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Abstract

Determinantal point processes (DPPs) are popular probabilistic models of diversity.
In this paper, we investigate DPPs from a new perspective: property testing of
distributions. Given sample access to an unknown distribution ¢ over the subsets of
a ground set, we aim to distinguish whether ¢ is a DPP distribution, or e-far from
all DPP distributions in /1 -distance. In this work, we propose the first algorithm
for testing DPPs. Furthermore, we establish a matching lower bound on the sample
complexity of DPP testing, up to logarithmic factors. This lower bound also
implies a new hardness result for the problem of testing the more general class of
log-submodular distributions.

1 Introduction

Determinantal point processes (DPPs) are a rich class of discrete probability distributions that were
first studied in the context of quantum physics [54] and random matrix theory [30]. Initiated by the
seminal work of Kulesza and Taskar [46], DPPs have gained a lot of attention in machine learning,
due to their ability to naturally capture notions of diversity and repulsion. Moreover, they are easy
to define via a similarity (kernel) matrix, and, as opposed to many other probabilistic models, offer
tractable exact algorithms for marginalization, conditioning and sampling [5, 42, 46, 51]. Therefore,
DPPs have been explored in a wide range of applications, including video summarization [39, 38],
image search [45, 2], document and timeline summarization [53], recommendation [69], feature
selection in bioinformatics [9], modeling neurons [63], and matrix approximation [22, 23, 50].

A Determinantal Point Process is a distribution over the subsets of a ground set [n] = {1,2,...n},
and parameterized by a marginal kernel matrix K € R™*™ with eigenvalues in [0, 1], whose (4, j)th
entry expresses the similarity of items ¢ and j. Specifically, the marginal probability that a set A C [n)
is observed in arandom J ~ Pri[.]isP(A C J) = det(K 4), where K 4 is the principal submatrix
of K indexed by A. This implies P({4, j} € J) = det(Ky; j;) = K; ;K ; — K} for items 7 and j,
which means similar items are less likely to co-occur in 7.

Despite the wide theoretical and applied literature on DPPs, one question has not yet been addressed:
Given a sample of subsets, can we test whether it was generated by a DPP? This question arises,
for example, when trying to decide whether a DPP may be a suitable mathematical model for a
dataset at hand. To answer this question, we study DPPs from the perspective of property testing.
Property testing aims to decide whether a given distribution has a property of interest, by observing
as few samples as possible. In the past two decades, property testing has received a lot of attention,
and questions such as testing uniformity, independence, identity to a known or an unknown given
distribution, and monotonicity have been studied in this framework [18, 60].

More precisely, we ask How many samples from an unknown distribution are required to distinguish,
with high probability, whether it is a DPP or e-far from the class of DPPs in ¢1-distance? Given the
rich mathematical structure of DPPs, one may hope for a tester that is exceptionally efficient. Yet,
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we show that testing is still not easy, and establish a lower bound of Q(v/N /€?) for the sample size
of any valid tester, where N = 2" is the size of the domain. In fact, this lower bound applies to the
broader class of log-submodular measures, and may hence be of wider interest given the popularity
of submodular set functions in machine learning. Even more generally, the lower bound holds for
testing any subset of log-submodular distributions that include the uniform measure.

We note that the v/N dependence on the domain size is not uncommon in distribution testing, since it
is required even for testing simple structures such as uniform distributions [57]. However, achieving
the optimal sample complexity is nontrivial. We provide the first algorithm for testing DPPs; it uses
O(\/N /€2) samples. This algorithm achieves the lower bound and hence settles the complexity of
testing DPPs. Moreover, we show how prior knowledge on bounds of the spectrum of K or its entries
K;; can improve logarithmic factors in the sample complexity. Our approach relies on testing via
learning. As a byproduct, our algorithm is the first to provably learn a DPP in ¢;-distance, while
previous learning approaches only considered parameter recovery in K [67, 17], which does not
imply recovery in ¢;-distance.

