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Abstract—1In this paper, we propose a decentralized game-
theoretic pursuit policy for a heterogeneous group of pursuers
who individually attempt to, without any prescribed cooperative
pursuit strategy, capture a single evader who strives to delay
or avoid capture if possible. We assume that the pursuers
are rational (self-interested) agents who are not necessarily
connected via communication network. Our proposed pursuit
policy is motivated from the semi-cooperative pursuit policy
called relay pursuit [1] under which only the pursuer who can
capture the evader faster than the others is active while the rest
stay put. In contrast to the latter strategy, our proposed method
does not rely on geometric tools. It relies instead on reducing
the noncooperative pursuit-evasion game into a sequence of
maximum weighted bipartite matching problems which seek
to find the pursuer-evader assignments which will result in
minimum time of capture. To find the optimal assignment in
a decentralized manner, the graph matching problem at each
time instant is formulated as a static potential game whose pure
strategy Nash equilibria correspond to the optimal assignments.
Such equilibria are found by iteratively executing a game-
theoretic learning algorithm called Joint Strategy Fictitious
Play (JSFP) under which every pursuer synchronously takes
his best reply strategy (pursue or stay put), depending on
the joint actions of other pursuers, until they reach a Nash
equilibrium. We illustrate the performance of our method by
means of extensive numerical simulations.

I. INTRODUCTION

Pursuit-evasion games (PEGs) with multiple players re-
ceive a lot of attention at present due to their relevance
to applications involving decision makers with possibly
conflicting objectives. The game of pursuit and evasion, a
class of multiplayer dynamic game involving two (or more)
competitive players, was first formalized with the emergence
of differential game theory [2]. Since then, various types of
PEGs have been studied in the eyes of differential game
theory [3]-[6]. A special type of PEGs where the pursuers
have an additional duty to defend a target object or area from
the evaders is receiving a lot of attention [7]-[9] at present.
Meanwhile, there have also been, albeit fewer, studies on
intelligent evasion strategies [10], [11]. For a broader and
more thorough review on recent studies on PEGs, one can
refer to [12].

The classical differential game methods, however, often
face the curse of dimensionality as the number of players
increases. Moreover, they may not provide robust solutions
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in the presence of constraints due to, say, communication or
sensing limitations. The authors of [1], the main inspiration
of our present work, developed a practical and easy-to-
implement pursuit strategy, named relay pursuit, that could
deal with the aforementioned constraints. Under the latter
strategy, at every time instant, only one pursuer is assigned
as the active pursuer who is responsible to capture the evader,
whereas the other pursuers remain still. In particular, the
active pursuer is assigned by a decentralized algorithm based
on dynamic Voronoi diagrams.

The Voronoi-based assignment policy, however, is only ap-
plicable to PEGs involving a homogeneous group of pursuers
(i.e., every pursuer has the same maximum allowable speed).
Decentralized workspace partitioning for a heterogeneous
group of pursuers is possible but may degrade the merits
of relay pursuit strategy due to its computational intractabil-
ity [13]. In this paper, we aim to overcome the aforemen-
tioned issue, not with geometric tools, but with game theory.
In particular, we first formulate the active pursuer selection
problem associated with the relay pursuit strategy as an
optimization problem. We then reformulate the latter problem
as a potential game, a subclass of noncooperative games that
has been proven as a powerful tool for the game-theoretic
control of multi-agent systems [14], [15]. At last, we show
that, via proper selection of the pursuers’ individual utilities
and learning dynamics, a game-theoretic equivalent of relay
pursuit strategy, that is still decentralized but applicable to
PEGs involving a heterogeneous group of pursuers, emerges
as a commonly accepted pursuit policy among the group of
pursuers.

The main contributions of this paper are as follows:

1) We present a formulation of the pursuer-target assign-
ment problem that arises in multiple-pursuer single-
evader PEGs as a potential game,

2) We show how to design the individual utilities of the
pursuers such that the maximization of the latter con-
tributes to the maximization of their global objective,

3) We utilize game-theoretic learning tools and in par-
ticular, the Joint Strategy Fictitious Play (JSFP) with
inertia algorithm to compute the pure strategy Nash
equilibrium of the game in a decentralized manner.

