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Abstract

Previously, Ohsugi and Hibi gave a combinatorial description of bipartite graphs G whose
toric edge ideal IG is generated by quadrics, showing that every cycle of G of length at
least 6 must have a chord. This corresponds to the Green-Lazarsfeld condition N1. In this
paper, we investigate the higher syzygies of IG and give combinatorial descriptions of the
Green-Lazarsfeld conditions Np of toric edge ideals of bipartite graphs for all p ≥ 1. In
particular, we show that IG is linearly presented (i.e. satisfies condition N2) if and only
if the bipartite complement of G is a tree of diameter at most 3. We also investigate the
regularity of linearly presented toric edge ideals and give criteria for polyomino ideals to
satisfy the Green-Lazarsfeld conditions.
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1. Introduction

Let k be a field and let G = (V,E) be a finite, simple graph. Let k[V ] denote the
polynomial ring with variables corresponding to the vertices of G. The edge ring k[G] of
G is the k-subalgebra of k[V ] generated by the quadratic monomials corresponding to the
edges of G. The toric edge ideal IG is the presenting ideal of k[G] in the polynomial ring
k[E] whose variables correspond to the edges of G. In particular, IG is a homogeneous prime
ideal generated by binomials. When G is a complete bipartite graph, IG defines a Segre
embedding. Such ideals are special cases of toric ideals where one finds defining equations of
ideals generated by any set of monomials; the restriction to toric edge ideals corresponds to
considering only subrings generated by squarefree monomials of degree two. There has been
significant interest in understanding the minimal free resolutions of IG for different classes
of graphs; see e.g. [3, 15, 24, 25].

If G is a bipartite graph, then more is known about IG. The following result is due to
Ohsugi and Hibi:

Theorem 1.1 ([25, Theorem 1]). Let G be a bipartite graph. The following are equivalent:
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1. Every cycle in G of length ≥ 6 has a chord.

2. IG has a Gröbner basis consisting of quadratic binomials.

3. k[G] is Koszul.

4. IG is generated by quadratic binomials, corresponding to the 4-cycles of G.

One can generalize the property of having a quadratic generating set by considering
the degrees of syzygies of IG over S. The Green-Lazarsfeld condition Np describes ideals
(defining normal quotient rings) generated by quadrics with linear syzygies for the first p−1
steps of the resolution. If G is a bipartite graph, then Theorem 1.1 says that IG satisfies
property N1 if and only if every cycle in G of length ≥ 6 has a chord. The main goal of this
paper is to give a combinatorial description of when IG satisfies property Np for all p ≥ 0.
We first need a couple definitions to state our main result.

Let G = (V,E) be a bipartite graph and let V = X t Y be a partition of V so that
X = {x1, . . . , xm}, Y = {y1, . . . , yn} and all edges e ∈ E are of the form e = {xi, yj} for
some 1 ≤ i ≤ m and 1 ≤ j ≤ n.

We define the bipartite complement of G as the bipartite graph G = (X t Y,E ′), where
E ′ = (X × Y ) \ E, viewed as sets. A graph is essentially a tree if it is a tree after perhaps
removing some isolated vertices; for a formal definition, see the following section.

Our main theorem is a combinatorial characterization of toric ideals of bipartite graphs
which satisfy property Np for arbitrary p ≥ 1.

Theorem 1.2. Let G be a bipartite graph with minimum vertex degree at least 2 and let k
be a field.

1. IG satisfies property N1 if and only if every cycle of length ≥ 6 has a chord.

2. IG satisfies property N2 if and only if G is essentially a tree of diameter at most 3.

3. IG satisfies property N3 if and only if G is a complete bipartite graph unless the char-
acteristic of k is 3 and G = Km,n with min{m,n} ≥ 5.

4. IG satisfies property Np for some/any p ≥ 4 if and only if G = K2,n for some n.

The proof of Theorem 1.2 is given in the proofs of Theorems 5.2, 5.5, and 5.6.
The rest of this paper is organized as follows: Section 2 sets notation and basic defini-

tions. Section 3 contains our main tools for finding obstructions to vanishing of graded Betti
numbers. Section 4 gives a purely graph-theoretic result we need to connect local and global
graph structure. Our main results appear in Section 5. In Section 6, we also obtain a char-
acterization of the Green-Lazarsfeld conditions for ideals associated to convex polyominoes.
This seems to correct an omission in the characterization of linearly presented polyomino
ideals in [10]. Finally, in Section 7 we apply our result to a special case of a recent question
of Constantinescu, Kahle, and Varbaro [6].
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2. Preliminaries

Here we fix notation for the remainder of the paper. We first record the standard graph-
theoretic definitions we require.

2.1. Graph Theory

All graphs considered in this paper are finite and simple. Let G = (V,E) be a finite
simple graph with vertex set V and edge set E. The graph G is bipartite if there is a
partition V = X t Y such that all edges in E lie in X × Y ; that is, all edges contain one
vertex in X and one vertex in Y . For positive integers m,n, the complete bipartite graph
Km,n has vertex set V = X tY with |X| = m, |Y | = n and edge set E = X×Y . The degree
of a vertex is the number of edges incident to it. The minimum degree of a vertex in a graph
G is denoted δ(G). An isolated vertex is a vertex of degree 0. A path of length t from vertex
v to vertex w is a sequence of vertices v = v0, v1, . . . , vt = w such that {vi−1, vi} ∈ E for all
1 ≤ i ≤ t. A graph is connected if for any two vertices v, w ∈ V , there is a path from v to
w. A cycle of length t in G is a path of length t from v to itself. Such a cycle has a chord if
{vi, vj} ∈ E for some 1 ≤ i < j ≤ t with j − i ≥ 2. A graph G is a tree if there is a unique
path between any two distinct vertices of G, or equivalently, G is a tree if it is connected
and has no cycles. Given a subset W ⊆ V , the induced graph GW is the graph with vertex
set W and edge set given by all edges of G both of whose vertices lie in W . The diameter
of a graph is the minimum integer n such that for any pairs of vertices v, w ∈ V , there is a
path of length at most n starting at v and ending at w. A perfect matching in a graph is a
collection M ⊆ E such that every vertex is incident to exactly one edge in M . A bridge is
an edge whose deletion increases the number of connected components.

We add some new graph-theoretic definitions to the standard definitions above. For a
nonnegative integer k and graph G, we define the degree k subgraph of G to be the largest
induced subgraph Gk such that all vertices have degree at least k. Thus G0 = G; G1 is the
subgraph of G with all isolated vertices removed. For a graph property P , we say that a
graph is essentially P if G1 satisfies property P . Thus a graph G is called essentially a
tree if G1 is a tree. If G = (XtY,E) is a bipartite graph, then the bipartite complement
of G, denoted G, is the graph with same vertex set X t Y and with edge set (X × Y ) \ E;
that is, an edge {x, y} with x ∈ X and y ∈ Y is in G if and only if it is not in G.