In short, we make the following contributions:

* We show a lower bound of (v/N /€?) for the sample complexity of testing any subset of
the class of log-submodular measures which includes the uniform measure, implying the
same lower bound for testing DPP distributions and strongly Rayleigh [15] measures.

* We provide the first tester for the family of DPP distributions using O(\/N /€?) samples.
The sample complexity is optimal with respect to € and the domain size IV, up to logarithmic
factors, and does not depend on other parameters. Additional assumptions on /K can improve
the algorithm’s complexity.

* As a byproduct of our algorithm, we give the first algorithm to learn DPP distributions in ¢;
distance.

2 Related work

Distribution testing. Hypothesis testing is a classical tool in statistics for inference about the data
and model [56, 49]. About two decades ago, the framework of distribution testing was introduced, to
view such statistical problems from a computational perspective [37, 13]. This framework is a branch
of property testing [61], and focuses mostly on discrete distributions. Property testing analyzes the
non-asymptotic performance of algorithmes, i.e., for finite sample sizes. By now, distribution testing
has been studied extensively for properties such as uniformity [57], identity to a known [10, 1, 25] or
unknown distribution [20, 24], independence [10], monotonicity [11, 3], k-modality [21], entropy
estimation [12, 70], and support size estimation [59, 68, 71]. The surveys [18, 60] provide further
details.

Testing submodularity and real stability. Property testing also includes testing properties of
functions. As opposed to distribution testing, where observed samples are given, testing functions
allows an active query model: given query access to a function f : X — ), the algorithm picks
points z € X and obtains values f(z). The goal is to determine, with as few queries as possible,
whether f has a given property or is e-far from it. Closest to our work in this different model is
the question of testing submodularity, in Hamming distance and ¢,,-distance [19, 62, 31, 14], since
any DPP-distribution is log-submodular. In particular, Blais and Bommireddi [14] show that testing
submodularity with respect to any £,, norm is feasible with a constant number of queries, independent
of the function’s domain size. The vast difference between this result and our lower bound for
log-submodular distributions lies in the query model — given samples versus active queries — and
demonstrates the large impact of the query model. DPPs also belong to the family of strongly
Rayleigh measures [15], whose generating functions are real stable polynomials. Raghavendra et al.
[58] develop an algorithm for testing real stability of bivariate polynomials, which, if nonnegative,
correspond to distributions over two items.

Learning DPPs. The problem of learning DPPs has been of great interest in machine learning.
Unlike testing, in learning one commonly assumes that the underlying distribution is indeed a DPP,
and aims to estimate the marginal kernel K. It is well-known that maximum likelihood estimation
for DPPs is a highly non-concave optimization problem, conjectured to be NP-hard [17, 47]. To
circumvent this difficulty, previous work imposes additional assumptions, e.g., a parametric family for



K [45, 44, 2, 46, 8, 48], or low-rank structure [33, 34, 29]. A variety of optimization and sampling
techniques have been used, e.g., variational methods [26, 36, 8], MCMC [2], first order methods [46],
and fixed point algorithms [55]. Brunel et al. [17] analyze the asymptotic convergence rate of the
Maximum likelihood estimator. To avoid likelihood maximization, Urschel et al. [67] propose an
algorithm based on the method of moments, with statistical guarantees. Its complexity is determined
by the cycle sparsity property of the DPP. We further discuss the implications of their result in our
context in Section 4. Using similar techniques, Brunel [16] considers learning the class of signed
DPPs, i.e., DPPs that allow skew-symmetry, K; ; = K ;.

3 Notation and definitions

Throughout the paper, we consider discrete probability distributions over subsets of a ground set
[n] = {1,2,...,n}, ie., over the power set 2("] of size N := 2". We refer to such distributions via
their probability mass function p : 2[") — R=0 satisfying 3 sCn p(S) = 1. For two distributions p

and ¢, we use £1(q,p) = £ > scn 12(S) — p(S)] to indicate their ¢, (total variation) distance, and

X2(q,p) = SCin] W to indicate their y2-distance. Unlike the ¢;-distance, the y2-distance

is a pseudo-distance, and can be lower bounded as x?(q,p) > 4¢1(q,p)? by a simple application of
the Cauchy-Schwarz inequality.