The rest of the paper is organized as follows. In Section II,
we formulate our multiple-pursuer single-evader PEG. In
Section III, we formulate the active pursuer selection prob-
lem that arises in the PEG as a constrained optimization
problem and briefly introduce potential games. In Section IV,



we reformulate the latter optimization problem as a potential
game and design the pursuers’ local utilities. In Section V,
we present the decentralized game-theoretic learning dynam-
ics based on JSFP with inertia. In Section VI, we present and
discuss the results of numerical simulations and, lastly in
Section VII, we provide concluding remarks and directions
for future research.

II. FORMULATION OF THE PURSUIT-EVASION GAME

We consider a class of multiplayer PEG involving N
pursuers and a single evader (target), all of which maneuver
in an unbounded 2D plane R? where there exist no obsta-
cles that hinder the motions of the players. The group of
pursuers, whose index set is denoted by Zp = {1,...,N},
is assumed to be heterogeneous; i.e., the maximum speed
of an individual pursuer may differ from each other. For
simplicity, let us denote the i*" pursuer as P; and the single
evader as £. In the proposed PEG, £ continuously strives
to avoid or delay her capture, whereas every P; attempts
to capture the latter only if this increases his local utility.
Note that no prescribed cooperative strategies are given to the
pursuers a priori. Suppose that each player (either pursuer
or evader) has an infinite sensing range, which allows them
to observe the current state (position) and previous action
(velocity vector) of every other player throughout the game.
Each player’s ensuing action, however, is assumed to be
unknown to any other player at any instant of time (even
among the pursuers due to, say, communication jamming).
Yet, since their previous actions are observable, it is fair to
assume that all pursuers have complete information about
each other’s maximum speed.

Let us denote by z; € R? (resp., ¥ € R?) the position
of P; at time t > 0 (resp., t = 0) where ¢ € Zp, and by
x. € R? (resp., ¥ € R?) the position of £ at time ¢ > 0
(resp., t = 0). Capture of £ by P; occurs if there is a time
instant ¢ > 0 at which the latter enters the capture zone of
the former, that is, x; € B.(x.) for a given capture radius
€ > 0, where B(x.) denotes the closed ball of radius € > 0
centered at ., that is, B.(z.) := {x € R? : |z —z.| < €},
and || - || denotes the Euclidean (vector) norm. Furthermore,
we denote by ¢, the corresponding time of capture, which is
equal to the smallest time ¢ > 0 at which capture occurs. In
addition, all the players follow single integrator dynamics,
that is,

:Bl(t) = V;Uu; (t)7
Te(t) = veue(t),

where u; € U (resp., u. € U) denotes the control input
of P; (resp., £) at time t and U the input value set of the
players which is defined as U := S; U{0}, where S, denotes
the sphere of radius € > 0 centered at the origin, that is,
S. = {z e R?: ||z| = €}.

Note that if w; € S (resp.,, u. € &1), the input
corresponds to the direction of motion of P; (resp., £) along
with the maximum speed v; (resp., v.), whereas if u; = 0
(resp., ue = 0), then P; (resp., £) does not move. Lastly,

z;(0) =2, icZTp, (1)
x.(0) = 2, (2)

let X denote the augmented state of all the players where
X =[z],..,z),x]]T.

In this paper, we assume that the active pursuers chase the
evader by adopting a pure pursuit strategy, that is,

ult(zy, ) = &/)1&], 3)

where &; = x. — x; denotes the relative position vector of
& with respect to P;. The evader, on the other hand, tries to
delay or avoid capture by any of the pursuers. To this aim,
let £ play a pure evasion strategy against P;+ where if € Zp
represents the index of the pursuer who is the closest to &,
ie., i = argmin;ez, ||&]]. The pure evasion strategy is
described as

uPE(X) = & /||€ - 4)

Note that the selection of 4' is irrespective of whether this
pursuer is really an active pursuer or not especially because
the ensuing actions of pursuers at the next time instant is
assumed to be unknown to the evader.