2.2. Toric Edge Ideals

Let G = (V,E) be a finite simple graph, with V = {v1, . . . , vn} and fix a field k. By abuse
of notation, we also view the vi as variables in the polynomial ring k[V ] = k[v1, . . . , vn].
The edge ring of G, denoted k[G], is the k-subalgebra of k[V ] generated by vivj, where
{vi, vj} ∈ E. In the special case we focus on, where G is a bipartite graph, we denote by
V = XtY the partition of the vertex set, where X = {x1, . . . , xm} and Y = {y1, . . . , yn} and
all edges (viewed as ordered pairs) are contained inX×Y . Denote by S = k[ei,j | {xi, yj} ∈ E]
a polynomial ring with variables ei,j corresponding to the edges in G. The surjective map
π : S = k[ei,j | {xi, yj} ∈ E] → k[G] sends ei,j 7→ xiyj. The ideal IG = Ker(π) is called the
toric edge ideal of G. For an arbitrary graph G, it is well-known that the generators of IG
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are binomials corresponding to even closed walks of G [18, Lemma 5.9]. When G is bipartite,
the ring S/IG ∼= k[G] is Cohen-Macaulay [18, Corollary 5.26]. Ohsugi and Hibi [25] gave the
characterization in Theorem 1.1 of bipartite graphs for which IG is generated by quadratic
binomials. It follows that all such rings are normal [18, Corollary 5.25]. It is then natural
to investigate the properties of the syzygies of such ideals.

2.3. Green-Lazarsfeld Conditions

Unless otherwise noted, we regard S as a standard graded ring with deg(ei,j) = 1 for
all i, j. Writing S(−j) for the rank-one free S-module with S(−j)i = Si−j, we consider the
minimal graded free resolution of S/IG:

0→
⊕
j

S(−j)βh,j → · · · →
⊕
j

S(−j)β1,j → S.

Here βi,j denotes the minimal, graded Betti numbers of S/IG, which by the uniqueness
of minimal, graded free resolutions, are invariants of S/IG. The projective dimension is
pdS(S/IG) = max{i | βi,j 6= 0} = h and the regularity is reg(S/IG) = max{j − i | βi,j 6= 0}.
We often refer to the graded Betti numbers of IG, noting that βi,j(S/IG) = βi−1,j(IG), and
therefore pdS(S/IG) = pdS(IG) + 1 and reg(S/IG) = reg(IG)− 1.

With the notation above, we say that IG satisfies condition Np if S/IG is (projectively)
normal and βi,j(IG) = 0 for i < p and j > i + 2. Thus condition N0 means that S/IG is
normal; condition N1 means that in addition to N0, IG is generated by quadrics; condition
N2 means that in addition to satisfying N1, IG is linearly presented; and so on. This idea was
first defined by Green and Lazarsfeld [12, 13]. The Np conditions and their generalizations
have been well studied; see for example [9, 20].

Note that in the specific case that G = Km,n, the ideal IG defines to the image of the
Segre embedding of Pm−1k × Pn−1k ↪→ Pmn−1k whose resolutions in characteristic 0 are known
by work of Pragacz-Weyman [29] and Lascoux [21]; see also Roberts [31]. If min{m,n} ≤
4, Hashimoto and Kurano showed that the Betti numbers of IG do not depend on the
characteristic [17]. In particular, this includes K2,n whose toric edge ideal IK2,n is resolved
by the linear Eagon-Northcott resolution in all characteristics. For all m,n, the second
Betti numbers β2,i(S/IKm,n) are also independent of the characteristic [17]. However, in
characteristic 3, Hashimoto [16] showed that β3,i(S/IKm,n) does depend on the characteristic
of the base field when m,n ≥ 5. In this paper, we give a complete description of the Green-
Lazarsfeld conditions for bipartite toric edge ideals. It follows from [21, 29, 31] that the
precise Np conditions for complete bipartite graphs in characteristic 0 are known; see [31]
for a summary.

When IG is the toric edge ideal of a bipartite graph, Ohsugi and Hibi [25, Theorem 1.1]
proved that IG is generated by quadratic binomials (i.e. satisfies condition N1) if and only
if every cycle in G of length at least 6 has a chord. Ohsugi and Hibi [24, Theorem 4.6] also
showed that IG has a linear free resolution (i.e. satisfies condition Np for all p) if and only
if G = K2,n for some n. Thus our main theorem interpolates between these two results. In
related work, Hibi, Matsuda, and Tsuchiya [19] show that the only toric edge ideals with
3-linear resolutions are hypersurfaces.
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3. Obstructions to Vanishing of Graded Betti Numbers

In this section we prove that the nonvanishing of certain graded Betti numbers of the
toric edge ideal of a graph G correspond in a precise way to forbidden induced subgraphs of
G. A version of this result was proved previously by Ha, Kara, and O’Keefe in [15, Theorem
3.6]. Our result quantifies how large the forbidden subgraph must be relative to the index
of the graded Betti number in question. Toward this end, we follow the notation in [28].
Let G = (V,E) be a finite simple graph on vertex set V = {v1, . . . , vn}. Given a field k,
the edge ring k[G] = k[vivj | {vi, vj} ∈ E] is a subring of the polynomial ring k[V ], which
we view as a multigraded ring by setting mdeg(vi) = ei, where ei denotes the ith standard
basis vector of Zn. By setting k[E] = k[eij | {vi, vj} ∈ E] to be the multigraded ring with
mdeg(eij) = mdeg(vivj) = ei + ej, the toric edge ideal IG ⊂ k[E] is also multigraded. Fix a
multidegree α. The fiber of α, denoted Cα, is the set of all monomials of k[E] of multidegree
α. We let Γ(α) denote the simplicial complex associated to α with vertices identified with
the variables eij and whose faces are identified with the radicals of monomials in Γ(α). With
this notation, we have the following result of Aramova and Herzog:

Theorem 3.1 (cf. [28, Theorem 67.5]). For α ∈ Nn and i ≥ 0 we have

βi,α(IG) = dimk H̃i(Γ(α); k).

Here H̃i(∆; k) denotes the reduced simplicial homology of the simplicial complex ∆ with
coefficients in k. Comparing the standard grading on IG with the multigrading, we see that

βi,j(IG) =
∑
α∑
α=2j

βi,α(IG).

This perspective gives us a way of finding local obstructions to the vanishing of certain
graded Betti numbers of IG.

Theorem 3.2. Let G be a graph with toric edge ideal IG. Then βi,j(IG) 6= 0 if and only if
there is an induced subgraph H of G with at most 2j vertices such that βi,j(IH) 6= 0.

Proof. Let G = (V,E) with V = {v1, . . . , vn} and E = {e1, . . . , vr}. Suppose βi,j(IG) 6= 0.
Then βi,α(IG) 6= 0 for some multidegree α such that

∑
` α` = 2j. Let V ′ = {v` ∈ V : α` 6= 0}.

Since at most 2j of the α` are nonzero, we have |V ′| ≤ 2j. Let H = (V ′, E ′) be the induced
subgraph of G on V ′. k[E ′] is a subring of S, so it is Zn-graded. Let CG

α and CH
α denote the

fibers of α in k[E] and k[E ′] respectively. Since k[H] is a subring of k[G], we know CH
α ⊆ CG

α .