Determinantal Point Processes (DPPs). A DPP is a discrete probability distribution parameterized
by a positive semidefinite kernel matrix K € R™*™, with eigenvalues in [0, 1]. More precisely, the
marginal probability for any set S C [n] to occur in a sampled set 7 is given by the principal
submatrix indexed by rows and columns in S: Pryox[S C J] = det(Kg). We refer to the
probability mass function of the DPP by Prx[.J] = Prs..x[J = J]. A simple application of the
inclusion-exclusion principle reveals an expression in terms of the complement J of J:

Pri[J] = |det(K — I7)]. (1)

Distribution testing. We mathematically define a property P to be a set of distributions. A distribu-
tion g has the property P if ¢ € P. We say two distributions p and g are e-far from (e-close to) each
other, if and only their /;-distance is at least (at most) €. Also, q is e-far from P if and only if it is
e-far from any distribution in P. We define the e-far set of P to be the set of all distributions that are
e-far from P. We say an algorithm is an (¢, §)-tester for property P if, upon receiving samples from
an unknown distribution ¢, the following is true with probability at least 1 — :

* If ¢ has the property P, then the algorithm outputs accept.
* If g is e-far from P, then the algorithm outputs reject.

We refer to € and 9 as proximity parameter and confidence parameter, respectively. Note that if
we have an (e, §)-tester for a property with a confidence parameter 6 < 0.5, then we can achieve
an (e, §')-tester for an arbitrarily small 6’ by multiplying the sample size by an extra factor of
O(log(d/0")). This amplification technique [28] is a direct implication of the Chernoff bound when
we run the initial tester ©(log(d/¢")) times and take the majority output as the answer.

4 Main results

We begin by summarizing our main results, and explain more proof details in Sections 5 and 6.

Upper bound. Our first result is the first upper bound on the sample complexity of testing DPPs.

Theorem 1 (Upper Bound). Given samples from an unknown distribution q over 21", there exists
a deterministic (e,0.01)-tester for determining whether q is a DPP or it is e-far from all DPP
distributions. The tester uses

O(Cn, VN /e?) @)
samples with logarithmic factors Cy . = log®(N)(log(N) + log(1/e)).
Importantly, the sample complexity of our upper bound grows as O(\/N /€2), which is optimal up to

a logarithmic factor (Theorem 2). With additional assumptions on the spectrum and entries of K,
expressed as («, ¢)-normal DPPs, we obtain a refined analysis.



Definition 1. For ¢ € [0,0.5] and « € [0, 1], a DPP with marginal kernel K is (o, ¢)-normal if:
1. the eigenvalues of K are in the range [(,1 — (]; and
2. fori,jen: K;; #0=|K;;| >

The notion of a-normal DPPs was also used in [67]. Since K has eigenvalues in [0, 1], its entries
K; ; are at most one. Hence, we always assume 0 < ¢ <0.5and 0 < o < 1.

Lemma 1. For («, {)-normal DPPs, with knowledge of o and ¢, the factor in Theorem 1 becomes
Cec.o = 108" (N)(1 +1og(1/¢) + min{log(1/€),log(1/a)}).

Even more, if at least one of € or « is not too small, i.e., if e = Q(C"2N"4) or e = Q(¢CTIN~1/4)
hold, then Cy _ . , reduces to log® (V). With a minor change in the algorithm, the bound in Lemma 1

also holds for the problem of testing whether ¢ is an («, ¢)-normal DPP, or e-far only from just the
class of («, ¢)-normal DPPs, instead of all DPPs (Appendix F).

Our approach tests DPP distributions via learning: At a high-level, we learn a DPP model from the
data as if the data were generated from a DPP distribution. Then, we use a new batch of data and
test whether the DPP we learnt seems to have generated the new batch of the data. More accurately,
given samples from g, we pretend ¢ is a DPP with kernel K*, and use a proper learning algorithm to
estimate a kernel matrix K.

