


of a comprehensive prior, robots must be able to quickly

and reliably learn a viable model of an individual partner’s

behavior. In particular, robust strategies to detect and respond

to human intention, role changes, and levels of expertise would

enhance robots’ abilities to understand and coordinate with

humans. However, enabling robots to adapt to these variations

is challenging, as it requires detailed sensing and accurate

interpretation of people’s behaviors, which are open problems

in robotics.

Human activity recognition could address one facet of fluent

coordination. A wide range of algorithms and sensors are used

to classify people’s activities [9]. Such classifications can be

particularly useful for robots that collaborate with people on

tasks that have a clear structure, such as on manufacturing

assembly lines or cooking using a recipe. For instance, if

a robot detects what step a person on an assembly line is

currently performing, it could fetch the component that will

subsequently be needed in advance. However, this is still an

active area of research, and the classification of fine-grained

motions in particular can be difficult [30].

In addition to detection of human activity, many teaming

scenarios will require robots to sense and interpret subtle,

visual communication cues. This is a challenging area, par-

ticularly given that there is not always a simple mapping

between nonverbal signals and meaning, and it can be difficult

to even distinguish when a gesture begins and ends [27].

However, if robots can glean some meaning from these cues,

they will likely be able to predict human intentions more

accurately and subsequently generate plans that better support

fluent teaming. For instance, Duarte et al. [12] showed that

people can predict where someone will place an object with

over 80% accuracy based only on saccadic eye movement and

head rotation. Huang and Mutlu [22] used gaze cues to predict

human intent and demonstrated that a robot anticipating these

cues collaborated more efficiently with people than a reactive

robot did. Additionally, several studies indicate that robots can

also display nonverbal cues to influence human behavior and

make interaction more fluent [44, 11, 6, 8, 35, 12, 36, 1].

Another important area challenged by human variation is

understanding agents’ roles throughout an interaction. There

are several types of roles that can arise during an interaction,

including supervisor, worker, and peer [46]. Much of the work

on fluent teaming to date either does not explicitly consider

roles or assumes static roles, with Peternel et al. [40] and

Rezvani et al. [41] being notable exceptions. However, in real-

world scenarios, people’s roles often shift over the course

of an interaction. For instance, when carrying a table, the

person facing forward may start off in a leader role, but if that

person ends up facing backwards after turning a corner, they

might switch to a follower role. Furthermore, in group tasks,

individuals may join and leave the group at random intervals,

and at such points people’s roles will necessarily change [48].

Consequently, robots will need to be able to shift their own

role in response to new situations. Peternel et al. [40] explored

this by developing an algorithm for a robot to actively change

roles by having the robot sense when a person became fatigued

and adjust its role to reduce the force output required from

the human. Rezvani et al. [41] also proposed autonomous

driving situations in which a robot’s role might change and

investigated how the robot can best initiate this shift with a

person. However, in both of these studies, the role changes

occurred in very specific, well-defined cases, which do not

reflect the varied scenarios robots will encounter in the real

world. Therefore, more work needs to be done to ensure that

robots can appropriately initiate and respond to role changes

in dynamic environments.

Robots must also be able to recognize a teammate’s level

of comfort or expertise with a task in order to assume

an appropriate role. As they integrate more into human-

centered environments, robots will encounter people with

varying amounts of knowledge about a given task, which

will affect their ability to perform the task. For instance,

in a handover task, novice users were less likely to give

physical feedback than experienced users [33]. This sometimes

caused the robot to keep hold of the object after the person

expected a release, leading to failed handovers. Therefore,

robots must be able to distinguish between differing levels

of expertise and adjust their behavior accordingly. This is

important both when performing the same task with different

people and when performing different tasks with the same

person. If their partner is a novice, the robot may have to

provide more assistance or guidance, potentially teaching the

person about the task. On the other hand, if the person is

very experienced, the robot should leverage their knowledge

by asking the person for assistance or allowing them to lead.

By taking their partner’s abilities into account, robots will be

able to achieve greater fluency during the interaction.

B. Knowledge and Task Transfer

As robots enter human-centered environments, they will

need to work with multiple people and perform a variety of

tasks. In order to perform reliably, they will need to be able

to generalize information from teaming experiences to better

understand how to navigate new tasks and new partners.

Even for distinct tasks, there are likely some underlying

characteristics or patterns that can be used to transfer knowl-

edge from one task to another. For instance, Iqbal and Riek

[23, 24] demonstrated that the same group synchrony metric

can be used across a variety of scenarios, including playing

a cooperative game, marching, and dancing. Additionally,

Thomaz and Chao [49] suggested that while turn-taking be-

haviors are context-dependent, there are still some generic

components. They proposed a framework constructed from a

domain-specific finite state machine with a generic Markov

decision process that models turn-taking. Recent studies also

showed that robot grasps can generalize to similar objects

[2], and teaching techniques can generalize across topics [4].

Furthermore, Gutierrez et al. [16] investigated how robots

can efficiently perform new tasks by learning modifications

to similar tasks they can already achieve.