Suppose f = em1
1 em2

2 · · · emr
r ∈ CG

α \ CH
α . Since f /∈ k[E ′], m` > 0 for some ` such that

e` /∈ E ′. Since H is induced, e` = {v`1 , v`2} where at least one of v`1 and v`2 is not in V ′.
Suppose, w.l.o.g. v`1 /∈ V ′. Since f has multidegree α, we have α`1 6= 0, giving that v`1 ∈ V ′,
a contradiction. Thus no such f exists and CG

α = CH
α . Then the associated simplicial

complexes are the same and we must have βi,α(IH) 6= 0, giving βi,j(IH) 6= 0.
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It follows that to characterize when a particular βi,j(IG) = 0, we could simply enumerate
over all graphs H of at most 2j vertices for which βi,j(IH) 6= 0 and then check to see if
any such H is an induced subgraph of G. While this strategy would work, it is not very
efficient. In the next section adopt a more efficient strategy taking advantage of the fact that
quadratic toric edge rings of bipartite graphs are Koszul. However, we do take advantage of
the previous theorem by identifying a few key induced subgraphs that act as obstructions to
satisfying the Np property for various p.

There are 8 bipartite graphs whose presence as an induced subgraph characterizes failure
of IG satisfying N2 for G a bipartite graph and such that every cycle of length at least 6 has
a chord. These 8 forbidden graphs are those pictured in Figure 1.

x1 y1

x2 y2

x3 y3

H(1): Two 4-cycles which share an
edge.

x1 y1

x2 y2

x3 y3

x4 y4

H(2): Two disjoint 4-cycles.

x1 y1

x2 y2

x3 y3

x4 y4

H(3): Two 4-cycles connected by a sin-
gle edge.

x1 y1

x2 y2

x3 y3

x4 y4

H(4) : Two 4-cycles connected by two
adjacent edges.
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x1 y1

x2 y2

x3 y3

x4 y4

H(5): Two 4-cycles connected by two
non-adjacent edges.

x1 y1

x2 y2

x3 y3

x4 y4

H(6):Two 4-cycles connected by three
connected edges.

x1 y1

x2 y2

x3 y3

x4 y4

H(7): Two 4-cycles connected by 4
connected edges.

x1 y1

x2 y2

x3 y3

x4

H(8): Two 4-cycles which share ex-
actly one vertex.

Figure 1: Induced subgraphs that are obstructions to satisfying condition N2

Lemma 3.3. IH(1) and IH(8) do not satisfy condition N2; specifically, β1,4(IH(1)) and β1,4(IH(8))
are nonzero.

Proof. The ideals IH(1) and IH(8) are complete intersections generated by two quadrics. In
particular β1,4(IH(1)) = 1.

Lemma 3.4. For each i = 2, . . . , 7, the ideal IH(i) does not satisfy condition N2; specifically,
β1,4(IH(i)) 6= 0.

Proof. Let E(i) be the edge set of H(i). Let eij denote the edge {xi, yj}. Let α be the
multidegree (1, 1, 1, 1, 1, 1, 1, 1). In each k[E(i)], the monomials in multidegree α correspond
to perfect matchings in H(i). Note that perfect matchings in H(i) for i ≥ 3 cannot contain
any of the edges e13, e14, e23, and e24, so the perfect matchings of H(i) are precisely the same
as those of H(2). It follows that in each of these graphs,

Cα = {e11e22e33e44, e11e22e34e43, e12e21e33e44, e12e21e34e43} ,

so Γ(α) has facets

{{e11, e22, e33, e44}, {e11, e22, e34, e43}, {e12, e21, e33, e44}, {e12, e21, e34, e43}} .
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e11 e44

e43 e21

e22 e33

e34 e12

Figure 2: A visualization of Γ(α) in which each shaded tetrahedron represents a facet.

The geometric realization of the abstract simplicial complex is Γ(α) contracts to a circle.

Thus β1,α(IH(i)) = dimk H̃1(Γ(α); k) = 1. By Theorem 3.2, β1,4(IH(i)) 6= 0 for i = 2, . . . , 7.

Note that H(2) and H(3) are complete intersections and could similarly fit in Lemma 3.3.
We also note that H(5) has cubic generators, in addition to the two obvious quadratic ones,
because it has 6-cycles without a chord; however, including it here makes arguments later in
the paper easier to state.

The following graph is the main obstruction to satisfying condition N3.

Lemma 3.5. Let H be the bipartite graph pictured below.

x1 y1

x2 y2

x3 y3

Then IH is Gorenstein and has graded Betti table:

0 1 2
2: 5 5 -
3: - - 1

In particular, β2,5(IH) 6= 0 and so IH does not satisfy condition N3.
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Proof. It is easy to check that IH is generated by the 4× 4 Pfaffians of the 5× 5 alternating
matrix:

M =


0 e13 e23 e31 e32
−e13 0 0 e11 e12
−e23 0 0 e21 e22
−e31 −e11 −e21 0 0
−e32 −e12 −e22 0 0

 .

By [4, Theorem 2.1], it follows that IH is a Gorenstein, height 3 ideal. The claim follows
from the symmetry of resolutions of Gorenstein ideals.

Lemma 3.6. The ideal IK3,3 is Gorenstein and has graded Betti table:

0 1 2 3
2: 9 16 9 -
3: - - - 1

In particular, β3,6(IK3,3) 6= 0 and so IK3,3 does not satisfy condition N4.

Proof. The ideal IK3,3 is generated by the 2 × 2 minors of a generic 3 × 3 matrix of linear
forms and so is Gorenstein and has the above resolution by [14].

4. A Graph-theoretic Result

This section contains a purely combinatorial characterization of the types of graphs which
we show in the following section define linearly presented toric edge ideals. We show that
trees of diameter at most 3 can be characterized locally by the absence of certain induced
subgraphs on 4 vertices. We then show that a bipartite graph with minimum vertex degree
at least 2 such that every cycle of size 6 or greater has a chord and such that its bipartite
complement is a tree of diameter at most 3 can also be characterized by the absence of 8
particular graphs on at most 8 vertices.

Proposition 4.1. Let G be a graph. Then G is a tree of diameter at most 3 if and only if
every induced subgraph is essentially connected and has no cycles.

Proof. Suppose G is a tree of diameter at most 3. Since G has no cycles, clearly the same is
true for any induced subgraph. Since the diameter of G is at most 3, either G has no edges
or there exist two vertices v1, v2 such that every edge of G is incident to v1 or v2. Let H be
an induced subgraph of G. If H contains neither v1 nor v2, then H contains no edges and
so is essentially connected. If H contains exactly one of these vertices, say v1 but not v2,
then H1 consists only of edges incident to v1 and isolated vertices, in which case H is also
essentially connected. Finally if H contains both v1 and v2, then all edges of H are incident
to v1 or v2 and so H is essentially connected.

The converse follows easily since G is connected and has no cycles by assumption.
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Note that there is no similar statement for trees of diameter at most 4. Indeed, consider
a path graph with 4 edges and 5 vertices v1, . . . , v5. Then the induced subgraph on vertex
set {v1, v2, v4, v5} is not essentially connected.

The following result is our main combinatorial result that allows us to take local obstruc-
tions in the form of forbidden induced subgraphs and translate them into a global statement
about certain bipartite graphs.