As will be explained in detail in the next section, each
pursuer is assumed to be a rational (self-interested) decision
maker to fit them in the framework of game theory. In
other words, our proposed game-based pursuit policy will
not allow cooperative capture of £ by more than one pursuer
to occur. Therefore, it is justifiable to assume that P; for all
1 € Ip will always play a two-player game only between
himself and £. In turn, the latter assumption leads us to
decompose the proposed N-player PEG into N two-player
games. Then, along with an additional assumption that each
active pursuer employs the pure-pursuit strategy given in (3)
and £ employs the pure-evasion strategy given in (4), an
estimate of the time-to-capture, which is the time it will
take for P; to capture &£, can be computed by solving the
following quadratic equation [11]:

(v — 02)? + 2((&;, veuse) — evi)p + &2 = . (5)

As long as P; is faster than &€ (i.e., v; > v.), (5) admits a
non-negative solution for any &; € R2 [11]. Recall, however,
that the evader’s ensuing control input u. is not assumed to
be known to any of the pursuers a priori. Thus, the pursuers
cannot predict the exact time that will take them to capture
& since they are not aware of the motion of the evader at
the next moment. For this reason, each pursuer will instead
compute his time-to-capture under the assumption that &
will continue to apply the pure evasion strategy against the
pursuer that she was evading at the previous time instant; we
denote such (expected) time-to-capture by ¢(x., ;).

III. THE ACTIVE PURSUER SELECTION PROBLEM

In this section, we formulate the active pursuer selection
problem, a special class of pursuer-target assignment prob-
lem that arises when applying the relay pursuit strategy to
multiple-pursuer single-evader PEGs, as a simple optimiza-
tion problem. The pursuer-target assignment problem is in
essence a bipartite matching problem in which the nodes
represent the pursuers and targets and the weighted edges



represent, for example, time-to-capture. The Voronoi-based
relay pursuit strategy in [1], for instance, matches the pursuer
with minimum time-to-capture to the evader in a geometric
way. The active pursuer selection problem under the relay
pursuit strategy can be described as follows (for any time
t>0):

max |: - ZiGIP Cli(ﬂ(me, xb):| 5
m.};gﬁwzl. (6)

where a; is an assignment of P; (i.e., a; = 1 if P; is assigned
to the task of capturing £ and a; = 0 otherwise). The goal of
the pursuers is to maximize the global objective (6) at every
time instant ¢ in a decentralized manner. Note that in this
problem the pursuers aim to maximize their current payoffs
only. In [1], for instance, the active pursuer is selected in a
myopic way under the Voronoi-based assignment policy. In
game theory, these pursuers are considered myopic agents
who take into account neither state transition nor future
payoffs when making their current decisions.

In this section, we present a way to find an optimal
solution to (6) by formulating the latter as a (static) potential
game [16]. To that end, let us consider a finite N-player
strategic form game with the set of players N, admissible
action sets {A;}, and local utility functions {J; : A — R},
where A denotes the joint set of admissible actions of
the pursuers, ie., A = X LifllAi, where | - | denotes the
cardinality of a set. Let @ = (a;,a—;) denote the joint
action profile, where a; denotes the action of player ¢ and
a_; the joint admissible action set of all the players but
player i, ie., a_; = {a;};jenn s} The joint admissible action
set of all the players but player ¢ is denoted as A_; :=
X jen\{iyA;j. The game discussed above is represented as
the tuple G := (N, {A4; }ien, {Ji }ienr). Next, we introduce
two key definitions in game theory.

Definition 1 (Pure Strategy Nash Equilibrium): The joint
action profile a* is a pure strategy Nash equilibrium of the
game @, if there is no unilateral motive for each player to
pick a different (pure strategy) action under the assumption
that the other pursuers are committed to their current actions,
that is,

Ji(aj,a”;) > Ji(a;,a’,),
for all a; € A; and i € N.

Note that not all games are guaranteed to possess pure
strategy Nash equilibria. To solve (6), however, we need
to formulate a game with at least one pure strategy Nash
equilibrium such that this equilibrium aligns with the optimal
solution of the problem. To that end, let us introduce potential
games:

Definition 2 (Exact Potential Game): For a finite game G,
if there exists a function &2 : A — R such that

Ji(agaa—i) — Jilas,a-;) =
e@(ag,a,i) - c@(a"ha*i)a

for all a;,a; € A;, a—; € A_;, and i € Zp, then G is an
exact potential game with exact potential 2.

The interpretation of Definition 2 is that the difference in
the player’s utility caused by a change on his own action
leads to the same change on the potential function. Most
importantly, any ordinal potential game (a more general class
that includes exact potential game) is known to have a finite
improvement path along which the potential function mono-
tonically increases, and its end point corresponds to a Nash
equilibrium. In other words, potential games are guaranteed
to have at least one pure strategy Nash equilibrium.

Finally, we introduce the main problem of our present
work, that is the formulation of (6) as a potential game.