But, Urschel et al. [67] derive a lower bound on the complexity of learning K* which, in the worst
case, may lead to a sub-optimal sample complexity for testing. To reduce the sample complexity of
learning, we do not work with a single accurate estimate K , but construct a set M of candidate DPPs
as potential estimates for . We show that, with only (—)(\/N /€2) samples, we can obtain a set M
such that, with high probability, we can determine if ¢ is a DPP by testing if ¢ is close to any DPP
in M. We prove that O (log(|]M|)v/N /%) samples suffice for this algorithm to succeed with high
probability.

Small-scale experiments in Appendix J validate the algorithm empirically.

Lower Bound. Our second main result is an information-theoretic lower bound, which shows that
the sample complexity of our tester in Theorem 1 is optimal up to logarithmic factors.

Theorem 2 (Lower Bound). Given ¢ < 0.0005 and n > 22, any (€,0.01)-tester needs at least
Q(V/'N /€?) samples to distinguish if q is a DPP or it is e-far from the class of DPPs.

Given « € [0, 0.5], the same bound holds for distinguishing if q is an («, ¢)-normal DPP or it is e-far
from the class of DPPs (or e-far from the class of («, ¢)-normal DPPs).

In fact, we prove a more general result (Theorem 4): testing whether ¢ is in any subclass T of the
family of log-submodular distributions that includes the uniform distribution requires Q(v/N /€?)
samples. DPPs are such a subclass [46]. A distribution f over 2("! is log-submodular if for every
S c 8" Cn]andi ¢ S, itholds that log(f(S'U{i})) —log(f(S")) < log(f(SU{i}))—log(f(S)).
Given the interest in log-submodular distributions [26, 66, 27, 40, 41], this result may be of wider
interest. Moreover, our lower bound applies to another important subclass Y, strongly Rayleigh
measures [15], which underlie recent progress in algorithms and mathematics [35, 32, 64, 4], and
sampling in machine learning [5, 52, 51].

Our lower bound stands in stark contrast to the constant sample complexity of testing whether a
given function is submodular [14], implying a wide complexity gap between access to given samples
and access to an evaluation oracle (see Section 2). We prove our lower bounds by a reduction from a
randomized instance of uniformity testing.

5 An Algorithm for Testing DPPs

We first construct an algorithm for testing the smaller class of («, )-normal DPPs, and then show
how to extend this result to all DPPs via a coupling argument.

Our testing algorithm relies on learning: given samples from ¢, we estimate a kernel K from the
data, and then test whether the estimated DPP has generated the observed samples. The magnitude



Algorithm 1 DPP-TESTER

1: procedure DPP-TESTER(e, d, sample access to q)
2: M < construct the set of DPP distributions as described in Theorem 3.
for each p in M do
Use robust 2 — £ testing to check if x2(q,p) < €2/500, or £1(q,p) > €.
if the tester outputs accept then
Return accept.

Return reject

A

of any entry K; ; can be estimated from the marginals for S = {i,5} and i, j, since Prg[S] =
Ki;K;;— Kfj = Prg[i|Prg[j] — Kfj But, determining the signs is more challenging. Urschel
et al. [67] estimate signs via higher order moments that are harder to estimate, but it is not clear
whether the resulting K yields a sufficiently accurate estimate of the distribution to obtain an optimal
sample complexity for testing. Hence, instead, we construct a set M of candidate DPPs such that,
with high probability, there is a p € M that is close to ¢ if and only if ¢ is a DPP. Our tester,
Algorithm 1, tests closeness to M by individually testing closeness of each candidate in M.