Theorem 4.2. Let G be a bipartite graph with δ(G) ≥ 2, such that each cycle of length ≥ 6
has a chord and (G)1 is not a tree of diameter at most 3. Then G contains H(i) for some
1 ≤ i ≤ 8 as an induced subgraph.

Proof. It follows from the previous proposition that (G)1 contains a 4-cycle or two nonadja-
cent edges. Before handling these two cases (Cases 4 and 5 below), we first prove intermediate
cases.
Case 1: G is disconnected.

Because G has δ(G) ≥ 2, each connected component must have a cycle. Since each
cycle of length ≥ 6 has a chord, each connected component must have a 4-cycle. Taking
the induced subgraph on two four cycles from distinct connected components will then yield
H(2).
Case 2: G has a bridge.

Removing the bridge results in a graph with two connected components, each of which
has at most one vertex of degree 1 and all other vertices of degree at least 2. Then each
connected component must have a 4-cycle, so the graph contains an induced copy of H(2).
Case 3: G has a path with 5 edges as an induced subgraph.

Denote the induced path by v1, v2, v3, v4, v5, v6. We emphasize that this path is induced,
so there can not be any edges {vi, vj} for |i− j| ≥ 2 in the entire graph G. First we assume
that there is a second path v1, w1, w2, v6 where the wi are distinct from the vj. These two
paths form an 8-cycle.

v1 v2 v3 v4 v5 v6

w1 w2

Because G is bipartite, there are four possible chords in the 8-cycle: {v2, w2}, {v3, w1},
{v4, w2}, and {v5, w1}. If both of the chords {v2, w2} and {v5, w1} are present, then the
induced subgraph on the vertices {v1, v2, v5, v6, w1, w2} is H(1). So we may assume w.l.o.g.
that {v2, w2} is not present. In this case, the chord {v3, w1} must be present, as must
at least one more chord. If the chord {v4, w2} is present, then the induced subgraph on
{v1, v2, v3, v4, w1, w2} is H(1). Otherwise, the chord {v5, w1} is present, in which case the
induced subgraph on {v1, v2, v3, v4, v5, w1} is H(1).

Now we may suppose there is no such w1 and w2. Because the edge {v1, v2} is not a bridge,
there is some path from v1 to v6 which avoids it. Consider such a path w1, w2, . . . , wm of
minimal length. The union of the original path with this new path must have cycle containing
both of the edges {v1, v2} and {v1, w1}. If there is an edge {v1, wi} for any i > 1, we contradict
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the minimality of the new path, so any chord in this cycle must not be incident to v1. So the
edges {v1, v2} and {v1, w1} must be contained in the same 4-cycle created by adding chords
to the large cycle. This gives two possibilities, either the fourth vertex in the cycle is v3 or
w2. Similarly, we get a path z1, . . . , zr from v6 to v1 avoiding the edge {v5, v6}, which gives
two possibilities for cycles v6, z1, z2, v5 or v6, z1, v4, v5. By symmetry, there are three cases to
consider.
Case 3a: The two 4-cycles include v3 and v4.

v1 v2 v3 v4 v5 v6

w1 z1

The edge {w1, z1} cannot exist, as we assumed there was no disjoint path of length 3
from v1 to v6; so the only possible additional edges are {v2, z1} and {w1, v5}. If both of these
edges are present, the induced subgraph on {v1, v2, v5, v6, w1, z1} is a 6-cycle with no chord,
a contradiction, so at least one of the two edges must be missing, which w.l.o.g. we may take
to be {v2, z1}. If the edge {w1, v5} is also missing, then the induced subgraph on all 8 vertices
is H(3). If the edge {w1, v5} is present, then the induced subgraph on {v1, v2, v3, v4, v5, w1}
is H(1).
Case 3b: The two 4-cycles include w2 and v4.

v1 v2 v3 v4 v5 v6

w1 w2 z1

First note that the edge {w1, v3} cannot be present, as then we would be in the previous
case. We consider the possible edges between the two 4-cycles: {w1, v5}, {w1, z1}, {w2, v4},
{w2, v6}, and {v2, z1}. If the edge {w2, v4} is present, the induced subgraph on vertex set
{v1, v2, v3, v4, w1, w2} is H(1), so we can assume that it is not present. Either of the edges
{w1, z1} and {w2, v6} would give us a disjoint path of length 3, reducing to a previous case.
This leaves us with the following picture:

v1 v2 v3 v4 v5 v6

w1 w2 z1
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If the edge {w1, v5} were present, it would produce a 6-cycle with no chord. So the induced
subgraph on the vertices {v1, v2, v4, v5, v6, w1, w2, z1} is either H(2) or H(3), depending on
whether or not the edge {v2, z1} is present.
Case 3c: The two 4-cycles include w2 and z2.

v1 v2 v3 v4 v5 v6

w1 w2 z1z2

In this case, the possible edges between the two cycles are {v1, z2}, {w1, v5}, {w1, z1},
{w2, v6}, {w2, z2}, and {v2, z1}. If any of the edges {v1, z2}, {w1, z1}, or {w2, v6} are present,
we have a disjoint path of length 3 and are in a previous case. If either of {w1, v5} or
{v2, z1} are present, we would have a 6-cycle with no chord. So the induced subgraph on
{v1, v2, v5, v6, w1, w2, z1, z2} is either H(2) or H(3), depending on whether {w2, z2} is present.
Case 4: (G)1 contains a cycle.

Let x1, y1, x2, y2 be the cycle missing from G. Since we can assume our graph is connected,
there is a shortest path from x1 to x2. If the shortest path has length at least 6, we have an
induced path of length 5 and are thus in the previous case. So the shortest path has length
2 or 4.
Case 4a: The shortest path between x1 and x2 is x1, z1, z2, z3, x2.

Since δ(G) ≥ 2, x1 must be adjacent to another vertex z4 distinct from z1 and z3, and x2
must be adjacent to another vertex z5 distinct from z1 and z3. If z4 = z5, we have a shorter
path from x1 to x2, so z4 and z5 must be distinct.

x1 y1

x2 y2

z2

z1

z3

z4

z5

If the edges {x2, z1} or {x1, z3} are present, we have a shorter path, so these edges must
be missing. If either of the edges {z4, z2} or {z5, z2} are missing, we have an induced path of
length 5, putting us in the previous case. So the induced subgraph on {x1, x2, z1, z2, z3, z4, z5}
is H(8).
Case 4b: The shortest path between x1 and x2 is x1, z1, x2.

