential P = J t for any time t ≥ 0.

V. JSFP-BASED ACTIVE PURSUER SELECTION

Given the fact that Gt is a potential game, there exist a

variety of iterative game-theoretic learning algorithms that

can discover a pure strategy Nash equilibrium in a decentral-

ized manner. Such learning algorithms include fictitious play

(FP), regret matching (RM), spatial adaptive play (SAP) [14],

and log-linear learning (LLL) [20]. Because in our problem

the group of pursuers must arrive at consensus within a

short time interval before the evader runs away, synchronous

algorithms (FP and RM) are preferred over asynchronous

algorithms (SAP and LLL) as the former type of algorithms

generally shows faster convergence time [14]. Under FP,

for instance, every pursuer follows best reply dynamics

using the history of actions of the entire group. Note that

an individual pursuer can obtain information about actions

of other pursuers either by communicating with them or

observing their actions. The latter algorithm, however, can

be computationally intractable since each player must track

the history of action profiles. To avoid this issue, we will

use JSFP with inertia, an improved FP algorithm suggested

in [21] that alleviates the aforementioned computational

intractability but still ensures convergence to a pure strategy

Nash equilibrium almost surely for any (ordinal) potential

game.

The pseudocode of the JSFP-based learning dynamics for

active pursuer selection at time t is provided in Algorithm 1.

Under this algorithm, at the initial simulation step k = 0,

every pursuer picks a random action from his admissible

action set (Line 3). Thereafter, each one of the pursuers

iterates to take his best response action (conditional on the

previous joint action profile of the other pursuers that he

observed) until there are no more best response actions for

the group to take. Once converged, the pursuers execute

their actions, move forward to the next time instant, and

repeat the algorithm until the evader is captured. The main

difference between JSFP and FP is that, at every simulation

step, instead of recording the action history, each pursuer

updates his expected utility function based on his observation

of other pursuers’ previous joint action profile. Note that, at

each iteration, two different candidate best response actions



are computed (Line 9 and 10) as follows:

βi(a−i[k];X , t) = argmax
ai∈Ai

J t
i ((ai, a−i[k]);X ),

β̌i(k;X , t) = argmax
ai∈Ai

J̄ t
i (k;X ).

The average utility function J̄ t
i is propagated according to

the following recursive equation:

J̄ t
i (k + 1;X ) =

k

k + 1
J̄ t
i (k;X ) +

1

k + 1
J t
i ((ai, a−i[k]);X ).

Then, at every simulation step k, given a time-invariant

inertia parameter α ∈ (0, 1), ǎi[k] is selected as the next

action a?i [k+1] with probability of α (Line 12), and, if ǎi[k]
is not selected (with probability of 1− α), then Pi resumes

to take the previous action a?i [k − 1] (Line 14). The latter

process repeats until the terminal condition (Line 17) meets.

The converged action profile a? at the point of termination is

proven to be a pure strategy Nash equilibrium of our potential

game [22], thus this a? corresponds to a pure strategy Nash

equilibrium of Gt. For more details on JSFP, the reader can

refer to [21], [22].

Algorithm 1 JSFP-based active pursuer selection at time t

1: k = 0
2: for i ∈ IP in parallel do

3: a?i [k] = RandSample(Ai, 1)
4: end for

5: CONVERGED = FALSE

6: while CONVERGED 6= TRUE do

7: k = k + 1
8: for i ∈ IP in parallel do

9: ai[k] = βi(a−i[k − 1];X , t)
10: ǎi[k] = β̌i(k − 1;X , t)
11: if rand() < α then

12: a?i [k] = ǎi[k]
13: else

14: a?i [k] = a?i [k − 1]
15: end if

16: end for

17: if
∧N

i=1
((ai[k] ≡ a?i [k]) ∧ (ai[k] ≡ ǎi[k − 1])) then

18: CONVERGED = TRUE

19: end if

20: end while

VI. NUMERICAL SIMULATIONS

In this section, we present numerical simulation results

obtained with the application of the JSFP-based active pur-

suer selection algorithm (Algorithm 1) for the solution of

Problem 1 and implement the latter algorithm in a multiple-

pursuer single-evader PEG. We define the sampling time of

the PEG as ∆t = 0.1 and the simulation step of the potential

game in Algorithm 1 for each instant of time as δt where

we assume δt � ∆t. Since each simulation step is much

less than the sampling time, we assume an infinite number

of simulation steps can fit in one time interval (between t
and t + ∆t for any t ≥ 0). Furthermore, we assume that

each simulation step is so short that any state transitions

that occur during that time interval is negligible; in other

words, the states of all the players are fixed to be constant

while Algorithm 1 is executed. This assumption is necessary

since the game Gt for all time t ≥ 0 must be a static game

such that the game can be played as a repeated game under

the game-theoretic learning dynamics we employ to find the

Nash equilibrium.

The parameters chosen for numerical simulations are as

follows: x0

i ∈ [0, 10]2 and vi ∈ [1, 2] for all i ∈ IP , x0

e ∈
[0, 10]2, ve = 0.9, and ε = 0.1. We first test the stability and

convergence time of Algorithm 1 by executing the algorithm

for 90 different episodes with various values of the following

design parameters: N (number of pursuers) and α (inertia).

For each episode, a pair of N and α are respectively chosen

from the sets {1, ..., 10} and {0.1, ..., 0.9}. The average

convergence time of each episode is then computed by

iterating the episode 1000 times and averaging the results.

Figure 1, which illustrates the average convergence times

of all the 90 episodes, clearly shows that, 1) Algorithm 1

always converges under the given simulation setup and 2) the

convergence time increases as N increases or α decreases.

The latter is an expected result because, if the value of α
is small, the pursuers are more likely to insist on choosing

their previous action over exploring, which slows down the

algorithm from converging.

Fig. 1. Convergence of Algorithm 1 (JSFP with inertia)

For the main simulation presented in Figure 2, we choose

N = 10 and α = 0.8 (for fast convergence, we choose

large α herein). Figure 2(a) shows the initial positions of all

the players, wherein the pursuers are represented as circles

and the evader (E) as a red square. Note that the colors of

the pursuers indicate their maximum allowable speeds; the

lighter the colors are, the faster the pursuers are. Figure 2(b)

and 2(c) show the pursuers’ positions and trajectories up to

time τ11 and tc, respectively, where τj for j ∈ {1, . . . , 11},

denotes a switching time at which the active pursuer is newly

assigned. Throughout the game, there are total 11 switching

times between P6 and P9. From τ1 to τ11, either P6 or P9

is selected as the active pursuer to pursue (denoted as  ) E .

An interesting observation is that E initially follows a zigzag