Constructing M. The DPPs in M arise from variations of an estimate for K™, obtained with

©(V' N /€%) samples. Via the above strategy, we first estimate the magnitude | K +;| of each matrix
entry. Separating the case K;; = 0, one can compute confidence intervals for this estimation around

+|K;;| and —|K;;|. We then pick candidate entries from these confidence intervals, such that at least
one is close to the true K ;. The candidate matrices K are obtained by all possible combinations of
candidate entries Since these are not necessarily valid marginal kernels, we project them onto the
positive semidefinite matrices with eigenvalues in [0, 1]. Then, M is the set of all DPPs parameterized
by these projected candidate matrices IT(K). Its cardinality is given in Theorem 3 and, as an explicit
function of N and ¢, in Appendix H.

If ¢ is a DPP with kernel K*, then, by construction, our candidates contain a K close to K*. The
projection of K remains close to K* in Frobenius distance. We show that this closeness of the
matrices implies closeness of the corresponding distributions ¢ and p = PrH( f()[ .] in ¢;-distance:
£1(q,p) = O(e). Conversely, if ¢ is e-far from being a DPP, then it is, by definition, e-far from M,
which is a subset of all DPPs.

Testing M. To test whether ¢ is close to M, a first idea is to do robust ¢; identity testing, i.e.,
for every p € M, test whether ¢1(q,p) > € or ¢1(q,p) = O(e). But, M can contain the uniform
distribution, and it is known that robust ¢; uniformity testing needs Q2(N/ log N) samples [68], as

opposed to the optimal dependence v/ N.

Hence, instead, we use a combination of 2 and ¢; distances for testing, and test x?(q,p) = O(€?)
versus /1(q,p) > e. This is possible with fewer samples [1]. To apply this robust x?-¢; identity
testing (described in Section 5.1), we must prove that, with high probability, there is a p in M with
x%(q,p) = O(€?) if and only if g is a DPP. Theorem 3, proved in Appendix A, asserts this result if g
is an (o, ¢)-normal DPP. This is stronger than its #; correspondent, since 4¢2(q,p) < x%(q, p)-

To prove Theorem 3, we need to control the distance between the atom probabilities of ¢ and p. We
analyze these atom probabilities, which are given by determinants, via a lower bound on the smallest
singular values o, of the family of matrices {K — I; : J C [n]}.

Lemma 2. If the kernel matrix K has all eigenvalues in [(,1 — (|, then, for every J C [n]:

on(K —I7) > ¢(1-¢)/V2.

Lemma 2 is proved in Appendix B. In Theorem 3, we observe m = [(In(1/6) + 1)v/N /e?] samples
from ¢, and use the parameter ¢ := [200n2¢ ! min{2¢/a, \/€/€}], with £ :== N~ /log(n) + 1.

Theorem 3. Let q be an («, ()-normal DPP distribution with marginal kernel K*. Given the
parameters defined above, suppose we have m samples from q. Then, one can generate a set M

of DPP distributions of cardinality |M| = (2¢ + 1)"2, with s defined as above, such that, with
probability at least 1 — 6, there is a distribution p € M with x*(q,p) < €2/500.



5.1 Correctness of the Testing Algorithm for (o, ¢)-normal DPPs

Next, we show that with high probability, our resulting testing algorithm succeeds with high prob-
ability. This finishes the proof of Lemma 1. For simplicity, we set the confidence parameter in
Algorithm 1 to § = 0.01. In this case, DPP-TESTER aims to output accept if ¢ is a («, ¢)-normal
DPP, and reject if q is e-far from all DPPs, in both cases with probability at least 0.99.

To finish the proof for the adaptive sample complexity, we need to argue that our DPP-TESTER
succeeds with high probability, i.e., that with high probability all of the identity tests, with each
p € M, succeed. The algorithm uses robust x2-¢; identity testing [1], to test x?(q,p) < €2/500
versus /1(q,p) > €. In our framework, the x?-/; identity tester works as follows. It uses a
Poissonization trick that simplifies the analysis. Given the average sample size m, the y2-/; tester
first samples m’ ~ Poisson(m), then obtains m’ samples from ¢. For each p € M, it then computes
the statistic

poo ) —m)? - N)

, 3
mp(J) ©

JC[n]: p(J)=e/50N

where N (.J) is the number of samples that are equal to set .J, and compares Z (™) with the threshold
C = me?/10.