Since δ(G) ≥ 2, x1 must be adjacent to another vertex z2, and x2 must be adjacent to
another vertex z3.
Case 4b(i): z1 is the only common neighbor of x1 and x2.
If z2 6= z3, z2 must be adjacent to another vertex z4. If z4 = x2, it is a common neighbor of
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both vertices. Otherwise, consider the induced subgraph on the vertices {x1, x2, z1, z2, z3, z4}.
By assumption, the edges {z3, x1} and {z2, x2} cannot be present, so the only possibilities
are {z4, z1} and {z4, z3}.

x1 y1

x2 y2

z2

z1

z3

z4

If neither of these are present, we have an induced path of length 5, which is case 3. If
both edges are present, then the induced subgraph is H(1). If only {z4, z3} is present, we
have a cycle of length 6 with no chord, a contradiction. If only {z4, z1} is present, we can
find a second neighbor of z3, which we label z5. We apply the same analysis to the induced
subgraph on {x1, x2, z1, z2, z3, z5} and the only case we have not already argued is if the
only additional edge is {z1, z5}. In this case, the induced subgraph on the seven vertices
{x1, x2, z1, z2, z3, z4, z5} is H(8).

x1 y1

x2 y2

z2

z1

z3

z4

z5

Case 4b(ii): z2 and z3 can be chosen to be the same.
In this case, we have a 4-cycle x1, z1, x2, z2. We then consider the shortest path from y1

to y2 and apply all prior case 4 analysis to this path. The only case we have not then argued
is if there is also a 4-cycle y1, w1, y2, w2. In this case, the induced subgraph on the vertices
{x1, x2, z1, z2, y1, y2, w1, w2} is one of H(2), H(3), H(4), H(5), H(6), or H(7), depending on what
edges are present between the zi and wj. (Note that x1, . . . , x4, y1, . . . , y4 in H(i) correspond
in order to z1, z2, x1, x2, y1, y2, w1, w2 here.)
Case 5: (G)1 has two nonadjacent edges.

In this case, G contains 4 vertices x1, x2, y1, y2 such that {x1, y2} and {x2, y1} are edges,
while {x1, y1} and {x2, y2} are non-edges. Because δ(G) ≥ 2, x2 is adjacent to another
vertex, y3, and y2 is adjacent to another vertex x3. The edges {x1, y3}, {x3, y1}, and {x3, y3}
may or may not be present.

x1 y1

x2 y2

x3 y3

Case 5a: None of these three edges are present.
In this case, x1, y1, x3, y3 gives a 4-cycle in (G)1 which is case 4.
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Case 5b: All three edges are present.
In this case, our graph is H(1).

Case 5c: Exactly one of {x1, y3}, {x3, y1}, and {x3, y3} are present.
In this case, the induced subgraph on all six vertices is an induced path of length 5, which

is case 3.
Case 5d: Only the edge {x3, y3} is missing.

In this case, G has a 6-cycle with no chord, a contradiction.
Case 5e: Only the edge {x3, y1} is missing.

In this case, y1 must be adjacent to another vertex x4 and the edges {x4, y2} and {x4, y3}
may or may not be present.

x1 y1

x2 y2

x3 y3

x4

Case 5e(i): Both {x4, y2} and {x4, y3} are present.
In this case, the induced subgraph on all seven vertices is H(8).

Case 5e(ii): Only {x4, y2} is present.
In this case, the induced subgraph on {x1, x2, x4, y1, y2, y3} is a 6-cycle with no chord, a

contradiction.
Case 5e(iii): Only {x4, y3} is present.

In this case, the induced subgraph on all seven vertices is H(8).
Case 5e(iv): Both edges are missing.

In this case, the induced subgraph on {x4, y1, x2, y3, x3, y2} is a path of length 5, which
is case 3.
Case 5f: Only the edge {x1, y3} is missing.

This case is identical to case 5e.

5. Main Results

In this section we collect the proofs of our main results classifying the graphs whose
toric edge ideals satisfy each of the Green-Lazarsfeld conditions Np. The previous sections
identified certain obstructions in the form of forbidden subgraphs to a given ideal IG satisfying
conditions N2, N3, or N4. First we use the following result which shows we may focus our
attention on the existence of minimal Koszul syzygies of toric edge ideals.

Proposition 5.1 (cf. [22, Proposition 2.8]). If R = S/I is a Koszul algebra, then the first
syzygies of I are minimally generated by linear syzygies and Koszul syzygies.

We note that it is also possible to show that I has only linear and Koszul syzygies when I
has a quadratic Gröbner basis (as happens in our case of interest) using Schreyer’s Theorem
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on syzygies. See [7, Theorem 3.3]. A similar observation was made in [10, Theorem 3.1].
Of course, having a quadratic Gröbner basis is sufficient but not necessary for the Koszul
condition.

It would be possible to prove the following characterization of linearly presented bipartite
toric edge ideals by appealing to Theorem 3.2 and enumerating all possible subgraphs with
at most 8 vertices. While this strategy is useful to enumerate the obstructions to being
linearly presented, it is inefficient to check all such graphs by hand. Instead, by using the
previous proposition, we need only consider induced subgraphs where a potential Koszul
syzygy exists and show that it is not a minimal generator of the syzygy module of IG in
every possible case. This brings us to our first main result.

Theorem 5.2. Let G be a bipartite graph with δ(G) ≥ 2. Then IG satisfies N2 if and only
if G is essentially a tree of diameter at most 3.

Proof. Suppose G is not essentially a tree of diameter at most 3. If there is a cycle of length
≥ 6 that has no chord, IG is not quadratically generated by Theorem 1.1 and thus must fail
condition N1 and also condition N2. So we may suppose that all chords of G of length ≥ 6
have a chord. Now by Theorem 4.2, G contains the graph H = H(i) for some 1 ≤ i ≤ 8 as
an induced subgraph. By Lemmas 3.3 and 3.4, β2,4(IH) 6= 0. By Theorem 3.2, β2,4(IG) 6= 0
and thus IG does not satisfy property N2.

Now suppose that G is essentially a tree of diameter at most 3. By Theorem 1.1, IG is
generated by a Gröbner basis of quadrics corresponding to 4-cycles in G and S/IG is Koszul.
If H is any subgraph of G, then any 4-cycle in H is a 4-cycle in G, so (IH)2 ⊆ IG. Any
syzygy of IH can be extended to a syzygy of IG, so, by Proposition 5.1, it is sufficient to
show that any Koszul syzygy is a linear combination of linear syzygies.

Koszul Syzygies correspond to pairs of distinct 4-cycles. There are five possibilities for
the configuration of pairs of distinct cycles:

1. they share two edges,

2. they share an edge,

3. they share two vertices, but no edges.

4. they share a vertex but no edges,

5. or they don’t intersect.

Case 1: G contains a subgraph H which has distinct 4-cycles sharing exactly two edges.

In this case, the only subgraph satisfying our assumption is K2,3; see Figure 3. IH is
then resolved by the linear Eagon-Northcott complex and thus has no minimal quadratic
syzygies.
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x1 y1

x2 y2

y3

Figure 3: The graph K2,3.

Case 2: G contains a subgraph H which has distinct 4-cycles sharing exactly one edge.

In this case, the minimal graph containing the two given 4-cycles is pictured in Fig-
ure 4(a),

x1 y1

x2 y2

x3 y3

(a) The minimal graph con-
taining the two cycles.

x1 y1

x2 y2

x3 y3

(b) Edge {x1, y3} added.