Problem 1: Let G' = (Zp,{Ai}iczp,{J}}ticz,) be a
finite game corresponding to the pursuer-target assignment
problem for an arbitrary time ¢ > 0, where A; = {0,1}
for all ¢ € Zp (0 means stay and 1 means pursue). Define
the local utility functions J! and potential function v of the
game such that the pursuers can find the maximizer of the
global objective in (6) in a decentralized manner. Then, find
such optimal joint assignment a*.

IV. LocAL UTILITY DESIGN

A potential game-based optimization method consists of
two phases: utility design and learning dynamics design [14].
In this section, we discuss the former phase. The fact
that a group of pursuers compete for a limited resource
(i.e., target) allows us to view (6) as a distributed resource
allocation problem for which there exist various local utility
designs [17]. Most of these utilities, however, are exclusively
designed for unconstrained optimization problems. Thus, in
order to leverage the existing utility designs, we must first
remove the constraint on the maximum number of pursuers
that can be assigned to the evader in (6). One possible method
is to add a penalty function to the global objective in (6) such
that if there are more than one pursuers assigned to the target
then the penalty dominates the reward. This penalty method,
however, may no longer assure the optimality of resulting
pure strategy Nash equilibria. Instead, let us claim a new
objective function as the following:

_% Ziezp aip(xe, x;), ify>0

ify=0 2

JHa; X) := {

—o0,
where v 1=}, 7 a; denotes the number of active pursuers
under assignment a. Note that the optimal joint action profile
a* that maximizes (7) also maximizes (6), and vice versa.
This is because, if there exists a pursuer whose expected
time-to-capture is the smallest in the group, the average time-
to-capture is at its minimum (i.e., J* is at its maximum) only
if that pursuer is active. In other words, J? is maximized
under the joint action profile @ = (a;» = 1,a_;+ = 0) where
i* = arg min;ez, @(x., x;). Thus, as of this point, we will
seek to maximize (7) instead of (6).

In our problem, the global objective (7) is selected as a
potential function of G such that an increase in the potential



function aligns with an increase in the global objective; i.e.,
a pure strategy Nash equilibrium of G! is the maximizer
of (7) and, since both (6) and (7) share the same optimal
solutions, the maximizer of (6). Note that (7) has no limit
on the number of pursuers assigned to the evader. Hence,
we can apply any proper utility design from the literature,
that include, to name a few, the equally shared utility (ESU),
wonderful life utility (WLU), and Shapley value (SV) [17].
Among these many choices, we will particularly use the
WLU [18] as the local utility function of an individual
pursuer, which corresponds to the marginal contribution
made by the pursuer to the global objective. More precisely,

Jf((az, Cl_i); X) =
J'((ai,a_;); X) — JH((D,a_:); X).  (8)
If a; = 0, regardless of the value of ~, substituting (7) into

(8) yields J! = 0. If a; = 1 and v = 1, on the other hand,
J! = oo. Lastly, if a; = 1 and v > 1, from (8) we obtain

Ji ((ai,a-); X)
1 1
= ~_1 Z anD($e,CEj) - Z a‘j@(weij)
JEIp\{i} " JE€Tp
1

:Vﬁ—l)VEZEMHG%w@mwﬂ_

(=D, aele.a))

1 1
= 5-D Zjezp a;p(xe, x;) — mw(me,mi).
For brevity, let 9(X;a) := (1/7) 3_;cz, aip(e, ;) denote
the average time-to-capture of all the active pursuers. Then
the results above are collected to define the local utility
function of P; as follows:

JH(ai,a_;); X) =

0, if a; = 0,
00, if (y=1)A(a; =1),
1 (p(Xa) — pl@e ). i (7> 1) A (s = 1),

(€))

The interpretation of (9) is that P; receives no reward if he
chooses to remain still, whereas he receives a positive (resp.,
negative) reward if the average time-to-capture p(x., x;) is
greater (resp., less) than @(X; a). If P; is currently the only
active pursuer in assignment a, he receives an infinite reward.
Therefore, if the action of chasing the target gives him a
positive reward (or there is no other active pursuer), P; is
encouraged to pursue the target in the ensuing time step.

Proposition 1: Let v, < v; for all i € Ip. Given J!
and J! defined in (7) and (9), respectively, the game G' =
(Zp,{ A }iezp, {J} }iez,) is an exact potential game with
exact potential & = J for any instant of time ¢ > 0.