Acharya et al. [1] show that for m = ©(v/N/e?), Z(™) concentrates around its mean, which is
strictly below C'if p satisfies x2(q,p) < €2/500, and strictly above C'if ¢1(q,p) > €. Let & be the
event that all these robust tests, for every p € M, simultaneously answer correctly. To make sure
that & happens with high probability, we use amplification (Section 3): while we use the same set of
samples to test against every p € M, we multiply the sample size by ©(log(|M])) to be confident
that each test answers correctly with probability at least 1 — O(]M|~!). A union bound then implies
that £ happens with arbitrarily large constant probability.

Theorem 3 states that, indeed, with ©(v/N /e?) samples, if ¢ is an (c, ¢)-normal DPP, then M
contains a distribution p such that x?(g, p) < €2/500, with high probability. We call this event &.
DPP-TESTER succeeds in the case £ N &E: If ¢ is an (o, ¢)-normal DPP, then at least one x2-¢; test
accepts p and consequently the algorithm accepts g as a DPP. Conversely, if g is e-far from all DPPs,
then /1 (q,p) > e for every p € M, so all the x?-/; tests reject simultaneously and DPP-TESTER
rejects ¢ as well. With a union bound on the events £ and £5, it follows that £; N £ happens with
arbitrarily large constant probability too, independent of whether ¢ is a DPP or not.

Adding the sample complexities for generating M and for the y2-/; tests and observing log(|M]) =
O(1 + log(1/¢) 4+ min{log(1/¢),log(1/a)}) completes the proof of Lemma 1.

5.2 Extension to general DPPs

Next, we generalize our testing result from («, ¢)-normal DPPs to general DPPs to prove the general
sample complexity in Theorem 1. The key idea is that, if some eigenvalue of K™ is very close to
zero or one, we couple the process of sampling from K* with sampling from another kernel IT, (K*)
whose eigenvalues are bounded away from zero and one, i.e., parameterizing a (0, z)-normal DPP.
This coupling enables us to test (0, z)-normal DPPs instead, by tolerating an extra failure probability,
and transfer the above analysis for («, ¢)-normal DPPs. We state our coupling argument in the
following Lemma, proved in Appendix D.

Lemma 3. For a value z € [0, 1], we denote the projection of a marginal kernel K onto the convex
set {A € S| 21 < A< (1—2)I}byll,(K), where S;' is the set of positive semidefinite matrices.
For z = §/2mmn, consider the following stochastic processes:
1. derive m i.i.d samples {jf((t)}{’glfrom Pryl.];
. . ®  1m
2. derive m ii.d samples { Ty ;o\ Y21 from Pro, x)l-]-

There exists a coupling between (1) and (2) such that

Prcoupling[{j[((t)}zll - {‘71'(1?(1()};11] Z 1-46.



We can use this coupling argument as follows. Suppose the constant c; is such that using
1CNe.ac VN /€2 samples suffice for DPP-TESTER to output the correct answer for testing («, ¢)-
normal DPPs, with probability at least 0.995. Such a constant exists as we just proved. Now, we
show that with m* = ¢ C' N,(\/N /€2 samples for large enough constant co, we obtain a tester for the
set of all DPPs. To this end, we use the parameter setting of our algorithm for (0, Z) normal DPPs,
where zZ = 0.005/(2m*n) is a function of ¢z, €, and N. One can readily see that co can be picked
large enough, such that m* > ¢, Cy 0, 5\/N / €2, with ¢y being just a function of ¢;. This way, by
the definition of ¢, the algorithm can test for (0, Z)-normal DPPs with success probability 0.995. So,
if ¢ is a (0, 2)-normal DPP, or if it is e-far from all DPPs, then the algorithm outputs correctly with
probability at least 0.995.