Figure 4: Possible edges in the subgraph H.

where the two 4-cycles are x1, y1, x2, y2 and x2, y2, x3, y3 and the bipartite complement con-
sists of the two dashed lines. Since H(1) is not an induced subgraph of G by Theorem 4.2, at
least one of the two missing edges must be present. By symmetry, we can assume that this
present edge is the edge from x1 to y3; see Figure 4(b). Calling this graph H and labeling
the edge from xi to yj by eij, we have

IH = (e12e21 − e11e22, e13e21 − e11e23, e13e22 − e12e23, e13e32 − e12e33, e23e32 − e22e33).

The Koszul syzygy in this case is
−e22e33 + e23e32

0
0
0

e11e22 − e12e21

 = e32


e23
−e22
e21
0
0

− e21


0
0
e32
−e22
e12

 + e22


−e33
e32
0
−e21
e11

 .

The reader can verify that the terms on the right-hand side are linear syzygies.
Case 3: G contains a subgraph H which has distinct 4-cycles sharing exactly two vertices
but no edges.

In this case, the only subgraph satisfying our assumptions is K2,4,
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x1 y1

x2 y2

y3

y4

Figure 5: The graph K2,4.

where the two cycles are x1, y1, x2, y2 and x1, y3, x2, y4. Once again this is K2,4 and IK2,4 is
resolved by a linear Eagon-Northcott resolution and so, as in Case 1, there are no minimal
quadratic syzygies.
Case 4: G contains a subgraph H which has distinct 4-cycles sharing exactly one vertex
and no edges.

In this case, the minimal subgraph containing the two cycles is pictured in Figure 6(a),

x1 y1

x2 y2

x3 y3

x4

(a) Minimal subgraph containing the
cycles.

x1 y1

x2 y2

x3 y3

x4

(b) Minimal satisfactory subgraph.

Figure 6: Possible edges in the subgraph H.

where the two cycles are x1, y1, x2, y2 and x3, y2, x4, y3. To ensure that G is essentially
connected, one of the two connected components of G (the dashed lines) must be present in
G. By symmetry, we can assume that the edges {x1, y3} and {x2, y3} are present in G. The
resulting graph is shown in Figure 6(b).

Calling this graph H and labeling the edge from xi to yj by eij, one computes that

IH = (e12e21 − e11e22, e13e21 − e11e23, e13e22 − e12e23, e13e32 − e12e33,
e23e32 − e22e33, e13e42 − e12e43, e23e42 − e22e43, e33e42 − e32e43).

The Koszul syzygy in question is then a sum of linear syzygies, as shown below.
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−e32e43 + e33e42
0
0
0
0
0
0

e11e22 − e12e21


= e11



0
0
0
0
0
e42
−e32
e22


− e21



0
0
0
e42
−e32

0
0
e12


− e42



−e33
e32
0
−e21

0
e11
0
0


+ e32



−e43
e42
0
0
−e21

0
e11
0


.

Case 5: G contains a subgraph H which has two disjoint 4-cycles.

In this case, the minimal subgraph of the cycles is pictured in 7(a),

x1 y1

x2 y2

x3 y3

x4 y4

(a)

x1 y1

x2 y2

x3 y3

x4 y4

(b)

Figure 7: Possible edges in the subgraph H.

where the two cycles are x1, y1, x2, y2 and x3, y3, x4, y4. The dashed lines form the two
connected components of the bipartite complement. In order to minimally satisfy our as-
sumptions, we must add one entire connected component from the bipartite complement
and at least a single edge from the other yielding the graph in Figure 7(b). If less than a
full component of the bipartite complement is included, there is an induced subgraph whose
bipartite complement is not essentially connected, violating Theorem 4.2. If the extra edge
is not present, then the bipartite complement contains a 4-cycle, also violating Theorem 4.2.

Calling this graph in Figure 7(b) H, one computes

IH = (e12e21 − e11e22, e13e21 − e11e23, e14e21 − e11e24, e13e22 − e12e23, e14e22 − e12e24,
e14e23 − e13e24, e13e32 − e12e33, e14e32 − e12e34, e23e32 − e22e33, e24e32 − e22e34,
e14e33 − e13e34, e24e33 − e23e34, e14e43 − e13e44, e24e43 − e23e44, e34e43 − e33e44).

Once again, the corresponding Koszul syzygy is a sum of linear syzygies:
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−e33e44 + e34e43
0
0
0
0
0
0
0
0
0
0
0
0
0

e11e22 − e12e21



= e11



0
0
0
0
0
0
0
0
0
0
−e44
e43
0
−e32
e22



−e21



0
0
0
0
0
−e44
e43
0
0
−e32

0
0
0
0
e12



+e44



−e33
e32
0
0
0
−e21

0
0
0
0
e11
0
0
0
0



−e43



−e34
0
e32
0
0
0
−e21

0
0
0
0
e11
0
0
0



+e32



0
−e44
e43
0
0
0
0
0
0
−e21

0
0
0
e11
0



.

Since all possible configurations of two distinct 4-cycles produce non-minimal Koszul
syzygies, we can conclude that IG satisfies N2.

Remark 5.3. The requirement that δ(G) ≥ 2 is not restrictive. If G has an isolated (degree
0) vertex, then removing it does not change the edge ring k[G]. If G has a vertex of degree
1, then removing the adjacent edge merely reduces the embedding dimension of the ring of
IG; it does not change the minimal cycles in G and thus does not affect the structure of IG
or its resolution. However, requiring δ(G) ≥ 2 makes our main result, which refers to G,
much easier to state and apply in practice.

Remark 5.4. A bipartite graph G with δ(G) ≥ 2 such that every cycle of length ≥ 6 has a
chord can fail to satisfy Theorem 5.2 in three different ways: G could be a tree of diameter
greater than 3, G could be disconnected, or G could contain a cycle. Figure 8 gives an
example of each type. Dashed lines represent edges in G. The corresponding Betti tables
are listed below showing the corresponding toric edge ideals are not linearly presented.
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x1 y1

x2 y2

y3x3

y4x4

0 1 2 3 4
2: 10 16 3 - -
3: - 3 16 10 -
4: - - - - 1

(a) G has diameter greater than
3.

x1 y1

x2 y2

y3x3

y4x4

0 1 2 3 4 5
2: 14 29 15 - - -
3: - 9 41 50 21 1
4: - - . - - 1

(b) G is disconnected.

x1 y1

x2 y2

y3x3

y4x4

0 1 2 3 4
2: 11 20 6 - -
3: - 1 16 15 4

(c) G contains a cycle.

Figure 8: Three examples of bipartite graphs with non-linearly presented toric edge ideals and their Betti
tables

Consider the complete bipartite graph K5,5. Then β2,5(IK5,5) = 0 if and only if the char-
acteristic of k is not 3. In particular, in characteristic other than 3, IK5,5 has partial graded
Betti table

0 1 2
2: 100 800 3075 · · · ,

while in characteristic 3, IK5,5 has partial graded Betti table

0 1 2
2: 100 800 3075 · · ·
3: - - 1 · · ·

.

More generally, Hashimoto [16] showed that the ideal It(M) of t × t minors of a generic
m × n matrix has the same third Betti numbers independent of the characteristic if t = 1
or if t ≥ min{m,n} − 2, whereas the third Betti number is larger in characteristic 3 if
2 ≤ t ≤ min{m,n}− 3. The ideal IK5,5 , corresponding to the 2× 2 minors of a generic 5× 5
matrix, is thus the minimal situation where β3(IKm,n) depends on the characteristic. While
this example shows that characterizing toric edge ideals of bipartite graphs satisfying N3

must refer to the characteristic of the coefficient field, we show below that this is the only
obstruction.