Proof: By setting & = J!, G is classified as an
identical interests plus dummy game [19] in which the local
utility function J! corresponds to the sum of an identical

interest function JF, which is a function of the joint action
profile of all the pursuers, a, and a dummy function Q, which
is a function of the joint action profile of all the pursuers but
P;, a_;. More precisely,

Ji((aiya—); X) = F((ai,a—); X, t) + Qi (&, a—;); X, 1),
Va; € .Ai, a_; € .Afi, 1 € Ip.

Comparing with (8), we see that F(a; X) = J'(a; X) and
Qi(a_i; X) = J'((2,a—;); X). Since the identical interest
function F is an exact potential of an identical interests plus
dummy game [19], we conclude that G? is an exact potential
game with exact potential &2 = J? for any time t > 0. H

V. JSFP-BASED ACTIVE PURSUER SELECTION

Given the fact that Gt is a potential game, there exist a
variety of iterative game-theoretic learning algorithms that
can discover a pure strategy Nash equilibrium in a decentral-
ized manner. Such learning algorithms include fictitious play
(FP), regret matching (RM), spatial adaptive play (SAP) [14],
and log-linear learning (LLL) [20]. Because in our problem
the group of pursuers must arrive at consensus within a
short time interval before the evader runs away, synchronous
algorithms (FP and RM) are preferred over asynchronous
algorithms (SAP and LLL) as the former type of algorithms
generally shows faster convergence time [14]. Under FP,
for instance, every pursuer follows best reply dynamics
using the history of actions of the entire group. Note that
an individual pursuer can obtain information about actions
of other pursuers either by communicating with them or
observing their actions. The latter algorithm, however, can
be computationally intractable since each player must track
the history of action profiles. To avoid this issue, we will
use JSFP with inertia, an improved FP algorithm suggested
in [21] that alleviates the aforementioned computational
intractability but still ensures convergence to a pure strategy
Nash equilibrium almost surely for any (ordinal) potential
game.

The pseudocode of the JSFP-based learning dynamics for
active pursuer selection at time ¢ is provided in Algorithm 1.
Under this algorithm, at the initial simulation step & = 0,
every pursuer picks a random action from his admissible
action set (Line 3). Thereafter, each one of the pursuers
iterates to take his best response action (conditional on the
previous joint action profile of the other pursuers that he
observed) until there are no more best response actions for
the group to take. Once converged, the pursuers execute
their actions, move forward to the next time instant, and
repeat the algorithm until the evader is captured. The main
difference between JSFP and FP is that, at every simulation
step, instead of recording the action history, each pursuer
updates his expected utility function based on his observation
of other pursuers’ previous joint action profile. Note that, at
each iteration, two different candidate best response actions



are computed (Line 9 and 10) as follows:
Bi(a_;[k]; X,t) = arg max J} ((a;, a_;[K]); X),
a; €EA;
Bi(k; X,t) = argmax J! (k; X).
a;€A;
The average utility function J! is propagated according to
the following recursive equation:

- k- 1

Ji(k+1;X) = mjit(/ﬁx) + m‘]f((aiaafi[k]); X).
Then, at every simulation step k, given a time-invariant
inertia parameter o € (0,1), a;[k] is selected as the next
action a}[k+ 1] with probability of o (Line 12), and, if a;[k]
is not selected (with probability of 1 — «), then P; resumes
to take the previous action a’[k — 1] (Line 14). The latter
process repeats until the terminal condition (Line 17) meets.
The converged action profile a* at the point of termination is
proven to be a pure strategy Nash equilibrium of our potential
game [22], thus this a* corresponds to a pure strategy Nash
equilibrium of G*. For more details on JSFP, the reader can
refer to [21], [22].