Similarly, robots can leverage characteristics of humans that

are largely constant over the population to more quickly adapt



to new partners. Past research shows that certain movement

dynamics are somewhat invariant across different people (e.g.,

the minimum jerk model [21], the 2/3 power law [31], etc.) and

that people will often act similarly given the same affordances

in their environment [26]. Robots can capitalize on these

tendencies to support accurately predicting human behavior

more quickly, which will promote fluent teaming with users

they have not encountered before.

Conversely, robots must also respect people’s differences

and adapt their policies accordingly. There is no “one size

fits all” model for people, and individual differences play a

key role in how we understand teaming [17, 18, 44]. General

trends and transferring learned knowledge are a good prior

when a robot first interacts with someone, but it needs to then

adapt to the idiosyncrasies specific to that person. For instance,

even if a robot uses common behaviors associated with given

affordances as a starting point for interaction, the affordances

of an environment vary for different people (e.g., a large step

affords stepping for an adult but not a small child) [26].

Robots must also adapt as people change over time. For

example, if people have a neurodegenerative condition, such

as dementia, their ability to perform certain tasks may change

across a range of time scales, throughout the day or across

many years [43, 34]. These changes may occur at different

rates that are specific to each person. Thus, robots must be

able to personalize their behavior to people as they interact

with them [52].

C. Co-Training Prior to Task Execution

Many current teaming algorithms require the human and

robot to practice together for several iterations before the

human-robot team can perform effectively enough for real-

world deployment [37, 20]. There are many contexts in

which extensive repetition is necessary for safe or effective

performance. For instance, in manufacturing settings, where

high precision may be necessary when working on a del-

icate product, or in hospitals, where mistakes can be life-

threatening, it is appropriate that the human and robot train

together extensively to ensure safe and reliable outcomes.

Multiple training iterations enable both the human and robot

to more fully understand each other, and ultimately allow the

human-robot team to optimize their performance.

However, such training is neither appropriate nor feasible

in all settings. For example, in many environments a robot

will not have a consistent team, but rather be expected to

spontaneously work with new teams or individuals. In these

cases, having an extended training period would disrupt the

interaction and potentially make the robot a burden to work

with rather than an aid. Furthermore, it is impossible to

predict all scenarios a human-robot team will encounter in

unstructured environments, making the ability to learn on-the-

fly a necessity.

For the robot to act appropriately despite a short or nonex-

istent training period means that it must be able to either

quickly learn about or have generalizable knowledge of human

preferences and tendencies and have a prior for the task. Such

skills will enable robots to promote fluent coordination in

teams it has not worked with before. As discussed above, being

able to transfer knowledge across tasks and users will likely

be helpful in reducing training times.

Koppula et al. [29] approached this problem by training a

policy offline before interacting with a person. However, their

model did not adapt to the person while interacting with them,

though they note that it could be changed to learn online.

Limiting training time is not only detrimental to the robot’s

efficacy, but the person’s as well. When a person trains with

a robot, they learn about the robot’s limitations and develop a

better mental model of the robot. Without this prior experience,

people may have unrealistic expectations when they begin

working with the robot [45, 39, 7]. Therefore, the robot must

be transparent and clearly convey its capabilities to the person

in order for them to perform successfully.

D. Long-Term Interaction

Another difficult challenge HRT researchers face is main-

taining reliable teaming over long periods of time [42, 10, 28,

14]. For instance, as robots integrate into a wider variety of

environments, they will be expected to run for long periods

without major faults and maintain long-term interactions with

a variety of people. They will also likely encounter situations

during teaming that they are unable to cope with on their own

[47]. For example, a human may expect a robot to retrieve an

item that is out of the robot’s reach. In this case, the robot

will need to identify that the task is outside of its limitations

and react appropriately to mitigate the disruption to the task.

This is an inherently challenging problem.

However, if robots have robust control strategies for teaming

and are able to sense humans, learn from them, and transfer

knowledge across tasks, long-term interaction becomes signif-

icantly easier. With these skills, robots could alert people to

situations where failure is likely. This would result in fewer

disruptions during teaming and avoids situations the robot

cannot recover from. By transferring what they have learned

across tasks, robots also would be able to effectively collab-

orate with humans on a wider variety of tasks, a necessary

feature for long-term deployment in dynamic environments.

Additionally, if the robot encountered a task it was uncertain

about, it could rely on its human partner’s knowledge to help it

complete the task. Cakmak et al. [5] demonstrated that actively

learning robots (i.e., those that ask questions) learn more

quickly than passively learning robots. Furthermore, people

preferred to interact with robots that actively participated in

learning. Thus, by actively curating knowledge, robots could

become both better at their task and more engaging partners.

III. RECOMMENDED PATHS FORWARD

A. Bi-Directional Adaptation

The challenges presented above are by no means straight-

forward to solve. However, one approach to address some

of the issues is to leverage human adaptability. Humans are

extraordinarily adept at adapting to a wide variety of situations,

including new partners or new tasks in teaming scenarios.