Theorem 5.5. Let G be a bipartite graph with δ(G) ≥ 2. The ideal IG satisfies condition N3

if and only if G = Km,n for some m,n, unless the characteristic of k is 3 and min{m,n} ≥ 5.
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Proof. First suppose that G = K5,5. In characteristic 0, IG satisfies N3 by considering the
resolution of Lascoux or Pragacz and Weyman. It follows by considering the number of boxes
in the last partition of the Lascoux complex (20 in this case), the resolution is the same in
characteristic p > 20 as it is in characteristic 0. A quick Macaulay2 [11] calculation shows
that p = 3 is the only characteristic less than 20 which in which IG fails to satisfy N3.

Now let G = Km,n for arbitrary m,n. If min{m,n} ≤ 4, then IG has the same graded
Betti numbers as its characteristic 0 Lascoux resolution by [17] and [1]. Thus we may assume
min{m,n} ≥ 5. If the char(k) = 3, then G has K5,5 as an induced subgraph and so does
not satisfy N3 as above. Thus we may assume char(k) 6= 3. If IG does not satisfy N3, then
β2,j(IG) 6= 0 for some j ≥ 5. Since S/IG is Koszul and since IG is linearly presented, it
follows from [2, Main Theorem (2)] that β2,j(IG) = 0 for all j ≥ 6. Thus if IG fails to satisfy
N3, we must have β2,5(IG) 6= 0.

Now by Theorem 3.2 there must be an induced subgraph H of G with at most 10 vertices
that fails N3. Since H is an induced subgraph, it is also a complete bipartite graph, say
Km′,n′ with m′+n′ = 10. If min{m′, n′} ≤ 4, then IH has the same graded Betti numbers as
that characteristic 0 Lascoux resolution, which satisfies N3 by [17] and [1]. Thus is suffices
to consider the case H = K5,5, as we have above.

Now suppose G is not a complete bipartite graph. If IG does not satisfy N2, then it
doesn’t satisfy N3, so it is enough to consider a graph G such that IG satisfies N2. By
Theorem 5.2, G is essentially a tree of diameter at most 3. In particular, since G is not a
complete graph, G has at least one edge. Moreover, since G is a tree of diameter at most 3,
there is an edge with vertices x and y such that every other edge of G is adjacent to this edge.
Since δ(G) ≥ 2, there exist vertices x′, x′′, y′, y′′ such that {x, y′}, {x, y′′}, {y, x′}, and {y, x′′}
are all edges in G. Since every edge in G is adjacent to {x, y}, we must also have the edges
{x′, y′}, {x′, y′′}, {x′′, y′}, and {x′′, y′′} in G. So the induced subgraph on {x, x′, x′′, y, y′, y′′}
is the graph H in Lemma 3.5, which satisfies β2,5(IH) 6= 0. By Theorem 3.2, β2,5(IG) 6= 0,
so IG does not satisfy N3.

The preceding work yields the following surprising characterization of toric edge ideals
with linear free resolutions. That IK2,n has a linear free resolution is well-known and follows
from the Eagon-Northcott resolution. Ohsugi and Hibi [24, Theorem 4.6] showed that IG
has a linear free resolution if and only if G = K2,n for some n. The content of the following
theorem is that the only bipartite graphs satisfying condition N4 are complete bipartite
graphs K2,n for some n and that condition N4 is sufficient to guarantee linear free resolutions
regardless of the characteristic.

Theorem 5.6. Let G be a bipartite graph with δ(G) ≥ 2. The ideal IG satisfies property N4

if and only if G = K2,n for some n. In this case, IG has a linear free resolutions and thus
satisfies Np for all p ≥ 1.

Proof. If IG does not satisfy N3, then it doesn’t satisfy N4, so it is enough to consider a
graph G such that IG satisfies N3. So we can assume G is a complete bipartite graph. If
G = Km,n with m,n ≥ 3, then it has C = K3,3 as an induced subgraph. By Lemma 3.6,
β3,6(IC) 6= 0, so by Theorem 3.2 β3,6(IG) 6= 0.
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Keeping in mind Theorem 5.1, we see that these proofs relied on the fact that IG was
generated by a Gröbner basis of quadrics. If we attempt to directly extend these results to
toric edge ideals of arbitrary (not necessarily bipartite) graphs, we lose the power of this
result, even in the case where IG is generated by quadrics. For example the graph pictured
below

has toric edge ideal generated by quadrics [18, Example 5.28] but has no Gröbner basis of
quadrics with respect to any monomial ordering [18, Example 1.18].

6. Linear Syzygies of Polyominoes

Ideals associated to polyominoes were introduced by Qureshi, where it was shown that
the ring associated to a convex polyomino is normal and Cohen-Macaulay [30, Theorem
2.2]. Later work by Ene, Herzog, and Hibi showed that the defining ideals are generated
by a quadratic Gröbner basis by viewing them as toric ideals associated to bipartite graphs
[10, Proposition 2.3]. They also give a characterization of polynominoes whose associated
ideals are linearly presented [10, Theorem 3.1]. However, when we translate our result on
bipartite graphs whose toric edge ideals are linearly presented, we discovered a discrepancy;
in particular, there are polyominoes that are not linearly presented that satisfy [10, Theorem
3.1]. The purpose of this section is to then translate our results on toric edge ideals of
bipartite graphs into results on convex polynomino ideals satisfying coditions Np for all p,
thereby correcting the error in the above theorem. We begin with some notation.

If a, b ∈ N2 with a ≤ b under the natural partial order, the set [a, b] = {c ∈ N2 | a ≤ c ≤ b}
is called an interval. If b = a + (1, 1), then [a, b] is called a cell. The edges of the cell C =
[a, a+(1, 1)] are the sets {a, a+(0, 1)}, {a+(0, 1), a+(1, 1)}, {a+(1, 1), a+(1, 0)}, {a+(1, 0), a}
and the points a, a+ (0, 1), a+ (1, 1), a+ (1, 0) are the vertices of C. The vertex a is called
the lower left corner of C. Let P be a finite collections of cells. The set of vertices V (P) is
the union of the sets of vertices of all cells in P . If C,D ∈ P , then C and D are connected
if there is a sequence of cells of P given by C = C1, . . . , Ct = D such that Ci ∩ Ci+1 is an
edge of Ci for i = 1 . . . , t − 1. A collection of cells P is a polyomino if any two of its cells
are connected. Two polyominos are isomorphic is they are mapped to each other by a finite
sequence of translations, rotations, and reflections. A polyomino P is row convex if given
any any two cells of P with lower left corners (i1, j) and (i2, j) with i1 < i2, all of the cells
with lower left corners (i, j) with i1 < i < i2 are also in P . Similarly, one defines P to
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be column convex if given any two cells of P with lower left corners (i, j1) and (i, j2) with
j1 < j2, one has that all the cells with lower left corners (i, j) with j1 < j < j2 are in P .
Finally P is convex if it is row convex and column convex.