It remains to check what happens when ¢ is a DPP with kernel K*, but not (0, Z)-normal. Indeed,
DPP-TESTER successfully decides this case too: due to our coupling, the product distributions

Pr%n:) [.] and Prf.lnle)ﬁ) [.] over the space of data sets have ¢; -distance at most 0.005, so we have

Prg?i*) [Acceptance Region] > Prgz(*;(*) [Acceptance Region] — 0.005 > 0.995 — 0.005 = 0.99,

where the last inequality follows from the fact that ITz (K*) is an (0, Z)-normal DPP. Hence, for such
co, DPP-TESTER succeeds with coC ME\/N / €2 samples to test all DPPs with probability 0.99, which
completes the proof of Theorem 1.

Learning DPPs. Our tester implicitly provides a method to learn a DPP ¢ in /;-distance: the x? — /;
tester can only accept candidate DPPs p € M for which we either have x?(q,p) < €2/500 or

41(q,p) < e. Since #1(q,p) < 1/2+/x3(q,p) < €, any such p is a DPP with distance ¢1 (¢, p) < e to
the underlying distribution q. If ¢ is a DPP, we will find such a p with high probability.

6 Lower bound

Next, we establish the lower bound in Theorem 2 for testing DPPs, which implies that the sample
complexity of DPP-TESTER is tight up to logarithmic factors. In fact, our lower bound is more general:
it applies to the problem of testing any subset T of the larger class of log-submodular distributions,
whenever T includes the uniform measure:

Theorem 4. Let Y be any subset of log-submodular distributions that contains the uniform measure.
For € < 0.0005 and n > 22, given sample access to a distribution q over subsets of [n], any
(e,0.01)-tester that checks whether q € Y or q is e-far from all log-submodular distributions requires

Q(VN/€e?) samples.

One may also wish to test if ¢ is e-far only from the distributions in Y. A tester for this question,
however, would correctly return reject for any ¢ that is e-far from the set of all log-submodular
distributions, and can hence distinguish the cases in Theorem 4 too. Hence, the lower bound extends
to this question.

Theorem 2 is simply a consequence of Theorem 4: we may set T to be the set of all DPPs, or all
(v, ¢)-normal DPPs. Both classes include the uniform distribution over 2, which is an (o, ¢)-
normal DPP with marginal kernel /2, where [ is the n x n identity matrix. By the same argument,
the lower bound applies to distinguishing («, ¢)-normal DPPs from the e-far set of all DPPs for
a € [0,0.5].

Proof of Theorem 4. To prove Theorem 4, we construct a hard uniformity testing problem that can
be decided by our desired tester for Y. In particular, we construct a family F, such that it is hard to
distinguish between the uniform measure and a randomly selected distribution A from F. While the
uniform measure is in Y, we will show that A is far from the set of log-submodular distributions with
high probability. Hence, a tester for Y can, with high probability, correctly decide between F and the
uniform measure.

We obtain F by randomly perturbing the atom probabilities of the uniform measure over 2I"! by
+€¢' /N, with € = ¢ - € for a sufficiently large constant ¢ (specified in the appendix). More concretely,
for every vector r € {£1}" whose entries are indexed by the subsets S C [n], we define the
distribution h,. € F as

!
VS Clnl: ho(S) x hn(S) = ”% ,



where h,. is the corresponding unnormalized measure.

We assume that h,. is selected from F uniformly at random, i.e., each entry rg is a Rademacher
random variable independent from the others. In particular, it is known that distinguishing such a
random h,. from the uniform distribution requires Q(v/N /€’?) samples [24, 57].

To reduce this uniformity testing problem to our testing problem for Y and obtain the lower bound
Q(VN/€e?) = Q(v/N/e?) for the sample complexity of our problem, it remains to prove that h,. is
e-far from the class of log-submodular distributions with high probability. Hence, Lemma 4 finishes
the proof.

Lemma 4. For e < 0.0005, n > 22 and ¢ = 1024, a distribution h, drawn uniformly from F is
e-far from all log-submodular distributions with probability at least 0.99.