If robots can explicitly model and take advantage of the

way humans adjust to them, they may, in turn, be able to

coordinate their adaptations with the person to promote fluent,

coordinated teaming. For instance, if a robot and human are

carrying a table together and the robot detects that the person

has adapted to to the speed of its trajectory, the robot might

keep its speed the same for the rest of the interaction so as not

to confuse the person. However, it could still adapt the shape

of its trajectory to better mesh with the person.

There has been some work to date looking into human

adaptability during HRT. For instance, Amirshirzad et al.

[3] investigated the effects of robotic behavior on human

behavior in a ball-balancing task. They compared people’s

performance when using a purely teleoperated robot to that

when collaborating with a shared-control robot that attempted

to infer its partner’s intention throughout execution. Although

the teleoperated robot employed a simpler controller (e.g.,

it precisely followed the person’s input), people naturally

adapted to the shared-control robot, and quickly outperformed

the teleoperation group. While the robot’s control strategy was

static in this experiment, these results suggest that human

adaptability can be leveraged to improve team performance.

Thomaz et al. [50] also found that people adapt to robots

over the course of an interaction. In a reinforcement learning

scenario, in which people assigned rewards to the robot to

help it learn, people adjusted the number of rewards they gave

throughout the task. They also changed the type of reward they

gave to better accommodate the robot’s learning. These results

again indicate that humans will adapt to robots to produce

more effective teaming outcomes.

This issue was also partly addressed by Nikolaidis and

Shah [37] with a cross-training algorithm, in which humans

and robots repeatedly switched roles to learn how to better

complete a task. This enabled both the human and the robot

to adapt to their partner throughout training, and the authors

showed that the “mental models” of both agents converged

during training. However, this process requires a significant

amount of training, and the robot did not explicitly consider

how the human changed throughout the process. Nor did the

robot subsequently adapt after the training stage if the human

changed their policy during execution.

In contrast, Nikolaidis et al. [38] proposed the Bounded-

Memory Adaptation Model (BAM), which explicitly models

human adaptability and adjusts robot behavior based on that

adaptability throughout the interaction. The model includes a

latent variable that models the person’s level of adaptability.

If the person is not very adaptable, they are more likely to

continue with their policy, regardless of the robot’s behavior,

so the robot must switch to the human’s policy or “mode” to

make progress on the task. On the other hand, if the human

is more adaptable, they are likely to switch to the robot’s

mode. However, as the authors note, this model assumes a

fully observable world-state, an assumption that often does

not hold in real-world scenarios.

The above studies represent a good starting point for inves-

tigating how robots can take advantage of human adaptability.

However, HRI researchers are only beginning to understand

the ways in which people adapt to robots. Additionally,

the current models that incorporate human adaptability are

somewhat limited in their applicability due to either their

training requirements or world-state assumptions. Thus, more

work needs to be done to investigate the dynamics of bi-

directional adaptation, as well as how robots can best use

people’s adaptability to support fluent teaming.

B. Unstructured Behavior

While we try to make robots able to generalize knowledge to

new tasks, we should also consider how we can generalize to

tasks with even less structure. Many current techniques focus

on periodic [24] or structured tasks, like constructing an object

[20]. However, tasks that people regularly perform often do not

have such a well-defined structure. As robots enter human-

centered environments, they will be expected to collaborate

on such tasks with people.

If robots can interpret human motion and transfer knowledge

across tasks, it is possible that the switch from structured to

unstructured tasks will not be such a difficult one. Most tasks

will likely have some underlying structure, even if it is not

as obvious as the structure of the tasks currently focused on.

Therefore, it is possible that robots could still use some of

the same information and techniques from structured tasks to

promote fluent teaming in unstructured tasks. For instance,

if a robot is collaboratively moving furniture with people

from a moving truck to a house, it may not have complete

information about the task. It might not know what piece of

furniture they will pick up next or where they want to move

it. However, it could still realize that there is a pattern to the

movement, namely that the person repeatedly goes from the

truck to the house and back, and it could use this information

to coordinate with the person, perhaps building on the work

of Iqbal and Riek [24] to better synchronize with the people

involved. Furthermore, even if there is little structure in the

task, there may still be parallels in the human dynamics. Thus,

if the robot could robustly sense the person’s motion, it may

be able to predict approximately what the person will do next.

IV. DISCUSSION

In this paper, we discussed several of the major challenges

in HRT, namely human variance in teaming, knowledge and

task transfer, co-training prior to task execution, and long-

term interactions. While these are all difficult challenges,

work to date provides a good foundation to address them.

Current methods could also potentially be adapted to support

fluent teaming in unstructured environments. Furthermore, by

utilizing human skills, such as adaptability, robots will be able

to more readily engage in fluent coordination with human

partners. With the realization of better models to support fluent

coordination in teaming, robots will become more effective

teammates for people, enabling them to augment people’s

capabilities in a variety of situations.
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