Now let P be a polyomino. We may rotate and translate P until [(1, 1), (m,n)] is the
smallest interval containing P . Fix a field k and a polynomial ring S = k[xi,j | 1 ≤ i ≤
m, 1 ≤ j ≤ n]. The polyomino ideal IP is the ideal of S generated by the 2 × 2 minors
xijxkl − xilxkj for with [(i, j), (k, l)] ⊂ V (P).

Remark 6.1. In [10, Proposition 2.3], it is shown every convex polyomino ideal is the toric
edge ideal of a bipartite graph with a quadratic Gröbner basis and thus satisfies condition
N1. One identifies the vertical line segments with one set of vertices xi and the horizontal
line segments with another set of vertices yj; then one draws an edge between xi and yj if
the corresponding line segments intersect. Thus every convex polynomino corresponds to a
bipartite graph such that every cycle of length ≥ 6 has a chord.

Here we remark that the converse does not hold; that is, not every quadratically generated
toric edge ideal is the polyomino ideal for some convex polyomino. The ideal IH(1) which
corresponds to a complete intersection of two quadratic binomials is clearly not associated
to any convex polyomino, which cannot have exactly 2 minimal generators. However, the
disconnected collection of cells in Figure 9 has an isomorphic ideal of inner minors to IH(1) .

Figure 9: A collections of cells that is not a polyomino.

Proposition 6.2. Let G = (V,E) is a connected bipartite graph with δ(G) ≥ 2 such that
every cycle with length ≥ 6 has a chord and such that G is essentially a tree of diameter at
most 3. Then there is a convex polyomino P such that IG and IP are isomorphic.

Proof. Let {x1, . . . , xm} t {y1, . . . , yn} be the vertex set of G. Since G is essentially a tree
of diameter at most 3, if G is not a complete bipartite graph, then G has an edge adjacent
to every other edge. By relabeling, we may assume this edge is {xm, yn} and every other
edge is of the form {xm, yj} for some 1 ≤ j < n or {xi, yn} for some 1 ≤ i < m. Again by
relabeling vertices, we may assume that {xi, yn} ∈ E if and only if i ≤ m and {xm, yj} ∈ E
if and only if j ≤ n′ for some integers m′ and n′ with 1 ≤ m′ < m and 1 ≤ n′ < n. It follows
that IG = IP where P is the following polyomino:
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(m− 1, n− 1)

m′

n′

Figure 10: A linearly related polyomino.

Using the previous dictionary between polyomino ideals and toric edge ideals of bipartite
graphs, we translate our main Theorem 1.2 to characterize polyomino ideals satisfying the
various Green-Lazarsfeld conditions.

Theorem 6.3. Let P be a convex polyomino and let k be a field.

1. IP satisfies property N1.

2. IP satisfies property N2 if and only if P is isomorphic to a polyomino all of whose
missing cells are in the first row or first column (possibly after rotating P. See Fig-
ure 11.)

3. IP satisfies property N3 if and only if P is an interval unless char(k) = 3 and P is an
interval with width and length at least 4.

4. IP satisfies property Np for some/any p ≥ 4 if and only if P is an interval of the form
[a, (2, n) + a] for some a ∈ N2.

(m− 1, n− 1)

Figure 11: A general, linearly related, convex polyomino.
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7. Application to a Question of Constantinescu, Kahle, and Varbaro

Our original motivation for studying linearly presented toric edge ideals comes from the
following question of Constantinescu, Kahle, and Varbaro [6]:

Question 7.1 ([6, Question 1.1]). Is there a family of linearly presented, quadratically gen-
erated ideals {In ⊆ R = k[x1, ..., xn]}n∈N such that

lim
n→∞

reg(In)

n
> 0?

A similar question in the Koszul setting was posed by Conca [5, Question 2.8]. Such a family
of ideals would have regularity growing linearly with respect to the number of variables. In
[6], Constantinescu, Kahle, and Varbaro construct a family of squarefree, quadratic monomial
ideals with linear syzygies for arbitrarily many steps (i.e. satisfying property Np for arbitrary
p if we ignore the normality condition) and with arbitrarily large regularity, however these
ideals have a very large number of variables. A result of Dao, Huneke, and Schweig [8]
shows that the regularity of squarefree monomial ideals with linear syzygies is bounded
logarithmically in terms of the number of variables; in particular, no such families of ideals
yielding a positive answer to Question 7.1 can be monomial.

Note that if depth(R/In) > 0, we can mod out by a general linear form, thereby reduc-
ing the number of variables while preserving the graded Betti numbers and regularity. It
follows from the Auslander-Buchsbaum formula that the following question is equivalent to
Question 7.1

Question 7.2. Is there a family of linearly presented, quadratically generated ideals {In ⊆
R = k[x1, ..., xn]}n∈N such that

lim
n→∞

pd(In) =∞ and lim
n→∞

reg(In)

pd(In)
> 0?

The restriction that the ideals is linearly presented rules out complete intersections of n
quadrics for with pd(S/In) = reg(S/In) = n. In general, both questions are still open. A
corollary to our Theorem 5.2 is that no such families exist among toric edge ideals associated
to bipartite graphs.

Corollary 7.3. There are no families of graphs Gn, where Gn is bipartite and IGn satisfies
property N2, that give a positive answer to Question 7.2. In other words, if limn→∞ pd(IGn) =

∞, then limn→∞
reg(IGn )

pd(IGn )
= 0.

Proof. Fix a bipartite graph G = (XtY,E) such that IG is linearly presented and δ(G) ≥ 2.
Set r = |X| and s = |Y | and without loss of generality assume 2 ≤ r ≤ s. Since IG is Cohen-
Macaulay, pd(S/IG) = ht(IG). When G is a complete (r, s)-bipartite graph, it is well-known
that ht(IG) = (r − 1)(s − 1). If G is an arbitrary bipartite graph such that IG is linearly
presented, it follows from Theorem 5.2 that G is a tree of diameter at most 3. Thus there
are at most (r − 3) + (s − 3) + 1 edges missing from the complete bipartite graph and so
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|E| ≥ rs−r−s+5. It follows that ht(IG) ≥ (r−1)(s−1)−r−s+5 = (r−2)(s−1)−r+4. By
[3, Theorem 4.9], reg(S/IG) ≤ r. If the above limit is nonzero, we must have limn→∞ r =∞.
Since r ≤ s, we get

reg(IGn)

pd(IGn)
≤ r

(r − 2)(s− 1)− r + 4
=

1
r−2
r

(s− 1)− 1 + 4
r

→ 0

as n→∞.

It is worth noting that even though quadratic toric edge ideals of bipartite graphs are
generated by quadratic Gröbner bases, this does not reduce the problem of answering the
above question to the monomial case. Indeed there are linearly presented, quadratic toric
edge ideals whose lead term (monomial) ideals are not linearly presented. For a simple ex-
ample, let G be K4,3 with one edge removed. By Theorem 5.2, IG is linearly presented. One
checks however that LT (IG) is quadratic but not linearly presented.
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C. R. Acad. Sci. Paris Ser. A-B 274 (1972), A16–A18.
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