Proof sketch for Lemma 4. We fix an arbitrary log-submodular distribution f and first show that
(1) the ¢;-distance ¢1(f, h,-) between f and the unnormalized measure h,. is large with high proba-
bility, independent of f (we define the ¢;-distance of general measures the same as for probability
measures). Then, (2) we show that if ¢4 (f, h,.) is large, ¢1(f, h,) is also large.

To address (1), we define a family S, of subsets that, as we prove, satisfies:

(P1) With high probability, S, has cardinality at least N/64.

(P2) For every S € S,, there is a contribution of at least € /SN to ¢1(f, h,.) from the term Vg
defined as

Vs =51h:(S) = ()] + 3lhe (S U{1}) = f(SU{1})[+
3R (SU{2}) = F(SUL2D] + 51An(SU{L,2}) = F(SU{L,2})].

Together, the above properties imply that £, (h,., f) > (N/64) x (¢//8N) = ¢’ /512.
We define the important family S, as

Sy ={8 C [\ {1,2}[r(su2p) = 1, T(suqey = —1, rsuqiy = —1}

Property (P1) follows from a Chernoff bound for the random variables 1{S € S,.}, VS C [n]\ {1, 2},
where 1{.} is the indicator function. For proving Property P2, we distinguish two cases, depending on
the ratio f((SU{1,2})/f(SU{2}). One of these cases relies on the definition of log-submodularity.

Finally, to show that (2) a large ¢4 (f, h,.) implies a large ¢;(f, h,.), we control the normalization
constant » sc[n) Por (5). The full proof may be found in Appendix C.

7 Discussion

In this paper, we initiate the study of distribution testing for DPPs. Our lower bound of Q(v/N /€2),
where NV is the domain size 2™, shows that, despite the rich mathematical structure of DPPs, testing
whether ¢ is a DPP or e-far from it has a sample complexity similar to uniformity testing. This bound
extends to related distributions that have gained interest in machine learning, namely log-submodular
distributions and strongly Rayleigh measures. Our algorithm DPP-TESTER demonstrates that this

lower bound is tight for DPPs, via an almost matching upper bound of O(\/N /€?).

One may wonder what changes when using the moment-based learning algorithm from [67] instead
of the learner from Section 5, which yields optimal testing sample complexity. With [67], we obtain a
single estimate K™ for K*, apply a single robust x2-£; test against Pr Fenew| -], and return its output.
The resulting algorithm DPP-TESTER2 shows a statistical-computational tradeoff: since it performs
only one test, it gains in running time, but its sample complexity could be larger: Theorem 5, proved
in Appendix G, states upper bounds that are is no longer logarithmic in « and (, and larger than

O(VN/ée?).
Theorem 5. To test against the class of («,()-normal DPPs, DPP-TESTER2 needs
0 <n4 log(n)/e2a2¢? +£(4/a)* log(n) + \/N/e2) samples, and runs in time O(Nn? +n®+mn?),



where m is the number of input samples and { is the cycle sparsity* of the graph corresponding to the
non-zero entries of K*.

Assuming a constant cycle sparsity may improve the sample complexity, but our lower bound still
applies even with assumptions on cycle sparsity.

While the results in this paper focus on sample complexity for general DPPs, it is an interesting
avenue of future work to study whether additional structural assumptions, or a widening to strongly
log-concave measures [6, 7], can lead to further statistical and computational benefits or tradeoffs.

Broader Impact

Due to their ability to model negative dependencies and repulsion, DPPs have become a popular tool
for modeling diversity in subset selection tasks. However, they are not the only models for negative
dependence, and sometimes the decision for using DPPs may be solely based on their computational
efficiency. If the true data distribution is far from being a DPP, the resulting approximation error may
potentially induce biases. Our work poses the question of testing whether given data actually comes
from a DPP. Being able to test for such a model fit can help avoid the biases from approximation
error.

Our work provides an initial theoretical understanding of the DPP testing problem. Our results settle
the general sample complexity, and open avenues for further work to improve complexity over the
general baseline by identifying additional mathematical structure that may exist in the data.
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