Algorithm 1 JSFP-based active pursuer selection at time ¢
1: k=0

2: for ¢ € Zp in parallel do

3:  arlk] = RandSample(A;,1)
4: end for

5: CONVERGED = FALSE

6: while CONVERGED # TRUE do
7: k=k+1

8: for i € Zp in parallel do

9: az[k] = ﬁi(a,i[k — 1}; Xﬂf)
10: a;lk] = Bi(k — 1; X, t)

11: if rand() < « then

12: arlk] = a;[k]

13: else

14: aflk] = allk — 1]

15: end if

16:  end for

17:  if /\ilil((ai[k] = af[k]) A (ai[k] = a;[k — 1])) then
18: CONVERGED = TRUE

19:  end if

20: end while

VI. NUMERICAL SIMULATIONS

In this section, we present numerical simulation results
obtained with the application of the JSFP-based active pur-
suer selection algorithm (Algorithm 1) for the solution of
Problem 1 and implement the latter algorithm in a multiple-
pursuer single-evader PEG. We define the sampling time of
the PEG as At = 0.1 and the simulation step of the potential
game in Algorithm 1 for each instant of time as dt where
we assume 0t < At. Since each simulation step is much
less than the sampling time, we assume an infinite number
of simulation steps can fit in one time interval (between t
and t + At for any ¢ > 0). Furthermore, we assume that

each simulation step is so short that any state transitions
that occur during that time interval is negligible; in other
words, the states of all the players are fixed to be constant
while Algorithm 1 is executed. This assumption is necessary
since the game G for all time ¢ > 0 must be a static game
such that the game can be played as a repeated game under
the game-theoretic learning dynamics we employ to find the
Nash equilibrium.

The parameters chosen for numerical simulations are as
follows: x? € [0,10]? and v; € [1,2] for all i € Zp, x¥ €
[0, 10]2, ve = 0.9, and € = 0.1. We first test the stability and
convergence time of Algorithm 1 by executing the algorithm
for 90 different episodes with various values of the following
design parameters: N (number of pursuers) and « (inertia).
For each episode, a pair of N and « are respectively chosen
from the sets {1,...,10} and {0.1,...,0.9}. The average
convergence time of each episode is then computed by
iterating the episode 1000 times and averaging the results.
Figure 1, which illustrates the average convergence times
of all the 90 episodes, clearly shows that, 1) Algorithm 1
always converges under the given simulation setup and 2) the
convergence time increases as /N increases or a decreases.
The latter is an expected result because, if the value of «
is small, the pursuers are more likely to insist on choosing
their previous action over exploring, which slows down the
algorithm from converging.

Convergence Step
-
w (=] n
o (=) (=]

© o

Fig. 1.

Convergence of Algorithm 1 (JSFP with inertia)

For the main simulation presented in Figure 2, we choose
N = 10 and a = 0.8 (for fast convergence, we choose
large « herein). Figure 2(a) shows the initial positions of all
the players, wherein the pursuers are represented as circles
and the evader (€) as a red square. Note that the colors of
the pursuers indicate their maximum allowable speeds; the
lighter the colors are, the faster the pursuers are. Figure 2(b)
and 2(c) show the pursuers’ positions and trajectories up to
time 71 and ¢, respectively, where 7; for j € {1,...,11},
denotes a switching time at which the active pursuer is newly
assigned. Throughout the game, there are total 11 switching
times between Pg and Pgy. From 7 to 711, either Pg or Py
is selected as the active pursuer to pursue (denoted as ~») £.
An interesting observation is that £ initially follows a zigzag
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Fig. 2. Relay pursuit using Algorithm 1 (N = 10, = 0.8)

path to delay the capture, whereas after 711, as Py approaches
closely, she starts to pure-evade him. For all ¢ > 0, the rest of
the pursuers stay in their initial positions. These simulation
results show that, for a class of PEGs involving multiple
pursuers and a single evader, individually selfish action by
the pursuers guided by Algorithm 1 naturally induces a semi-
cooperative team pursuit strategy equivalent to relay pursuit.

VII. CONCLUSIONS

In this paper, we have presented a decentralized game-
theoretic pursuit policy for multiple pursuers to capture the
evader. Via this pursuit policy, the pursuers essentially find a
solution to the pursuer-target assignment problem associated
with the multiplayer pursuit-evasion games involving a single
evader and a heterogeneous group of pursuers who are not
necessarily cooperative. Our proposed method, which relies
on potential games, assume all the pursuers are rational
decision makers who selfishly attempt to maximize their
individual utilities, whereas such noncooperative behaviors
synchronize to maximize the global objective. By setting the
local utility of each pursuer equal to his marginal contribu-
tion to the global objective and by executing JSFP with iner-
tia, a semi-cooperative group pursuit strategy that resembles
relay pursuit is obtained among the noncooperative pursuers.
In our future work, we will consider an extension of our
proposed method to multiple-pursuer multiple-evader PEGs.
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